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Abstract
Advanced neuroimaging has increased understanding 
of the pathogenesis and spread of disease, and offered 
new therapeutic targets. MRI and positron emission 
tomography have shown that neurodegenerative 
diseases including Alzheimer’s disease (AD), Lewy body 
dementia (LBD), Parkinson’s disease (PD), frontotemporal 
dementia (FTD), amyotrophic lateral sclerosis (ALS) 
and multiple sclerosis (MS) are associated with 
changes in brain networks. However, the underlying 
neurophysiological pathways driving pathological 
processes are poorly defined. The gap between what 
imaging can discern and underlying pathophysiology 
can now be addressed by advanced techniques that 
explore the cortical neural synchronisation, excitability 
and functional connectivity that underpin cognitive, 
motor, sensory and other functions. Transcranial magnetic 
stimulation can show changes in focal excitability 
in cortical and transcortical motor circuits, while 
electroencephalography and magnetoencephalography 
can now record cortical neural synchronisation and 
connectivity with good temporal and spatial resolution.
Here we reflect on the most promising new approaches 
to measuring network disruption in AD, LBD, PD, FTD, 
MS, and ALS. We consider the most groundbreaking 
and clinically promising studies in this field. We outline 
the limitations of these techniques and how they can 
be tackled and discuss how these novel approaches 
can assist in clinical trials by predicting and monitoring 
progression of neurophysiological changes underpinning 
clinical symptomatology.

Introduction
Neurodegenerative diseases including Alzheimer’s 
disease (AD), Lewy body dementia (LBD), Parkin-
son’s disease (PD), frontotemporal dementia (FTD), 
amyotrophic lateral sclerosis (ALS) and multiple 
sclerosis (MS) are associated with reproducible 
neuropathological signatures of neuronal loss, and 
in most cases, deposition of specific categories of 
misfolded proteins in anatomic brain regions that 
correlate with clinical signs. Definitive diagnostic 
categorisation is correspondingly generally based 
on clinicopathological correlation, with evidence 
of characteristic histological changes within specific 
anatomic regions of the brain.1

There is now, however, emerging evidence that 
the pathogenesis of neurodegeneration is related 
to widespread and progressive changes in brain 
networking. This can be defined both in structural 

terms, as patterns of focal and tract neural degener-
ation,2 and in functional terms, as altered patterns 
of brain connectivity and neural3 and neuromotor4 
transmission.

Structural neuroimaging including MRI has 
provided additional information about patterns 
of grey matter atrophy5 and white matter tract 
degeneration,2 while functional MRI and fluoro-
deoxyglucose positron emission tomography have 
provided indirect metabolic correlates of network 
disruption.6 These techniques have increased our 
understanding of the pathogenesis and spread of 
AD, LBD, PD, FTD, ALS and MS, and have offered 
new therapeutic targets in clinical trials. However, 
these approaches cannot directly capture abnormal 
neural transmissions and networking associated 
with clinical symptoms. This limitation can now 
be addressed using advanced quantitative electro-
encephalography and magnetoencephalography 
(EEG/MEG) and transcranial magnetic stimulation 
(TMS).

Application of TMS to the motor cortex paired 
with target muscle electromyography (EMG) can 
demonstrate changes in excitability in cortical and 
transcortical motor circuits and offers excellent 
temporal and good spatial resolution.7 By contrast, 
EEG/MEG has traditionally offered excellent (milli-
second) temporal resolution counterbalanced by 
poor spatial resolution and excessive extracerebral 
(eg, ocular, head, cardiac) artefacts.8 However, the 
use of EEG/MEG recording systems with a montage 
of many (up to 256) sensors, removal of artefacts 
from the digitised signals9 and subsequent applica-
tion of source localisation methods10 has substan-
tially increased spatial resolution. Additional 
quantitative EEG/MEG (qEEG/MEG) methods can 
now be applied to these high spatial and temporal 
resolution recordings to generate numerical 
measures of functional brain activity and functional 
connectivity between brain areas both at rest11 and 
during specified tasks.12 13

These technological improvements have opened 
exciting opportunities in the application of neuro-
physiological measurements to provide localised, 
real-time recordings of neural networking abnor-
malities in neurodegeneration.

Here we have considered the most promising 
TMS and EEG/MEG measurements used to inves-
tigate AD, LBD, PD, FTD, ALS and MS network 
pathology. We discuss the neuronal basis of these 
measurements, describe examples of measurements 
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with potential to enable assessment of early preclinical functional 
changes associated with neurodegenerative conditions, describe 
the remaining limitations of these technologies and how they can 
be developed further as inexpensive and informative biomarkers 
of clinical subphenotype and disease progression.

Electroencephalography and magnetoencephalography
Electroencephalography (EEG) and magnetoencephalography 
(MEG) recordings probe (temporal) synchronisation of cortical 
neuronal activity using sensors placed on (for EEG) or at small 
distance from (for MEG) the scalp. While the exact mecha-
nisms of the cortical signal generation remains to be under-
stood, there is evidence that scalp-recorded EEG/MEG signals 
reflect the spatial summation of relatively long-lasting (ten to 
hundreds of milliseconds) excitatory/inhibitory post-synaptic 
potentials and dendritic influences of neurons (e.g. the cortical 
pyramidal neurons), summed together in adjacent regions.14 In 
addition to these post-synaptic potentials the EEG/MEG oscilla-
tions also originate from the flow of the activity volleys in the 
longer-range pathways such as thalamo-cortical connections and 
loops.15 16 While the fast spiking activity of the cortical neurons 
are not usually considered to be reflected in EEG/MEG signals 
due to poor spatial summation processes at a given instant, there 
is evidence that such activities may also appear at higher EEG/
MEG frequencies in the high gamma band (>40 Hz).17

EEG can capture activity in cortical sources oriented both 
tangentially and radially to the scalp surface due to the elec-
tric field propagation and electrical conduction in the volume. 
However, the signals are attenuated by propagation of electric 
currents through regions of the head with different resistance. By 
contrast, while MEG signals are captured exclusively by cortical 
sources oriented tangentially to the scalp surface due to magnetic 
field propagation, they are not affected by the propagation of 
electric currents through head tissues with different resistance.13

Two main classes of EEG/MEG signals can be derived from 
experimental recordings. The first class is event-related with 
most frequent applications developed in time domain. Within 
this line are evoked or event-related potentials (EPs/ERPs) and 
the MEG counterparts, evoked or event-related magnetic fields 
(EFs/ERFs). EPs/EFs are obtained by the average of hundreds/
thousands of short EEG/MEG periods (ten to several hundreds 
of milliseconds) of activity recorded during repeated sensory 
stimuli (eg, visual, auditory) with no response required.18 Like-
wise, ERPs/ERFs are obtained by the average of many EEG/MEG 
periods (ten to several hundreds of milliseconds) of activity, 
however, they are recorded during repeated sensory stimuli 
and/or voluntary tasks associated with cognitive processes and 
usually a behavioural response.19 The analysis of those potentials 
is typically performed in the time domain, investigating latency 
and amplitude of a sequence of EEG voltage or magnetic field 
peaks and the underlying cortical source activity. However, more 
recent applications are developed by a spectral analysis of oscil-
latory components at delta, theta, alpha, beta and gamma bands 
from EPs/EFs and ERPs/ERFs.20 Finally, less frequent in the field 
of neurodegenerative diseases, ongoing EEG and MEG rhythms 
related to sensory and cognitive motor events are analysed with 
spectral analysis as “event-related desynchronisation/synchroni-
sation” of those frequency bands.21

The second class is that of “resting-state” EEG/MEG signals 
collected in the absence of event, typically analysed in frequency 
domain (figure 1). This analysis can be performed by linear (eg, 
discrete Fourier transformation) or nonlinear techniques to quan-
tify brain neural oscillatory activity22 in terms of peak frequency, 

magnitude (eg, power density) and phase, either at sensory or 
brain source level. Statistical interrelatedness of cortical sources 
of EEG/MEG signals provides useful information about func-
tional brain connectivity at rest (figure  1) underpinning vigi-
lance, wake-sleep cycle and cognitive functions.23 A key benefit 
of such spectral frequency analysis, particularly at source level, 
is the ability to relate specific changes in oscillatory EEG/MEG 
activity (and relative cortical sources) at a given frequency band 
to specific brain regions, higher functions or neuropathological 
processes affecting neural or neuromotor transmission.3 24

Until recently EEG/MEG recordings have been limited by rela-
tively poor signal-to-noise ratio, excessive artefactual compo-
nents and low spatial resolution due to a low number of sensors 
available in acquisition systems.8 Those limitations have now 
been addressed by advanced technologies. Careful application of 
blind source separation, independent component analyses, and 
non-parametric statistics25 have now dramatically reduced the 
level of noise and artefact in the EEG/MEG signals. Additionally, 
advances in cortical source localisation methods, including low 
resolution electromagnetic brain tomography, and beamforming 
have improved the accuracy in source estimation of EEG/MEG 
signals (figure 2),10 providing complementary measurements to 
those derived from functional neuroimaging based on MRI. As a 
result, abnormalities in such signals due to brain neurodegener-
ative diseases may be attributed to activation and connectivity in 
specific cortical (and subcortical) regions.12 13 24

Transcranial magnetic stimulation
With the development of coil designs with high focality7 and 
‘threshold tracking’ methods which provide excellent intra- 
and inter-day reproducibility,26 TMS can now provide robust 
measures of function in a variety of cortical network components.

By delivering magnetic stimuli to the motor cortex, TMS can 
invoke muscle responses which are measured by EMG. These 
responses (motor evoked potentials; MEPs) primarily originate 
from the activation of the upper motor neurons and related 
cortical interneurons. The descending pathways activate spinal 
cord networks including lower motor neurons’ connections to 
associated muscles. The MEP in the target muscles can provide 
information about the integrity of the corticospinal tract. This is 
quantified by measures such as the minimum stimulation inten-
sity required to achieve a target MEP amplitude known as motor 
threshold (figure 3).27

TMS can also be used to interrogate additional motor path-
ways of the brain. The use of precisely-timed ‘conditioning’ 
magnetic or electrical pulses can activate network components 
such as interneurons. Measures including short intracortical inhi-
bition (SICI)/long intracortical inhibition (LICI), intracortical-fa-
cilitation (ICF), interhemispheric inhibition and facilitation, and 
short afferent inhibition (SAI)/long afferent inhibition (LAI) 
can quantify the dysfunction of interneuronal28 and callosal29 
network components and sensorimotor connections,30 gener-
ating inferences about the excitatory/inhibitory balance across 
cortical structures and neurotransmitter (e.g. glutamatergic, 
GABAergic, monoaminergic) function.31 This technology has 
already been commercialised for use in diagnostics and clinical 
outcome measures for neuromuscular disorders.27

TMS has other utilities in interrogating cortical network 
excitability. Conditioning sub- and supra-threshold stimuli over 
non-primary motor areas, such as the supplementary motor 
areas, premotor cortices, dorsolateral prefrontal or posterior 
parietal regions can reveal the connectivity of these regions to 
the primary motor cortices and the other brain areas.32 In this 
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Figure 1  Schematic of (A) time versus frequency domain representation of electromagnetic neural signals and (B) spectral connectivity between signals 
from two brain regions. (A) The representation of an exemplary segment of signal as a combination of sinusoidal waveforms. The strengths or amplitudes 
of the sinusoidal components together with their phase information constitute the frequency domain (spectral) representation of the signal. (B) Multiple 
epochs, trials or segments of data corresponding to two brain regions can be assessed in specific frequencies to infer and quantify the connectivity.

way, modern TMS can serve much beyond a test for conduc-
tion velocity and excitability, but as measures of the integrity and 
functional connectivity between several cortical regions.27

Interrogation of functional networks in clinical disorders
Abnormal brain network function can now be usefully investigated 
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Figure 2  Electromagnetic source imaging using electroencephalography and magnetoencephalography (EEG/MEG) source localisation (A) building 
models of source and sensor activity and (B) forward versus inverse transformation of signals between the sensors and brain sources. (A) MRI geometry is 
used for developing structural models of the brain, corticospinal fluid and scalp (among many layers) that are in-between the brain sources generating the 
neuroelectric activity and electrodes/sensors. The structural model when used together with physical electromagnetic properties of the tissue materials and 
the governing equations of electromagnetic propagation forms a physical model. The physical model is solved and formulated for the discrete finite number 
of the modelled sources of activity in the brain (usually about thousands), as well as the EEG/MEG sensors used during the data acquisition (usually a few 
hundreds). The mathematical model X=LS is a multivariate relationship between the sensor activity (X), source activity (S) and the mathematical model (L). 
(B) This mathematical model can forward-transform the simulated source activities to the sensors, as well as project the recorded sensor activity to localise 
the underlying brain sources using the constructed inverse model.
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Figure 3  Transcranial magnetic stimulation (TMS) can provide: (A) single-pulse measures, (B) paired-pulse measures, (C) dual-coil paired pulse measures 
and (D) afferent inhibition measures that when combined with (E) threshold tracking can quantify network connectivity changes in the motor system. 
The test pulse generates a motor evoked potential (MEP) whose delay and amplitude can be used for quantifying the excitability and conduction in the 
motor circuits and pathways. This is usually achieved by conditioning the MEP with sub-maximal or supra-maximal conditioning pulses delivered at specific 
interstimulus intervals before the main test pulse (either in the same brain region with the same coil, over another brain region with a second coil or by 
peripheral nerve stimulation). This conditioning may facilitate or inhibit the MEP, depending on the (inter-)neuronal populations engaged in each paradigm, 
the ISI and stimulation intensities or thresholds used. These measures have been proved useful for diagnosis and response prediction in neurodegeneration, 
eg, in ALS4 and AD.30 The threshold tracking method is used to achieve a less variable quantification of the stimulus-response characteristics by targeting a 
specific desired amplitude rather than a specific stimulation intensity. AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; MSO, maximum stimulator 
output; ISI, inter-stimulus interval.
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Table 1  Established neurophysiological changes in neurodegeneration, their clinical utility and discrimination ability

Neurodegeneration Method
Neurophysiological 
change Clinical application

Discrimination
statistics References

Alzheimer’s disease
Dementia with Lewy bodies

EEG/
MEG

►► ↓ Posterior α power
►► ↑ Parietal δ and θ 

power

►► Prodromal differential 
diagnosis

►► Diagnostic biomarker
►► Differential diagnosis of AD 

and DLB

►► Sensitivity −78.3%
►► Specificity - 66.7%
►► AUROC – 72%
►► AUROC=0.97 (log δ) and 0.93 

(log θ)
►► AUROC=0.879 (log δ) and 0.75 

(log θ)

Andersson et al, Babiloni 
et al36 43

Frontotemporal dementia EEG ►► Combined 25 rsEEG 
measures

►► Differential diagnosis between 
ADD, PDD, DLB and bvFTD

►► AUROC=100%
►► Specificity=100%
►► Selectivity=100%

Garn et al55

Parkinson’s disease EEG ►► ↑β power
►► ↑300 Hz power

►► Differential diagnosis
►► Thresholding of DBS
►► CT antikinetic measure
►► CT prokinetic outcome 

measure

►► To be determined. Assenza et al,
Little et al,
Muthuraman et al,
Assenza et al48 52

Amyotrophic lateral sclerosis TMS ►► ↓Short intracortical 
inhibition

►► Differential diagnosis from 
mimic disorders

►► Prodromal biomarker
►► CT outcome measure

►► Sensitivity - 73.21%
►► Specificity - 80.88%

Vucic et al, Menon et al,
NCT02450552, 
NCT027814544 28

Multiple sclerosis EEG +TMS ►► Multimodal ERPs ►► Prognosis
►► CT outcome measure

►► Sensitivity - 56.7%
►► Specificity - 88.3%
►► Positive predictive value - 

70.8 %

Giffroy et al,
NCT0176536118

ADD, Alzheimer’s disease dementia; AUROC, area under the receiver operating characteristics curve; CT, clinical trial; DLB, dementia with Lewy bodies; ERP, event-related 
potential; PDD, Parkinson’s disease dementia; bvFTD, behavioural variant frontotemporal dementia; rsEEG, resting state electroencephalography.

by neurophysiological approaches based on EEG/MEG signals 
and signals from TMS-linked EMG. These measures are partic-
ularly helpful in quantifying signature changes in specific brain 
regions and in detecting patterns of abnormal communication 
between them. Recognising and defining these patterns can thus 
inform both the nature of the network impairment in neurode-
generation and its progression over time. They can also proffer 
quantitative biomarkers of these syndromes to improve diag-
nosis, differential diagnosis, prognosis and therapeutic testing 
(table  1). The combination of advanced neurophysiological 
measures into multidimensional markers can further assist in 
distinguishing neurodegenerative conditions (eg, AD vs FTD33) 
whose affected networks overlap, but also differ. Substantial 
progress has already been made in these areas, as outlined below 
for each of the major neurodegenerative conditions.

Mild cognitive impairment and dementias
Alzheimer’s disease dementia (AD) accounts for 50%–75% of 
dementias, while dementia with Lewy bodies (DLB) accounts for 
an additional 10%–20%34 of all dementias.

Candidate biomarkers of AD and DLB at clinical (dementia) 
or prodromal (mild cognitive impairment: MCI) stages have 
been generated using frequency domain spectral analysis from 
eyes-closed resting state (rs) EEG/MEG.35 Such rsEEG/rsMEG 
markers are cost-effective, non-invasive, suitable in cognitively/
physically disabled patients and not susceptible to learning 
effects. Resting state cortical delta and alpha rhythms in partic-
ular reveal compromised network synchronisation and connec-
tivity in AD, Parkinson’s disease with dementia (PDD), and DLB 
at both group and individual levels.36 37

Impaired cortical neural synchronisation in AD and DLB is 
quantified by reduced posterior cortical alpha (8–12 Hz) and 
beta (13–30 Hz) rsEEG rhythm intensity and diffuse increases in 
the intensity of cortical delta (<4 Hz) and theta (4–7 Hz) oscil-
lations.38 These patterns are more marked in DLB.36 Reduced 
cortical alpha is also found in PDD but to a lesser degree, while 

widespread theta rhythms are greater in PDD than ADD.37 These 
rsEEG findings have been cross-validated by rsMEG.39–41

The clinical importance of these measures is reflected in their 
presence in MCI stages of degeneration,42 their ability to predict 
progression from MCI to dementia38 and their power to discrim-
inate between dementias36 and prodromal MCIs43 (table 1).

Spectral coherence provides information about cortical 
network connectivity, which reflects the functional coordina-
tion of neural activity. Coherence quantifies the temporal rela-
tionship of oscillations in different areas of the brain. This can 
be measured from rsEEG/rsMEG signals at sensor and cortical 
source level. In AD, rsEEG coherence is consistently reduced 
in alpha rhythms. Inconsistent abnormalities in coherence 
have been reported between electrode pairs in delta and theta 
rhythms.38

These techniques are already in development to measure 
decline in cognitive status in ADMCI44 using progressive decre-
ment in frontoparietal alpha rhythm synchronisation. These 
advances demonstrate the utility of neurophysiologic instruments 
as non-invasive quantitative biomarkers of clinical progression in 
early AD.

Parkinson’s disease
Parkinson’s disease (PD) is characterised by progressive degen-
eration of dopaminergic neurons of the substantia nigra pars 
compacta (SNpc).45 The high spatial resolution conferred by 
source localisation of EEG has established that PD network 
pathology also extends beyond the basal ganglia, including 
premotor, supplementary motor regions and cerebellar sources.12

Degeneration of the SNpc in PD prevents the intricate basal 
ganglia network of feedforward and feedback loops which regu-
late cortical motor output.45 The dysfunction of this network is 
captured using spectral EEG by an increase in basal ganglia-cor-
tical beta power, as these oscillations represent the probability 
of a voluntary movement.46 Beta oscillations increase longi-
tudinally47 and differentiate PD from trends in dementia and 
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stroke.48 Causation between these oscillations and PD motor 
symptoms has been established using deep brain stimulation 
(DBS), as stimulation at 5–20 Hz (but not 30–50 Hz) exac-
erbates bradykinesia. By contrast, levodopa and DBS of the 
subthalamic nucleus reduce beta power, correlating with a ther-
apeutic effects on bradykinesia and rigidity.46 49 Levodopa and 
apomorphine treatment also elicits high gamma (300 Hz) oscil-
lations. This prokinetic switch from low to high frequency oscil-
lation suggests a clinical utility for excitatory DBS in addition to 
current inhibitory protocol.48

In PD, TMS can detect a reduction in resting motor threshold 
(RMT) that correlates with poorer Unified Parkinson's Disease 
Rating Scale motor score, indicative of pathological corticospinal 
hyperexcitability.50 Additional TMS studies demonstrate reduced 
SICI and increased ICF in the off state of PD, pointing to addi-
tional abnormalities in intracortical inhibitory and facilitatory 
cortical network activity51 as drivers of motor hyperexcitability.

These neurophysiologic measures not only provide informa-
tion about location and nature of PD pathology, but are also 
important as potential clinical biomarkers. For example, change 
in subthalamic nucleus beta power can be used to determine the 
parameters for closed-loop DBS. Stimulation when beta oscil-
lations rise above a threshold is found to provide better thera-
peutic effect than continuous or random-intermittent delivery 
of DBS.52

Although further studies are required to determine the diag-
nostic accuracy and longitudinal change of single and combined 
rsEEG measures in PD, existing TMS, MEG and EEG based 
evidence has already pointed to the utility of advanced neuro-
physiological tools as quantitative measures of networks 
dysfunction.

Frontotemporal dementia
The well-established dysfunction of prefrontal and temporal 
networks in FTD can be discriminated by spectral EEG measures, 
providing a basis for the use of EEG in developing quantitative 
FTD biomarkers. For example, intrahemispheric information 
sharing is significantly lower between frontal and temporal 
areas in behavioural variant FTD (bvFTD).53 Source localisation 
of EEG further demonstrates changes in the orbitofrontal and 
temporal cortices with enhanced spatial resolution.54 While such 
measures individually have not demonstrated sufficient speci-
ficity for use as diagnostic biomarkers alone, the combination of 
spectral and behavioural measures can reliably discriminate FTD 
from other types of dementia. For example, a logistic regres-
sion model of delta and theta oscillatory activity, combined with 
cognitive task performance, has demonstrated 93.3% classi-
fication accuracy in differentiating AD and FTD patients.33 A 
separate study, combining neuropsychological parameters with 
frontoparietal and frontotemporal EEG functional connectivity 
measures from multiple electrodes, similarly achieved an 87.4% 
accuracy in discriminating bvFTD patients from controls.53

A recent study expanded this approach, using 25 EEG param-
eters to train support vector machine classifiers to distinguish 
between AD, PD or LBD and bvFTD, such that 100% specificity, 
sensitivity and accuracy was achieved.55

The use of such parameters in differential diagnosis has also 
recently been expanded beyond the dementias, to explore the 
differentiation of psychiatric and neurodegenerative disor-
ders which overlap clinically. For example, a combination of 
EEG and imaging parameters has demonstrated 87% accuracy 
in differentiation of FTD from late-onset bipolar disorder 
which have overlapping behavioural symptoms.56 Such 

distinction based on network pathology may assist in distinc-
tion of solely psychiatric disorders from early manifestations of 
neurodegeneration.57

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is characterised by progres-
sive degeneration of upper and lower motor neurons.58 Diag-
nostic delays of up to 15 months from symptom onset are 
common in ALS. Access to clinical trials at an early stage of 
disease is accordingly compromised.59

Quantitative measures of brain network dysfunction have 
the capacity to reduce diagnostic delay and improve diagnostic 
accuracy. However, while imaging and physiological studies have 
demonstrated broader patterns of atrophy across ALS, such as in 
the thalamus,60 basal ganglia5 and prefrontal cortex,61 62 resting 
state EEG/MEG in ALS can reliably identify increases in intra- 
and inter-motor cortical functional connectivity.3 24 This finding 
is consistent with evidence of motor hyperexcitability as defined 
by threshold tracking TMS in ALS.

Using TMS, hyperexcitability in ALS is quantified by reduced 
motor threshold, a measure of corticospinal excitability. SICI, 
a measure of GABAergic interneuron function, is also consis-
tently reduced in ALS, implying loss of inhibition as a source 
of network hyperexcitability.63 This decrease in SICI can distin-
guish ALS from mimic neuromuscular syndromes with 73·21% 
sensitivity and 80·88% specificity.28 Decreased SICI may also be 
present pre-symptomatically,4 providing a prodromal biomarker.

The most common extra-motor impairment in ALS is exec-
utive dysfunction, occurring in up to 50% of patients.64 65 In 
addition to the existence of cognitively impaired (and non-im-
paired) patient groups64 the existence of cognitive ALS subphe-
notypes is supported by a 14.3% genetic correlation between 
schizophrenia66 and ALS and the increased risk of psychiatric 
disorders, FTD and ALS conveyed by C9orf72 expansions.67

Biomarkers of such cognitive network impairment are 
urgently required for early discrimination of this subphenotype, 
in addition to providing outcome measures for cognition-tar-
geting clinical trials. As cognitive impairment in ALS correlates 
with poorer prognosis,64 subphenotyping based on domains of 
network impairment has the potential to improve early prog-
nostic accuracy and facilitate recruitment to cognition-targeted 
therapeutic trials.

Promising work using cognitive ERPs can capture millisec-
ond-by-millisecond differences in executive network activity. 
Application of quantitative EEG analysis of ERP in ALS patients 
has shown increased average delay in the mismatch nega-
tivity ERP, a measure of involuntary attention switching. This 
correlates to Stroop task performance, a psychological test of 
inhibitory control and attention shifting.19 On source local-
isation of this EEG signal it is revealed that during this task 
ALS patients demonstrate excessive left frontoparietal activity 
which correlates with poorer inhibitory control, in addition 
to decreased bilateral inferior frontal activity.12 Such measures 
have the advantage of providing an objective and quantitative 
biomarkers of cognitive network dysfunction that are not biassed 
by learning effects or physical disability.

As demonstrated for dementias, combination of such measures 
of motor, cognitive and broader network dysfunction could 
further enhance discrimination ability from mimic neuromus-
cular disorders, providing a non-invasive, low-cost, multidi-
mensional biomarker of ALS, in addition to characterising ALS 
subphenotypes.
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Multiple sclerosis
Multiple sclerosis (MS) is a disorder characterised by foci of 
inflammation and demyelination through the central nervous 
system, leading to axon loss and grey matter generation68 with 
clinical evidence of progressive neurodegeneration. The clinical 
use of somatosensory, motor and visual evoked potentials to 
document silent and manifest lesions in MS was commonplace 
before replacement with MRI scanning.69

Neurophysiological tools are now used to objectively char-
acterise connectivity by MEG and EEG measures, such as rest-
ing-state network microstate activity measures, which predict 
total disease duration, annual relapse rate, disability score, 
depression score and cognitive fatigue measures in relapse-re-
mitting MS.70

Advances in event-related EEG/MEG parameters has also 
captured specific network dysfunction underlying fatigue in 
MS, with increased P100 visual ERP latency correlating with 
visual fatigue scores and increased latency in the V component 
of brainstem auditory ERPs correlating with brainstem fatigue 
scores.71 Changes in TMS-evoked motor potentials and central-
motor conduction time also show strong correlation to disability 
score.72

These TMS and EEG parameters are now re-emerging 
as important MS biomarkers, with the realisation that MRI 
measures can show weak association with clinical presentation, 
known as the clinical/MRI paradox.73 A combination of electro-
physiological parameters, labelled the ‘global evoked potential’ 
score, predicts both annual disability score progression and risk 
of disability progression and a cut-off has been defined to detect 
patients at high risk of disability progression at a predictive value 
of 70%.18

Neurophysiologic signal analysis as biomarkers and outcome 
measures in clinical trials
For diagnostic biomarkers, mathematically-defined combina-
tions of neurophysiology based network measures are likely to 
evolve over the coming years. For prognostic and stratification 
biomarkers, however, the neurophysiological validity and rele-
vance of the network activity is the priority to assure meaningful 
interpretations.

Standardisation of biomarkers based on neural signals is 
already well advanced for neuropsychiatric disorders,74 75 but 
have not yet been used consistently in neurodegenerative condi-
tions, despite the acknowledged biological overlap between 
conditions such as ALS and schizophrenia.66 Biomarker develop-
ment in neurodegeneration is promising, although verification 
and validation of the sensitivity and specificity reported for these 
biomarkers (table 1) will be required within each neurodegener-
ative disease.

The clinical utility of EEG in resting-state has already been 
used as a pharmacodynamic marker in a dose-finding study in 
rodents, and has been successfully translated to a human study of 
an antidepressant compound.76 Similarly, a recent retigabine trial 
in ALS has used the decrease in SICI as a recruitment criterion 
(NCT02450552) while a trial of mexiletine (NCT02781454) is 
now using change in RMT and SICI as primary and secondary 
outcome measures respectively. SAI has also shown promise 
as a predictor of cholinesterase inhibitor response in AD,30 
warranting further investigation as an electrophysiological 
outcome measure.

Resting-state EEG has also been utilised as a secondary 
outcome measure in testing the nutritional aid Souvenaid as a 
therapy in AD, with change in delta band functional connectivity 

showing improved trajectory.77 A combination of multimodal 
evoked potentials was also used an outcome measure in a phase 
III trial (NCT01765361) of the recently approved drug ocreli-
zumab for MS.

These early studies point to a move towards therapies based 
on modulation of network dysfunction, allowing for earlier, and 
possibly presymptomatic intervention based on early changes in 
physiological measures.4

Current limitations
While consistent changes in electrophysiological measures 
have been identified in some neurodegenerative diseases (such 
as increased beta power in PD48 49 52), others require further 
evaluation and validation (eg, increased motor threshold in 
Huntington’s disease or decreased motor threshold in PD78). 
Furthermore, while single measures may for some diseases 
provide sufficient specificity and selectivity for diagnosis, such 
as SICI in ALS,4 28 63 this has yet to be achieved for other diseases 
such as AD.79 In the longer term, it is likely that combinations 
of multiple measures (including neurophysiological, behavioural 
and neuroimaging) will be required to capture broader patterns 
of network disruption. Individual measures are more likely to 
provide tools for differential diagnosis to enhance patient strat-
ification and provide quantitative measures in clinical trials.79 
Going forward, large multicentre studies will be required to vali-
date all individual and multidimensional physiological measures 
for use in routine clinical settings.

Conclusion and future directions
The use of physiological methods such as EEG, MEG and TMS 
permits the interrogation of network function with excellent 
temporal resolution. These methods are non-invasive, do not 
depend on intact motor or language function or participant 
engagement, and are substantially lower in cost, compared 
with neuroimaging alternatives using MRI or positron emission 
tomography. With the evolution of EEG/MEG recording tech-
niques, improved preliminary data processing, source estima-
tion techniques and focal TMS coils, the perceived limitations 
of excess noise and poor spatial resolution have been substan-
tially reduced. As a result, the location, nature and overlap of 
cortical neural network disruption in the brain neurodegen-
erative diseases can be directly measured and quantified as a 
readout reflecting cortical neural excitability, synchronisation 
and connectivity as relevant underpinning of cognitive and 
sensorimotor functions.

While underutilised in multicentric clinical trials testing 
disease-modifying drugs for major neurodegenerative diseases to 
date, these improved quantitative neurophysiological measures 
have enhanced the state-of-the-art in clinical neurophysiology 
research. They have shown that neurodegenerative diseases 
affect the cortical neural excitability, synchronisation and func-
tional connectivity in relation to cognitive, sensory and motor 
impairment in AD, DLB, PD, FTD, ALS and MS patients. Future 
longitudinal, harmonised, multi-centre, cross-validation studies 
will provide a non-invasive quantification of cortical neural 
network disruption in the neurodegenerative diseases and can 
provide neurophysiological predictors of clinical trajectories and 
correlates of disease progression.

Important future directions will also include the application 
of such biomarkers for earlier and possibly pre-symptomatic 
intervention, enhancing the probability of therapeutic success; 
and the development of physiological parameters as objective, 
numerical outcome measures that provide sensitive non-invasive 

 on 30 A
pril 2019 by guest. P

rotected by copyright.
http://jnnp.bm

j.com
/

J N
eurol N

eurosurg P
sychiatry: first published as 10.1136/jnnp-2018-319581 on 13 F

ebruary 2019. D
ow

nloaded from
 

http://jnnp.bmj.com/


9McMackin R, et al. J Neurol Neurosurg Psychiatry 2019;0:1–10. doi:10.1136/jnnp-2018-319581

Neurodegeneration

and cost effective tools for detecting therapeutic effects of new 
medicinal compounds.

Selection criteria
References were accessed using the NCBI Pubmed, Embase and 
Web of Science databases.

Search criteria used for review of each neurodegenerative 
disease included combination of methodology terms (“EEG”, 
“evoked potential”, “event related potential”, “MEG”, “transcra-
nial magnetic stimulation”, “TMS”, “deep brain stimulation”) 
with disease name terms (“Alzheimers”, “Parkinsons”, “Parkin-
sonism”, “frontotemporal dementia”, “amyotrophic lateral scle-
rosis”, “multiple sclerosis”, “Lewy bodies”) in the previous 15 
years 2003 to 2018. Papers were chosen so as to highlight those 
with the best methodology (number of subjects and patients, 
diagnosis based on biomarkers in line with the international 
Guidelines, use of advanced EEG/MEG/TMS techniques at the 
state-of-the art, research groups with high reputation) investi-
gating physiological measures with potential clinical utility. The 
number of papers accessed per database, search criterion and 
disease reviewed, is summarised in online supplementary table 1.

Reviews highlighting the limitations of the methods reviewed 
in the clinical application were also discussed to provide count-
er-information in order to minimise potential bias. Search criteria 
for review of the remaining limitations included combination of 
methodology terms (“EEG”, “MEG”, “transcranial magnetic 
stimulation”, “TMS”) with the word “problem” or “limitations” 
and “neurodegenerative” in the previous 5 years 2013 to 2018, 
so as to restrict review of these limitations to those applicable to 
the current state of the art.
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