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Abstract

Cholangiopathies are diseases that affect cholangiocytes, the cells lining the biliary tract. Liver 

stem cells (LSCs) are able to differentiate into all cells of the liver and possibly influence the 

surrounding liver tissue by secretion of signaling molecules. One way in which cells can interact is 

through secretion of extracellular vesicles (EVs), which are small membrane-bound vesicles that 

contain proteins, microRNAs (miRNAs), and cytokines. We evaluated the contents of liver stem 

cell–derived EVs (LSCEVs), compared their miRNA contents to those of EVs isolated from 

hepatocytes, and evaluated the downstream targets of these miRNAs. We finally evaluated the 

crosstalk among LSCs, cholangiocytes, and human hepatic stellate cells (HSCs). We showed that 

LSCEVs were able to reduce ductular reaction and biliary fibrosis in multidrug resistance protein 

2 (MDR2)−/− mice. Additionally, we showed that cholangiocyte growth was reduced and HSCs 

were deactivated in LSCEV-treated mice. Evaluation of LSCEV contents compared with EVs 
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derived from hepatocytes showed a large increase in the miRNA, lethal-7 (let-7). Further 

evaluation of let-7 in MDR2−/− mice and human primary sclerosing cholangitis samples showed 

reduced levels of let-7 compared with controls. In liver tissues and isolated cholangiocytes, 

downstream targets of let-7 (identified by ingenuity pathway analysis), Lin28a (Lin28 homolog 

A), Lin28b (Lin28 homolog B), IL-13 (interleukin 13), NR1H4 (nuclear receptor subfamily 1 

group H member 4) and NF-κB (nuclear factor kappa B), are elevated in MDR2−/− mice, but 

treatment with LSCEVs reduced levels of these mediators of ductular reaction and biliary fibrosis 

through the inhibition of NF-κB and IL-13 signaling pathways. Evaluation of crosstalk using 

cholangiocyte supernatants from LSCEV-treated cells on cultured HSCs showed that HSCs had 

reduced levels of fibrosis and increased senescence.

Conclusion: Our studies indicate that LSCEVs could be a possible treatment for 

cholangiopathies or could be used for target validation for future therapies.

Cholangiopathies are diseases that affect the biliary epithelium and lead to fibrotic scarring. 

Primary sclerosing cholangitis (PSC) primarily affects middle-age men and is thought to be 

an inflammatory autoimmune disease targeting cholangiocytes.(1) The chronic inflammation 

involved in PSC leads to destruction of the bile ducts, causing blockage of bile ducts and 

fibrotic scarring, eventually culminating in cirrhosis and liver failure.

The MDR2−/− mouse is a commonly used mouse model of PSC. The MDR2−/− mouse has a 

mutation in the ABCB4 gene, the gene for multidrug resistance protein 2 (MDR2), which 

prevents the mice from secreting phospholipids into the bile.(2) This causes the bile to 

become corrosive, destroying cholangiocytes, which leads to a histological appearance very 

similar to PSC patients. Cholestatic liver injury induces cholangiocytes to proliferate, which 

results in ductular reaction, portal fibrosis, and biliary cirrhosis.(3) Therefore, blockage of 

cholangiocyte proliferation could be a mechanism by which PSC-induced fibrosis could be 

ameliorated. We have previously shown that prolonged exposure to darkness, melatonin 

administration, or treatment with gonadotropin-releasing hormone is able to ameliorate the 

fibrotic scarring seen in the MDR2−/− mouse.(4,5)

Stem cell therapy is a novel treatment paradigm that has been pursued more in the past few 

years in both basic science and in the clinic. This treatment is being used to regenerate 

tissues after disease in neurological and cardiac diseases as well as osteoarthritis.(6-8) We 

have previously shown that small cholangiocytes, which may contain a subpopulation of 

biliary progenitor cells, reduced fibrotic scarring in bile duct ligation (BDL) mice through 

activation of forkhead box A2 (FoxA2).(9)

MicroRNAs (miRNAs) are small noncoding RNAs that can regulate gene expression 

through direct binding to mRNA or DNA. Several miRNAs are altered in liver diseases, 

including lethal-7 (let-7). The miRNA let-7 is reduced in MDR2−/− mice, PSC patients, and 

cholestatic liver patients.(10) We have previously shown that suppression of Lin28 homolog, 

a downstream target of let-7, increases let-7 and mitigates progression of alcoholic liver 

disease.(11) Additionally, we have shown that increased let-7 expression as a result of 

suppression of secretin ameliorated cholestatic liver injury.(10) Let-7, as well as other 

miRNAs, could be transmitted from stem cells to damaged cells through extracellular 
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vesicles (EVs) to repair or ameliorate damage during liver repair through their downstream 

targets.

EVs are secreted by cells to communicate with other cells at local or distant locations.(12,13) 

They are typically 30-800 nm in size, consisting of exosomes, microvesicles and apoptotic 

bodies, and have been shown to be important in many disease states.(14,15) EVs could 

possibly be important in biliary disorders due to interactions between cholangiocytes and 

their surrounding tissues. It has been shown that cholangiocytes secrete EVs into the bile 

duct lumen, which can interact with cilia of other cholangiocytes.(16) We have previously 

shown that cholangiocytes interact through EVs as a result of cellular injury.(17) Although it 

is a novel area, EVs could be used as a therapeutic tool in cholestatic liver injury. Recently, 

cross-sectional analyses at the time of initial liver biopsy in patients with chronic hepatitis C 

showed that reduced levels of let-7a/7c/7d-5p (let-7s) in plasma and EVs were correlated 

with advanced histological hepatic fibrosis stage and other fibrotic markers.(18) Another 

study showed that miRNA-containing circulation EVs could be used to positively identify 

and differentiate among PSC, hepatocellular carcinoma, and cholangiocarcinoma.(19)

PSC currently has very few treatment options and patient outcome is dismal. An option for 

this type of degenerative disease could be to aid the liver in repairing itself. Because stem 

cells have been successful in other diseases, stem cell therapy could be a possible treatment 

option. EVs derived from liver stem cells should be ideal to aid the liver in repairing itself 

after cholestatic injury. This study aims to evaluate the ability of stem cell-derived EVs to 

ameliorate cholestatic liver injury in a mouse model of PSC.

Methods and Materials

MATERIALS

Reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise indicated. 

The mouse and human PCR primers were purchased from Qiagen (Valencia, CA) and are 

listed in Supporting Table S1. The microRNA primers were purchased from Thermo Fisher 

Scientific (Waltham, MA). The primary antibodies for cytokeratin-19 (CK-19), albumin, 

interleukin 13 (IL-13), alpha fetoprotein (AFP), nuclear factor kappa B (NF-κB) 1, nuclear 

factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (IκBα), 

collagen1A1 (Col1A1), and desmin were purchased from Abcam (Cambridge, MA).

HUMAN SUBJECTS

Human samples were obtained from Dr. Pietro Invernizzi (Liver Unit and Center for 

Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, 

Italy) under a protocol by the Ethics Committee of the Humanitas Research Hospital; the 

protocol was also reviewed by the Veterans’ Administration internal review board and 

International Research Committee. The use of human tissue was also approved by the Texas 

A&M Health Science Center College of Medicine Institutional Review Board. Formalin-

fixed, paraffin-embedded liver sections (4-5-mm thick) were obtained from 3 patients with 

PSC, 3 control healthy livers were obtained from patients undergoing resection of liver 
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metastasis, and total RNA was isolated for real-time quantitative PCR as described (please 

see our previous publication for patient information(9)).

ANIMAL MODELS

The Animal Care and Use Committee of Baylor Scott & White approved all of the animal 

protocols used in the study. Female MDR2−/− (FVB.129P2-Abcb4tm1Bor/J) mice and wild-

type (WT, FVB/NJ) controls (27 weeks of age) were originally obtained from Jackson 

Laboratories (Bar Harbor, ME) and subsequently bred in-house. Liver stem cell (LSC)–

derived EVs (LSCEVs) were injected intravenously at 4.6 × 107 particles per injection 

through the lateral tail vein once per week for 2 weeks. Mice were sacrificed and livers were 

collected 2 weeks later (29 weeks of age).

CELL LINES

The immortalized normal human cholangiocyte cell line, H69, was a gift from Dr. G.J. 

Gores, Mayo Clinic, Rochester, MN. Immortalized murine normal pooled cholangiocyte 

lines were also used.(10) Human LSCs were purchased from Creative Bioarray (Shirley, 

NY). The human hepatic stellate cells,(20) human mesenchymal stem cells (MSCs) and 

human hepatocytes (HHs) were purchased from Sciencell (Carlsbad, CA). The human acute 

monocytic leukemia cell line (THP-1) was purchased from ATCC Inc. (Manassas, VA) and 

maintained in Roswell Park Memorial Institute 1640 medium (Sigma-Aldrich) with 10% 

fetal calf serum (FCS) without antibiotics.

ISOLATION OF HUMAN AND MOUSE CHOLANGIOCYTES BY LASER CAPTURE 
MICRODISSECTION IN THE AREAS OF DUCTULAR REACTION

Human and mouse cholangiocytes as well as mouse hepatocytes (200 cells) were isolated by 

laser capture microdissection (LCM) in or near the area of ductular reaction as described(9) 

(using CK-19 as a marker of cholangiocytes and albumin as the marker of mature 

hepatocytes). The RNA from LCM-isolated human and mouse cholangiocytes/hepatocytes 

were extracted with the Arcturus PicoPure RNA isolation kit (Thermo Fisher Scientific, 

Mountain View, CA) according to the instructions provided by the vendor. The expression of 

let-7a, let-7c, IL-13, NR1H4 (nuclear receptor subfamily 1 group H member 4), NF-κB, 

FoxA2, and IκBα was measured in these cells by Taqman miRNA PCR assay or real-time 

quantitative PCR. All studies were performed in quadruplicate unless otherwise specified.

SUPERARRAY QUANTITATIVE PCR ASSAY AND REAL-TIME QUANTITATIVE PCR 
ANALYSIS

RNA was isolated from liver tissues or cell lysates using TRIzol (Invitrogen) according to 

the manufacturer’s protocol. The RNA was subsequently cleaned using the RNeasy Kit 

(Qiagen) according to the manufacturer’s protocol.

STATISTICS

Data are expressed as the mean ± SEM from at least three separate experiments performed 

in triplicate unless otherwise noted. The differences among groups were analyzed using a 

double-sided Student t test when only two groups were present and analysis of variance 
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when there were more than two groups. The null hypothesis was rejected at the 0.05 level 

unless otherwise specified.

Please see the Supporting Information for more detailed information.

Results

CHARACTERIZATION OF HUMAN LSCs AND LSCEVs

Before extraction of EVs, we verified the state of our stem cell culture by 

immunofluorescence for specific hepatic stem cell markers. Immunofluorescence of LSCs 

for the hepatic stem cell markers CK-18, epithelial cell adhesion molecule (EpCam), and 

AFP showed that these markers were all highly expressed in LSCs, indicating that these cells 

exhibit properties of hepatic stem cells (Fig. 1A). We then evaluated LSCs for their ability to 

excrete EVs, as well as the quality of our LSCEV preparation by transmission electron 

microscopy (TEM). TEM revealed LSC excretion of multiple-sized EVs into the 

surrounding media (Fig. 1B, upper panels). The presence of EVs in our preparation was 

verified with TEM, showing that there were EVs less than 500 nm in our preparation that 

appear to be about 300 nm and smaller (Fig. 1B, lower panels).

To evaluate the amount and size distribution of our EVs, we used a NanoSight (Salisbury, 

United Kingdom) nanoparticle imaging system to analyze our EV preparation. Analysis of 

our preparation revealed that most of our LSC-isolated EVs were approximately 110-350 nm 

(Fig. 1C). Following quantification, our preparation had a concentration of 12.09 particles 

per frame, which equated to a concentration of 1.39 × 108 particles/mL.

INCORPORATION OF HUMAN LSCEVs IN H69 HUMAN CELL LINES

LSCEVs labeled with PKH26 green dye were incorporated by cultured H69 human 

cholangiocytes as shown by confocal microscopy (Fig. 1D). EV treatment with soluble 

hyaluronic acid and anti-CD44 blocking antibodies inhibited EV incorporation in H69 cells 

(Fig. 1E), suggesting that expression of CD44 is critical for their internalization. Moreover, 

removal of surface molecules by trypsin treatment of EVs inhibited their incorporation in 

H69 cells, confirming the relevance of surface molecules in EV internalization. Additionally, 

we confirmed that LSCEVs labeled with PKH26 dye were incorporated by cultured normal 

HHs (Supporting Fig. S1).

IN VITRO PROLIFERATIVE AND APOPTOTIC/FIBROSIS REGULATION EFFECTS OF 
HUMAN LSCEVs

Incubation of H69 cells with different doses of LSCEVs promoted normal cell proliferation 

under serum deprivation conditions compared with control cells incubated with EVs 

extracted from human hepatocytes (HHEVs) (Fig. 2A), but significantly blocked 

lipopolysaccharide (LPS)-induced cell proliferation in a dose-dependent manner (Fig. 2B), 

suggested the dual effects of LSCEVs on cell proliferation in normal and inflammatory 

conditions. Additionally, LSCEVs induced synthesis of hepatocyte growth factor and stem 

cell factor (Fig. 2C). Furthermore, incubation of H69 cells with LSCEVs significantly 

inhibited apoptosis in human cholangiocytes induced by tumor necrosis factor α (TNF-α) 
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(Fig. 2D). Treatment of human cholangiocytes with transforming growth factor beta (TGF-β 
10 mM, 72 hours) significantly increased fibrosis marker α-smooth muscle actin (α-SMA) 

mRNA expression by 90% of control (H69-EV treated) human cholangiocytes (Fig. 2E). In 

addition, LSCEV treatment reduced TGF-β-induced fibrotic response, with almost 40% 

prevention of α-SMA mRNA expression at 30 μg/mL. Furthermore, the cellular senescence 

index in TGF-β-treated human hepatic stellate cells (HSCs) was increased to 255.4% of the 

control by a 48-hour LSCEV treatment (Fig. 2F). Thus, both the protective effects of 

LSCEV against LPS-induced ductular reaction and TGF-β-induced fibrosis in 

cholangiocytes, plus the activation in HSCs, might contribute to its recovery activity.

MEASUREMENT OF LIVER HISTOLOGY AND FIBROSIS AND DUCTULAR REACTION IN 
MDR2−/− MICE TREATED WITH LSCEVs

Because LSCs are often not close to their targets and may communicate through EVs, we 

hypothesized that LSCEVs could possibly aid in liver repair after injury. Hematoxylin and 

eosin staining showed altered liver structure and inflammatory infiltration in MDR2−/− mice 

compared with WT mice (Fig. 3A). Administration of LSCEVs reduced the amount of 

inflammatory infiltration and structural damage seen in the MDR2−/− mice (Fig. 3A).

Sirius red staining of livers for collagen deposition showed a large increase in collagen 

staining in MDR2−/− mice compared with WT counterparts, indicating a large increase in 

fibrotic scarring in MDR2−/− mice (Fig. 3B). Two treatments of intravenous LSCEVs 

reduced sirius red staining, indicating less liver fibrosis. Quantification of collagen 

deposition showed a significant increase in collagen in MDR2−/− mice, which was 

significantly reduced following treatment with LSCEVs (Fig. 3C). Additionally, Col1A1 and 

alpha smooth muscle actin (ACTA2) expression was decreased in total liver and isolated 

cholangiocytes from LSCEV-treated MDR2−/− compared with control-treated MDR2−/− 

mice (Fig. 3D). Taken together, these data indicate that LSCEVs reduce fibrosis in MDR2−/− 

most likely by halting further progression of the disease, but possibly repairing the damage 

that had already occurred.

Ductular reaction is a vital component of cholangiopathies and is thought to be a 

compensatory mechanism during the damage of bile ducts.(21) CK-19 staining for 

cholangiocytes shows increased ductular reaction in MDR2−/− control mice that was 

decreased in MDR2−/− mice treated with LSCEVs (Fig. 4A). Quantification of ductular 

reaction showed that MDR2−/− mice have significantly intrahepatic bile duct mass (IBDM), 

which was attenuated in LSCEV-treated MDR2−/− mice (Fig. 4A). Enhanced macrophage 

infiltration was observed in the areas of ductular reaction in MDR2−/− mice liver by double-

staining immunohistochemistry, and significantly reduced after LSCEV treatment (Fig. 4B). 

Along with the ductular reaction, fibrosis marker α-SMA was also significantly increased 

near CK-19-positive IBDM, which was also attenuated after LSEV treatment in MDR2−/− 

mice liver (Fig. 4C). To further evaluate the status of cholangiocytes, we measured the 

expression of the proliferative markers, Ki-67 and proliferating cell nuclear antigen (PCNA). 

Both Ki-67 and PCNA were increased in isolated cholangiocytes from MDR2−/− compared 

with WT mice, but these markers were both reduced in LSCEV-treated mice (Fig. 4D).
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Because cellular senescence is important to the health of the liver, and the acquisition of a 

senescence-associated secretory phenotype relates to the changes in ductular reaction, we 

measured cellular senescence in isolated cholangiocytes by real-time quantitative PCR for 

the senescence markers p16 and p21. Overall senescence was increased in MDR2−/− total 

liver isolates due to the rapid cholangiocyte turnover caused by the ductular reaction, but 

attenuated in LSCEV-treated total liver isolates (Fig. 4E).

IDENTIFICATION OF MIRNAs INVOLVED IN LSCEV-MODULATED LIVER REPAIR DURING 
CHRONIC BILIARY INJURY

To evaluate the contents of LSCEVs compared with EVs extracted from HHEVs, RNA was 

extracted from isolated LSCEVs and HHEVs and analyzed with a microRNA PCR array. 

When the results of the arrays were analyzed with the manufacturer’s software, we found 

that compared with HHEVs, LSCEVs had increased levels of several miRNAs, including 

let-7a, let-7b, and miR-25 (Fig. 5A). We have previously shown let-7a to be an important 

factor in the repair of liver injury; therefore, we selected let-7a to analyze further in our 

model.(11)

ANALYSIS OF LIVER REPAIR MECHANISMS IN MDR2−/− MICE TREATED WITH LSCEVs

To analyze the effectiveness of LSCEVs, which contain let-7a, we analyzed the downstream 

targets of let-7, Lin28 homolog A (Lin28a), and Lin28 homolog B (Lin28b). Real-time 

quantitative PCR for Lin28a and Lin28b in total liver isolates showed that both Lin28a and 

Lin28b expression is increased in MDR2−/− mice (Fig. 5B). Treatment with LSCEVs 

reduced both Lin28a and Lin28b expression in total liver isolates from MDR2−/− mice. In 

isolated cholangiocytes, only Lin28a was elevated in MDR2−/− mice, and treatment with 

LSCEVs reduces Lin28a levels in cholangiocytes compared with normal levels (Fig. 5C). 

This indicates that Lin28b levels are controlled by noncholangiocyte cells in the liver, most 

likely hepatocytes, whereas Lin28a levels are more important in cholangiocytes.

We have previously shown that small cholangiocyte treatment ameliorates liver injury in 

MDR2−/− mice through enhanced expression of FoxA2.(4) Therefore, to evaluate liver repair 

in these mice, we evaluated FoxA2 expression in liver sections. Staining for FoxA2 showed 

diminished levels of FoxA2 in the cholangiocytes of MDR2−/− mice, but treatment with 

LSCEVs restored FoxA2 levels in cholangiocytes (Fig. 5D). Real-time quantitative PCR in 

total liver isolates showed that FoxA2 levels are decreased in MDR2−/− mice, and treatment 

with LSCEVs increases FoxA2 levels in MDR2−/− mice (Fig. 5E). In isolated 

cholangiocytes, FoxA2 was suppressed in MDR2−/− mice, but treatment with LSCEVs 

begins to restore FoxA2 levels to normal levels (Fig. 5F).

LET-7 BLOCKS NF-KB ACTIVATION IN LPS-STIMULATED H69 CELLS AND MDR2−/− MICE 
LIVER

Ingenuity pathway analysis (IPA) was performed based on the data from PCR array and 

LSCEVs treated MDR2−/− mice to determine the cellular context of the differentially 

expressed let-7 signaling mechanisms related to the recovery of cholestatic liver injury. IPA 

analysis indicated that IL-13 and NR1H4 are the key mediators in the inflammatory/fibrotic 
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responses associated with let-7 signaling, whereas NF-κB is critical in the antiductular 

reaction effects of let-7 (Fig. 6A).

To further advance mechanistic insights into the role of let-7 in ductular reaction, including 

its effects on cytokines and the NF-κB signaling pathway, we assessed the gene-expression 

profile of LPS-treated H69 cells with let-7 modulation. We performed a Human Chemokines 

& Receptors PCR Array (selected based on IPA with the focus of NF-κB signaling-

associated gene list) to identify let-7 target genes in LPS-treated Pre-let-7a-transfected H69 

cells compared with LPS-treated Pre-miRNA control (Pre-miRNA-Con)–transfected H69 

cells (Fig. 6B, left). Of the 84 NF-κB-signaling pathway–associated genes, six genes (7.1%) 

were up-regulated by 2-fold or greater in Pre-let-7a-transfected H69 cells compared with 

Pre-miRNA-Con-transfected H69 cells in the presence of LPS stimulation, and only one 

gene (1.2%) (IκBα) was up-regulated by 2-fold or greater with P < 0.05 in Pre-let-7a-

transfected H69 cells compared with Pre-miRNA-Con-transfected H69 cells in the presence 

of LPS stimulation (Fig. 6B, right; n = 4, P < 0.05). The inhibition of several key mediators 

of NF-κB pathway, such as IL-13 and NF-κB1, were observed based on the PCR array data 

(Fig. 6B). To confirm the functional effect and relevance of LSCEV/let-7-dependent 

modulation of IL-13, NF-κB, and NR1H4 in the ductular reaction areas of PSC animal and 

patients’ liver in vivo, we assessed the mRNA expressions of let-7a, let-7c, IL-13, NF-κB1, 

IκBα, and NR1H4 in isolated cholangiocytes by LCM. The mRNA expressions of IL-13, 

NF-κB1, and NR1H4 were significantly increased in LCM-isolated cholangiocytes from the 

ductular reaction fields of PSC patients/MDR2−/− mice liver when compared with 

healthy/WT controls, along with the significant reductions of let-7a, let-7c, and IκBα (Fig. 

6C,D). Real-time quantitative PCR assay has also confirmed the recovery effects by LSCEV 

treatment to partially inhibit NF-κB/IL-13 activation through let-7 in cholangiocytes isolated 

from ductular reaction fields by LCM (Fig. 6C). Double-staining immunohistochemistry 

analyses have confirmed the enhanced IκBα phosphorylation (Fig. 6E, top) and degradation 

(Fig. 6E, bottom) as well as increased IL-13 expression (Fig. 6F, top) and NF-κB (p65 

subunit) translocation (Fig. 6F, bottom) in ductular reaction fields in MDR2−/− mice liver, 

and the recovery effects by LSEV treatment to partially inhibit the cholangiocytes’ NF-κB/

IL-13 activation (Fig. 6E,F). Meanwhile, only moderate changes with the insignificant trend 

were observed in LCM-isolated hepatocytes (albumin+) from LSCEV-treated mice liver 

(Supporting Fig. S2).

LET-7 INHIBITS CYTOKINE PRODUCTION AND FIBROTIC RESPONSE IN H69 CELLS

We then examined whether let-7 could inhibit the production of inflammatory cytokines and 

fibrotic responses induced by TGF-β in H69 cells. IL-13, α-SMA, and Col1A1 mRNA 

expression levels in TGF-β-treated H69 cells transfected with Pre-let-7a were significantly 

inhibited, compared with those in TGF-β-treated H69 cells transfected with Pre-miRNA-

Con (Fig. 7A). The modulation of IL-13 by let-7a in conditioned medium was also verified 

by enzyme-linked immunosorbent assay (Fig. 7B). Our results demonstrated that IL-13 was 

reduced in conditioned medium from the let-7a-transfected H69 cells after TGF-β 
stimulation compared with control. Meanwhile, overexpression of let-7a significantly 

increased FoxA2 mRNA expression in cultured H69 cells (Supporting Fig. S3). We also 

investigated the regulation effects of NF-κB and farnesoid X receptor signaling by let-7 in 
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TGF-β-treated normal HHs and observed only a slight trend toward significance (Supporting 

Fig. S4).

CONDITIONED MEDIA FROM LET-7-TRANSFECTED H69 CELLS SUPPRESS HUMAN 
MONOCYTE-DERIVED THP-1 CELL AND HUMAN HSC MIGRATION

We then examined the functional role of the let-7-mediated inhibition of inflammatory 

cytokine expression and fibrotic response. We performed in vitro migration assays to 

determine whether conditioned media from let-7-transfected H69 cells could suppress the 

migration of THP-1 cells and HSCs. For this experiment, conditioned media from H69 cells 

transfected with Pre-let-7a or control Pre-miRNA were evaluated. The migration of THP-1 

cells and HSCs were markedly decreased (about 68% for THP-1 and 45% for HSC, 

respectively) when conditioned media from H69 cells transfected with Pre-let-7a was used. 

The number of migrated THP-1 cells was 32,500,500/well, 38,000/well, or 26,600/well 

when conditioned medium from H69 cells transfected with mock, Pre-miRNA-Con or Pre-

let-7a, respectively, was used. The fluorescence intensity of migrated HSCs presented 

similar change patterns as THP-1 cells (Fig. 7C). These data suggest that the inhibition of 

inflammatory cytokine production and fibrotic response together with let-7 in 

cholangiocytes inhibits the migration of monocytes and monocyte-derived cells as well as 

HSCs, supporting the concept that let-7 prevents hepatic inflammation and fibrosis by 

inhibiting cytokine production and the recruitment of immune cells to the liver.

IN VITRO ANALYSIS OF THE INTERACTION OF STELLATE CELLS AND 
CHOLANGIOCYTES DURING LIVER INJURY

To ascertain the communication among stem cells, cholangiocytes, and HSCs in the 

regulation of liver fibrosis, stem cell-derived EVs were used to treat H69 cells 

(nonmalignant cholangiocytes) for 48 hours. The media on the H69 cells was changed to 

serum-free media and allowed to incubate for 48 hours and then transferred to HSCs for 48 

hours. HSCs were then analyzed for fibrosis and senescence.

HSCs treated with media from H69 cells previously treated with LSCEVs showed a decrease 

in α-SMA (Fig. 7D). This indicates that the cells may in fact be deactivated. Because 

senescence has been shown previously to be important in the deactivation of HSCs during 

liver injury, we also measured the senescence of these cells to determine their activation 

level.(9) When HSCs were treated with media from H69 cells treated with LSCEVs, there 

was a significant increase in senescence as measured with the mRNA level of p16 (Fig. 7E), 

the senescence and deactivation marker of HSC. Interestingly, the mRNA expressions of 

platelet-derived growth factor and insulin-like growth factor 1, two major activators of 

HSCs, were significantly reduced in LSCEV-treated H69 cells with or without TGF-β 
stimulation relative to the controls (Supporting Fig. S5).

Discussion

The major findings in this study indicate that LSCs are able to communicate to 

cholangiocytes and stellate cells through EVs containing let-7, which are able to reduce 

overall liver damage (Fig. 8). We have shown that LSCs are able to release EVs and these 
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EVs average approximately 200 nm. Injection of LSCEVs into MDR2−/− mice reduced 

inflammation, fibrosis, ductular reaction, and liver fibrosis. Compared with hepatocyte-

derived EVs, LSCEVs contain elevated levels of let-7 family members. Downstream targets 

of let-7, Lin28a, Lin28b, IL-13, NR1H4, and NF-κB1 were reduced in liver tissues and 

isolated cholangiocytes from LSCEV-treated MDR2−/− mice compared with MDR2−/− mice. 

Additionally, FoxA2 levels, a marker of repair, were restored in MDR2−/− mice treated with 

LSCEVs. We further investigated the interplay of signals by treating cholangiocytes with 

LSCEVs and then treated HSCs with the media from these cells. This showed that LSCEVs 

altered the signaling in cholangiocytes, which altered their secretion of cytokines or EVs, 

which reduced ductular reaction and biliary fibrosis but increased senescence in HSCs.

There are several locations of presumptive stem cell populations in the liver. HSCs (oval 

cells) are located in the canals of Hering and are able to differentiate into mature 

cholangiocytes or hepatocytes.(22) Biliary stem/progenitor cells are thought to be located in 

the small cholangiocyte population as well as in the peribiliary glands.(4,23) We have shown 

previously that treatment with progenitor cells located in the small cholangiocyte population 

is able to ameliorate the damage caused by bile duct ligation via activation of FoxA2. 

Additionally, the biliary progenitor cells that reside in the small cholangiocyte population 

were able to deactivate HSCs by reduction of fibrotic markers and enhancement of 

senescence.(4) Interestingly, supernatants, which most likely contain EVs, from isolated 

small cholangiocytes of these mice were able to suppress fibrogenic markers and enhance 

senescence markers in cultured stellate cells, indicating that crosstalk between 

cholangiocytes and stellate cells is possible during liver repair.(4)

EVs are a mechanism by which cells can communicate with one another, and EV secretion 

may be elevated during liver injury. Recently, many studies have been performed with stem 

cell–derived EVs and liver injury. EVs derived from mesenchymal stem cells (MSCEVs) 

have been shown to improve the survival of mice with d-galactosamine/TNF-α-induced 

lethal hepatic failure.(24) MSCEVs have also been shown to be a protective treatment when 

administered before ischemic-reperfusion liver injury in mice.(25) Additionally, MSCEVs 

that contained the miRNA miR-223 have been shown to have a protective effect in an 

experimental hepatitis mouse model as well.(26) LSCEVs have not been used in an in vivo 
model of liver injury before our study. Recently, a mouse model of ex vivo normothermic 

machine perfusion (NMP) was used to test the ability of LSCEVs to protect against to 

ischemic-reperfusion liver injury, and it was shown that LSCEVs were able to reduce liver 

injury during hypoxic NMP. Overall, MCSEVs or LSCEVs have been shown to be 

protective against ischemia-reperfusion injuries as well as hepatic failure and hepatitis. Our 

study examines LSCEVs in a model of cholangitis. The ability of LSCEVs to ameliorate the 

damage caused by cholestatic liver injury is an important step forward in the treatment of 

cholestasis.

It has been shown that the levels of several miRNAs, including let-7a, in exosome-rich 

fractionated serum in patients with chronic liver disorders were correlated with the 

histological grade of hepatic fibrosis using microarray.(27) Circulating let-7 expression levels 

in plasma and EVs, as measured by comprehensive microarray and real-time quantitative 

PCR, were inversely correlated with the severity of hepatic fibrosis.(18) Up to 90% of 
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circulating miRNAs are associated with proteins, and different miRNAs were enriched in 

specific extracellular compartments (e.g., let-7a was predominant in the vesicle-rich 

fractions in healthy individuals(28)). We have demonstrated that let-7 regulates liver 

inflammation and fibrosis through lin28.(11) In PSC models we have alternatively shown that 

an increase of let-7, by repression of Lin28, improved fibrosis after alcoholic liver injury and 

decreased tissue inhibitor of metalloproteinase 3 levels. Meanwhile, LIN28 also functions as 

a bipartite RNA-binding protein that posttranscriptionally inhibits the biogenesis of let-7 

microRNAs to regulate development and influence disease states.(29) Up-regulation of let-7 

in the alcoholic liver disease model was able to modulate fibrosis by enhancing senesce in 

HSCs, which in turn reduced fibrosis.(11) Let-7 has also been demonstrated to directly target 

IL-13, a critical mediator of ductular reaction, steatohepatitis, and liver fibrosis.(30,31) IL-13 

can promote fibrosis through both TGF-β-dependent and independent mechanisms.(32) 

NR1H4 modulates cholestasis by controlling bile acids and is involved in bile acid synthesis, 

bile excretion, and serum export. NR1H4 knockout mice have been shown to be protected 

from obstructive cholestasis.(33) From these data, it would be expected that enhancement of 

let-7 would promote liver repair and health. This expectation is realized when enhancement 

of let-7 by let-7-containing LSCEVs is able to repair the cholestatic liver damage seen in 

MDR2−/− mice.

We have shown in several studies that cholangiocytes and HSCs interact to regulate fibrosis 

during cholestatic liver disease. Because cholangiocytes are the target of cholestatic liver 

disease, they are the first to signal distress to the rest of the liver through release of various 

molecules, including secretin, histamine, vascular endothelial growth factor, progesterone, 

and serotonin.(34) As stated previously, we showed that treatment with small cholangiocytes 

in BDL mice was able to deactivate HSCs and reduce fibrosis and liver injury.(4) In another 

study, it was shown that knockout of miR-21 which is up-regulated in cholangiocytes, was 

able to reduce fibrosis and inhibit HSC activation in BDL mice.(35) We also showed that 

cholangiocyte supernatants can regulate fibrotic and senescence gene expression in cultured 

HSCs, solidifying the capability of cholangiocytes and HSCs to interact.(4) When looking at 

the actions of LSCEVs in this study, it is logical to think that the cholangiocytes, being the 

target of the initial damage, would be a target of the LSCEVs. Because the LSCEVs were 

injected through the tail vein and most likely to pass HSCs before cholangiocytes, it is not 

surprising that they are able to affect HSCs. However, more than likely, cholangiocytes 

secrete their own EVs to influence HSCs after they have interacted with LSCEVs. We 

demonstrated this in our final experiment of this study by treating HSCs in culture with 

supernatants of intramyocellular lipids treated with LSCEVs. The reduction in fibrosis and 

increase in senescence seen in the HSCs clearly shows that this interaction is likely.

In conclusion, we have shown that LSCEVs are able to reduce ductular reaction and biliary 

fibrosis in MDR2−/− mice through let-7-dependent reduction of Lin28a, Lin28b, IL-13, NF-

κB, and NR1H4, and enhancement of FoxA2 (Fig. 8). Overall, LSCEV treatment could be 

pursued further to validate let-7 as a target or to use LSCEVs themselves as a treatment for 

cholestatic liver disease.
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Abbreviations:

ACTA2 alpha smooth muscle actin

BDL bile duct ligation

CK cytokeratin

Col1A1 collagen type 1 alpha 1

Con control

EV extracellular vesicle

FCS fetal calf serum

FoxA2 forkhead box A2

HH human hepatocyte

HHEV human hepatocyte–derived EV

HSC hepatic stellate cell

IL-13 interleukin 13

IκBα nuclear factor of kappa light polypeptide gene enhancer in B cells 

inhibitor alpha

IPA ingenuity pathway analysis

LCM laser capture microdissection

let-7 lethal-7

Lin28a Lin28 homolog A

Lin28b Lin28 homolog B
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LPS lipopolysaccharide

LSC liver stem cell

LSCEV LSC-derived EV

MDR2 multidrug resistance protein 2 (encoded by the ABCB4 gene)

miRNA microRNA

MSC mesenchymal stem cell

MSCEV mesenchymal stem cell–derived EV

NF-κB nuclear factor kappa B

NR1H4 nuclear receptor subfamily 1 group H member 4

PCNA proliferating cell nuclear antigen

PSC primary sclerosing cholangitis

TEM transmission electron microscopy

TGF-β transforming growth factor beta

THP-1 human acute monocytic leukemia cell line

TNF-α tumor necrosis factor α

WT wild type

α-SMA α-smooth muscle actin
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FIG. 1. 
Characterization of LSCs and LSCEVs. (A) Immunocytochemistry was used for the 

detection of the presence of the liver progenitor cell markers (CK-18, EpCam, and alpha 

fetoprotein) in cultured LSCs. (B) TEM was used to image LSCs secreting EVs at 

magnification ×5,000 (upper left panel) and ×15,000 (upper right panel). EVs that are in the 

process of being secreted by LSCs are identified with red arrows. Isolated EVs were imaged 

with TEM at magnification ×25,000 (lower panels). (C) After LSCEV isolation, a 

NanoSight instrument was used to measure isolated EV size and abundance of the 

preparation. Data are plotted as particle size versus abundance. (D,E) Incorporation of 

LSCEVs in human H69 cholangiocyte cell line. Representative micrographs of 

internalization by H69 cells (30 minutes at 37°C) of EVs labeled with PKH26 green dye or 

preincubated with 100 μg/mL of sHA, or with 1 μg/mL of blocking monoclonal antibody 

against CD44 (D). Fluorescence intensity of PKH26 green dye was measured using NIH 

Image J software analysis of microphotographs of six randomly selected areas (E). Bar 

graphs are expressed as mean ± SEM of three independent experiments. *P < 0.05 relative to 

LSCEV control group. Abbreviation: sHA, soluble hyaluronic acid.
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FIG. 2. 
Regulation of proliferative, apoptotic, and fibrosis effects by LSCEVs in human 

cholangiocytes. (A) A bromodeoxyuridine (BrdU) cell proliferation assay kit (Colorimetric; 

Novus Biologicals, LLC, Centennial, CO) was used, and 10 μM BrdU was added to 4,000 

cells/well (H69 cells) into 96-well plates and incubated for 48 hours in Dulbecco’s modified 

Eagle’s medium (DMEM) deprived of fetal bovine serum in the presence of normal HHEVs 

or human MSCEVs or human LSCEVs, with various treatments as indicated. Endothelial 

growth factor-induced (10 ng/mL) proliferation was also evaluated in H69 cells incubated 

with or without ribonuclease (RNase)-pretreated LSCEVs (30 μg/mL). The absorbance was 

measured at 450 nm using the iD5 Multi-Mode Microplate Reader from Molecular Devices 

(San Jose, CA). (B) LSCEV treatment also blocked LPS-induced cholangiocyte 

proliferation. In the presence of LPS, H69 cells exhibited a doubling time of 46 hours, 

whereas LSCEV-treated cells (30 μg/mL) exhibited a doubling time of approximately 67 

hours (P < 0.05 at 48 hours and 72 hours control versus LSCEV-treated cells). Data are 

presented as the mean number of cells ± SEM from three independent experiments. (C) 

Release of stem cell factor and granulocyte-macrophage colony-stimulating factor by 1 × 

105 H69 cells incubated for 24 hours or 48 hours with 30 μg/mL LSCEVs compared with 

H69 cells incubated with HHEVs (control). (D) The percentage of apoptotic cells after 48-

hour TNF-α stimulation (100 ng/mL) was evaluated by the TUNEL (terminal 

deoxynucleotidyl transferase dUTP nick end labeling) assay. TNF-α-treated H69 cells were 

incubated with different kinds of EVs or RNase-treated LSCEVs, or LSCEVs pretreated 

with trypsin or 100 μg/mL of sHA. (E) Effect of LSCEVs on TGF-β-induced fibrosis marker 

α-SMA in H69 cholangiocytes. H69 cholangiocytes were treated with TGF-β (25 mM) in 
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the presence of EVs as indicated for 48 hours. Viable cells were collected, and the total RNA 

was isolated for real-time quantitative PCR analysis. (F) Effect of LSCEVs on TGF-β-

inhibited senescence of human HSCs. HSCs were treated with EVs plus TGF-β (25 mM) 

for 48 hours. The cellular senescence index was measured by fluorescence intensity of β-gal 

cellular senescence assay. *P < 0.05 relative to HHEV or respective controls. #P < 0.05 

relative to LSCEV or TGF-β controls. Abbreviations: NS, not significant; sHA, soluble 

hyaluronic acid.
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FIG. 3. 
Analysis of inflammation and fibrosis in MDR2−/− mice treated with LSCEVs. (A) 

MDR2−/− mice were treated with LSCEVs or vehicle (phosphate-buffered saline) and 

compared with WT mice. Liver tissue samples from mice were evaluated with hematoxylin 

and eosin staining to evaluate structural anatomy of the liver. Black arrows indicate areas of 

inflammation in the liver. (B) Liver-tissue sections were stained with sirius Red, a marker of 

collagen. Arrows indicate areas of increased collagen deposition (red color). (C) Sirius red 

staining was quantified by dividing the area of red staining by the total area with ImageJ 

software and plotted as a bar graph ± SEM. *P < 0.05 versus WT; #P < 0.05 versus 

MDR2−/−. (D) Real-time quantitative PCR was performed in isolated cholangiocytes for the 

fibrotic markers (Col1A1 and ACTA2) normalized to WT expression. Data are presented as 

mean ± SEM. *P < 0.05 versus WT; #P < 0.05 versus MDR2−/−.
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FIG. 4. 
Evaluation of cholangiocyte proliferation and interactions with other cell types. (A) Liver 

tissue sections from WT, MDR2−/−, and MDR2−/− plus LSCEVs were stained with CK-19, a 

marker of cholangiocytes, to evaluate biliary mass. Biliary mass was measured by 

quantifying the amount of positive staining by the total area. This quantification is displayed 

as mean percentage of biliary mass ± SEM. *P < 0.05 versus WT; #P < 0.05 versus 

MDR2−/−. (B,C) Macrophage infiltration (marker F4/80) and liver fibrosis (marker α-SMA) 

around ductular reaction areas (marker CK-19) were detected in MDR2−/− mouse livers 

when compared with WT control by double-staining immunohistochemistry analysis. 

Multiple antigen labeling in the same tissue section was done using the VECTASTAIN 

systems (Vector Laboratories, Inc., Burlingame, CA). Specific enzyme substrates were 

incubated in sections to develop contrasting optimal color (F4/80/α-SMA, brown; CK-19, 

red). The representative images from four separate experiments are displayed. (D) 

Cholangiocyte proliferation was measured with real-time quantitative PCR for the 

proliferation markers PCNA and Ki-67. Data are normalized to WT and presented as mean ± 

SEM. *P < 0.05 versus WT; #P < 0.05 versus MDR2−/−. (E) Total liver senescence was 

measured by real-time quantitative PCR for the senescence markers p16 and p21. Data are 

shown as mean ± SEM. *P < 0.05 versus WT; #P < 0.05 versus MDR2−/−.
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FIG. 5. 
Identification of LSCEV content and downstream pathways. (A) To identify miRNA 

contents of LSCEVs, an apoptosis microRNA real-time quantitative PCR array was used to 

evaluate levels of miRNAs compared to HHEVs. Data points above the standard error of the 

mean were considered elevated in LSCEVs compared to HHEVs. miRNAs involved in liver 

disease and repair were identified and labeled. (B,C) To evaluate the downstream target of 

let-7, Lin28, real-time quantitative PCR was evaluated in total liver (B) and isolated 

cholangiocytes (C) for both Lin28A and Lin28B. Data are presented as mean ± SEM. *P < 

0.05 versus WT; #P < 0.05 versus MDR2−/−. (D) FoxA2, a marker of repair, and a 

downstream target of the let-7 pathway, was measured in liver sections with 

immunohistochemistry. Positive cells and stained brown and positive cholangiocytes are 

indicated by yellow arrows. FoxA2 expression levels were measured with real-time 

quantitative PCR in total liver (E) and isolated cholangiocytes (F). Data are expressed as 

mean ± SEM. *P < 0.05 versus WT; #P < 0.05 versus MDR2−/−.
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FIG. 6. 
Let-7 associated anti-inflammation and antifibrosis signaling mechanisms in LSCEV-treated 

H69 cells and MDR2 −/− mice liver. (A) IPA based on LSEC treatment in MDR2 −/− mice 

and miRNA PCR array discoveries showed that let-7 may target IL-13/NR1H4/NF-κB and 

subsequently alter the ductular reaction/inflammation/fibrosis signaling pathways. (B) The 

expression levels of key mediators of NF-κB signaling pathway are altered in Pre-let-7a-

transfected H69 human cholangiocytes after LPS stimulation relative to Pre-miRNA-Con. 

Relative gene-expression profile between Pre-let-7a-transfected H69 cells after LPS 

stimulation versus Pre-miRNA-Con is shown. The expression of a panel of diverse 

inflammation-associated genes was evaluated by real-time PCR assay using the Human 

Chemokines & Receptors PCR Array (PAHS-022; SABiosciences Corp., Valencia, CA), 

which was selected based on IPA with a focus on the NF-κB signaling–associated gene list. 

Gene expression relative to GAPDH was plotted as the volcano plots, depicting the relative 

expression levels (Log10) for selected genes in Pre-miR-Con versus Pre-let-7a (left panel). 

The relative expression levels and P values for each gene in the related samples were also 

plotted against each other in the scatterplot (right panel). The key mediators of NF-κB 

signaling pathway, NF-κB1, IkBα and IL-13, are the most altered genes in Pre-let-7a-treated 

H69 cells after LPS stimulation. Data represent the mean from three separate experiments. 

(C) Total RNA was isolated from CK-19-positive cells collected from ductular reaction 

fields in control and LSCEV-treated MDR2−/− mice liver sections by LCM, and Taqman 

real-time PCR assay and real-time quantitative PCR assay were carried out to detect let-7a 

and let-7c expressions, along with the mRNA expressions of inflammation/fibrosis markers 

(IL-13, NF-κB1, and NR1H4). LSCEV treatment significantly increased the biliary 

expression of let-7 in ductular reaction fields in MDR2−/− mice, along with the significant 

reductions of inflammation/fibrosis markers IL-13, NF-κB1, and NR1H4 when compared 

with the relative controls. *P < 0.05 relative to WT controls; #P < 0.05 relative to MDR2−/− 
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controls. (D) Total RNA was collected from cholangiocytes isolated from the ductular 

reaction areas of liver sections from PSC patients by laser capture microdissection compared 

with healthy controls, and real-time quantitative PCR analysis was performed as described in 

the Materials and Methods. The miRNA and mRNA expression of let-7 (let-7a and let-7c) 

and inflammation/fibrosis markers (IL-13, NF-κB1, and NR1H4) were increased, whereas 

IκBα was decreased, in the cholangiocytes from ductular reaction fields from PSC patients’ 

liver compared with healthy controls. *P < 0.05 relative to normal controls. (E) 

Phosphorylation of IkBα (top panel) and degradation of IkBα (bottom panel) were detected 

in ductular reaction fields by double-staining immunohistochemistry analysis using 

cholangiocytes specific marker CK-19 plus phosphorylation or total IkBα antibodies in 

LSCEV-treated MDR2−/− mice liver relative to controls. (F) IL-13 expression and NF-κB 

nuclear translocation detected ductular reaction fields (marker: CK-19) in LSCEV-treated 

MDR2−/− mice liver when compared with MDR2−/− and WT controls by double-staining 

immunohistochemistry analysis. Multiple antigen labeling was performed in the same tissue 

section using the VECTASTAIN systems. Specific enzyme substrates were incubated in 

sections to develop contrasting optimal color (IL-13/NF-κB, brown; CK-19, red). The 

representative images from four separate experiments are displayed. Original 

magnifications: ×100 and ×50. Abbreviation: GAPDH, glyceraldehyde 3-phosphate 

dehydrogenase.
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FIG. 7. 
Let-7/LSCEV-mediated anti-inflammatory and antifibrotic interactions between 

cholangiocyte and human macrophages/human hepatic stellate cells. (A,B) Pre-let-7a 

treatment inhibits TGF-β-stimulated cholangiocytes and suppresses the migration of THP-1 

cells. (A) Effects of Pre-let-7a on the mRNA expression of inflammation/fibrosis markers in 

H69 human cholangiocytes. H69 cells were transfected with 100 nM Pre-miRNA-Con or 

100 nM Pre-let-7a. After incubation in DMEM with 1% FCS, the cells were treated with 

TGF-β (25 mM) for 48 hours. Cellular RNAs were isolated, and the expressions of IL-13, 

α-SMA, and Col1A1 mRNA levels were examined by real-time quantitative PCR. GAPDH 

mRNA was used for normalization. (B) Effects of Pre-let-7a on the expression of cytokine 

IL-13 at the protein level. Conditioned medium was collected from TGF-β-stimulated H69 

cells (25 mM for 48 hours), and enzyme-linked immunosorbent assay was performed to 

assess IL-13 expression. (C) Migrations of the human monocyte cell line THP-1 and human 

HSCs were suppressed by conditioned media from Pre-let-7a-transfected H69 cells. A total 

of 5 × 105 THP-1 cells or 5 × 103 human HSCs were placed in the upper chamber, and 

conditioned medium from TGF-β-stimulated H69 cells transfected with Pre-miR-Con or 

Pre-let-7a was added to the lower chamber. After 3 hours of incubation, THP-1 cells or 

HSCs that migrated toward the lower chamber were detected by fluorescent dye. Relative 

fluorescence units (AFUs) are indicated (versus 1% FCS). All results are shown as mean ± 

SEM. A minimum of three replicates were performed for each set of experiments to compile 

the data as presented. *P < 0.05 relative to Pre-miR-Con group. To evaluate the interactions 

among LSCs, cholangiocytes and HSCs, H69 human cholangiocytes were incubated with 

LSCEVs for 48 hours; the media was then changed to new media for 24 hours. The H69 
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media was removed and used to treat stellate cells for 48 hours. The stellate cells were then 

used to extract mRNA and perform real-time quantitative PCR for the fibrosis marker, 

ACTA2 (D), and the senescence marker, p16 (E). Abbreviations: ELISA, enzyme-linked 

immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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FIG. 8. 
Summary of the Interactions between LSCEVs containing let-7 and cholangiocytes and 

subsequent inhibition of ductular reaction and liver fibrosis. LSCs release LSCEVs, which 

are received by cholangiocytes, causing increased let-7 in cholangiocytes. This allows let-7 

to inhibit Lin28 and influence IL-13 and NF-κB, which reduces the ductular reaction. Let-7 

and IL-13 are also able to influence the levels of NR1H4 and FoxA2, which decreases liver 

fibrosis.
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