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Abstract—Nonlinear models are known to provide excellent
performance in real-world applications that often operate in
nonideal conditions. However, such applications often require
online processing to be performed with limited computational
resources. To address this problem, we propose a new class of
efficient nonlinear models for online applications. The proposed
algorithms are based on linear-in-the-parameters (LIPs) nonlin-
ear filters using functional link expansions. In order to make
this class of functional link adaptive filters (FLAFs) efficient,
we propose low-complexity expansions and frequency-domain
adaptation of the parameters. Among this family of algorithms,
we also define the partitioned-block frequency-domain FLAF
(FD-FLAF), whose implementation is particularly suitable for
online nonlinear modeling problems. We assess and compare
FD-FLAFs with different expansions providing the best possi-
ble tradeoff between performance and computational complexity.
Experimental results prove that the proposed algorithms can be
considered as an efficient and effective solution for online applica-
tions, such as the acoustic echo cancellation, even in the presence
of adverse nonlinear conditions and with limited availability of
computational resources.

Index Terms—Efficient adaptive filtering, frequency-domain
adaptive filters (FDAFs), functional links, low-complexity algo-
rithms, nonlinear adaptive filters.

I. INTRODUCTION

EMPLOYING nonlinear adaptive learning models in
unknown environments has always been a relevant

research topic in various signal processing applications aiming
at tracking the statistical behavior of input signals [1], [2], [3],
[4], [5], [6]. Their ease of low-cost implementation still makes
the development of new nonlinear filters very interesting for
online applications working in real time or having significant
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computational constraints. In particular, among the various
classes of filters, the so-called linear-in-the-parameters (LIPs)
nonlinear adaptive filters have been widely utilized due to their
capabilities in many fields of application [1], [7], [8], including
audio and speech processing applications, e.g., [9] and [10].

One of the most popular families of LIP adaptive nonlinear
filters is the one based on functional links, which is known in
the literature as functional link artificial neural network [11],
[12], [13], functional link network [14], [15], or functional
link adaptive filter (FLAF) [16]. The FLAF model has been
widely employed in recent years due to its efficient and flexible
architecture based on a Hammerstein scheme [11], [12], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26].
The analysis of FLAF modeling performance has also been
conducted for speech and audio signal processing in various
works [16], [27]. In [16], the FLAF is introduced as a useful
method for enhancing the original signal in the input side. This
enhancement is achieved by representing the input signals in
a higher dimensional space. A flexible split FLAF nonlinear
adaptive filtering approach is introduced in [18] for both linear
and nonlinear coefficient adaptation. In [18], a proportionate
FLAF method is studied and it has been shown that it may be
preferred over the split FLAF in several nonlinear applications.
The combination of adaptive filters on the nonlinear path of
the FLAF architecture is carried out in [19], [21], and [28]
where it has been proved to provide a higher performance
against strong nonlinearities.

Most of the LIP nonlinear filters are adapted by using time-
domain adaptive filters. However, employing time-domain
adaptive filters in real-time signal processing applications has
the drawback of requiring extensive computational resources,
which are often proportional to the length of the filters, which
may involve even thousands of coefficients depending on the
application. Over the years, many solutions have been adopted
to mitigate this problem. Mini-batch adaptive filters were intro-
duced in [29] employing a periodic update rule in order to
reduce the computational cost. However, the most signifi-
cant progresses in that sense have been obtained by using
frequency-domain adaptive filters (FDAFs), which have been
proved to be a powerful tool in processing signals for different
applications.

With respect to time-domain algorithms, FDAFs show
good convergence performance even in real-time applications.
However, the input–output delay has always represented a
problem [29], [30], [31]. Early frequency-domain adaptive
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algorithms were more focused on reducing the computational
complexity. In such problems, preserving the resources was
preferred over the performance improvement [32], [33], [34].
Regardless of notable advancements in computational
resources, the study of the frequency-domain methods is
still being given considerable attention. The frequency-domain
filtering approach has been employed in many online applica-
tions, such as in [35], [36], [37], [38], [39], [40], and [41].
Among the frequency-domain algorithms, the partitioned-
block FDAFs have been used frequently in recent years for
low-complexity applications due to their favorable proper-
ties of reducing both the input delay and the computational
cost [40], [42], [43], [44], [45]. Despite the numerous develop-
ments of linear models in the frequency domain, the applicabil-
ity of FLAFs in the frequency domain is still to be addressed,
mainly due to some challenges, such as the frequency-domain
adaptation after the functional transformation.

Motivated by the above considerations, we design a class
of frequency-domain FLAFs (FD-FLAF) for online nonlinear
modeling problems with the aim of providing low computa-
tional complexity and high-performance results. These goals
are achieved through two important features of this class of
filters.

1) The first insight concerns the adaptation algorithm of
the nonlinear filter, which is developed considering an
implementation in the frequency domain. In particular,
we derive the novel partitioned-block FD-FLAF, which
shows the best compromise between computational costs
and performance, while reducing as much as possible
any input–output delay.

2) The second relevant insight relies on developing an effi-
cient strategy of nonlinear expansion. In particular, we
provide the best low-complexity functional expansion
suitable for the frequency-domain implementation. The
proposed family of algorithms exploits the efficiency
of frequency-domain adaptive filtering while benefiting
from the effectiveness of the nonlinear estimation using
functional links.

The main advantage of the proposed family of algorithms
is that it is able to provide effective performance results in
online applications with low computational demand and also
under adverse nonlinear conditions. This result is not so obvi-
ous when nonlinear filters are used because they require an
accurate setting that depends very much on the scenario in
which they are used, i.e., on how strong is the nonlinearity
to be modeled and how many resources are available for pro-
cessing. Our approach is able to provide superior modeling
performance even when conditions change dramatically. To
this end, we have assess extensively the capabilities of the
proposed FD-FLAFs in nonlinear acoustic echo cancellation
(NAEC) scenarios.

Overall, we summarize this article contributions as follows.
1) We propose a novel general framework of LIPs nonlinear

adaptive filters for online applications involving low-cost
nonlinear expansion and efficient learning.

2) We provide a new perspective on different functional
link expansions from the point of view of the compu-
tational complexity and we provide the best possible

Fig. 1. Split architecture of an LIP nonlinear filter implemented in an NAEC
scheme.

functional link expansion considering a tradeoff between
performance and complexity.

3) We define a novel partitioned-block FD-FLAF as an effi-
cient solution for online applications and we discuss its
performance analysis.

4) We evaluate the proposed algorithms in a classic online
application, that is the NAEC, considering both station-
ary and nonstationary conditions, as well as different
signal distortion and magnitude levels.

The remainder of this article is organized as follows.
Section II introduces the problem formulation and the method-
ological background, including the nonlinear FLAF model and
its application to online problems like NAEC. In Section III,
we describe the main functional expansions, providing a per-
spective on their computational demands and how to design
a low-cost implementation. The proposed family of low-cost
FLAF in the frequency domain is defined in Section IV. We
focus in particular on the proposal of a partitioned-block FD-
FLAF, whose performance analysis is discussed in Section V.
In Section VI, we describe the experimental settings and dis-
cuss the achieved results. Finally, Section VII concludes this
article.

II. FUNCTIONAL LINK LIP NONLINEAR ADAPTIVE FILTER

MODEL AND ITS APPLICATIONS TO NAEC

In order to understand the reasons that underpin the fam-
ily of proposed algorithms, in this section, we provide a
problem formulation illustrating the principles of the FLAFs
and their application to practical online signal processing prob-
lems, such as in NAEC. In such scenarios, the system output
y[n] is a combination of linear and nonlinear components. For
this reason, a parallel split filtering architecture, like the one
shown in Fig. 1, is one of the most appropriate choices as
a canceler system. Here, we consider a split FLAF [16], in
which a nonlinear filter is implemented in parallel with a lin-
ear one. The latter filter aims at modeling the unknown linear
part related to the acoustic impulse response. The nonlinear
filter, instead, focuses only on the modeling of any nonlinear
distortion, regardless of the estimation of linear components of
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the acoustic impulse response. The nonlinear filter is an LIP
nonlinear adaptive filter involving a cascade of a functional
expansion block and a linear filter.

Let us consider the online application of NAEC, repre-
sented in Fig. 1. The signal x[n] coming from the remote
far-end communication user is reproduced by the loudspeaker
and captured by the microphone on the near-end side. The
path from the loudspeaker to the microphone is described
by an acoustic impulse response, which is estimated by the
linear adaptive filter. On the other hand, the loudspeaker intro-
duces some nonlinear distortion that affects the reproduced
signal. Such distortions are modeled by means of the non-
linear filter of the split FLAF. The distorted and reverberated
signal, denoted by s[n] and representing the echo signal to be
estimated and canceled, is then captured by the microphone
together with the environmental background noise v[n]. The
resulting microphone signal d[n] = s[n]+ v[n] is also denoted
as the desired signal. The near-end system, also known as loud-
speaker enclosure-microphone system (LEMS), is the system
to be modeled and contains a mixture of linear components,
due to the acoustic path, and nonlinear components generated
by the loudspeaker.

The input signal reproduced by the loudspeaker is received
as input by the split FLAF model, which passes it in the lin-
ear path as xL,n ∈ R

M = [x[n] x[n− 1] . . . x[n−M + 1] ]T ∈
R

M , where M is the length of the input vector. The sig-
nal xL,n is processed by the linear filter wL,n ∈ R

M =
[wL,0[n] wL,1[n] . . . wFL,Me−1[n] ]T ∈ R

M and provides
the linear output. Concurrently, the input signal x[n] is
also processed by the nonlinear filter of the canceler
whose input vector can be expressed as xFL,n ∈ R

Mi =
[ x[n] x[n− 1] . . . x[n−Mi + 1] ]T ∈ R

Mi , where its length Mi

may be smaller than M. Indeed, the acoustic impulse response
may involve thousands of parameters to be estimated, while
only a small part of its length may be sufficient for modeling
the nonlinear distortion.

The signal xFL,n is nonlinearly expanded by the func-
tional expansion block, which includes the set of func-
tional links, denoted by � = {ϕ0(·), ϕ1(·), . . . , ϕQ−1(·)},
where Q is the number of different functions of the
set. The ith element of xFL,n is nonlinearly trans-
formed by the functional link set, generating the vector
gi,n = [ ϕ0(x[n− i]) ϕ1(x[n− i]) . . . ϕQ−1(x[n− i]) ]T ∈ R

Q.
Concatenating all the vectors gi,n, for i = 0, . . . , Mi− 1 leads
to the final nonlinear vector gn ∈ R

Me as

gn =
[

gT
0,n gT

1,n . . . gT
Mi−1,n

]T

= [g0[n] g1[n] . . . gMe−1[n]
]T (1)

where the overall length is usually larger than the input vec-
tor length, i.e., Me ≥ Mi. The nonlinear vector gn does not
contain any linear elements and it is processed by wFL,n ∈
R

Me = [ wFL,0[n] wFL,1[n] . . . wFL,Me−1[n] ]T , thus, pro-
ducing the system output that estimates the distorted far-end
signal.

The input signals to the two parallel branches of the split
FLAF can be written in a compact fashion, as well as the filter

vectors [46]

xn ∈ R
M+Me =

[
xL,n

gn

]
(2)

wn ∈ R
M+Me =

[
wL,n

wFL,n

]
. (3)

Therefore, the overall output of the model estimating the
near-end LEMS signal can be derived in a joint approach as

y[n] = xT
n wn−1. (4)

This signal can be subtracted from the microphone signal
d[n], thus, obtaining the echo-free error signal e[n] = d[n]−
y[n] to be delivered to far-end communication user.

The filter updates can be performed by adopting any adap-
tive algorithm (see [47] and [48]), also including sparse models
or even more sophisticated filtering architectures [1], [19],
[21], [41], [49]. In this work, in order to achieve a low-
complexity adaptation of FLAFs, we derive a class of LIP
nonlinear adaptive algorithms in the frequency domain.

III. FUNCTIONAL EXPANSIONS FOR LOW-COMPLEXITY

IMPLEMENTATIONS

One of the most crucial aspects in the FLAF model
described in Section II is represented by the choice of the
functional link set �, which strongly depends on the signal
nature and the kind of application considered. Now, we try
to understand how to choose the best possible expansion for
online applications, like NAEC. In particular, we first eval-
uate the functional expansion types and then, analyze their
computational complexity.

A. Functional Expansion Types

1) Chebyshev Functional Links: The main feature of
Chebyshev polynomial functions lies in their powerful non-
linear approximation capability, which makes them useful in
many learning models, from adaptive filters to artificial neural
networks [10], [13], [50], [51], [52]. The Chebyshev functional
links are obtained by a power series expansion, including
functions of previously computed functions, which leads to
a very good functional approximation in proximity of the
expanded sample. On the other hand, the error may increase
for high-order expansions. Chebyshev functional links are
quite computationally efficient and cheap compared to other
power series for low-order expansions.

Consider the ith input sample of the nonlinear input vector
xFL,n, i = 0, . . . , Mi, the Chebyshev functional link expansion
can be expressed as

ϕj(x[n− i]) = 2x[n− i]ϕj−1(x[n− i])

− ϕj−2(x[n− i]) (5)

for j = 0, . . . , P− 1, where P represents the expansion order.
The overall number of functional links in a Chebyshev set
is equal to the expansion order, i.e., Q = P. Chebyshev
functional links can be initialized as follows (i.e., for j = 0):

ϕ−1(x[n− i]) = x[n− i]

ϕ−2(x[n− i]) = 1. (6)
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2) Legendre Functional Links: Legendre functional links
are very similar to Chebyshev functions, as they also derive
from a power series expansion. Such functions have been
widely used for several kinds of application [53], [54]. Their
popularity is due to their ability to arbitrarily well approximate
any finite-memory continuous nonlinear system [55].

The Legendre functional link expansion can be expressed
for the ith input sample as

ϕj(x[n− i]) = 1

j

{
(2j− 1)x[n− i]ϕj−1(x[n− i])

− (j− 1)ϕj−2(x[n− i])
}

(7)

with j = 0, . . . , P− 1. Similarly to the Chebyshev functional
link expansion, the overall number of functional links in the
Legendre set is Q = P. The initialization is also equal to the
Chebyshev one of (6).

3) Trigonometric Functional Links: Compared to other
expansions, the trigonometric functional links lead to a very
compact representation in the mean square sense of every
single nonlinear function [11], [56]. Trigonometric func-
tional links show less computational complexity and better
performance than other power-series-based nonlinear expan-
sions [12], [16]. This is the reason why they have been widely
adopted in several signal processing applications [12], [15],
[16], [20], [23].

The trigonometric functional link expansion is defined for
the ith entry as

ϕj(x[n− i]) =
{

sin(pπx[n− i]), j = 2p− 2
cos(pπx[n− i]), j = 2p− 1

(8)

where j = 0, . . . , Q−1 and p = 1, . . . , P. Unlike the previous
two cases, the overall number of functional links here is Q =
2P. It is worth noting that (8) refers to a memoryless expansion
(further details in [16]).

4) Random Vector Functional Links: As described in [14]
and [57], the random vector (RV) functional link expansion is
parametric with respect to a weight matrix, whose values are
randomly selected [57], [58], [59], [60]. As a matter of fact,
the input vector at the nth time instant xFL,n is subject to a
randomization step that returns the vector zn ∈ R

Me

zn = VxFL,n + b (9)

where V ∈ R
(Me×Mi) and b ∈ R

Me are randomly drawn from
a uniform probability distribution in [−1,+1]. The resulting
vector zn is then further processed by using a sigmoid function

ϕ(z[n− i]) = 1

1+ e(−z[n−i])
(10)

which represents the only nonlinearity involved in the expan-
sion process (i.e., Q = 1). Such a function is applied to every
sample of the expanded vector zn. It is worth noting that the
expansion length Me, in this case, does not depend on any
expansion order but it can be set a priori. Moreover, any
other nonlinear function can be chosen instead of the sigmoid
in (10).

TABLE I
COMPUTATIONAL COST COMPARISON OF DIFFERENT FUNCTIONAL LINK

EXPANSIONS IN TERMS OF MULTIPLICATIONS

5) Adaptive Exponential Functional Links: Adaptive expo-
nential (AE) functional links are obtained by taking the
trigonometric series expansion for the ith input sample and
by multiplying each function by an exponential term, whose
argument contains an adaptive parameter [15]

ϕj(x[n− i]) =
{

e−a[n]|x[n−i]| sin(pπx[n− i]), j = 2p− 2
e−a[n]|x[n−i]| cos(pπx[n− i]), j = 2p− 1

(11)

where P is the order of functional expansion and a[n] is the
AE factor that is updated by using a gradient descent rule [15].

The AE expansion improves the performance of the trigono-
metric functional links, as the AE term is able to overcome any
possible amplitude limitation of the trigonometric functions.

B. Computational Analysis of the Functional Expansions

Now, we compare the types of functional links described
above in terms of the computational resources required by the
expansions.

The Chebyshev functional link expansion in (5) involves
2Me = 2PMi multiplications and Me = PMi additions at each
iteration. The Legendre functional link expansion in (7) is
very similar to the Chebyshev one, but it requires slightly
larger resources. In fact, the Legendre expansion involves
4Me = 2P(2Mi + 1) multiplications and P(Mi + 2) addi-
tions. Memoryless trigonometric function links of (8) has been
largely investigated in the literature (e.g., [16]). Memoryless
trigonometric functional links show Me/2 + P = P(Mi + 1)

multiplications and Me = 2PMi function evaluations (e.g.,
sines and cosines, which can be easily implemented by lookup
tables). RV functional links in (9) and (10) involve Me(Mi+1)

multiplications, Me(Mi + 1) additions and Me function evalu-
ations for each iteration. The addition cost required from the
initialization of V and b is negligible with respect to the rest
of the process. Moreover, since Me ≥ Mi, the RV expansion
has a computational cost that is approximately proportional to
the quadratic order with respect to the length of the nonlinear
output vector. Finally, the AE expansion is very similar to the
trigonometric one, but it also requires an additional load due to
the exponentiation (i.e., 3Me multiplications and Me function
evaluations) and the adaptation of the exponential factor (i.e.,
2Me + 1 multiplications and 2Me + 2 additions). The overall
computational cost in terms of multiplications is of the order
of 11Me/2+ P+ 1 = 11PMi + P+ 1.

For a fair comparison of the functional link expansions, we
may fix the expanded vector length Me, which implies a differ-
ent number of input samples for each expansion. Alternatively,
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we may fix the number of input samples Mi for each iteration,
which produces a different number of nonlinear coefficients for
each expansion. The comparison in the latter case is shown in
Table I in terms of multiplications only. Taking into account
that P� Mi, we can say that the trigonometric functional link
expansion involves the lowest complexity in terms of multi-
plication number, while the highest computational complexity
is shown by the RV expansion. It is also worth noting that
AE FLAFs, while providing very interesting performance, can-
not be considered for low-cost online applications. Chebyshev
functional links, instead, can be considered for low-complexity
FLAF implementations if the expansion order is chosen quite
small.

IV. PROPOSED FAMILY OF FLAFS IN THE

FREQUENCY DOMAIN

We have seen in the previous section, how to choose a
suitable type of functional link expansion that requires lim-
ited computational resources. However, another part of an
LIP nonlinear filter is highly computational demanding and
it is represented by the parameter adaptation process. In this
section, we show how to design efficient adaptation for LIP
nonlinear filters and in particular for FLAFs.

With respect to other nonlinear models, the FLAF is very
effective in modeling nonlinearities. However, its efficiency
is not always optimized and it may represent a limitation
for the use of such methods in online applications, where
there is a strong need to reduce any input delay or latency
or computational load. To overcome such issues and reduce
the computational complexity, we propose a frequency-domain
implementation of the model, including the adaptation rule of
the model parameters. To this end, we aim at implementing
the adaptation scheme of the FLAF in the frequency domain,
thus, developing a family of FD-FLAFs. With respect to clas-
sic linear FDAFs, FD-FLAFs involve an additional branch that
includes the transformed nonlinear information of the input
signal, which is fundamental for the nonlinear modeling. This
information is additional with respect to the linear contribu-
tion processed by the linear frequency-domain algorithms. The
analysis in the Fourier domain of such additional information
is different from the linear contribution as it is prevalently
related to the distortions affecting the input signal. Indeed,
the filter on the nonlinear branch models the nonlinearities
rather than modeling the acoustic path as it happens in the
linear branch and in the classic FDAFs. We consider the lin-
ear and the nonlinear contribution in a joint adaptation that
makes the algorithm formulations more compact and easier to
be implemented.

In the following, we introduce the FD-FLAF in its over-
lap and save configuration and then, we further improve the
model by considering the partitioned-block implementation in
the frequency-domain of the FLAF (namely, the PBFD-FLAF).

A. Overlap-Save Frequency-Domain FLAF

In this section, we define the FLAF model in the frequency
domain that we simply denote as FD-FLAF. This model adopts
an adaptation scheme based on the overlap and save approach

Algorithm 1 Summary of the FD-FLAF

Init.: W0 = 0, B0(m) = δm for m = 0, 1, . . . , N + Ne − 1
for k = 0, 1, . . ., and for each block of L samples

xL,k ←
[
x(M)

k x(L)
new

]
and gk ←

[
g(Me)

old g(Le)
k

]

xk ←
[
xL,k gk

]

Xk = FFT(xk)

yk = IFFT(XkWk)
�L+Le�

Ek = FFT
([

0 dk − yk
])

Bk(m) = λBk−1(m)+ (1− λ)|Xk(m)|2 ∀m
�k = diag

([
μk(0) . . . μk(N + Ne − 1)

])

∇Jk = �kXH
k Ek

(∇Jk)G = FFT

([
IFFT(∇Jk)

�M+Me�
0L+Lre

])

Wk = Wk−1 + (∇Jk)G
end for

in the frequency domain (namely, the OS-FDAF). The OS-
FDAF algorithm is the frequency-domain equivalent version of
the block least mean square algorithm [29], [61]. It converges
in the mean to the optimum Wiener solution [35]. The update
rule of the OS-FDAF can be seen as a transposition in the
frequency domain of the block least mean square algorithm
update rule with some additional constraint [35], [48], i.e.,

Wk = Wk−1 +
(
�kXH

k Ek
)

G (12)

where Xk ∈ C
(N+Ne)×1 is the frequency-domain input frame,

Wk ∈ C
(N+Ne)×1 is the filter vector in the frequency domain,

and (·)H is the Hermitian operator. The notation (·)G repre-
sents the windowing or gradient constraint, which is necessary
to avoid any aliasing phenomena in the gradient calculation.
In the frequency-domain process, this constraint is imple-
mented within the fast Fourier transform (FFT) computation.
It is worth noting that the adaptation equation (12) involves
the joint input and weight vectors in the frequency domain,
respectively as (2) and (3).

In (12), the matrix �k is a diagonal matrix con-
taining the step sizes for each frequency bin, i.e.,
�k = diag([ μL,k μFL,k ]) = diag([ μk(0) μk(1)

. . . μk(N + Ne − 1) ]). Thus, in the frequency domain,
the convergence of one filtering branch is independent of the
other one.

In order to speed up the slower convergence modes, we can
define a power normalization rule that improves the overall
convergence rate. To this end, we can derive the estimated
power of the mth frequency bin Bk(m). Denoting with μ a
fixed step-size parameter (which can be also distinguished for
the linear and the nonlinear branches), we can express the
mth step-size parameter of the FD-FLAF proportionally to the
inverse of its power, i.e.,

μk(m) = μ

(ζ + Bk(m))
(13)

where m = 0, . . . , N + Ne − 1 and ζ is a small positive con-
stant avoiding divisions by zero. If the input signal is a white
Gaussian noise, Bk(m) will be the same for each frequency
bin, thus μk = μI. In order to reduce the noise, that could
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Fig. 2. Scheme of the proposed Partitioned-Block FD-FLAF algorithm.

be produced by significant difference in successive step-size
power values, we can compute the mth power frequency bin
by using a low-pass filtering [32]

Bk(m) = λBk−1(m)+ (1− λ)|Xk(m)|2 (14)

for m = 0, . . . , N+Ne− 1, where λ is a forgetting factor and
|Xk(m)|2 the energy of the mth bin. The step-size normalization
leads the OS-FDAF to achieve both reduced complexity and
higher convergence rate with respect to the block least mean
square algorithm.

The implementation of the proposed FD-FLAF method
involving the overlap and save approach is summarized in
Algorithm 1. One of the drawbacks of this algorithm is rep-
resented by the introduction of a processing delay due to the
FFT computation for each block of input samples. We address
this limitation in the next section.

B. Partitioned-Block Frequency-Domain FLAF

Here, we try to further improve the implementation of
the frequency-domain adaptation by focusing on reducing the
delay introduced by the OS-FDAF algorithm. Indeed, although
such an algorithm shows a low computational load and con-
vergence properties comparable with time-domain algorithms,
the latency due to block processing still represents a challeng-
ing issue to be solved. Such delay between input and output
is at least equal to the overall block length L+ Le.

In order to solve this problem, we adopt a partitioned-block
approach, which divides the filter in MP subfilters, thus, reduc-
ing the overall delay to MP samples. Therefore, (M +Me)/MP

number of smaller convolutions is carried out in the frequency
domain, but only the first partition introduces a delay. The
achieved latency reduction makes this approach suitable for
real-time applications.

We apply such an approach to the FD-FLAFs, thus, design-
ing the partitioned-block FD-FLAFs (PBFD-FLAFs). This
algorithm is able to further improve the efficiency of this class
of LIP nonlinear filters for online applications, while keep-
ing effective performance. The graphical representation of the
proposed PBFD-FLAF method is depicted in Fig. 2, while its
implementation is summarized in Algorithm 2.

Algorithm 2 Summary of the PBFD-FLAF
Init.: W0 = 0, B0(m) = δm for m = 0, 1, . . . , N + Ne − 1
for k = 0, 1, . . ., for each block of L+ Le samples

x0
kL ←

[
x0,M

old x0,L
k

]
and g0

k ←
[
g(0,Me)

old g(0,Le)
k

]

x0
k ←

[
x0

kL g0
k

]

X0
k = diag

(
FFT

(
x0

k

))

yk = IFFT
(∑MP−1

l=0 X0
k−plW

l
k)
)�L+Le�

Bk(m) = λBk−1(m)+ (1− λ)
∣∣X0

k (m)
∣∣2 ∀m

�k = diag
([

μk(0) . . . μk(N + Ne − 1)
])

for l = 0, . . . , MP − 1
Ek = FFT

([
0M+Me dk − yk

])

∇Jl
k = �l

kX0,H
k−plEk

(∇Jl
k

)
G = FFT

([
IFFT

(∇Jk
l
)�M+Me�

0L+Lre

])

Wl
k = Wl

k−1 +
(∇Jl

k

)
G

end for
end for

V. PERFORMANCE ANALYSIS OF THE PBFD-FLAF

To evaluate the performance of PBFD-FLAF, we assume
that frequency bins are uncorrelated to each other [48].
Therefore, the correlation matrix of the input signal can be
approximated to a diagonal matrix. However, the performance
may change based on the amount of samples considered in
each input block.

A. Performance Analysis in the Case of L = M

Let us consider the length of the input block as L = M.
From the definition of the partitioned-block approach we have
Xl

k = X0
k−l, thus, the vector Xm,k containing the mth frequency

bin of the kth block can be expressed as

Xm,k =
[
X0

k (m) X1
k (m) . . . XMP−1

k (m)
]T

=
[
X0

k (m) X0
k−1(m) . . . X0

k−MP+1(m)
]T

. (15)

The vector Xm,k contains the MP samples of the input block
for the mth frequency bin. Thus, the convergence rate of
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each frequency bin relies on the eigenvalues of the MP ×MP

correlation matrix of the input

Rm,k = E
{
Xm,kXH

m,k

}
(16)

which can be also written in a normalized form as

Rm,k =
(
diag

(
Rm,k

))−1Rm,k. (17)

In order to compute the correlation matrix, we start consid-
ering a white noise sequence as input x[n]. For, L = M, the
discrete Fourier transform (DFT) can be computed using 2M
points and it can be expressed for the mth frequency bin as

X0
k (m) =

2M−1∑

n=0

x[kM −M + n]e−j 2π
2M mn. (18)

From the previous considerations, we have

E
{

X0
k (m)X0∗

k−1(m)
}
=
⎧
⎨

⎩

2Mσ 2
x , for = l = 0

(−1)m ×Mσ 2
x , for = ±1

0, otherwise
(19)

where σ 2
x is the variance of x[n]. Generalizing the result

of (19), it is possible to define the normalized correlation
matrix for a white input signal as

Rm,k =
(
diag

(
Rm,k

))−1Rm,k

=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1 αm 0 . . . . . . 0
αm 1 αm 0 . . . 0

0 αm 1 αm
. . .

...
... 0 αm 1

. . . 0
...

...
. . .

. . .
. . . αm

0 0 . . . 0 αm 1

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(20)

where αm = (−1)m × 0.5 depends on the overlap between
two successive frames. In the case of a 50% overlap, we have
αm = ±0.5.

The convergence properties can be evaluated by com-
puting the eigenvalues of the normalized correlation matrix
Rm,k. Indeed, from (19), we can derive the condition number
χ(Rm,k) = λmax/λmin, which is independent of the frequency
index m and increases as the number of partitions MP grows.
On the other hand, the conditioning number decreases propor-
tionally to the factor |αm|. As a result, it is more convenient
to implement the partitioned-block algorithm with an overlap
of less than 50%, which implies L < M.

B. Performance Analysis in the Case of L < M

Let us consider now L = M/p, where p is a positive integer.
The DFT involves (M + L) points and it can be defined for
the mth frequency bin as

X0
k (m) =

M+L−1∑

n=0

x[kL−M + n]e−j 2π
M+L mn. (21)

Even in this case, for a white input sequence x[n], we have

αm = 1

p+ 1
ej(2πpi/p+1) (22)

which means that the parameter αm tends to decrease as
the overlap increases. Moreover, to avoid any convergence
issue due to the aliasing of the Fourier transform, it is possi-
ble to use the filter update involving the gradient constraint,
which guarantees the same convergence of a filter without
partitioning.

It is worth noting that the nonlinear path of the PBFD-FLAF
follows the same analysis of this latter case, as the length Le

is always smaller than Me.

VI. EXPERIMENTAL RESULTS

In this section, the performance evaluation of the new
PBFD-FLAF algorithm will be discussed. The PBFD-FLAFs
performance has been evaluated from different perspectives.
We have considered both the computational complexity and
the overall best setup of the filters. In all the experiments, we
have evaluated the performance contribution given by the five
types of the functional link expansions, i.e., the Chebyshev,
the Legendre, the trigonometric, the RV, and AE expansions.
Experiments have been conducted in MATLAB.

Various simulation scenarios have been considered, related
to teleconferencing environments with different reverberation
times. The acoustic environments are characterized by sim-
ulated impulse responses sampled at 8 kHz. We have used
different far-end input signals, including both colored noise
signals and real speech and audio signals. The colored input
noise is obtained by applying a first-order autoregressive
model to a white Gaussian noise, according to the follow-
ing function:

√
1− α2/(1 − αz−1) , with α = 0.8. For each

experiment, the desired signal d[n], representing the near-end
microphone signal, includes the contribution of the reverber-
ated far-end signal with any additive white Gaussian noise
with a specific signal-to-noise ratio (SNR).

We have utilized the symmetrical soft-clipping nonlinear-
ity to assess the performance of the proposed algorithms. The
unknown system to be identified is composed of a cascade of
a nonlinear block followed by a linear block. The nonlinear
subsystem applies a soft clipping nonlinearity to the input sig-
nal to simulate the classic saturation impact of a loudspeaker,
as described in [18]. The symmetrical soft-clipping can be
written as

y[n] =
⎧
⎨

⎩

2x[n]/3ζ, for 0 ≤ x[n] ≤ ζ

sign(x(n))
3−(2−[x]|/ζ )2

3 , for ζ ≤ x[n] ≤ 2ζ

sign(x(n)), for 2ζ ≤ x[n] ≤ 1
(23)

where 0 < ζ ≤ 0.5 is a nonlinearity threshold. The follow-
ing linear subsystem system is described by the input–output
relationship:

y[n] = 6

10
sin3

[
πx[n]− 2

x3[n]+ 2

]

− 1

10
cos[4πx[n− 4]]+ 1.125. (24)

Performance is evaluated based on different quality mea-
sures. The most significant and popular quality index that
can be considered in NAEC applications is the echo return
loss enhancement (ERLE), which indicates the amount of
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TABLE II
PERFORMANCE COMPARISON IN TERMS OF OBJECTIVE MEASURES

BETWEEN LINEAR-PBFDAF AND PBFD-FLAF WITH ALL TYPES OF

EXPANSION IN CASE OF COLORED NOISE INPUT AFFECTED BY A

SYMMETRICAL SOFT-CLIPPING NONLINEARITY

Fig. 3. Performance comparison in terms of ERLE between linear-PBFDAF
and PBFD-FLAF with all types of expansion in case of colored noise input
affected by a symmetrical soft-clipping nonlinearity.

echo signal that is canceled by the algorithm. The ERLE is
defined as

ERLE[n] = 10 log10

(
E
{
d2[n]

}

E
{
e2[n]

}

)

(25)

where E{·} represents the expectation operator.
However, the ERLE does not completely show the real

increment of both quality and intelligibility of the signal. Thus,
together with the ERLE, we can also use other measures that
are appropriately designed for speech and audio signals. In
that sense, one of the most fundamental metrics for the quality
assessment of a signal is the perceptual evaluation of speech
quality (PESQ) objective measure, which determines the qual-
ity of speech by approximating the overall loudness difference
between the original signal and its approximation. The orig-
inal clean signal and its estimated version, respectively, s[n]
and y[n], are equalized to a standard listening level and then,
filtered considering a response approximating a standard tele-
phone handset. Such signals are transformed and represented
in terms of loudness spectra. The loudness difference between
the s[n] and y[n] is averaged over time and frequency to gen-
erate a subjective quality score between 1.0 and 4.5, where
the higher the value, the better the quality. Another objec-
tive speech-intelligibility measure that is suitable for this kind
of evaluation is the short-time objective intelligibility (STOI),
whose output is expected to have a monotonic relation with the

TABLE III
PERFORMANCE COMPARISON IN TERMS OF ERLE BETWEEN

LINEAR-PBFDAF AND PBFD-FLAF WITH ALL TYPES OF EXPANSIONS

IN CASE OF FEMALE SPEECH INPUT AFFECTED BY A SYMMETRICAL

SOFT-CLIPPING NONLINEARITY

Fig. 4. Performance comparison in terms of ERLE between linear-PBFDAF
and PBFD-FLAF with all types of expansions in case of female speech input
affected by a symmetrical soft-clipping nonlinearity.

subjective speech intelligibility. A higher value of the STOI
corresponds to a high intelligibility of the speech signal.

A. Experiment Set 1: Stationary Conditions

In general, it is not trivial to investigate the performance
of the proposed PBFD-FLAFs and compare them to the lin-
ear PBFDAF. The comparison is done in a situation that is
as fair as possible, which means that the buffer lengths, the
number of FFT coefficients, and the rest of the parameter
setup must be the same for all the filters. We consider the
system described by (23) and we use the same filtering rules
for both the PBFDAF and the PBFD-FLAFs. We consider a
simulated acoustic impulse response with a reverberation time
of T60 = 150 ms and truncated to 320 samples. The SNR
is set to 20 dB. The length of the experiment for real input
is 10 s and for colored input is 5 s. The following param-
eter values summarizes the PBFD-FLAFs setup: ζ = 0.2,
M = 300, μPB = 0.005, the step-size values μL = 0.01, and
μFL = 0.001 for all the PBFD-FLAFs, δ = 10−3 for all the
filters, P = 10, Mi = 128, Nfft = Mi, and MP = 4 partitions.

Results are shown in terms of the online and mean ERLE,
PESQ, STOI, and processing time, for colored and speech
input signals. We first consider the behavior of the PBFD-
FLAs in the presence of colored noise input for Mi = 128,
thus, having a large number of nonlinear elements for all the
models. In this situation, all the PBFD-FLAFs achieve similar
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TABLE IV
PERFORMANCE COMPARISON IN TERMS OF OBJECTIVE MEASURES

BETWEEN LINEAR PBFDAF AND PBFD-FLAFS IN CASE OF COLORED

NOISE INPUT AFFECTED BY A SYMMETRICAL SOFT-CLIPPING

NONLINEARITY WITH FOUR DIFFERENT THRESHOLD VALUES

Fig. 5. Performance comparison in terms of ERLE between linear PBFDAF
and PBFD-FLAFs with all types of expansions in case of colored noise
input affected by a symmetrical soft-clipping nonlinearity with four different
nonlinear threshold values.

performance as can be seen from Table II. However, the most
stable and reliable performance, even considering a smaller
Mi, are the PBFD-FLAFs with trigonometric, Legendre, and
Chebyshev expansions. The ERLE behaviors of trigonomet-
ric and Chebyshev PBFD-FLAFs in time are depicted in
Fig. 3. Most of the difference between all the PBFD-FLAFs
is restricted in the convergence state, i.e., in the first 2 s
of the experiment, after which all the filters show the same
steady-state performance.

We also try to evaluate the performance of the filters in
the presence of a distorted speech signal. If we consider a
high enough input buffer length, we achieve similar results for
all the filters, especially those with trigonometric, Legendre,
and Chebyshev expansions. However, if we consider a smaller
input buffer length, e.g., Mi = 16, which corresponds to a
smaller number of nonlinear filter elements to be updated,
the best results are provided by the Chebyshev PDFD-FLAF,
which is the most reliable and stable solution, as it can be
seen from Table III and Fig. 4.

B. Experiment Set 2: Nonstationary Conditions With
Different Nonlinearity Degree

In this set of experiments, we assess the proposed algorithms
in different nonlinear conditions and we further evaluate their

TABLE V
PERFORMANCE COMPARISON IN TERMS OF OBJECTIVE MEASURES

BETWEEN LINEAR PBFDAF AND PBFD-FLAFS IN CASE OF FEMALE

SPEECH INPUT AFFECTED BY A SYMMETRICAL SOFT-CLIPPING

NONLINEARITY WITH FOUR DIFFERENT THRESHOLD VALUES

Fig. 6. Performance comparison in terms of ERLE between linear PBFDAF
and PBFD-FLAFs with all types of expansions in case of female speech
input affected by a symmetrical soft-clipping nonlinearity with four different
nonlinear threshold values.

tracking abilities. We consider a system with the input–output
relationship given by (23) which is a symmetrical soft-clipping
nonlinearity, we chose four different values for the nonlin-
earity threshold in order to have different behaviors of the
functional links [21]. We set the nonlinearity threshold to
ζ = {0.4, 0.30, 0.18, 0.08}, respectively, i.e., from slight to
strong nonlinear distortion. The affected signal by nonlineari-
ties is convolved with a simulated acoustic impulse response
with T60 ≈ 100 ms sampled at 8 kHz, whose length is trun-
cated to 512 samples. We consider an SNR equals to 20 dB.
The length of the experiment is 10 s, corresponding to an input
signal length of 80 000 samples. The parameters of this setup
are taken from Experiment Set 1.

In the case of colored noise input, we consider a shorter
input buffer length with respect to the previous experiment
equal to Mi = 32. Again, all the PBFD-FLAFs achieve
similar performance as can be seen from Table IV, with a
preference for the trigonometric, Chebyshev, and Legendre
PBFD-FLAFs. The time behavior of the ERLEs is depicted in
Fig. 5, where it is possible to notice the benefit of the PBFD-
FLAFs on the linear model, even using a limited number of
parameters.

In the presence of a speech signal, again the Chebyshev
PBFD-FLAF slightly outperform the other filters, as shown
in Table V and Fig. 6, appearing always rather stable, even
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TABLE VI
PERFORMANCE COMPARISON IN TERMS OF OBJECTIVE MEASURES

BETWEEN PBFD-FLAFS IN CASE OF FEMALE SPEECH INPUT AFFECTED

BY A SYMMETRICAL SOFT-CLIPPING NONLINEARITY

Fig. 7. Performance comparison in terms of the ERLE between PBFD-
FLAFs in case of female speech input affected by a symmetrical soft-clipping
nonlinearity.

decreasing the input buffer length, and thus, the overall
computational complexity.

C. Experiment Set 3: Nonstationary Conditions With
Different Volume Levels

We now consider the same system identification scheme of
the previous experiments but using a symmetrical soft-clipping
threshold of ζ = 0.21. While keeping a fixed nonlinearity
degree, we introduce some variance in the experiment by con-
sidering different volume levels for the input signals. Signals
are convolved with an impulse response of an environment
with a reverberation time of T60 = 100 ms, sampled at 8 kHz
and truncated at M = 320 samples. An additional noise pro-
viding 20 dB of SNR is considered for all the experiments.
The length of each experiment is 10 s. We compare the PBFD-
FLAFs also with the corresponding time-domain FLAFs and to
a second-order Volterra filter implemented with a partitioned-
block frequency-domain scheme, denoted as PBFD-VF. The
comparison is fairly performed by considering the same input
buffer lengths, expansion order, and parameters setup. We try
to reduce as much as possible the computational complexity
by setting a small input buffer length of Mi = 32.

We first consider the case of a speech input signal affected
by a symmetrical soft-clipping distortion. Table VI shows the
comparison results in terms of mean ERLE, STOI, and PESQ,
and again we can see that the best performance, albeit slight

TABLE VII
PERFORMANCE COMPARISON IN TERMS OF OBJECTIVE MEASURES

BETWEEN PBFD-FLAFS IN CASE OF AN AUDIO SIGNAL

RECORDED FROM A RADIO STATION

Fig. 8. Performance comparison in terms of ERLE between PBFD-FLAFs
in case of an audio signal input recorded from a radio station.

in some cases, is achieved by the Chebyshev PBFD-FLAF.
Fig. 7 shows the instantaneous ERLE comparison, by consid-
ering the best performing PBFD-FLAF, i.e., the one with the
Chebyshev expansion, the linear PBFDAF, the time-domain
Chebyshev FLAF, and the PBFD-VF. We can see that from
the time domain Chebyshev FLAF with the same number of
parameters is not able to achieve the same performance of
the PBFD-FLAF. This one is also superior to the PBFD-VF,
as also happens in the time domain comparisons (see [16]).
This result shows that if we want to reduce the computational
complexity of an LIP nonlinear filter, the Chebyshev expan-
sion together with the partitioned-block implementation in the
frequency domain provides the best solution.

We also consider an audio input signal recorded by a radio
station and capture from the reference microphone after the
convolution with the impulse response. If we look at the results
shown in Table VII and Fig. 8, we draw the same conclusion
of the previous experiment.

D. Final Remarks on Low-Complexity Functional Links

It is worth noting that functional link expansions mainly
derive from trigonometric or polynomial series expansions
that satisfy universal approximation constraints. Ideally, all the
expansions are capable of modeling any nonlinearity. However,
in real applications we cannot use infinite memory lengths.
Moreover, in real nonlinear filtering models we should also
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involve some pruning method to avoid uninformative parame-
ters that may degrade the performance. Nonlinear expansions
based on trigonometric series are very powerful in approximat-
ing distorted waveform signals like speech, but a sufficiently
large number of functional links is required to achieve a
good approximation. This implies the necessary availabil-
ity of sufficient computational resources. However, when a
small set of functional links can be considered due to limited
resources, polynomial series expansions, like the Chebyshev
expansion, is able to model the most significant part of the
nonlinearity with a very small number of parameters, as exper-
imental results have also shown. Therefore, in conclusion,
the choice of the functional link expansion strongly depends
on the available resources: with large resources any expan-
sion can provide impressive results, with a sufficient number
of resources trigonometric-like functional links is the best
choice, while Chebyshev functional links can be chosen for
low-complexity implementation.

Concerning the open challenges, while on the one hand
there is a lot of evidence of implementation of frequency-
domain filters, on the other hand, it will definitely be more
interesting and demanding to develop efficient implementa-
tion approaches of functional expansions on different hardware
devices.

VII. CONCLUSION

In this article, we have proposed a low-complexity LIP
nonlinear adaptive filter for online applications that need to
work with limited computational resources. To this end, we
propose a family of frequency-domain functional FLAFs (FD-
FLAFs), whose coefficient vector is updated in the frequency
domain and requires fewer resources with respect to the time-
domain FLAFs. In particular, we have proposed a partitioned
block FD-FLAF, which further reduces the latency due to the
processing. We also tested several types of functional link
expansions, from which we have concluded that the Chebyshev
expansion is the most efficient solution when we need to
work with limited resources. The proposed algorithm has been
assessed in several conditions considering one of the most
popular online applications that is the NAEC, thus, proving
that even complex and powerful LIP nonlinear adaptive filters
can be efficiently adopted and used for online applications.
We cannot expect that FD-FLAFs perform better than time-
domain FLAFs in the unlimited availability of computational
resources. However, in the presence of strict computational
constraints, the proposed class of filters definitely represents a
suitable and reliable solution for nonlinear system modeling.

Future works may involve advanced filtering architectures,
like adaptive convex combinations of linear and nonlin-
ear branches in the frequency domain, to control both the
level of nonlinearity to model, and also to optimize the
tradeoff between performance and computational complexity.
Implementation challenges related to functional expansions
will be also investigated. Moreover, other online applications
could be explored, e.g., nonlinear plant modeling, multisen-
sor signal processing, real-time time-series analysis, on-device,
and edge machine learning applications, among others.
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