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Abstract

We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2 of the sky. These
lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB
data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the
amplitude of the CMB lensing power spectrum at 2.3% precision (43σ significance) using a novel pipeline that
minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an
extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis
framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic
structure that do not depend on Planck or galaxy survey data, thus giving independent information about
large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well
fit by a lensing amplitude of Alens= 1.013± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM
model and Alens= 1.005± 0.023 relative to the ACTDR4+WMAP best-fit model. From our lensing
power spectrum measurement, we derive constraints on the parameter combination ( )sº WS 0.3m8

CMBL
8

0.25 of

= S 0.818 0.0228
CMBL from ACT DR6 CMB lensing alone and = S 0.813 0.0188

CMBL when combining ACT
DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with ΛCDM model
constraints from Planck or ACTDR4+WMAP CMB power spectrum measurements. Our lensing measurements
from redshifts z∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB
anisotropies probing primarily z∼ 1100. We find no evidence for a suppression of the amplitude of cosmic
structure at low redshifts.

Unified Astronomy Thesaurus concepts: Cosmological parameters (339); Cosmological parameters from large-
scale structure (340)

1. Introduction

The cosmic microwave background (CMB) is a unique

backlight for illuminating the growth of structure in our

Universe. As the CMB photons travel from the last scattering

surface to our telescopes, they are gravitationally deflected, or

lensed, by large-scale structure along their paths. The resulting

arcminute-scale lensing deflections distort the observed image

of the CMB fluctuations, imprinting a distinctive non-Gaussian

four-point correlation function (or trispectrum) in both the

temperature and polarization anisotropies (Blanchard &

Schneider 1987; Lewis & Challinor 2006). A measurement
of this lensing-induced four-point correlation function enables
a direct determination of the power spectrum of the CMB
lensing field; the CMB lensing power spectrum, in turn, probes
the matter power spectrum projected along the line of sight,
with the signal arising from a range of redshifts z∼ 0.5–5.61

Since most of the lensing signal originates from high redshifts
and large scales, the signal is near linear and simple to model,
with complexities arising from baryonic feedback and highly
nonlinear evolution negligible at current levels of precision.
Furthermore, the physics and redshift of the primordial CMB

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

61
See Appendix K and Figure 49 for a more accurate characterization of the

redshift origin of the CMB lensing signal we measure. While the mean redshift
of the lensing signal is at z ∼ 2, the lensing redshift distribution is characterized
by a peak at z ∼ 1 and a tail out to high z.
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source are well understood, with the statistical properties of the
unlensed source described accurately as a statistically isotropic
Gaussian random field. These properties make CMB lensing a
robust probe of cosmology, and, in particular, cosmic structure
growth.

Measurements of the growth of cosmic structure can provide
powerful insights into new physics. For example, the
comparison of low-redshift structure with primary CMB
measurements constrains the sum of the neutrino masses
because massive neutrinos suppress the growth of structure in a
characteristic way (Lesgourgues & Pastor 2006). Furthermore,
high-precision tomographic measurements of structure growth
at low redshifts allow us to test whether dark energy continues
to be well described by a cosmological constant or whether
there is any evidence for dynamical behavior or even a
breakdown of general relativity.

A particularly powerful test of structure growth is the
following: we can fit a ΛCDM model to CMB power spectrum
measurements arising (mostly62) from z∼ 1100, predict the
amplitude of density fluctuations at low redshifts assuming
standard growth, and compare this with direct, high-precision
measurements at low redshift. Intriguingly, for some recent
low-redshift observations, it is not clear that this test has been
passed: several recent lensing and galaxy surveys have found a
lower value of ( )sº WS 0.3m8 8

0.5 than predicted by extra-
polating the Planck CMB power spectrum measurements to
low redshifts in ΛCDM (Heymans et al. 2013, 2021; Asgari
et al. 2021; Krolewski et al. 2021; Abbott et al. 2022; Loureiro
et al. 2022; Philcox & Ivanov 2022; Dalal et al. 2023; Li et al.
2023).63 These discrepancies are generally referred to as the
“S8 tension.” CMB lensing measurements that do not rely on
either Planck64 or galaxy survey data have the potential to
provide independent insights into this tension.65

With the advent of low-noise, high-resolution CMB
telescopes such as the Atacama Cosmology Telescope
(ACT), the South Pole Telescope (SPT), and the Planck
satellite, CMB lensing has progressed rapidly from first
detections to high-precision measurements. First direct evi-
dence of CMB lensing came from cross-correlation measure-
ments with Wilkinson Microwave Anisotropy Probe (WMAP)
data (Smith et al. 2007); ACT reported the first CMB lensing
power spectrum detection and the first constraints on
cosmological parameters from lensing spectra, including
evidence of dark energy from the CMB alone (Das et al.
2011; Sherwin et al. 2011). Since then, lensing power spectrum
measurements have been made by multiple groups, with
important advances made by the SPT, POLARBEAR, and

BICEP/Keck teams, as well as ACT (van Engelen et al. 2012;
Ade et al. 2014; Story et al. 2015; BICEP2 Collaboration et al.
2016; Omori et al. 2017; Sherwin et al. 2017; Wu et al. 2019;

Bianchini et al. 2020). The Planck team has made key
contributions to CMB lensing over the past decade and has

made the highest-precision measurement of the lensing power
spectrum prior to this work, with a 40σ significance66

measurement presented in their official 2018 release (Planck
Collaboration et al. 2020b) and a 42σ measurement demon-
strated with the NPIPE data (Carron et al. 2022). With Planck
lensing and now separately with the measurements presented in
this paper, CMB lensing measurements have achieved preci-
sion that is competitive with any galaxy weak-lensing
measurement. CMB lensing is thus one of our most powerful
modern probes of the growth of cosmic structure.
The goal of our work is to perform a new measurement of

the CMB lensing power spectrum with state-of-the-art preci-

sion. This lensing spectrum will allow us to perform a stringent
test of our cosmological model, comparing our lensing
measurements from redshifts z∼ 0.5–5 with flat-ΛCDM67

structure growth predictions based on CMB power spectra
probing primarily z∼ 1100. Our lensing power spectrum will
also constrain key parameters such as the sum of neutrino
masses, the Hubble parameter, and the curvature of the
Universe, as explored in our companion paper (Madhavacheril
et al. 2024).

2. Summary of Key Results

In this paper, we present CMB lensing measurements using

data taken by ACT between 2017 and 2021. This is part of the

ACT collaboration’s Data Release 6 (DR6), as described in
detail in Section 3. Section 4 discusses the simulations used to
calculate lensing biases and covariances. In Section 5, we

describe our pipeline used to measure the CMB lensing
spectrum. We verify our measurements with a series of map-

level and power-spectrum-level null tests summarized in
Section 6, and we quantify our systematic error estimates in
Section 7. Our main CMB lensing power spectrum results are

presented in Section 8; readers interested primarily in the
cosmological implications of our work, rather than how we

perform our analysis, may wish to skip to this section. We
discuss our results in Section 9 and conclude in Section 10.

This paper is part of a larger set of ACT DR6 papers and is

accompanied by two others: Madhavacheril et al. (2024)
present the released DR6 CMB lensing mass map and explore

the consequences for cosmology from the combination and

comparison of our measurements with external data; MacCrann
et al. (2024) investigate the levels of foreground biases—

arguably the most significant potential source of systematic
errors—and ensure that these are well controlled in our

analysis.
We briefly summarize the key results of our work in the

following paragraphs. Of course, for a detailed discussion, we

encourage the reader to consult the appropriate section of the

paper.

62
Note that while CMB power spectrum measurements primarily probe

structure at z ∼ 1100, they also have a degree of sensitivity to lower-redshift
structure, e.g., due to gravitational lensing effects on the CMB power spectra.
63

We note that the best-constrained weak-lensing parameter ( )sº WS 0.3m8 8
0.5

has a slightly different exponent than ( )sº WS 0.3m8
CMBL

8
0.25, the best-

constrained parameter for CMB lensing. These different definitions of S8 reflect
the different degeneracy directions in the σ8–Ωm plane due to galaxy lensing and
CMB lensing being sensitive to different redshift ranges and scales.
64

Planck also did not find a low value of S8 from CMB lensing (Planck
Collaboration et al. 2020b; Carron et al. 2022).
65

For example, if ACT were to obtain a lower lensing amplitude, in tension
with that predicted from the measurements of the primordial CMB anisotropies,
this could indicate new physics at high redshifts and on large scales (or
unaccounted-for systematic effects in either data). On the other hand, if ACT
lensing were entirely consistent with CMB anisotropies but inconsistent with
other lensing measurements, this could imply either systematics in the
measurements or new physics that only affects very low redshifts and/or small
scales.

66
Throughout this work, the significance of a lensing power spectrum

measurement is defined as the ratio of the best-fit lensing amplitude Alens to the
error on this quantity.
67

Unless otherwise stated, we will refer to ΛCDM as an abbreviation to
flat-ΛCDM.
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1. We reconstruct lensing and lensing power spectra from
9400 deg2 of temperature and polarization data. Our
measurements are performed with a new cross-correla-
tion-based curved-sky lensing power spectrum pipeline
that is optimized for ground-based observations with
complex noise.

2. An extensive suite of null tests and instrument systematic
estimates shows no significant evidence for any systema-
tic bias in our measurement. These tests form a key part
of our blinded analysis framework, which was adopted to
avoid confirmation bias in our work. Foregrounds appear
well mitigated by our baseline profile hardening
approach, and we find good consistency of our baseline
results with spectra determined using other foreground
mitigation methods.

3. We measure the amplitude of the CMB lensing power
spectrum at state-of-the-art 2.3% precision, corresp-
onding to a measurement signal-to-noise ratio (S/N) of
43σ. This S/N independently matches the 42σ achieved
in the latest Planck lensing analysis and is competitive
with the precision achieved in any galaxy weak-lensing
analysis. Our lensing power spectrum measurement is
shown in Figure 1.

4. The lensing power spectrum is well fit by a
ΛCDM cosmology and, in particular, by the Planck
2018 CMB power spectrum model. Fitting a lensing
amplitude that rescales the lensing power spectrum from
this model, we obtain a constraint on this amplitude of
Alens= 1.013± 0.023. If we fit instead to the best-fit
model from ACT DR4 + WMAP power spectra, we
obtain a lensing amplitude of Alens= 1.005± 0.023.

5. From our measurement of the DR6 lensing power spectrum
alone, we measure the best-constrained parameter

combination68 ( )sº WS 0.3m8
CMBL

8
0.25 as =S8

CMBL

0.818 0.022. This key result is illustrated in
Figure 2.

6. We combine ACT DR6 and Planck 2018 CMB lensing
power spectrum observations, accounting for the appro-
priate covariances between the two measurements. For
this combined data set, we obtain a constraint
of = S 0.813 0.0188

CMBL .
7. All our results are fully consistent with expectations from

Planck 2018 or ACT DR4 +WMAP CMB power spectra
measurements and standard ΛCDM structure growth.
This is an impressive success for the standard model of
cosmology: with no additional free parameters, we find
that a ΛCDM model fit to CMB power spectra probing
(primarily) z∼ 1100 correctly predicts cosmic structure
growth (and lensing) down to z∼ 0.5–5 at 2% precision.

8. We find no evidence for tensions in structure growth, and
we do not see a suppression of the amplitude of cosmic
structure at the redshifts and scales we probe (z∼ 0.5–5
on near-linear scales). This has implications for models of
new physics that seek to explain the S8 tension: such
models cannot strongly affect linear scales and redshifts
z∼ 0.5–5 or above, although new physics affecting

primarily small scales or low redshifts might evade our
constraints.

3. CMB Data

ACT was a 6 m aplanatic Gregorian telescope located in the
Atacama Desert in Chile. The Advanced ACTPol (AdvACT)
receivers fitted to the telescope were equipped with arrays of
superconducting transition-edge-sensor bolometers, sensitive to
both temperature and polarization at frequencies of 30, 40, 97,
149, and 225 GHz69 (Fowler et al. 2007; Thornton et al. 2016).
This analysis focuses on data collected from 2017 to 2021
covering two frequency bands, f090 (77–112 GHz) and f150
(124–172 GHz). The observations were made using three
dichroic detector modules, known as polarization arrays (PAs),
with PA4 observing in the f150 (PA4 f150) and f220 (PA4
f220) bands, PA5 in the f090 (PA5 f090) and f150 (PA5 150)
bands, and PA6 in the f090 (PA6 f090) and f150 (PA6 f150)
bands. We will refer to these data and the resulting maps as
DR6; although further refinements and improvements of the
DR6 data and sky maps can be expected before they are
finalized and released, extensive testing has shown that the
current versions are already suitable for the lensing analysis
presented in this paper. For arrays PA4–6, we use the DR6
nighttime data and the f090 and f150 bands only. Although
including additional data sets in our pipeline is straightforward,
this choice was made because daytime data require more
extensive efforts to ensure that instrumental systematics (such
as beam variation) are well controlled and because including
the f220 band adds analysis complexity while not significantly
improving our lensing S/N. We therefore defer the analysis of
the daytime and f220 data to future work.

3.1. Maps

The maps were made with the same methodology as in Aiola
et al. (2020); they will be described in full detail in S. Naess
et al. (2024, in preparation). To summarize briefly, maximum
likelihood maps are built at ¢0. 5 resolution using 756 days of
data observed in the period 2017 May 10–2021 June 18.
Samples contaminated by detector glitches or the presence of
the Sun or Moon in the telescope’s far sidelobes are cut, but
scan-synchronous pickup, like ground pickup, is left in the data
since it is easier to characterize in map space.
The maps of each array-frequency band are made separately,

for a total of five array-band combinations. For each of these,
we split the data into three categories owing to differences in
systematics and scanning patterns: night, day-deep, and day-
wide. Of these categories, night makes up 2/3 of the statistical
power and, as previously stated, is the only data set considered
in this analysis.
Each set of nighttime data is split into eight subsets with

independent instrument and atmospheric noise noise. These
data-split maps are useful for characterizing the noise proper-
ties with map differences and for applying the cross-
correlation-based estimator described in Section 5.8. In total,
for this lensing analysis we use 40 separate night split maps in
the f090 and f150 bands.
The data used in this analysis initially cover approximately

19,000 deg2 before Galactic cuts are applied and have a total
inverse variance of 0.55 nK−2 for the nighttime data. Figure 3

68
The degeneracy between σ8 and Ωm prevents strong constraints on either of

these parameters individually, and indeed (although we report them in the
figure caption) any such constraints derived will depend strongly on the prior
ranges; in order to break the degeneracy between these two parameters, we
combine with BAO as shown in the companion paper (Madhavacheril et al.
2024).

69
In the following, we denote them f030, f040, f090, f150, and f220.
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shows the sky coverage and full survey depth of ACT DR6
nighttime observations.

In addition to the maps of the CMB sky, ancillary products
are produced by the mapmaking algorithm. One such set of
products is the “inverse-variance maps” denoted by h, which
provide the per-pixel inverse noise variance of the individual
array frequencies.

3.2. Beams

The instrumental beams are determined from dedicated
observations of Uranus and Saturn. The beam estimation
closely follows the method used for ACT DR4 (Lungu et al.
2022). In short, the main beams are modeled as azimuthally
symmetric and estimated for each observing season from

Uranus observations. An additional correction that broadens
the beam is determined from point-source profiles; this
correction is then included in the beam. Polarized sidelobes
are estimated from Saturn observations and removed during the
mapmaking process. Just as the five observing seasons that
make up the DR6 data set are jointly mapped into eight disjoint
splits of the data, the per-season beams are also combined into
eight per-split beams using a weighted average that reflects the
statistical contribution of each season to the final maps
(determined within the footprint of the nominal mask used
for this lensing analysis). One notable improvement over the
DR4 beam pipeline is the way the frequency dependence of the
beam is handled. We now compute, using a self-consistent and
Bayesian approach, the scale-dependent color corrections that
convert the beams from describing the response to the

Figure 1. The top panel shows in red the ACT DR6 lensing potential power spectrum bandpowers for our baseline (combined temperature and polarization) analysis.
The bandpowers within the shaded regions are excluded in our baseline analysis, which only analyzes the conservative range of lensing multipoles 40 < L < 763,
although we also include scales up to =L 1300max , indicated with a lighter shading, in our extended-range analysis. We find good agreement with the ΛCDM
theoretical predictions based on either the Planck 2018 or ACT DR4 + WMAP CMB power spectra best-fit cosmology; the solid line shows the Planck 2018
prediction, which we emphasize does not arise from a fit to our data. Residuals of our measurement with respect to the Planck prediction are shown in the bottom
panel. Our ACT lensing data fit a model based on a best-fit rescaling of the Planck prediction with a lensing amplitude of Alens = 1.013 ± 0.023 and one based on a
rescaling of the ACT DR4 + WMAP prediction with Alens = 1.005 ± 0.023.
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approximate Rayleigh–Jeans spectrum of Uranus to describing
the response to the CMB blackbody spectrum. The formalism
will be described in a forthcoming paper (M. Hasselfield et al.
2024, in preparation). The CMB color correction is below 1%
for the relatively low angular multipole limit ℓmax used in this
paper.

The planet observations are also used to quantify the
temperature-to-polarization leakage of the instrument. The
procedure again follows the description in Lungu et al. (2022).
To summarize, Stokes Q and U maps of Uranus are constructed
for each detector array and interpreted as an estimate of the
instantaneous temperature-to-polarization leakage. After rotat-
ing the Q and U maps to the north pole of the standard
spherical coordinate system, an azimuthally symmetric model
is fitted to the maps. The resulting model is then converted to a
one-dimensional leakage beam in harmonic space: Bℓ

T E and
Bℓ

T B, which relates the Stokes I sky signal to leakage in the E-
or B-mode linear polarization field.

3.3. Calibration and Transfer Function

Our filter-free, maximum likelihood mapmaking should
ideally be unbiased, but that requires having the correct model
for the data. In practice, subtle model errors bias the result. The
following two main sources of bias have been identified (Naess
& Louis 2023).

1. Subpixel error: the real CMB sky has infinite resolution,
while our nominal maps are made at 0 5 resolution.
While we could have expected this only to affect the
smallest angular scales, the coupling of this model error
with downweighting of the data to mitigate effects of
atmospheric noise leads to a deficit of power on the
largest scales of the maps.

2. Detector gain calibration: inconsistent detector gains can
also cause a lack of power in our maps at f090 and f150
on large angular scales. This inconsistency arises owing
to errors in gain calibration at the time-ordered data

Figure 2. Constraints in the σ8–Ωm plane from our baseline ACT DR6 lensing power spectrum measurement (blue). These can be compared with the predictions from
standard ΛCDM structure growth and Planck or ACT DR4 + WMAP CMB power spectra (orange and blue open contours, respectively). In all cases, 68% and 95%
contours are shown. Our results are in excellent agreement with Planck (or ACT DR4 + WMAP) and ΛCDM structure growth. The parameter combination measured

best by CMB lensing alone, ( )sº WS 0.3m8
CMBL

8
0.25, is measured to be = S 0.818 0.0228

CMBL , and the individual parameters are constrained to
Ωm = 0.355 ± 0.178 and σ8 = 0.814 ± 0.099.

Figure 3. Sky coverage and full survey depth of the ACT DR6 nighttime observations in equatorial coordinates. Here the x-axis gives R.A. and the y-axis indicates
decl. The background grayscale map corresponds to the Planck 353 GHz intensity. Colored lines are the depth contours, with the numbers corresponding to the noise
levels in μK-arcmin units. The odd and even numbers have different thicknesses to help distinguish contours with similar color.
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(TOD) processing stage. The current DR6 maps70 use a
preliminary calibration procedure; alternative calibration
procedures are currently being investigated to mitigate
this effect.

To assess the impact of the loss of power at large angular
scales on the lensing power spectrum, a multipole-dependent
transfer function tℓ

T is calculated at each frequency by taking
the ratio of the corresponding ACT CMB temperature band-
powers ´Cℓ

ACT ACT and the ACT–Planck (NPIPE) temperature

cross-correlation bandpowers ´Cℓ
ACT P:

( )=
´

´t
C

C
. 1ℓ

T ℓ

ℓ

ACT ACT

ACT P

Here ´Cℓ
ACT ACT is a noise-free cross-spectrum between data

splits, and ´Cℓ
ACT P is computed by cross-correlating with the

Planck map that is nearest in frequency.
A logistic function with three free parameters is fit to the

above tℓ
T . We then divide the temperature maps in harmonic

space by the resulting curve, T T tℓm ℓm ℓ
T , in order to

deconvolve the transfer function. Due to the modest sensitivity
of our lensing estimator to low CMB multipoles, deconvolving
this transfer function results in only a negligible change in the
lensing power spectrum amplitude, ΔAlens= 0.004 (corresp-
onding to less than 0.2σ). Therefore, we have negligible
sensitivity to the details of the transfer function.

We determine calibration factors cAf at each array-frequency
combination Af of ACT relative to Planck by minimizing
differences between the ACT temperature power spectra,

´
Cℓ

AACT ACT, f , and the cross-spectrum with Planck,
´

Cℓ
AACT P, f ,

at intermediate multipoles. In these DR6 maps, the transfer
functions approach unity as ℓ increases, and they eventually
plateau at this value for ℓ> 800 and ℓ> 1250 at f090 and f150,
respectively; we therefore use the multipoles 800–1200 at f090
and 1250–1800 at f150 to determine the calibration factors cAf
by minimizing the following χ

2:

( ) ( )[ ] ( ) ( )å åc = D S D
= =

¢
-

¢
¢

c c c , 2A

ℓ ℓ

ℓ

ℓ ℓ

ℓ

ℓ A
A

ℓ ℓ ℓ A
2

,
1

f

b b

b

b

b

b f b b b f
min

max

min

max

f

where the sum is over bandpowers. Here the difference

bandpowers are given by

( )D = -´ ´
c C C , 3ℓ A ℓ

A
ℓ

AACT ACT, ACT P,
b f b

f

b

f

and S ¢ℓ ℓ
A
,b b

f is their covariance matrix computed analytically,

using noise power spectra measured from data, at =c 1Af .
The errors we achieve on the calibration factors are small

enough that they can be neglected in our lensing analysis; see
Appendix C.1 for details.

3.4. Self-calibration of Polarization Efficiencies

Polarization efficiencies scale the true polarization signal on
the sky to the signal component in the observed polarization
maps. Assuming incorrect polarization efficiencies in the sky
maps leads to biases in the lensing reconstruction amplitude

because our quadratic lensing estimator uses up to two powers
of the misnormalized polarization maps; for example, polariza-
tion-only quadratic lensing estimators will be biased by the

square of the efficiency error ( )p
A

eff
2f .

However, the normalization of the estimator involves
dividing the unnormalized estimator, which is quadratic in
CMB maps, by fiducial ΛCDM Cℓ values. If these fiducial
ΛCDM spectra are rescaled by the same two powers of the
efficiency error, then the estimator will again become unbiased.
In other words, as long as we ensure that the amplitude of the
spectra used in the normalization is scaled to be consistent with
the amplitude of spectra of the data, our estimator will
reconstruct lensing without any bias. The physical explanation
of this observation is that lensing does not affect the amplitude
of the CMB correlations, only their shapes.
To ensure an unbiased polarization lensing estimator, even

though the ACT blinding policy in Section 6.3 does not
yet allow either a direct comparison of polarization power
spectra of ACT and Planck or a detailed comparison of the
ACT power spectra with respect to ΛCDM, we employed a
simple efficiency self-calibration procedure, which aims to
ensure amplitude consistency between fiducial spectra and map
spectra. The procedure is explained in detail in Appendix A. In

short, we fit for a single amplitude scaling p
A

eff
f between our

data polarization power spectra and the fiducial model power
spectra assumed for the normalization of the estimator. We then
simply correct the polarization data maps by this amplitude
scaling parameter to ensure an unbiased lensing measurement.
We verify in Appendix C.4 that the uncertainties in this
correction for the polarization efficiencies are negligible for our
analysis.

3.5. Point-source Subtraction

Point-source-subtracted maps are made using a two-step
process. First, we run a matched filter on a version of the DR5
ACT+Planck maps (Naess et al. 2020) updated to use the new
data in DR6, and we register objects detected at greater than 4σ
in a catalog for each frequency band. The object fluxes are then
fit individually in each split map using forced photometry at the
catalog positions and subtracted from the map. This is done to
take into account the strong variability of the quasars that make
up the majority of our point-source sample. Due to our variable
map depth, this procedure results in a subtraction threshold that
varies from 4 to 7 mJy in the f090 band and from 5 to 10 mJy in
the f150 band. An extra map processing step to reduce the
effect of point-source residuals not accounted for in the
mapmaking step is described in Section 5.2.

3.6. Cluster Template Subtraction

Our baseline analysis mitigates biases related to the thermal
Sunyaev–Zeldovich (tSZ) effect by subtracting models for the
tSZ contribution due to galaxy clusters. We use the NEMO

71

software, which performs a matched-filter search for clusters
via their tSZ signal (see Hilton et al. 2021 for details). We
model the cluster signal using the universal pressure profile
(UPP) described by Arnaud et al. (2010) and construct a set of
15 filters with different angular sizes by varying the mass and
redshift of the cluster model. We construct cluster tSZ model
maps for both ACT frequencies by placing beam-convolved

70
This analysis uses the first science-grade version of the ACT DR6 maps,

labeled dr6.01. Since these maps were generated, we have made some
refinements to the mapmaking that improve the large-scale transfer function
and polarization noise levels and include data taken in 2022. We expect to use a
second version of the maps for further science analyses and for the DR6 public
CMB data release.

71
https://nemo-sz.readthedocs.io/
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UPP model clusters with an angular size corresponding to that
of the maximal S/N detection across all 15 filter scales as
reported by NEMO, for all clusters detected with S/N greater
than 5 on the ACT footprint. This model image is then
subtracted from the single-frequency ACT data before coad-
ding. Further details about point-source and cluster template
subtraction can be found in MacCrann et al. (2024).

4. Simulations

Our pipeline requires ensembles of noise and signal
simulations. Because ACT is a ground-based telescope, its
dominant noise component is slowly varying, large-scale
microwave emission by precipitable water vapor (PWV) in
the atmosphere (Errard et al. 2015; Morris et al. 2022). When
combined with the ACT scanning strategy, the atmospheric
noise produces several nontrivial noise properties in the ACT
DR6 maps. These include steep, red, and spatially varying
noise power spectra, spatially varying stripy noise patterns, and
correlations between frequency bands (Atkins et al. 2023).

Simulating the complicated ACT DR6 noise necessitated the
development of novel map-based noise models, as described in
Atkins et al. (2023). In our main analysis, we utilize noise
simulations drawn from that work’s “isotropic wavelet” noise
model.72 This model builds empirical noise covariance
matrices by performing a wavelet decomposition on differences
of ACT map splits. It is designed to target the spatially varying
noise power spectra, which makes it an attractive choice for our
lensing reconstruction pipeline, which, in the large-lens limit,
approximates a measurement of the spatially varying CMB
power spectrum (Bucher et al. 2012; Prince et al. 2018). In
Appendix F we show that our cross-correlation-based lensing
estimator (Section 5.8.1) is robust to the choice of noise model,
producing consistent results when the isotropic wavelet model
is replaced with one of the other noise models from Atkins
et al. (2023; the “tiled” or “directional wavelet” models); unlike
the isotropic wavelet model, these additionally model the stripy
correlated noise features present in the ACT noise maps. We
also emphasize that since the cross-correlation-based estimator
is immune to noise bias and hence insensitive to assumptions of
the noise modeling, accurate noise simulations are only
required in our pipeline for estimation of the lensing power
spectrum’s covariance matrix; in contrast, for bias calculation
steps, accurate noise simulations are not needed.

We then generate full-sky simulations of the lensed CMB
(Lewis 2005) and Gaussian foregrounds (obtained from the
average of foreground power spectra in the Stein et al. 2020
and Sehgal et al. 2010 simulations) at a resolution of ¢0.5 and
apply a taper mask at the edge with cosine apodization of width
¢10 . We apply the corresponding pixel window function to this

CMB signal in Fourier space and then downgrade this map to ¢1
resolution. We add this signal simulation to the noise
simulation described above. The full simulation power spectra,
including noise power, were found to match those of the data to
within 3%.73 For each array frequency, we generate 800 such

simulated sky maps that are used to calculate multiplicative and
additive Monte Carlo (MC) biases, as well as the covariance
matrix (see Section 5.11).
We also generate a set of noiseless CMB simulations used to

estimate the mean-field correction and the RDN0 bias (see
Appendix E.1) and two sets of noiseless CMB simulations with
different CMB signals but with a common lensing field used to
estimate the N1 bias (see Appendix E.2). In Section 9.3.1 we
also make use of 480 FFP10 CMB simulations (Planck
Collaboration et al. 2020a) to obtain an accurate estimate of
the covariance between ACT DR6 lensing and Planck NPIPE

lensing.

5. Pipeline and Methodology

This section explains the reconstruction of the CMB lensing
map and the associated CMB lensing power spectrum, starting
from the observed sky maps.

5.1. Downgrading

The sky maps are produced at a resolution of ¢0.5, but
because our lensing reconstruction uses a maximum CMB
multipole of =ℓ 3000max , a downgraded pixel resolution of ¢1
is sufficient for the unbiased recovery of the lensing power
spectrum and reduces computation time. Therefore, we down-
grade the CMB data maps by block-averaging neighboring
CMB pixels. Similarly, the inverse-variance maps are down-
graded by summing the contiguous full-resolution inverse-
variance values.

5.2. Compact-object Treatment

The sky maps are further processed to reduce the effect of
point sources not accounted for in the mapmaking step. As
described in Section 3.5, we work with maps in which point
sources above a threshold of roughly 4–10 mJy (corresponding
to an S/N threshold of 4σ) have been fit and subtracted at the
map level. However, very bright and/or extended sources may
still have residuals in these maps. To address this, we prepare a
catalog of 1779 objects for masking with holes of radius ¢6 :
these include especially bright sources that require a specialized
point-source treatment in the mapmaker (see Aiola et al. 2020;
Naess et al. 2020), extended sources with S/N> 10 identified
through cross-matching with external catalogs, all point sources
with S/N> 70 at f150, and an additional list of locations with
residuals from point-source subtraction that were found by
visual inspection. We include an additional set of 14 objects for
masking with holes of radius ¢10 : these are regions of diffuse or
extended positive emission identified by eye in matched-
filtered coadds of ACT maps. They include nebulae, Galactic
dust knots, radio lobes, and large nearby galaxies. We
subsequently inpaint these holes using a constrained Gaussian
realization with a Gaussian field consistent with the CMB
signal and noise of the CMB fields and matching the boundary
conditions at the hole’s edges (Bucher & Louis 2012;
Madhavacheril & Hill 2020a). This step is required to prevent
sharp discontinuities in the sky map that can introduce spurious
features in the lensing reconstruction. The total compact-source
area inpainted corresponds to a sky fraction of 0.147%. Further,
more detailed discussion of compact-object treatment can be
found in MacCrann et al. (2024).

72
We use the mnms (Map-based Noise ModelS) code available at https://

github. com/simonsobs/mnms.
73

Note that our blinding policy allows us to compare noise-biased TT power
spectra above ℓ = 500 to fiducial noise-biased power spectra. We also note that,
at this level of agreement, our bias subtraction methods, such as RDN0 (see
Appendix E.1), are expected to perform well. We also note that since these
simulations are not used to estimate foreground biases, we may approximate
them safely as Gaussian.
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5.3. Real-space Mask

To exclude regions of bright Galactic emission and regions
of the ACT survey with very high noise, we prepare edge-
apodized binary masks over the observation footprint as
follows. We start with Galactic emission masks based on
353 GHz emission from Planck PR2,74 rotating and reproject-
ing these to our Plate-Carrée cylindrical (CAR) pixelization in
equatorial coordinates. We use a Galactic mask that leaves (in
this initial step) 60% of the full sky as our baseline; we use a
more conservative mask retaining initially 40% of the full sky
for a consistency test described in Section 6.5.8. From here on
we denote the masks constructed using these Galactic masks as
60% and 40% Galactic masks. We additionally apply a mask
that removes any regions with rms map noise larger than
70 μK-arcmin in any of our input f090 and f150 maps; this
removes very noisy regions at the edges of our observed sky
area. Regions with clearly visible Galactic dust clouds and
knots are additionally masked, by hand, with appropriately
sized circular holes.75 After identifying these spurious features
in either match-filtered maps or lensing reconstructions
themselves, masking them removes a further sky fraction of
fsky= 0.00138. The resulting final mask is then adjusted to
round sharp corners. We finally apodize the mask with a
cosine-squared edge roll-off of total width of 3 deg. The total
usable area after masking is 9400 deg2, which corresponds to a
sky fraction of fsky= 0.23.

5.4. Pixel Window Deconvolution

The block-averaging operation used to downgrade the sky
maps from ¢0.5 to ¢1 convolves the downgraded map with a top-
hat function that needs to be deconvolved.76We do this by
transforming the temperature and polarization maps X to
Fourier space,77 giving FFT(X), and dividing by the sinc( fx)
and sinc( fy) functions, where fx and fy are the dimensionless
wavenumbers78

⎡

⎣
⎢

⎤

⎦
⎥

( )

( ) ( )
( )=-X

X

f f
IFFT

FFT

sinc sinc
, 4

x y

pixel deconvolved

where IFFT denotes the inverse (discrete) fast Fourier trans-

form. For simplicity, X without a superscript used in the

subsequent sections will refer to the pixel-window-decon-

volved maps unless otherwise stated.

5.5. Fourier-space Mask

Contamination by ground, magnetic, and other types of
pickup in the data due to the scanning of the ACT telescope
manifests as excess power at constant decl. stripes in the sky
maps and thus can be localized in Fourier space. We mask
Fourier modes with |ℓx|< 90 and |ℓy|< 50 to remove this

contamination as in Louis et al. (2017) and Choi et al. (2020).
This masking is carried out both in the data and in our realistic
CMB simulations. We demonstrate in Appendix D that this
Fourier-mode masking reduces the recovered lensing signal by
around 10%; we account for this well-understood effect with a
multiplicative bias correction obtained from simulations.

5.6. Coaddition and Noise Model

In the following section, we describe the method we use to
combine the individual array frequency to form the final sky
maps used for the lensing measurement.
We first define for each array frequency’s data the map-

based coadd map c, an unbiased estimate of the sky signal, by
taking the inverse-variance-weighted average of the eight split
maps mi:

( )=
å
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Note that in the above equation the multiplication (
*
) and

division denote element-wise operations. These coadd maps

provide our best estimate of the sky signal for each array and

are used for noise estimation as explained below.
As we will describe in Section 5.8, the cross-correlation-

based estimator we use requires the construction of four sky
maps d with independent noise. We construct these maps d in
the same manner as Equation (5), coadding together split j and
j+ 4 with j ä {0, 1, 2, 3}.

5.6.1. Inverse-variance Coaddition of the Array Frequencies

We combine the different coadded data maps dAf with array
frequencies Af ä {PA4 f150, PA5 f090, PA5 f150, PA6 f090,
PA6 f150} into single CMB fields Mℓm

X , with Xä (T, E, B), on
which lensing reconstruction is performed. The coadding of the
maps is done in spherical harmonic space,79
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( )

( )

å
=

-

-
w

N B

N B

7ℓ

A ℓ

A

ℓ

A

A
ℓ
A

ℓ

A

1 2

1 2

f

f f

f

ff

are the normalized inverse-variance weights in harmonic space.

These weights, giving the relative contributions of each array

frequency, are shown in Figure 4 and are constructed to sum to

unity at each multipole ℓ. Note that a deconvolution of the

harmonic beam transfer functions Bℓ
Af is performed for each

array frequency.80 The noise power spectra Nℓ
Af are obtained

74
HFI_Mask_GalPlane-apo0_2048_R2.00.fits

75
Null tests, such as the Galactic mask null tests in Section 6.5.8 and the

consistency between temperature and polarization lensing bandpowers in
Section 6.5.1, show that we are insensitive to details of the treatment of
Galactic knots.
76

Of course, even without downgrading, a pixel window function is present,
although it has less impact on the scales of interest.
77

In this paper, we distinguish between Fourier space, obtained from a 2D
Fourier transform of the cylindrically projected CAR maps, and harmonic
space, which is shorthand for spherical harmonic space.
78

fx and fy range from 0 to 0.5 and are generated using the numpy routine
numpy.fft.rfftfreq.

79
The harmonic-space coadding we perform here does not fully account for

spatial inhomogeneities in the noise, as opposed to the coadd method presented
in Naess et al. (2020). However, this is justified because all array frequencies
have similar spatial noise variations, as they are observed with the same
scanning pattern. Hence, the spatial part should approximately factor out.
80

We use the same beam for temperature and polarization and neglect T→ P
leakage beams. The latter is justified in Appendix C.2, where we show that
including T→ P has a small impact on the lensing bandpowers (a shift of less
than 0.1%).
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from the beam-deconvolved noise maps of the individual sky

maps with the following prescription.
We construct a noise-only map ni by subtracting the pixel-

wise coadd c of each map81 from the individual data splits

mi; this noise-only map is given by

( )= -n m c. 8i i

We then transform the real-space noise-only maps ni into

spherical harmonic space ( )nℓm
i and use these to compute the

noise power spectra used for the weights in Equation (7). Since

we have k= 8 splits, we can reduce statistical variance by

finding the average of these noise spectra:82

( )
( )( ) ( )å å=

- + =-

*N
w k k ℓ

n n
1 1

1

1

2 1
, 9ℓ

i

k

m ℓ

ℓ

ℓm
i

ℓm
i

2

where ˆ ( ˆ) ( )ò p= n nw d M 42
2 2 is the average value of the

second power of the mask ( ˆ)nM , which corrects for the missing

sky fraction due to the application of the analysis mask, as

described in Section 5.3. The resulting noise power is further

smoothed over by applying a linear binning83 of Δℓ= 14.
The same coadding operation is performed on simulations

containing lensed sky maps and noise maps. The resulting suite

of coadded CMB simulations is used throughout our baseline

analysis.

5.6.2. Internal Linear Combination Coaddition

As an alternative to our baseline approach of combining only
the ACT maps in harmonic space, we also explore a frequency
cleaning approach that includes high-frequency data from
Planck (353 GHz and 545 GHz). This approach is described in
detail in MacCrann et al. (2024), but, to summarize, we
produce harmonic-space constrained internal linear combina-
tions (ILCs) of the ACT and high-frequency Planck maps that
minimize the variance of the output maps while also
approximately deprojecting the cosmic infrared background
(CIB). Comparisons of the consistency of this approach against
the baseline method are described in Section 6.5.3 and provide
a useful test of our methods for mitigating foreground biases.

5.7. Filtering

Optimal quadratic lensing reconstruction requires as inputs
Wiener-filtered X= T, E, and B CMB multipoles and inverse-
variance-filtered maps (the latter can be obtained from the
former by dividing the Wiener-filtered multipoles by the
fiducial lensed power spectra Cfid before projecting back to
maps). The filtering step is important because an optimal
analysis of the observed CMB sky requires both the down-
weighting of noise and the removal of masked areas (Hanson
et al. 2011).
We write the temperature T and polarization ±2P≡Q± iU

(beam- and pixel-deconvolved) data maps as

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )= +

-


T
P

P

T

E

B

noise, 10
ℓm

ℓm

ℓm

2

2

where the matrix  contains the spin-weighted spherical

harmonic functions to convert the spherical harmonics Tℓm,

Eℓm, and Bℓm to real-space maps over the unmasked region. The

real-space covariance matrix of the data maps is

( )†= + C C , 11fid
noise

where fid is the matrix of our fiducial lensed CMB spectra

with elements

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

[ ] ( ) d d=¢ ¢ ¢ ¢

C C

C C

C

0

0

0 0

, 12ℓm ℓ m ℓℓ mm

ℓ
TT

ℓ
TE

ℓ
TE

ℓ
EE

ℓ
BB

fid
,

and Cnoise is the real-space noise covariance matrix. The

Wiener-filtered multipoles are then obtained as

⎛

⎝
⎜

⎞

⎠
⎟ ( )†= -

-

X C

T
P

P

. 13ℓm
WF fid 1

2

2

For our main analysis, we employ an approximate form of
the Wiener filter that follows from the rearrangement

( )

( )

( )

( ) ( )

( ) ( ) ( )

† †

† †

† †

  
  
  

= +

= +

= +

- - - - -

- - - - -

- -

 

 

 

C C

, 14

fid 1 fid 1 1 1 1

fid 1 1 1 1 1

fid fid 1 1

where † º- - C1
noise
1 . The operation ( )† † -  1 takes the

(pseudo)spherical transform of the masked maps, with †=
( ) ( ˆ ˆ )( )d - ¢n ndiag 1, 2, 2 2 . Our approximate form of the Wiener

Figure 4. Maps from detector array frequencies are combined using a weighted
average in harmonic space to form a coadded sky map. This figure shows the
weights applied to the map from each array frequency as a function of
multipole; the weights sum to unity at each multipole. The white regions show
the CMB scales used in our baseline analysis, namely 600 � ℓ � 3000. The
combined f090 and f150 weights are shown in solid green and blue,
respectively. We note that the PA4 f150 array map has the smallest weight
(shown as dotted light blue), less than 10%, while PA5 f090 map provides the
largest contributions to our coadded map (with the weight shown in dashed
green).

81
For simplicity, we suppress the subscripts indicating the array frequency

(Af).
82

The factors of 1/[k(k − 1)] are explained as follows: the 1/(k − 1) factor
converts the null noise power per split to an estimate of the coadd noise power;
this is (k − 1) since the coadd map enters into n removing 1 degree of freedom.
The additional 1/k averages over eight independent realizations. Refer to
Atkins et al. (2023) for a detailed discussion.
83

We checked that the resulting coadded map is stable to different choices of
binning Δℓ as long as the resultant Nℓ are smooth.
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filter takes the form

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )† †» -

-

 X

T
P

P

, 15ℓm
WF fid 1

2

2

where  is the filtering operation applied to the temperature

and polarization spherical harmonics. The filters used are

diagonal in harmonic space such that each component of X ä T,

E, B is filtered separately by ( )= +F C N1ℓ
X

ℓ
XX

ℓ
XX .

The above diagonal filtering neglects small amounts of mode
mixing due to masking, does not account for noise inhomo-
geneities over the map, and also ignores cross-correlation in
Cℓ
TE. However, it has the advantage of allowing the temperature

and polarization map to be filtered independently and is a good
approximation on scales for which the CMB fields are signal
dominated and in situations when the noise level is close to
homogeneous, as is the case for ACT DR6.84 This method is
also significantly faster than using the more optimal filter in
Equation (13), which requires evaluation of the inverse of the
covariance matrix C with, for example, conjugate-gradient
methods. Therefore, for the main analysis, we employ this
diagonal filter.

The inverse-variance filtered maps

⎛

⎝
⎜

⎞

⎠
⎟¯ ( ˆ) ( )= -

-

X n C

T
P

P

161
2

2

are related to the Wiener-filtered multipoles Xℓm
WF in

Equation (15) via

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

¯ ( ˆ) ( ) ( )

( )

¯ ( )

† 



=

=

=

- -

-

 





X n X

X

X

diag 1,
1

2
,
1

2

diag 1,
1

2
,
1

2
, 17

ℓm

ℓm

ℓm

1 fid 1 WF

fid 1 WF

where, in the last line, ¯ ( )= -X Xℓm ℓm
fid 1 WF.

5.8. Lensing Reconstruction

In this section, we describe the methodology used to estimate
CMB lensing using the quadratic estimator (QE). Our baseline
methodology closely follows the pipeline used in Planck
Collaboration et al. (2020b), albeit with key improvements in
areas such as foreground mitigation (using a profile-hardened
estimator that is more robust to extragalactic foregrounds;
see Section 5.8.2) and immunity to noise modeling (using
the more robust cross-correlation-based estimator described in
Section 5.8.3).

5.8.1. Standard Quadratic Estimator

A fixed realization of gravitational lenses imprints preferred
directions into the CMB, thereby breaking the statistical
isotropy of the unlensed CMB. Mathematically, the breaking
of statistical isotropy corresponds to the introduction of new
correlations between different, formerly independent modes of
the CMB sky, with the correlations proportional to the lensing
potential fLM. Adopting the usual convention of using L and M

to refer to lensing multipoles and ℓ and m to refer to CMB
multipoles, we may write the new, lensing-induced correlation
between two different CMB modes Xℓ m1 1

and Yℓ m2 2
as follows :

⎛
⎝

⎞
⎠

( )

( )

å

f

á ñ = -
-

´

X Y
ℓ ℓ L

m m M

f

1

. 18

ℓ m ℓ m

LM

M

ℓ ℓ L
XY

LM

CMB
1 2

1 2
1 1 2 2

1 2

The average 〈 〉CMB is taken over CMB realizations with a fixed

lensing potential f. Here the fields Xℓm, Yℓm ä {Tℓm, Eℓm, Bℓm}

and the bracketed term is a Wigner 3j symbol. The response

functions ¢fℓℓ L
XY for the different quadratic pairs XY can be found

in Okamoto & Hu (2003) and are linear functions of the CMB

power spectra (the lensed spectra are used to cancel a higher-

order correction; Lewis et al. 2011).
The correlation between different modes induced by lensing

motivates the use of quadratic combinations of the lensed
temperature and polarization maps to reconstruct the lensing
field. Pairs of Wiener-filtered maps, XWF, and inverse-variance-
filtered maps, X̄ , are provided as inputs to a QE that
reconstructs an unnormalized, minimum-variance (MV) esti-
mate of the spin-1 component of the real-space lensing
displacement field:

ˆ ( ˆ) ¯ ( ˆ)[ ]( ˆ) ( )å= -
=  -

n n nd X X . 19
s s

s1

0, 2

WF

Here ð is the spin-raising operator acting on spin spherical

harmonics and the pre-subscript s denotes the spin of the field.

The gradients of the Wiener-filtered maps are given explicitly

by

( )

[ ]( ˆ) ( ) ( ˆ)

[ ]( ˆ) ( )( ) [ ] ( ˆ)

[ ]( ˆ) ( )( ) [ ] ( ˆ)

å

å

å

º +

º - + - -

º - - + +

- -







20

n n

n n

n n

X ℓ ℓ T Y

X ℓ ℓ E iB Y

X ℓ ℓ E iB Y

1 ,

2 1 ,

2 3 .

ℓm
ℓm ℓm

ℓm

ℓm ℓm ℓm

ℓm

ℓm ℓm ℓm

0
WF WF

1

2
WF WF WF

1

2
WF WF WF

3

The displacement field can be decomposed into the gradient
f and curl Ω components by expanding in spin-weighted
spherical harmonics:

⎜ ⎟
⎛
⎝

⎞
⎠

ˆ ( ˆ)
¯ ¯

( )
( ˆ) ( )å

f
=

 W

+




n nd
i

L L
Y

1
. 21

LM

LM LM
LM1

1

Hence, by taking spin-±1 spherical harmonic transforms of
ˆ ( ˆ) nd1 , where ˆ ˆ=-

*d d1 1 , and taking linear combinations of the

resulting coefficients, we can isolate the gradient and curl

components. The gradient component fLM contains the

information about lensing that is the focus of our analysis.85

The curl ΩLM is expected to be zero (up to small post-Born

corrections; e.g., Pratten & Lewis (2016) and references

therein) and can therefore serve as a useful null test, as

discussed in Section 6.4.1.
Even in the absence of lensing, other sources of statistical

anisotropy in the sky maps, such as masking or noise
inhomogeneities, can affect the naive lensing estimator. One
can correct such effects by subtracting the lensing estimator’s

84
The sky maps used have only a factor of two variation on the spatial

dependence of the depth after the cuts done in Figure 3.

85
Here we adopt the notation of using the overbar to refer to unnormalized

quantities.
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response to such nonlensing statistical anisotropies, which is
commonly referred to as the mean field f̄á ñLM . We estimate this
mean-field signal by averaging the reconstructions produced by
the naive lensing estimator from 180 noiseless86 simulations,
each with independent CMB and lensing potential realizations.
This averaging ensures that only the response to spurious,
nonlensing statistical anisotropy remains (as the masking is the
same in all simulations, whereas CMB and lensing fluctuations
average to zero). Subtracting this mean field leads us to the
following lensing estimator:

¯ ¯ ¯ ( )f f f - á ñ. 22LM LM LM

The temperature-only (s= 0) and polarization-only (s=± 2)
estimators87 in Equation (19) are combined at the field level88

to produce the full unnormalized MV estimator.
Expanding the Wiener-filtered fields in terms of the inverse-

variance-filtered multipoles X̄ℓm and extracting the gradient part

approximately recovers the usual estimators f̄
LM

XY
of Okamoto &

Hu (2003), where XY ä {TT, TE, ET, EE, EB, BE}. More
specifically, the MV estimator presented here is approximately

equivalent89 to combining the individual estimators f̄
LM

XY
with a

weighting given by the inverse of their respective normal-
ization ( )-L

XY 1:

( )ˆ ¯ ( )åf f=
-

 . 23
LM L

XY
LM

XYMV MV 1

Here ( )-L
MV 1 is the MV estimator normalization that

ensures that our reconstructed lensing field is unbiased; by

construction, it is defined via ( ) ¯f f= á ñ-LM L
XY

LM

XY1
CMB. The

normalization is given explicitly by

( )
( )

( )=
å

-



1

. 24L

XY L

MV 1

XY

In the notation adopted here, the unnormalized estimator f̄LM
is related to the normalized estimator f̂LM via the normalization
-L
1 as ˆ ¯f f= -LM L LM

1 .
To first approximation, this normalization is calculated

analytically with curved-sky expressions from Okamoto & Hu
(2003). We generally use fiducial lensed spectra in this
calculation (as well as the filtering of Equation (12)), which
reduces the higher-order N(2) bias to subpercent levels;
however, for the TT estimator, we use the lensed temper-

ature-gradient power spectrum Cℓ
T T to further improve the

fidelity of the reconstruction (Lewis et al. 2011). This analytic,
isotropic normalization is fairly accurate, but it does not
account for effects induced by Fourier-space filtering and
sky masking. Therefore, we additionally apply a multiplicative
MC correction DAL

MC,mul to all lensing estimators, so that
ˆ ˆf f DALM L LM

MC,mul . This correction is obtained by first
cross-correlating reconstructions from simulations with the true

lensing map; we then divide the average of the input simulation
power spectrum by the result, i.e.,

( )
ˆ

D =
á ñ

á ñ

ff

ff
A

C

C
. 25L

L

L

MC,mul

In practice, this multiplicative MC correction is computed after

binning both spectra into bandpowers.
An explanation of the origin of the multiplicative MC

correction is provided in Appendix D: it is found to be
primarily a consequence of the Fourier-space filtering.
Having obtained our estimate of the lensing map in harmonic

space, f̂LM , we can compute a naive, biased estimate of the
lensing power spectrum. Using two instances of the lensing

map estimates f̂
LM

AB
and f̂

LM

CD
, this power spectrum is given by

( )ˆ ( ˆ ˆ )
( )

ˆ ˆ ( )
ˆ ˆ

åf f f fº
+

ff

=-

*
C

w L
,

1

2 1
, 26L LM

AB

LM

CD

M L

L

LM

AB

LM

CD

4

where ˆ ( ˆ) ( )ò p= n nw d M 44
2 4 , the average value of the fourth

power of the mask ( ˆ)nM , corrects for the missing sky fraction

due to the application of the analysis mask. In Equation (37),

below, we will introduce a new version of these spectra that

ensures that only different splits of the data are used in order to

avoid any noise contribution. This will allow us to obtain an

estimate of the lensing power spectrum that is not biased by

any mischaracterization of the noise in our CMB observations.
Nevertheless, biases arising from CMB and lensing signals

still need to be removed from the naive lensing power spectrum
estimator. We discuss the subtraction of these biases in
Section 5.9.

5.8.2. Profile Hardening for Foreground Mitigation

Extragalactic foreground contamination from Sunyaev–
Zel’dovich clusters, the CIB, and radio sources can affect the
QE and hence produce large biases in the recovered lensing
power spectrum if unaccounted for. For our baseline analysis,
we use a geometric approach to mitigating foregrounds and
make use of bias-hardened estimators (Namikawa et al. 2013;
Osborne et al. 2014; Sailer et al. 2020). As with lensing,
other sources of statistical anisotropy in the map such as
point sources and tSZ clusters can be related to a response
function f

ℓ ℓ L
s

1 2
and a field sLM describing the anisotropic spatial

dependence. Bias-hardened estimators work by reconstructing
simultaneously both lensing and nonlensing statistical aniso-
tropies and subtracting the latter, with a scaling to ensure that
the resulting estimator has no remaining response to nonlensing
anisotropies. Explicitly, the bias-hardened TT part of the
lensing estimator is given by

( )

( )

( ) ( )
ˆ

ˆ ˆ
( )f

f
=

-

-

f

f

-

- -

 

  

s

1
, 27

LM

TT LM

TT

L
TT

L
s
LM

L
s

L
TT

L
s

,BH

1 ,

, 2 1 1

where fL
s, is the cross-response between the lensing field f̂

LM

TT

and the source field ŝLM , and ( )-L
s 1 is the normalization for the

source estimator.
In our case, we optimize the response to the presence of tSZ

cluster “sources,” and as shown in Sailer et al. (2023), this
estimator is also effective in reducing the effect of point sources
by a factor of around five. The cross-response function of this

86
The reason we do not include instrumental noise here is that we use the

cross-correlation-based estimator, presented in Section 5.8.3, which cancels the
noise contribution to the mean field.
87

Note that the s = 0 estimator includes part of the standard Hu and Okamoto
TE estimator (with E on the gradient leg) through the Wiener filter, and the
s = 2 estimator includes part of the usual TE and TB estimators. When
obtaining temperature-only estimators, we therefore also set the input E-fields
to zero.
88

As opposed to the alternative of combining at the lensing power spectrum
level.
89

Our implementation corresponds to the SQE estimator from Maniyar et al.
(2021), which is slightly suboptimal compared to that of Okamoto &
Hu (2003).
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tSZ-profile-hardened estimator is given by

( )å=
+

f
f

¢

¢ ¢

¢


L

f f

C C

1

2 1 2
, 28L

ℓℓ

ℓLℓ ℓLℓ

ℓ ℓ

,tSZ
tSZ

total total

where = +C C Nℓ ℓ
TT

ℓ
TTtotal is the total temperature power

spectrum including instrumental noise and ¢f
ℓLℓ
tSZ is the response

function to tSZ sources. This response function requires a

model for cluster profiles; we estimate an effective profile from

the square root of the smoothed tSZ angular power spectrum

(which is dominated by the one-halo term) obtained from a
WEBSKY simulation (Sailer et al. 2020).

In the formalism presented here, the appropriately normal-
ized MV estimator, with the temperature estimator part
“hardened” against tSZ, is obtained by first subtracting the
standard temperature lensing estimator from the MV estimator
and then adding back the profile-hardened temperature
estimator, i.e.,

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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( )
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ˆ ˆ
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TT

MV,BH MV 1
MV

MV 1 1

,BH

1

Both the investigation of foreground mitigation in MacCrann
et al. (2024), summarized in this paper in Section 7.1, and the
foreground null tests discussed in Section 6 show that this
baseline method can control the foreground biases on the
lensing amplitude Alens to levels below 0.2σ, where σ is the
statistical error on this quantity.

5.8.3. Cross-correlation-based Quadratic Estimator

The lensing power spectrum constructed using the standard
QE is sensitive to assumptions made in simulating and
modeling the instrument noise used for calculating the lensing
power spectrum biases. This is despite the use of realization-
dependent methods, as described in Appendix E.1 (which
discusses power spectrum bias subtraction). Hence, in practice,
we construct our lensing power spectrum using lensing maps
ˆ ( )
f
LM

ij XY,
reconstructed from different data splits, indexed by i

and j, which have independent noise. Using the shorthand
notation of QE(XA, YB

) for the QE (see Equation (19))

operating on two sky maps XA and Y
B, ˆ ( )
f
LM

ij XY,
is defined as

ˆ [ ( ) ( )] ( )
( )
f = +X Y X Y

1

2
QE , QE , . 30

LM

ij XY
i j j i

,

Note that this is symmetric under interchange of the splits.
We use this cross-correlation-based estimator from Madha-

vacheril et al. (2020b) with independent data splits to ensure
that our analysis is immune to instrumental and atmospheric
noise effects in the mean-field and N0 (Gaussian) biases
(introduced below in Section 5.9). This makes our analysis
highly robust to potential inaccuracies in simulating the
complex atmospheric and instrumental noise in the ACT data.

The coadded, standard lensing estimator, equivalent to
Equation (23), which uses all the map-split combinations, is
given by

ˆ ˆ ( )
( )

åf f=
1

4
. 31

LM

XY

ij
LM

ij XY

2

,

The corresponding estimate of the power spectrum from XY

and UV standard QEs is then

( )[ ] ˆ ˆ ˆ ( )
ˆ ˆ ˆ ˆ ( ) ( )

å f f=ff ff
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1

4
, . 32L

ijkl
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4

, ,

This is modified by removing any terms where the same split is

repeated to give the cross-correlation-based estimator:

( )[ ]
!

ˆ ˆ ˆ ( )
ˆ ˆ ˆ ˆ ( ) ( )

å f f=ff ff´

¹ ¹ ¹

C XY UV C,
1

4
, . 33L
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L LM
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kl UV, , ,

In this way, only lensing maps constructed from CMB maps

with independent noise are included, so noise mismodeling

does not affect the mean-field estimation, and any cross-powers

between lensing maps that repeat splits (and hence contribute to

the Gaussian noise bias) are discarded.
We can accelerate the computation of Equation (33)

following Madhavacheril et al. (2020b). We introduce the
following auxiliary estimators using different combinations of
splits:
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in terms of which the cross-correlation-based estimator may be

written as
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Finally, the baseline lensing map we produce, which again
avoids repeating the same data splits in the estimator, is given
by
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The resulting lensing map is shown in CAR projection in

Figure 5, with the map filtered to highlight the signal-

dominated scales.

5.9. Bias Subtraction

Naive lensing power spectrum estimators based on the
autocorrelation of a reconstructed map are known to be biased
owing to both reconstruction noise and higher-order lensing
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terms. This is also true for the cross-correlation-based lensing
power spectrum in Equation (37), despite its insensitivity to
noise. To obtain an unbiased lensing power spectrum from the
naive lensing power spectrum estimator, we must subtract the
well-known lensing power spectrum biases: the N0 and N1

biases, as well as a small additive MC bias. The bias-subtracted
lensing power spectrum is thus given by

ˆ ( )
ˆ ˆ

= - D - D - D
ff ff´ ´C C C C C . 39L L L L

N
L

, , Gauss MC1

These biases can be understood in more detail as follows.
The N0 or Gaussian bias, DCL

Gauss, is effectively a lensing
reconstruction noise bias. Equivalently, since the lensing power
spectrum can be measured by computing the connected part of

the four-point correlation function of the CMB,DCL
Gauss can be

understood as the disconnected part that must be subtracted off
the full four-point function; these disconnected contractions are
produced by Gaussian fluctuations present even in the absence
of lensing. The N0 bias is calculated using the now-standard
realization-dependent N0 algorithm introduced in Namikawa
et al. (2013) and Planck Collaboration et al. (2014). This
algorithm, which combines simulation and data maps in
specific combinations to isolate the different contractions of
the bias, is described in detail in Appendix E.1. The use of a
realization-dependent N0 bias reduces correlations between
different lensing bandpowers and also makes the bias
computation insensitive to inaccuracies in the simulations.

The N1 bias subtracts contributions from “accidental”
correlations of lensing modes that are not targeted by the QE
(see Kesden et al. 2003 for details; the nomenclature arises
because the N1 bias is first order in ffCL , unlike the N0 bias,
which is zeroth order in the lensing spectrum). The N1 bias is
computed using the standard procedure introduced in Story
et al. (2015) and described in Appendix E.2.

Finally, we absorb any additional residuals arising from
nonidealities, such as the effects of masking, in a small additive
MC bias DCL

MC that is calculated with simulations. We
describe the computation of this MC bias in detail in
Appendix E.3.

The unbiased lensing spectrum, scaled by L2(L+ 1)2/4, is
binned in bandpowers with uniform weighting in L. Details
regarding the bins and ranges adopted in our analysis can be
found in Section 6.1.

To illustrate the sizes of the different bias terms subtracted,
we plot them all as a function of scale in Figure 6. The fact that
the additive MC bias is small is an important test of our
pipeline and indicates that it is functioning well. The
procedures laid out above constitute our core full-sky lensing
pipeline, which enables the unbiased recovery of the lensing
power spectrum after debiasing.

5.10. Normalization: Dependence on Cosmology

Prior to normalization, the quadratic lensing estimator probes
not just the lensing potential f; it is instead sensitive to a
combination ∣f ´ L M L C, ℓ

CMB, where the response ∣L Cℓ
CMB is a

function of the true CMB two-point power spectra. Applying
the normalization factor ∣-L C

1

ℓ
CMB,fid, where Cℓ

CMB,fid are the

fiducial CMB power spectra assumed in the lensing reconstruc-
tion, attempts to divide out this CMB power spectrum
dependence and provide an unbiased lensing map. If the power
spectra describing the data are equal to the fiducial CMB power
spectra (i.e., =C Cℓ ℓ

CMB CMB,fid), the estimated lensing map is
indeed unbiased. Otherwise, the estimated lensing potential is
biased by a factor ∣ ∣- - L C L C

1 1

ℓ ℓ
CMB,fid CMB.

In early CMB lensing analyses, it was assumed that the
CMB power spectra were determined much more precisely
than the lensing field, so that any uncertainty in the CMB two-
point function and in the normalization could be neglected;
however, with current high-precision lensing measurements,
the impact of CMB power spectrum uncertainty must be
considered. We use as our fiducial CMB power spectra the
standard ΛCDM model from Planck 2015 TTTEEE cosmology
with an updated τ prior as in Calabrese et al. (2017). In
Appendix B, we describe in detail our tests of the sensitivity of
our lensing power spectrum measurements to this assumption;
we summarize the conclusions below.
We analytically compare the amplitude of the lensing power

spectrum Alens when changing the fiducial CMB power spectra
described above to the best-fit model CMB power spectra for
an independent data set, namely ACT DR4+WMAP (Aiola
et al. 2020); we account for the impact of calibration and
polarization efficiency characterization in this comparison.
Doing this, we find a change in Alens of only 0.23σ,
comfortably subdominant to our statistical uncertainty. An
important reason why this change is so small is that our

Figure 5. The DR6 lensing convergence map filtered with a signal-over-noise (Wiener) filter in order to highlight the signal-dominated scales. The coordinate system
is the same as in Figure 3. We note that stretching features in the lower part of the map are due to cylindrical projection. This map is produced using the cross-
correlation-based estimator described in Section 5.8.1, which avoids using data with the same noise realization and provides a high-fidelity mapping of the dark matter
distribution over 23% of the sky. The gray scale has white corresponding to regions with high matter density and dark corresponding to underdense regions. Our
companion paper, Madhavacheril et al. (2024), describes this lensing map in detail. We show the fiducial analysis mask in orange, as well as two additional masks
used for consistency tests as described in Sections 6.5.6 and 6.5.8.
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preprocessing procedures, which involve calibration and
polarization efficiency corrections relative to the Planck
spectra, drive the amplitudes of the spectra in our data closer
to our original fiducial model. This result reassures us that the
CMB power spectra are sufficiently well measured, by
independent experiments, not to degrade our uncertainties on
the lensing power spectrum significantly.

Nevertheless, we additionally account for uncertainty in the
CMB power spectra in our cosmological inference from the
lensing measurements alone (i.e., when not also including
CMB anisotropy measurements) by adding to the covariance
matrix a small correction calculated numerically from an
ensemble of cosmological models sampled from a joint ACT
DR4+Planck chain (see Aiola et al. 2020 for details). This
results in a small increase in our errors (by approximately 3%
for the lensing spectrum bandpower error bars), although the
changes to the cosmological parameter constraints obtained are
nearly negligible.90

5.11. Covariance Matrix

We obtain the bandpower covariance matrix from Ns = 792
simulations. We do not subtract the computationally expensive
realization-dependent RDN0 from all the simulations when
evaluating the covariance matrix. Instead, we use an approx-
imate, faster version, referred to as the semianalytic N0, which
we describe briefly below in Section 5.11.1.

To account for the fact that the inverse of the above
covariance matrix is not an unbiased estimate of the inverse
covariance matrix, we rescale the estimated inverse covariance
matrix by the Hartlap factor (Hartlap et al. 2007):

( )a =
- -

-
N N

N

2

1
, 40

s

s
cov

bins

where Nbins is the number of bandpowers.

5.11.1. Semianalytic N0

The realization-dependent N0 algorithm (see Equation (E1))
used to estimate the lensing potential power spectrum is
computationally expensive since it involves averaging hun-
dreds of realizations of spectra obtained from different
combinations of data and simulations. For covariance matrix
computation, which requires the estimation of many simulated
lensing spectra to produce the covariance matrix, we adopt a
semianalytical approximation to this Gaussian bias term,
referred to as semianalytic RDN0. This approximation ignores
any off-diagonal terms involving two different modes
á ñ¢ ¢*X Yℓm ℓ m when calculating RDN0. The use of the faster
semianalytic RDN0 provides a very good approximation to the
covariance matrix obtained using the full realization-dependent
N0, with both algorithms similarly reducing correlations
between different bandpowers.91 We stress that this approx-
imate semianalytic N0 is only used in the covariance

Figure 6. Summary of the different biases subtracted in our lensing power spectrum measurement; this figure also serves as a test of our pipeline. The dotted line
shows the large Gaussian or N0 bias as a function of multipole L; note that this is smaller than the Gaussian bias of the standard QE estimator, as noise does not
contribute to the bias for the cross-correlation-based estimator we are using. The effective reconstruction noise for our measurement, which is a more accurate
reflection of the noise in our lensing map than the N0 bias, is indicated by the dotted–dashed line. Similarly, the N1 bias is given by the solid gray line. The power
spectrum of the mean field is shown with a dashed gray line. This term becomes larger than the lensing signal at large scales, L ∼ 20, and the inability to estimate it
using simulations with sufficient accuracy is partially the reason why we set the lower limit =L 40min for cosmological interpretation. The open black circles show the
reconstructed bandpowers for the mean of 480 simulations with all biases except the MC bias subtracted; these bandpowers are measured by passing realistic sky
simulations that closely match the theory spectra (shown in blue) through the pipeline. The error bars on these points represent the errors on a single realization. An
important test of our pipeline is that the simulated residual from an average over many simulations, known as the MC bias, is small; the MC bias is shown as red stars
in the plot and is indeed nearly negligible over a wide range of scales. All curves shown are for the MV (i.e., combined temperature and polarization) estimator.

90
The error on ( )sº WS 0.3m8

CMBL
8

0.25 determined from ACT DR6 CMB
lensing alone increases from 0.021 to 0.022 when we include the additional
term in our covariance matrix.

91
Not including this semianalytic N0 can lead to correlations of order 20%

between neighboring bandpowers.
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computation and is not employed to debias our data. Further
details of the calculation of the semianalytic RDN0 bias
correction are presented in Apppendix G.

5.11.2. Covariance Verification

We verify that 792 simulations are sufficient to obtain
converged results for our covariance matrix as follows. We
compute two additional estimates of the covariance matrix from
subsets containing 398 simulations each and verify that our
results are stable: even when using covariances obtained from
only 398 simulations, we obtain the same lensing amplitude
parameter, Alens, to within 0.1σ. In addition, the fact that our
null test suite passes, and in particular the fact that our noise-
only null tests in Section 6.4.2 (containing no signal) generally
pass, provides further evidence that our covariance estimate
describes the statistics of the data well.

We verify the assumption that our bandpowers are
distributed according to a Gaussian in Appendix H.

5.11.3. Covariance Matrix Results and Correlation between

Bandpowers

The correlation matrix for our lensing power spectrum
bandpowers, obtained using a set of 792 simulations, can be
seen in Figure 7. We find that correlations between different
bandpowers are small, with off-diagonal correlations typically
below 10%.

6. Null and Consistency Tests

We now summarize the set of tests we use to assess the
robustness of our lensing measurement and the quality of the

data we use. We first introduce the baseline and extended
multipole ranges used in our analysis and describe how the null
tests we have performed guided these choices. In Section 6.2,
we describe how we compute the χ2 and probability to exceed
(PTE92

) to characterize passing and failing null tests. In
Section 6.3 we describe our blinding procedure, the criteria
used to determine readiness for unblinding, and the unblinding
process itself. We then describe in detail the map-level null
tests in Section 6.4 and bandpower-level null tests in
Section 6.5. Section 6.6 provides a summary of the distribution
of the combined map- and bandpower-level null tests. Finally,
while we aim to present the most powerful null tests in the
main text, a discussion of additional null tests performed can be
found in Appendix I.

6.1. Selection of Baseline and Extended Multipole Range

For our baseline analysis, we use the lensing multipoles 40<
L< 763 with the following nonoverlapping bin edges for
Nbins= 10 bins at [40, 66, 101, 145, 199, 264, 339, 426, 526,
638, 763]. The baseline multipole range 40< L< 763 was
decided prior to unblinding. This range is informed by both the
results of the null tests and the simulated foreground estimates.
The scales below L= 40 are removed owing to large fluctua-
tions at low L observed in a small number of null tests; these
scales are difficult to measure robustly since the simulated
mean field becomes significantly larger than the signal,
although the cross-based estimator relaxes simulation accuracy
requirements on the statistical properties of the noise. The Lmax

limit is motivated by the results of the foreground tests on
simulations performed in MacCrann et al. (2024), where at

=L 763max the magnitude of fractional biases in the fit of the
lensing amplitude is still less than 0.2σ (0.5%), although biases
rise when including smaller scales. This upper range is rather
conservative, and hence we also provide an analysis with an
extended cosmology range up to =L 1300max , although we
note that this extended range was not determined before
unblinding and that instrumental systematics have only been
rigorously tested for the baseline range. (We also note that the
null test PTEs and simulated foreground biases still appear
acceptable in the extended range, although, again, we caution
that we only carefully examined the extended-range null tests
after we had unblinded.)

6.2. Calculation of Goodness of Fit

In any null test, we construct a set of null bandpowers dnull,
which (after appropriate bias subtraction) should be statistically
consistent with zero. For map-level null tests, d

null are the
bandpowers obtained by performing lensing power spectrum
estimation on CMB maps differenced to null the signal, while
for bandpower-level null tests they are given by differences of

reconstructed lensing power spectra,
ˆ ˆ

D ffCL . We test consis-
tency of the null bandpowers with zero by calculating the χ

2

with respect to null:

( ) ( )c = -d d . 412 null 1 null

The relevant covariance matrix  for each null test is estimated

by performing the exact same analysis on 792 simulations,

Figure 7. Size of the off-diagonal correlations for our lensing power spectrum
bandpower covariance matrix. The covariance matrix is estimated from 792
simulated lensing spectrum measurements. The number in each lower-diagonal
element of the matrix shows the correlation coefficient between the relevant
bandpowers, expressed as a percentage, for the bins used in our analysis range.
It can be seen that the off-diagonal correlations do not exceed the 15% level.
The band centers are shown along the axes of the matrix.

92
The PTE is the probability of obtaining a higher χ2 than what we actually

obtain, given a distribution with the same number of degrees of freedom.
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ensuring that all correlations between the different data sets

being nulled are correctly captured. The PTE is calculated from

the χ
2 with 10 degrees of freedom as we have 10 bandpowers

in the baseline range. (We also consider and compute PTEs for

our extended scale range, which has 13 degrees of freedom.)

6.3. Blinding Procedure

We adopt a blinding policy that is intended to be a
reasonable compromise between reducing the effect of
confirmation bias and improving our ability to discover and
diagnose issues with the data and the pipeline efficiently. We
define an initial blinded phase after which, when predefined
criteria are met, we unblind the data.

In the initial blinded phase, as part of our blinding policy, we
agree in advance to abide by the following rules.

1. We do not fit any cosmological parameters or lensing
amplitudes to the lensing power spectrum bandpowers.
While we allow debiased lensing power spectra to be
plotted, we do not allow them to be compared or plotted
either against any theoretical predictions or against
bandpowers from any previous CMB lensing analyses,
including the Planck analyses. In this way, we are blind to
the amplitude of lensing at the precision needed to inform
the S8 tension and constrain neutrino masses, but we can
still rapidly identify any catastrophic problems with our
data—although none were found.

2. During the blinded phase, we also allow unprocessed lensing
power spectra without debiasing to be plotted against theory
curves or Planck bandpowers for L> 200. The justification
for this is that the unprocessed spectra are dominated on
small scales by the Gaussian N0 bias and hence not
informative for cosmology, although they allow for useful
checks of bias subtraction and noise levels. When analyzing
bandpowers of individual array-frequency reconstructions,
we allow unprocessed spectra to be plotted over all
multipoles, because individual array-frequency lensing
spectra are typically noise bias dominated on all scales.93

We calculate PTE values of bandpowers in our map-level
null tests (see Section 6.4) and for differences of bandpowers in
our consistency tests (Section 6.5) during the blinded phase.
For the power spectra of the CMB maps themselves (as
opposed to those of lensing reconstructions), we follow a
blinding policy that will be described in an upcoming ACT
DR6 CMB power spectrum paper.

After unblinding, all these restrictions are lifted and we
proceed to the derivation of cosmological parameters. We
require the following criteria to be satisfied before unblinding.

1. All baseline analysis choices made in running our
pipeline, such as the range of CMB angular scales used,
are frozen.

2. No individual null test PTE should lie outside the range
0.001< PTE< 0.999.

3. The distribution of PTEs for different null tests should be
consistent with a uniform distribution (verified via a
Kolmogorov–Smirnov test, with the caveat that this
neglects correlations).

4. The number of null and consistency tests that fall outside the
range 0.01< PTE< 0.99 should not be significantly incon-
sistent with the expectations from random fluctuations.

5. The comparison of the sum of χ
2 for several different

types of tests against expectations from simulations
should fall within 2σ of the simulation distributions.

The PTE ranges we accept are motivated by the fact that we
calculate ( )ÿ 100 PTEs but not ( )ÿ 1000 .

6.3.1. Post-unblinding Change

As described in Section 3.6, our baseline analysis models bright
galaxy clusters and subtracts them from maps. However, this
procedure was introduced after unblinding. Before unblinding,
bright galaxy clusters were masked and inpainted, similar to our
treatment of compact objects described in Section 5.2. This minor
modification to the analysis, which had only a small effect on the
results, was not prompted by any of the post-unblinding results we
obtained, but rather by concerns arising in an entirely different
project focused on cluster mass calibration. In the course of this
project, a series of tests for the inpainting of cluster locations were
performed using WEBSKY simulations (Stein et al. 2020) and
Sehgal simulations (Sehgal et al. 2010). We discovered that in
simulations our inpainting algorithm can be unstable, as it is
heavily dependent on the assumptions of the underlying noise, on
the map preprocessing, and on inpainting-specific hyperpara-
meters; small inpainting artifacts at the inpainted cluster locations
can correlate easily with the true lensing field, leading to significant
biases to the lensing results in simulations. Although the same kind
of stability tests performed on data show no indication of issues
related to inpainting (likely due to the actual noise properties and
processing in the data not producing any significant instabilities),
concerns about the instability of inpainting on simulations
motivated us to switch, for our baseline analysis, to the cluster
template subtraction described in Section 3.6 as an alternative
method for the treatment of clusters.
Model subtraction shows excellent stability in the simulations,

with no biases found, and foreground studies show that an
equivalent level of foreground mitigation is achieved with this
method, even when the template cluster profile differs somewhat
from the exact profile in the simulations (MacCrann et al. 2024).
We therefore expect lensing results obtained using the template
subtraction method to be more accurate. Fortunately, changing
from cluster inpainting to cluster template subtraction only causes a

small change to the relevant S8
CMBL parameter: S8

CMBL decreases
by only 0.15σ, as shown later in Figure 48; the inferred lensing
amplitude increases by 0.75σ (the shifts differ in sign owing to
minor differences in the scale dependences of the lensing
amplitude parameter and S8

CMBL). The small shift in S8
CMBL that

results from our change in methodology does not significantly
affect any of the conclusions drawn from our analysis.

6.4. Map-level Null Tests

This subsection describes null tests in which we apply the
full lensing power spectrum estimation pipeline to maps that
are expected to contain no signal in the absence of systematic
effects. In all cases except for the curl reconstruction in
Section 6.4.1, this typically involves differencing two variants
of the sky maps at the map level (hence nulling the signal) and
then proceeding to obtain debiased lensing power spectra from
these null maps. To adhere closely to the baseline lensing

93
Such comparisons allow for a small number of order-of-magnitude sanity

checks of intermediate results from different array frequencies.
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analysis, we always prepare four signal-differenced maps and
make use of the cross-correlation-based estimator.

We describe each of our map-level null tests in more detail in
the sections below with a summary of the χ

2 and associated
PTE found in Table 1.

6.4.1. Curl

The lensing deflection field d can be decomposed into gradient
and curl parts based on the potentials f and Ω, respectively, i.e., in
terms of components di=∇if+ òi

j
∇jΩ, where Ω is the

divergence-free or “curl” component Ω of the deflection field
and f is again the lensing potential. (Here òij is the alternating
tensor on the unit sphere.) The curl Ω is expected to be zero at
leading order and therefore negligible at ACT DR6 reconstruction
noise levels (although a small curl component induced by post-
Born and higher-order effects may be detectable in future surveys;
Pratten & Lewis 2016). However, systematic effects do not
necessarily respect a pure gradient-like symmetry and hence could
induce a nonzero curl-like signal. An estimate of this curl field can
thus provide a convenient diagnostic for systematic errors that can
mimic lensing. Furthermore, curl reconstruction also provides an
excellent test of our simulations, our pipeline, and our covariance
estimation.

We obtain a reconstruction of this curl field in the same manner
as described in Section 5.8.1, by taking linear combinations of the
spin-1 spherical harmonic transform of the deflection field. The
bias estimation steps are then repeated in the same way as for the
lensing estimator. The result for this null test is shown in Figure 8
for the MV coadded result,94 which is the curl equivalent of our

baseline lensing spectrum. This test has a PTE of 0.37, in good
agreement with null. We also show curl null test results for the
temperature-only (TT) version of our estimator in Figure 8.
The consistency of our curl measurement with zero provides

further evidence of the robustness of our lensing measurement.
Intriguingly, the curl null test was not passed for the TT
estimator in Planck, and instead (despite valiant efforts to
explain it) a 4.1σ deviation95 from zero has remained, located
in the range 264< L< 901 (Planck Collaboration et al. 2020a);
see Figure 8. Our result provides further evidence that this
nonzero curl is not physical in origin.
For completeness, we also compute curl tests associated with

all other null tests described in the subsequent sections; we
summarize the results and figures in Appendix I. These results
also show that there is no evidence of curl modes found even in
subsets of our data.

6.4.2. Noise-only Null Tests: Individual Array-frequency Split

Differences

We can test our pipeline, verify our covariance matrices, and
assess the modeling of the noise for each array frequency by
differencing splits mi of the data with equal weighting, and hence
canceling the signal, to form null maps X i,null

=mi−mi+4. (There
are various combinations from which this null map could be
formed; we choose to difference split i and split i+ 4, where
iä {0, 1, 2, 3}.) The resulting four signal-nulled maps are passed
through the cross-correlation-based estimator. We perform lensing
reconstruction on these null maps with isotropic filtering. The
power spectra used in this filter are obtained by averaging the

Table 1

Summary of the Map-level Null Tests Described in Section 6.4

Map-level Null Test χ
2

(PTE)

PA4 f150 noise-only 8.5 (0.58)

PA5 f090 noise-only 6.4 (0.77)

PA5 f150 noise-only 11 (0.35)

PA6 f090 noise-only 10 (0.49)

PA6 f150 noise-only 14 (0.17)

Coadded noise 21.2 (0.02)

PA4 f150 − PA5 f090 23 (0.01)

PA4 f150 − PA5 f150 19.5 (0.03)

PA4 f150 − PA6 f090 13.7 (0.19)

PA4 f150 − PA6 f150 19.0 (0.04)

PA5 f090 − PA5 f150 5.0 (0.89)

PA5 f090 − PA6 f090 7.5 (0.68)

PA5 f090 − PA6 f150 18.0 (0.06)

PA5 f150 − PA6 f090 12.3 (0.27)

PA5 f150 − PA6 f150 8.2 (0.61)

PA6 f090 − PA6 f150 9.7 (0.46)

f090 − f150 MV 7.6 (0.67)

f090 − f150 TT 5.7 (0.84)

( f090 − f150) × f MV 8.2 (0.61)

( f090 − f150) × f TT 4.3 (0.93)

Time-split difference 18.6 (0.05)

Note. For each test, we show the χ2 and associated PTE values for the baseline

range.

Figure 8. Power spectrum of the reconstructed curl mode of the lensing
deflection field. Since the cosmological lensing field is irrotational, a
measurement of the curl component can serve as a valuable null test for
several systematic errors. Results of this curl null test are shown for our
baseline, the coadded data set for the MV estimator (red), and the TT estimator
(black). Neither shows any evidence for systematic contamination, with a PTE
with respect to zero of 0.37 and 0.75, respectively. This can be contrasted with
the Planck NPIPE TT curl bandpowers shown in blue, which exhibit a
significant deviation from zero in the range 264 � L � 901. Our results provide
further evidence that the negative curl power seen in the Planck TT
reconstruction is not a real cosmological signal (Planck Collaboration
et al. 2020b).

94
A note on the y-scaling used in the plots: For the null test plots, we scale our

bandpowers by a factor of L with the visual purpose of enhancing the smaller
scales with aids with identifying potential issues on the small scales that we
probe with significant S/N. For Figures 6 and 26 we adopt the scaling of
L2(L + 1)2/(2π) used by other CMB lensing measurements in the literature for
easier comparison.

95
Note that the significance falls to 2.9σ after accounting for “look-elsewhere”

effects.
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power spectra of 80 simulations of lensed CMB with noise
realizations consistent with the inverse-variance-weighted noise of
the eight splits. For these tests we thus use the filter appropriate to
the coadded noise of the individual array frequency instead of the
baseline coadd filter, since otherwise the high noise in the
individual array frequencies leads to less sensitive null tests. Only
the coadd noise null test discussed in Appendix I.1 uses the
baseline weights. The normalization is computed with the same
filters and applied to the resulting null spectrum. Because we are
using the cross-correlation-based estimator and the signal is
assumed absent, we do not need to estimate the mean field, or the
RDN0 and N1 biases (which should all be zero); therefore, the
simulations are used solely to estimate the covariance matrix. The
summary results for this category of tests, written in terms of the
sum of the χ2 for all the array frequencies, are shown in Figure 9 in
Section 6.6. These tests show no evidence of a discrepancy
between different splits of the data map; this fact also confirms that
our noise simulations provide accurate estimates of the covariance
matrix. An additional noise-only null test can be obtained by
coadding all the individual noise-only null maps; this stringent null
test is shown in Appendix I.

6.4.3. Map-level Frequency-difference Test

We prepare frequency-differenced null maps by subtracting
the beam-deconvolved f150 split maps from the f090 split
maps. The resulting difference maps are passed into the lensing
reconstruction pipeline with the filters, normalization, and bias-
hardening procedure the same as used for the baseline
reconstruction, which combines f150 and f090. This filter
choice weights different scales in the null maps in the same
way as for our baseline lensing measurement, which ensures

that null test results can be directly compared with our baseline
lensing results. The null lensing power spectrum CL

null is given
schematically by

( )

( ) ( )

=á - -

´ - - ñ

C T T T T

T T T T

QE ,

QE , . 42

L
null 90 150 90 150

90 150 90 150

This measurement is a rigorous test for our mitigation of
foregrounds: the effect of foregrounds such as CIB and tSZ is
expected to be quite different in these two frequency channels
(with f090 more sensitive to tSZ and less to CIB), so we do not
expect full cancellation of foregrounds in the difference maps.
In particular, this null test targets the residual foreground-only
trispectrum of the lensing maps; we compare our results with
the levels expected from simulations in MacCrann et al. (2024).
In addition, this map-level null test is also sensitive to beam-
related differences between the two frequency channels.
As shown in Figure 10, these null tests are consistent with

zero, with PTEs of 0.67 and 0.84 for MV and TT, respectively;
no evidence for unmitigated foreground contamination is
found.

6.4.4. Frequency-nulled map f̂´ MV

To perform an additional, similarly powerful test of
foregrounds, we cross-correlate the null reconstruction from
the frequency-difference maps, obtained as in the previous null

test, with the baseline reconstruction f̂ ;
MV

i.e., schematically,
we compute

( ) ˆ ( )f= - - ´C T T T TQE , . 43L
null 90 150 90 150 MV

This measurement is sensitive mainly to the foreground
bispectrum96 involving two powers of foreground residuals

Figure 9. Results of χ2 tests applied to the bandpowers reconstructed from null
(noise-only) maps constructed for individual array frequencies. To examine an
entire set of null tests of a certain type, we investigate two quantities: (i) we sum the
χ
2 of all the relevant tests of this type, and (ii) we select the worst χ2 of all tests of

this type. We then compare the sum or worst χ2 from data with the distribution of
the same summary statistic in simulations. In this figure, we consider the set of
noise-only null tests described in Section 6.4.2. The top row shows the χ

2 sum
statistic, and the bottom row shows the worst χ2 statistic. The histograms are
obtained from simulations, and the red dashed lines indicate the simulation-derived
2σ limits (in the sense that 95% of values fall below these limits). The solid blue
lines show the χ2 sum (or the worst χ2

) obtained from the data. Although there are
isolated, mild failures at the 2σ level, overall, the sum of χ2 tests does not provide
evidence for significant problems in our data.

Figure 10. Lensing null tests based on frequency differences, which are a valuable
diagnostic for insufficient foreground bias mitigation, as well as for instrument
systematics. The light-blue and green points show a lensing power spectrum
measurement from an f090− f150 difference map, for TT and MV, respectively.
Yellow and blue points show a cross-correlation of the null lensing map, made from
the f090− f150 difference maps, with the baseline lensing map, for TT and MV,
respectively. These two types of null tests are sensitive to different foreground bias
terms. All tests are consistent with zero and thus provide no evidence for any
foreground bias (or other systematic bias) in our measurement.

96
See MacCrann et al. (2024) for an explanation of the foreground bispectrum

and trispectrum terms.
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and one power of the true convergence field. To a lesser extent,

given the small residual foreground biases remaining in f̂MV
,

the test is also sensitive to a foreground trispectrum contrib-
ution. The null test results in Figure 10 show good consistency
with zero, with a passing PTE of 0.61 and 0.93 for MV and TT,
respectively.

Since the foreground bias probed by this test is the dominant
one on large scales, the consistency of this test with null is a
particularly powerful test of foreground mitigation in our
analysis.

6.4.5. Array-frequency Differences

We test for consistency between the data obtained from the
different instrument array frequencies by taking differences
between single array-frequency maps. Since we have five array
frequencies, we obtain 10 possible combinations of such null
maps. We pass these signal-nulled maps through the pipeline
and use a filter that consists of the average power spectra of the
two array frequencies making up the difference map. We find
no evidence of inconsistency between the different array
frequencies except for a marginal failure for the difference
between PA4 f150 and PA5 f090 (with a PTE of 0.01), which
we discuss further in Section 6.6 and argue is not concerning.
The histogram for the χ2 values of all such tests is summarized
in Figure 11 in Section 6.6. These tests show that there is good
interarray consistency at the four-point level.

In Appendix I.3 we perform an additional, related test: we
measure the lensing power spectrum from null maps obtained
by differencing CMB maps made from 2017–2018 observa-
tions with maps from 2018–2021 observations. The passing
PTE of 0.05 provides no significant evidence of inconsistency
between the two periods.

6.5. Bandpower-level Consistency Tests

This section describes tests that aim to assess whether
lensing spectrum bandpowers from variations of our analysis,
or subsets of our data, are consistent with each other. For each

variation or subset, we subtract the resulting debiased lensing

power spectrum from our baseline debiased lensing power

spectrum; both spectra are obtained with our standard

methodology described in Section 5.8. We obtain a covariance

matrix for this difference by repeating this analysis (with

semianalytic debiasing described in Section 5.11.1) on

simulations. We then use the nulled bandpower vector and its

covariance matrix to check for consistency with zero. We

summarize the results of these tests in Table 2; in this table, we

also utilize the statistic ΔAlens to quantify the magnitude of any

potential bias to the lensing amplitude produced by the

departure of the null test bandpowers from zero, i.e.,

ˆ ˆ

ˆ ˆ
( )




D =
å

å

ff

ff ff
¢ ¢

-

¢ ¢
-

A
C C

C C
. 44

bb L bb L

bb L bb L

lens

null
1

1

b b

b b

Here ˆ ffCLb is the baseline lensing power spectrum and ¢bb is the

baseline covariance matrix. The ΔAlens results are summarized

in Figure 12.
For all of the null tests discussed in subsequent sections, we

present plots that show the lensing bandpowers in the top

panel, with the baseline analysis in red boxes. Additionally, we

include a subpanel showing differences of bandpowers divided

by the baseline MV errors σL.

Figure 11. Same as Figure 9, but for null tests related to instrument
systematics. These include the map-level array-difference tests described in
Section 6.4.5 and the PWV and season-difference null tests introduced in
Section 6.5.11. We again find no evidence for systematic effects in our data.

Table 2

Summary of the Bandpower-level Null Tests Described in Section 6.5

Bandpower Null Test χ
2

(PTE) ΔA
lens

600 < ℓCMB < 2000 2.9 (0.98) −0.015 ± 0.023

600 < ℓCMB < 2500 9.6 (0.48) −0.019 ± 0.012

800 < ℓCMB < 3000 10.9 (0.37) 0.01 ± 0.01

1500 < ℓCMB < 3000 4.4 (0.93) −0.02 ± 0.03

40% mask 7.2 (0.71) 0.01 ± 0.02

Aggr. ground pickup 14.8 (0.14) 0.01 ± 0.01

Poor cross-linking reg. 4.1 (0.94) −0.06 ± 0.06

MV f090 − f150 9.1 (0.52) −0.002 ± 0.04

TT f090 − f150 16.6 (0.08) −0.05 ± 0.06

CIB deprojection 15.6 (0.11) −0.02 ± 0.02

TT shear 13.5 (0.20) 0.01 ± 0.05

TT −MV 11.2 (0.34) −0.004 ± 0.03

MVPOL −MV 6.9 (0.73) 0.06 ± 0.06

TT −MVPOL 7.4 (0.69) −0.06 ± 0.07

South − North patch 4.77 (0.91) 0.04 ± 0.05

Time − split 1 − 2 11.4 (0.33) 0.003 ± 0.036

Time-split 1 8.1 (0.62) −0.04 ± 0.04

Time-split 2 11.2 (0.33) −0.04 ± 0.04

PA4 f150 − PA5 f090 9.1 (0.52) 0.0 ± 0.1

PA4 f150 − PA5 f150 7.0 (0.73) 0.1 ± 0.2

PA4 f150 − PA6 f090 9.1 (0.52) 0.0 ± 0.2

PA4 f150 − PA6 f150 20.1 (0.03) 0.11 ± 0.2

PA5 f090 − PA5 f150 5.8 (0.83) 0.13 ± 0.2

PA5 f090 − PA6 f090 9.5 (0.49) 0.02 ± 0.05

PA5 f090 − PA6 f150 19.6 (0.08) 0.02 ± 0.04

PA5 f150 − PA6 f090 10.4 (0.41) −0.03 ± 0.07

PA5 f150 − PA6 f150 16.6 (0.08) 0.1 ± 0.2

PA6 f090 − PA6 f150 17.2 (0.07) 0.07 ± 0.2

PWV high − low 5.0 (0.89) 0.02 ± 0.04

Note. For each test, we show the χ
2 and associated PTE values of the

difference bandpowers, as well as the shift in Alens, in the form

ΔAlens
± σ(ΔAlens

). Where not indicated in the description of the test, the

reported values are computed with respect to the baseline MV reconstruction.
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6.5.1. Temperature−Polarization Consistency

We compare our baseline MV (MV×MV) analysis against the
polarization-only measurement (MVPOL×MVPOL) and the
temperature-only measurement (TT×TT). We additionally com-
pare TT×TT against MVPOL×MVPOL. The lensing band-
powers and the null bandpowers from differencing the polarization
combinations can be seen in Figure 13. The corresponding curl is
shown in Appendix I.8. As can be seen in these plots, the null tests
are consistent with zero with PTEs of 0.34 (TT−MV), 0.73
(MVPOL−MV), and 0.69 (TT−MVPOL).

6.5.2. Bandpower-level Frequency-difference Test

We compare the lensing power spectrum derived from f090
and f150 data alone to our baseline analysis in Figure 14.

The null bandpowers are formed by taking the difference

( )
ˆ ˆ ˆ ˆ

= -ff ffC C C , 45L L L
null ,90 GHz ,150 GHz

where
ˆ ˆffCL

,90 GHz is the lensing spectrum reconstructed with the

f090 data only, i.e., PA5 f090 and PA6 f090, and
ˆ ˆffCL

,90GHz is

obtained by reconstructing the data at f150 only (from the PA4

f150, PA5 f150, and PA6 f150 array frequencies). For the

coaddition of the data we use the same noise weights (up to

normalization) as in the baseline analysis. For the reconstruc-

tion we use the same filters used for the baseline analysis. This

null test is sensitive to all foreground contributions (including

both bispectrum and trispectrum terms). However, compared to

the map-level frequency-difference null test above, this

measurement has larger errors, since the lensed CMB is not

nulled at the map level. Our results in Figure 14 show good

agreement of the lensing reconstruction obtained from different

frequencies. The curl is also shown in Appendix I.8.

6.5.3. Consistency with CIB Deprojection Analysis

The companion paper MacCrann et al. (2024) finds that a

CIB-deprojected version of the analysis shows similar

performance to our baseline analysis in mitigating foreground

biases to a negligible level without incurring a large S/N
penalty. We therefore perform a consistency check between

this alternative, multifrequency-based foreground mitigation

method and the geometry-based profile hardening method that

is our baseline.
MacCrann et al. (2024) describe the production of CIB-

deprojected temperature maps by performing a harmonic-space

constrained ILC (hILC) of the DR6 coadded temperature map

and the high-frequency data from Planck at 353 and 545 GHz.

The high-frequency Planck channels are chosen because the

CIB is much brighter and the primary CMB information is

subdominant at high frequencies; these high-frequency maps

are hence valuable foreground monitors that can be used while

still keeping our analysis largely independent of CMB

measurements from Planck.
Performing the hILC requires the use of the total auto- and

cross-spectra for all the input maps; these are measured directly

from the data and are smoothed with a Savitzky–Golay filter

(Savitzky & Golay 1964; window length 301 and polynomial

order 2), to reduce “ILC bias” (see, e.g., Delabrouille et al.

2009) arising from fluctuations in the spectrum measurements.

We also generate 600 realizations of these maps, using the

Planck NPIPE noise simulations provided by Planck

Collaboration et al. (2020c); these are used for the N0

Figure 12. Shift in Alens for the lensing bandpower null tests described in
Table 2. These shifts are color-coded as follows: the blue labels stand for scale
consistency tests, orange for isotropy-related tests, green for polarization- and
frequency-combination tests, and red for instrument-related tests. The nulled
spectra are all consistent with producing zero shift in Alens; the gray band shows
the 1σ errors of our baseline lensing amplitude measurements.

Figure 13. ACT DR6 lensing convergence bandpowers from the MV
combination of temperature and polarization (our baseline, denoted as MV)
in red, from temperature only (TT) in blue, and from polarization only
(MVPOL) in green. The bottom panel shows the differences between the TT
and MV spectra (blue), MVPOL and MV spectra (green), and TT and MVPOL
spectra (yellow). These are consistent with null. Note that in the bottom panel
the difference results are divided by the error in the baseline bandpowers
σL; we emphasize that this baseline error is not the same as the error in the
difference.
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