
Markov Representations: Learning in MDP
Abstractions and Non-Markovian Environments

Department of Computer, Control and Management Engineering
Ph.D. in Engineering in Computer Science (XXXVI cycle)

Roberto Cipollone
ID number 1528014

Advisor
Giuseppe De Giacomo

Co-Advisor
Fabio Patrizi

Academic Year 2023/2024

Markov Representations: Learning in MDP Abstractions and Non-Markovian
Environments
Sapienza University of Rome

© 2024 Roberto Cipollone. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: cipollone.rt@gmail.com

mailto:cipollone.rt@gmail.com

Alla mia famiglia

v

Abstract

One of the main features we expect AI agents to have is being capable of
autonomous decision-making in complex environments. Reinforcement Learning
(RL) is a very general formulation for this learning problem because it focuses on
training agents through the use of repeated attempts and numeric feedbacks. Due to
the little prior knowledge required, RL already has a significant record of successes in
many fields, including robotics, strategy games, finance, advertising, and fine-tuning
of machine learning models, such as Large Language Models, recently.

Despite many efforts, improving the efficiency and generality of RL algorithms
remains a very relevant research topic to this day. Although efficiency is a commonly
shared objective among RL researchers, the development of general RL algorithms
remains much less explored, in comparison. This should not be attributed to the lack
of interest from the community. Rather, this is mainly motivated by the intrinsic
complexity associated to learning in non-Markovian environments. However, both of
these important research directions share one common need, that is, the selection of
appropriate, Markovian representations of the environment state. In MDPs, which
are already Markovian, such selection is often the intended result of the abstraction
process, a central concept for Hierarchical Reinforcement Learning (HRL). In non-
Markovian environments, on the other hand, a Markov state is not available from
the start, and it should be constructed.

This thesis addresses both of these complementary directions. In the first part
of this work, we will explore the concept of MDP abstractions in the context of
HRL. Specifically, in two respective chapters, (i) this thesis proposes an approach
for exploiting MDP abstractions, with the objective of improving learning efficiency;
(ii) this work gives a clear formalization of how accurate and compositional MDP
abstraction should be defined, contributing to embed the common intuitions behind
HRL into applicable and precise notions. Then, in a second part of this work, I will
discuss how RL algorithms can be also applied in presence of partial observations
or complex non-Markovian dependencies. Specifically, (i) I analyze the expressive
power of a recently introduced model, the Regular Decision Process (RDP), and
how it relates to the well-known decision process for partial observations (POMDP);
(ii) finally, the last chapter proposes an offline RL algorithm for learning near-optimal
policies in RDPs, and it provides the associated sample efficiency guarantees.

Both the parts above, and this thesis as a whole, aim to contribute to the
joint research effort to identify the necessary and sufficient information for effective
decision making in RL. Selecting approximate state representations is essential
for HRL, being focused on efficiency and abstract reasoning, as well as for RL in
non-Markovian environments, because the states should preserve all the relevant
past events and forget those that are irrelevant for future decisions.

vi

vii

Acknowledgments

Completing a PhD with great satisfaction is far from a foregone conclusion. I know
very well that this has only been possible thanks to the people who have been by my
side in these years, in various ways, and for this, I am truly grateful. My greatest
thoughts go to my family, all of them, and to Sofia, my future wife. I am sure I will
have the opportunity to demonstrate my gratitude towards them on several occasions,
and I prefer not to list them on this small page, as well as the many friends who
have been there for me. However, I would like to take a moment to thank the friends,
colleagues, and other important people that I have met during these years of doctoral
studies.

I would like to first thank my advisor, Giuseppe De Giacomo, who has greatly
contributed to my passion for research and academic life. Presenting me with
challenging research problems has been essential and highly motivating for me. His
example has also left an impact: seeing him work hard in his office has pushed me in
turn, on many days. Finally, I am confident that his extensive knowledge in logical
reasoning and knowledge representation has allowed me to explore aspects of AI that
many reinforcement learning researchers cannot claim to have delved into.

I extend my gratitude to Fabio Patrizi, my co-advisor, and Luca Iocchi. Both
have facilitated the creation of a creative and lively work environment, where I felt
like an equal contributor to research ideas. This was a strong incentive for me to
arrive at the first paper submissions.

In the department, the working environment has been especially pleasant, thanks
to my office mates and colleagues: Francesco, Gabriel, Marco, Antonio, Alessandro,
Giuseppe, Ramon, Shufang, and the whole WhiteMech group. This group has allowed
the creation of precious friendships and, with Gabriel, I was happy to share all the
years of this doctorate. Finally, among the many collaborations at Sapienza, I would
at least like to thank Nicolo’ Brandizzi and Francesco Frattolillo.

I thank Anders Jonsson for his warm hospitality in his group at UPF in Barcelona
during my visit period. The months in Barcelona were a time of very intense work
for me, fortunately, but also a very balanced and enjoyable experience. I believe
that Anders’ contribution to both of these aspects was essential. I thank the entire
research group, primarily for the friendships formed and the advanced training that
has allowed me to pursue. I thank Gergely, Vicenç, Matteo, Vincent, Antoine,
Germano, Ludovic, Lorenzo, Guillermo, Nneka, Sergio, Emma and Francielle. I
hope to nurture these new friendships over time as I desire.

A final greeting goes to all those whom, regrettably, I may have overlooked in
this little and unsatisfactory list. To all of you too, thank you. And to you, with this
small volume, happy reading!

ix

Contents

I Preliminaries 1

1 Introduction 3
1.1 Outline and Contributions . 7

2 Background 11
2.1 Decision Processes . 12
2.2 Classes of Decision Processes . 16
2.3 Planning in MDPs . 20

2.3.1 Finite Horizon . 20
2.3.2 Infinite Horizon . 21

2.4 Learning in MDPs . 22

II Learning With MDP Abstractions 25
Introduction to part II . 27

3 Exploiting MDP Abstractions 29
3.1 Introduction . 29
3.2 Hierarchical Reinforcement Learning 31
3.3 Preliminaries and Formulation . 35
3.4 Exploiting Abstractions With Reward Shaping 38

3.4.1 Reward Shaping for Episodic RL 39
3.4.2 The Algorithm . 40

3.5 Abstraction Quality . 41
3.6 Validation . 46

3.6.1 Return-Invariant Shaping . 47
3.6.2 Robustness to Modelling Errors 48
3.6.3 Interaction Task . 49

3.7 Discussion . 50
3.8 Proofs . 52

x Contents

4 Realizing MDP decompositions 57
4.1 Introduction . 57
4.2 Preliminaries . 59
4.3 Realizable Abstractions . 61
4.4 Properties . 65
4.5 Abstracting and Realizing . 69
4.6 Discussion . 76
4.7 Proofs . 79

III Learning in Non-Markov Decision Processes 91
Introduction to part III . 93

5 The Expressive Power of RDPs 95
5.1 Introduction . 95

5.1.1 Contributions . 97
5.1.2 Related Work . 99

5.2 Preliminaries . 101
5.3 The Expressive Power of RDPs . 104

5.3.1 Strict Relations . 105
5.3.2 Belief Covers . 107
5.3.3 POMDP Approximations . 109
5.3.4 Learning With Partial Observations via RDPs 114

5.4 Discussion . 116
5.5 Proofs . 117

6 Offline Reinforcement Learning in RDPs 129
6.1 Introduction . 129

6.1.1 Contributions . 130
6.1.2 Related Work . 130

6.2 Preliminaries . 135
6.3 Offline RL in RDPs . 138
6.4 RegORL: Learning an Episodic RDP 140
6.5 Theoretical Guarantees . 143
6.6 Sample Complexity Lower Bound . 145
6.7 Discussion . 146
6.8 Proofs . 147

6.8.1 Preliminaries . 147
6.8.2 RDP Properties . 148
6.8.3 Sample Complexity of AdaCT-H 151

Contents xi

6.8.4 Sample Complexity of AdaCT-H-A 154
6.8.5 Distinguishability Parameters 159
6.8.6 RegORL With Subsampled VI-LCB 160
6.8.7 Sample Complexity Lower Bound 162

7 Conclusion 173

Bibliography 177

Nomenclature 197

1

Part I

Preliminaries

3

Chapter 1

Introduction

Autonomous decision-making is arguably one of the most important manifestations
of intelligence, since it refers to the generic ability to select appropriate actions in
response to external inputs and complex situations. As such, the study of autonomous
decision-making is a fundamental topic that encompasses many branches of AI.
Sequential Decision-Making (SDM) refers to the setting in which the AI agent is
required to take a series of consecutive actions, possibly reacting to the outcomes
previous decisions. In general settings, SDM is a complex problem, because the
sequential interaction that takes place between the agent and the environment
requires the agent to reason over sequences of past events and long-term outcomes.
The term “environment” is commonly used to refer to everything the decision-maker
interacts with (Russell and Norvig 2009). SDM can be instantiated as many distinct
sub-problems, depending on some general assumptions. If the dynamics of the
environment is assumed to be known, the setting is referred to as planning (Geffner
and Bonet 2013). In the most general case, on the other hand, the environment is
initially unknown and SDM must be solved through various forms of learning.

Reinforcement Learning (RL) is a very general and powerful formulation for
learning problems in SDM (Sutton and Andrew G. Barto 2018). According to the RL
formulation, at each decision step, the environment produces two outputs in response
to the agent’s action: an observation and a reward. An observation is a piece of
information that is provided to the agent in order to allow a more sensible selection
of actions at the next time instant. Rewards, on the other hand, are quantitative
measures of immediate performance. The action selection rule used by an agent is
generally called policy. The exact formulation of an RL problem will be presented
later, but, for the moment, we can informally say that the RL problem is the agent’s
task of finding the policy that maximises some performance measure, defined over
the sequence of rewards, when then environment dynamics is unknown. One of the
strongest features of RL is that this flexible paradigm allows agents to learn from

4 1. Introduction

experience with very little prior knowledge required about the environment. As such,
RL already has a significant record of successes for a variety of applications, ranging
from robotics, navigation, strategy games, finance, advertising, and fine-tuning of
other Machine Learning (ML) models, such as Large Language Models, recently.

However, reinforcement learning is only a very generic learning framework. In
order to develop any specific RL algorithm, it is necessary to restrict the class of
environments that are being considered. One of the strongest restrictions that is
often assumed is related to how past events can impact future outcomes. On one
extreme of the spectrum, there are environments in which it is safe to assume that
the value of current actions are not affected by past decisions and outcomes at all, as
is the case in classic multi-armed bandits. Thanks to this simplifying assumption, the
current bandits’ literature has been able to develop very efficient learning algorithms,
with excellent performance guarantees (Lattimore and Szepesvári 2020).

Gradually moving toward more complex dynamics, we can consider the fully
observable stochastic processes, in which the outcome of each agent’s action depends
both on the action and on the last observation of the environment. These can be nat-
urally modelled as Markov Decision Processes (MDPs) (Puterman 1994). Although
more complex, many fundamental principles that have been derived for bandits have
been suitably extended for MDPs. In fact, MDPs are a very interesting middle
ground both for research and for applications, because the increased expressiveness
does not prevent the development of very efficient learning algorithms. In fact, RL
in MDPs is the most common setting in both introductory textbooks (Sutton and
Andrew G. Barto 2018) and research. The research field concerned with efficient
learning in MDPs is far too extensive to be represented here, but we may recall some
seminal works (Kearns and S. Singh 2002; Brafman and Tennenholtz 2003; Strehl,
L. Li, et al. 2006; Jaksch, Ortner, et al. 2010; Sham Machandranath Kakade 2013;
Dann and Brunskill 2015; Azar, Osband, et al. 2017), as well as other works that go
beyond the finite and tabular setting and are suitable for MDP with very large or
infinite state spaces (Schulman, Levine, et al. 2015; C. Jin, Z. Yang, et al. 2020).

Efficient RL algorithms for MDPs allowed us to expand the range of domains
that can be efficiently solved. However, sample efficiency is not the only desirable
property that learning algorithms should possess. Compositionality, interpretability,
and policy reuse are all equally important in most settings, since they guarantee that
agents solving new tasks can take advantage of components of the previous solutions.
Hierarchical Reinforcement Learning (HRL) is a wide subfield of RL that aims to
solve RL problems by exploiting the internal structure of the environment dynamics
and/or the task structure, with the purpose of identifying independent subproblems
and combining their solutions to obtain the global policy (Hutsebaut-Buysse, Mets, et

5

al. 2022). With respect to efficiency, HRL methods also aim to be more scalable with
respect to problems that could be efficiently solved with compositional approaches.

While in MDPs it is possible to pursue secondary learning objectives, such as
the ones addressed by HRL, when the environment belongs to a more general and
expressive class of decision processes, even finding near-optimal policies becomes a
very demanding task. At the root of this major difference in complexity, there is the
presence, or the absence, of an environment property called the Markov property.
Specifically, the two Markov assumptions state that, at any step, the probability of
the next observation and the next reward is conditionally independent on all past
events, given the most recent observation and action. Using the notation that we
will use from section 2.1, for every time step t, we write this condition as

ot+1 ⊥ o0, a1, . . . , ot−1, at | ot, at+1 (1.1)

rt+1 ⊥ o0, a1, . . . , ot−1, at | ot, at+1 (1.2)

We list these two separately, as they serve different purposes and we might refer to
them independently. In fact, some systems could be Markovian in rewards or obser-
vations independently. Generally, we say that a decision process is non-Markovian to
mean that it does not satisfy (1.1) or (1.2). Non-Markovian decision processes may
arise due to many circumstances, but the most common cause is partial information.

Partially Observable MDPs (POMDPs) are arguably the most important group
of non-Markovian decision processes, because they generalise classic MDPs with
the introduction of a generic observation function (Åström 1965). POMDPs are
very successful models, especially when modelling robotics and multi-agent systems.
In fact, modelling the local agent’s perceptions naturally gives rise to a partially
observable environment, since on-board sensors cannot give complete information
about the outside world. If we focus on more realistic interaction scenarios, we
could really say that partial observations are always present. However, the added
expressiveness is also the cause of the increased complexity that is required. This
complexity involves all relevant resources, which are time, memory, and the number
of environment interactions. As shown in Papadimitriou and Tsitsiklis (1987),
while computing the optimal policy of a known MDP is P-complete for all horizon
settings, computing the optimal policy of a known POMDP is PSPACE-hard in the
horizon length, and it becomes undecidable for infinite horizons (Madani, Hanks,
et al. 1999). When the model is unknown, the associated intractability result for
RL in POMDPs has been stated in Krishnamurthy, Agarwal, et al. (2016). For
comparison, the same problem is polynomial in MDPs over the same parameters. As
a consequence of this fundamental difficulty, POMDP algorithms often avoid formal
convergence guarantees but only rely on approximation techniques and methods

6 1. Introduction

based on appropriate Neural Networks architectures (Hausknecht and Stone 2015;
Heess, Hunt, et al. 2015; Mnih, Badia, et al. 2016; Lample and Chaplot 2017; Igl,
Zintgraf, et al. 2018; Kapturowski, Ostrovski, et al. 2019). On the other hand,
algorithms that do provide formal efficiency guarantees must rely on assumptions
that considerably restrict the class of POMDPs under consideration. In particular,
there exist learning algorithms for POMDPs, provided that the environment satisfies
some assumptions, such as undercompleteness (H. Guo, Cai, et al. 2022; C. Jin,
Sham M. Kakade, et al. 2020), few-steps reachability (Z. D. Guo, Doroudi, et
al. 2016), ergodicity (Azizzadenesheli, Lazaric, et al. 2016), few-steps decodability
(Krishnamurthy, Agarwal, et al. 2016; Efroni, C. Jin, et al. 2022), or weakly-revealing
(Q. Liu, Chung, et al. 2022). Broadly speaking, these requirements ensure that the
environment either satisfies some regularity assumption on the transition function
or that some quantifiable amount of information is continuously revealed about the
hidden trajectory of states. In other words, they exclude sustained evolutions that
can remain unpredictable and unobservable for an indefinite number of steps.

As demonstrated by such a rich body of research, identifying tractable subsets of
POMDPs is a very relevant research topic, both from a theoretical perspective and for
practical applications, which can hardly fit into the full observability assumption of
MDPs. The Regular Decision Process (RDP) (Brafman and De Giacomo 2019) is a re-
cently introduced model for non-Markovian environments, whose expressiveness falls
between MDPs and POMDPs. These environments do not respect the Markov prop-
erties, but instead rely on the assumption that future outputs depend on past events
in a regular way. Here, “regular” should be indented with its standard meaning in the
context of formal languages and finite automata. Unlike the POMDP assumptions
and subclasses considered above, RDPs can capture complex temporal dependencies
with lasting effects that can extend arbitrarily far into the future. This model has been
described in Brafman and De Giacomo (2019) using temporal logics over finite traces
and regular languages. However, RDPs can be also equivalently expressed in terms of
finite-state transducers. This is the notion that has been preferred in later works on
RDPs (Abadi and Brafman 2020; Ronca and De Giacomo 2021; Ronca, Licks, et al.
2022), and, with some changes, it is the one adopted here. Regardless of the precise
formalism, this model is fundamentally defined by the regularity property that its
traces satisfy. As a consequence, the expressive power of RDPs goes beyond that of
MDPs, but, as shown in Brafman and De Giacomo (2019), it may not exceed that
of POMDPs. Some RL algorithms have already been developed for RDPs in Abadi
and Brafman (2020), Ronca and De Giacomo (2021), and Ronca, Licks, et al. (2022).

As we have seen, a portion of the current RL literature is focusing on two distinct
aspects for effective decision-making. On one hand, effective MDP algorithms

1.1 Outline and Contributions 7

need to satisfy additional requirements, such as sample efficiency, policy reuse, and
interpretability. On the other hand, provably correct RL algorithms for expressive
non-Markovian environment models are still relatively scarce. These two research
directions, HRL and RL for non-Markovian domains, are often regarded as completely
independent branches of the Reinforcement Learning literature. Although they
originally arise from different subfields of RL, they both address one common need
from two separate perspectives: identifying an appropriate state representation
that approximately satisfies the Markov assumptions for the given environment. In
HRL, the input domain is usually an MDP, which is already Markovian. However,
for constructing MDP abstractions, it is necessary to identify an alternative state
representation that preserves some of the original environment dynamics while
ignoring most of the other details. Its purpose is to consider a proxy model of the
environment, which is more effective for finding near-optimal policies and reusing
their components. In Non-Markovian domains, on the other hand, a Markov state
is not available from the start. Therefore, it is necessary to construct a new state
representation of the environment that at least satisfies the Markov assumption on
rewards (Hutter 2009). We could informally phrase these two aspects as follows.
While HRL is concerned with what an agent could “forget” about the full state,
without losing near-optimality, RL for non-Markovian domains focuses on what to
“remember” about past events, in order to become near-optimal.

1.1 Outline and Contributions

This thesis presents my recent research activity and the most relevant scientific
contributions that I developed during my PhD. Since I have been active in both
subfields of RL that we discussed in the introduction, namely, RL with MDP
abstractions and RL for non-Markovian decision processes, this thesis is organised
accordingly. After part I – Preliminaries, there are two other parts, one for each
macro topic: part II – Learning With MDP Abstractions, and part III – Learning
in Non-Markov Decision Processes. Both parts contain two chapters each. Since
each pair of chapters largely shares a common context, the two parts start with two
respective introductions on pages 27 and 93. The content of each chapter and their
contributions are summarised in the following paragraphs. Then, a more detailed
list of contributions can be found in each chapter.

2 – Background Rather than presenting each contribution separately, this thesis
aims to give an organic and integrated view of the results. Therefore, this initial
chapter sets the common language, the notation, and the basic definitions that will
be used throughout the thesis in all the following chapters. Since these preliminaries

8 1. Introduction

should also be appropriate for RL in non-Markovian environments, the RL problem
is presented with generality by talking about histories, the values of histories and
some classes of decision processes.

3 – Exploiting MDP Abstractions Opening part II, this is the first of the four
chapters of contributions. Here, the abstraction of any MDP (ground) is defined as
another MDP (abstract), together with a function that maps the states of the two
decision processes. This chapter presents an intuitive RL algorithm that optimises
the policy for the original MDP, by exploiting the additional prior knowledge
coming from the abstract MDP simulator. Intuitively, through a specific form of
Reward Shaping, the solution of the abstract decision process is used to construct
an exploration heuristic for collecting samples in the ground MDP. This allows
to drive exploration towards more promising regions of the state space, while still
guaranteeing optimal convergence when the abstraction contains severe modelling
errors. The effectiveness of the algorithm has been tested experimentally.

For each MDP and associated abstraction, the theoretical analysis quantifies
the sub-optimality gap between the induced exploration policy and the original
optimum. Apart from our specific application, the result is more generally applicable
and strongly improves on similar results in the HRL literature. In the process, the
analysis identifies some relevant parameters that suggest how abstract MDP and
the associated state mapping should be defined. These observations serve as a basis
for the work of chapter 4.

Part of this chapter is based on previous published work, result of a joint effort,
which appeared in the paper: Roberto Cipollone, Giuseppe De Giacomo, Marco
Favorito, Luca Iocchi, and Fabio Patrizi (2023a). “Exploiting Multiple Abstractions
in Episodic RL via Reward Shaping”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 37, pp. 7227–7234. Preliminary results have also
been accepted and presented at the PRL workshop (Bridging the Gap Between AI
Planning and Reinforcement Learning), co-located within the IJCAI 22 conference.

4 – Realizing MDP decompositions The previous contribution already identi-
fied some important principles for defining accurate MDP abstractions. However,
the algorithmic approach, which is based on Reward Shaping, is not fully composi-
tional. This chapter directly addresses some fundamental questions that recur in
the HRL literature. Specifically, it aims to answer the following questions: How
should MDP abstraction be defined? How can they be used inside RL algorithms in
a compositional way?

The theoretical contribution of this chapter is to propose the original concept
of realisable abstractions. A realizable abstraction is a decision process whose

1.1 Outline and Contributions 9

individual abstract actions can be realized as specific sub-policies in the ground
MDP. Specifically, it is possible to associate to each abstract state and action
a specific sub-policy which achieves similar transition probabilities and expected
cumulative rewards. This ensures that abstract states are good representatives for
the expected returns that are really achievable in the ground MDP. Regarding the
formal properties, the chapter also demonstrates that realizable abstract policies
can be translated into near-optimal ground policies, in a compositional way. Finally,
the chapter also analyses how to implement two complementary processes: realizing
abstractions and abstracting ground dynamics.

Part of this chapter is based on original work, result of a joint effort, whose full
list of authors is: Roberto Cipollone, Luca Iocchi, Matteo Leonetti. This work will
soon be included as part of a future submission to an AI conference.

5 – The Expressive Power of RDPs Opening part III, this chapter first provides
the necessary background for planning in Partially-Observable MDPs (POMDPs),
which are the most famous class of non-Markovian environments. The Regular
Decision Process (RDP) is a different non-Markovian model that has recently been
proposed in the literature. Since this is the model studied in both chapters 5 and 6,
we discuss how they work in detail and propose a specific formalisation for stochastic
environments.

The objective of this chapter is to analyse the expressive power of RDPs and put
them in relation with POMDPs. Our contributions are multiple: we prove that RDPs
are strictly less expressive than POMDPs; we characterise which POMDPs admit an
equivalent RDP; after providing a notion of approximation between heterogeneous
decision processes, we show that some POMDP classes admit RDP approximations.
Thanks to the properties above, the chapter observes that, in many cases, RDP
algorithms can be applied to environments that have been originally defined as
POMDPs, without any modification. Finally, we show that the exponential lower
bound for POMDPs also applies to RDPs. Regardless of this result, the RDP
formalism remains relevant thanks to the simplicity of planning in these domains.

This chapter is primarily based on original work which may be included as part
of a future submission.

6 – Offline Reinforcement Learning in RDPs This final chapter of contribu-
tions proposes an Offline Reinforcement Learning algorithm for RDPs. In Offline RL,
the input of the algorithm is a dataset of interactions, collected with some unknown
behaviour policy. The objective of the algorithm is to estimate a near-optimal policy,
without further exploration. To the authors’ knowledge, the proposed method is the
first Offline RL algorithm for RDP, with formal efficiency guarantees. In particular,

10 1. Introduction

this work shows that the algorithm satisfies a high-probability sample efficiency
upper bound, whose expression is polynomial in all relevant parameters. This chapter
also derives a general sample-efficiency lower bound for RDPs. The algorithm has
two important features. Firstly, its computational complexity is very low. Secondly,
the method is fully modular because it internally transforms the input data into
an associated dataset for a Markovian environment. Therefore, the output dataset
can be optimised with any off-the-shelf Offline RL algorithm for MDPs from the
literature.

Part of this chapter is based on previous published work, result of a joint effort,
which appeared in the paper: Roberto Cipollone, Anders Jonsson, Alessandro Ronca,
and Mohammad Sadegh Talebi (2024). “Provably Efficient Offline Reinforcement
Learning in Regular Decision Processes”. In: Thirty-Seventh Conference on Neural
Information Processing Systems, NeurIPS 2024.

11

Chapter 2

Background

This chapter introduces some of the main definitions and notions that will be
used throughout the thesis. Although most of the material presented here can be
found in the literature, this chapter aims to provide an organic presentation of
the topics that we will encounter in the following parts. A classical introduction
to Reinforcement Learning would usually begin from Markov Decision Processes.
Some of the contributions of this thesis, however, involve more general environment
dynamics that fall well beyond this environments class. Thus, we necessarily need
to approach the topic of environments models and Reinforcement Learning from a
very general perspective. We first introduce the basic notation.

Basic Notation Generic sets and their elements are usually written in lowercase
and calligraphic letters, respectively, such as X and x ∈ X . The juxtaposition
of two sets XY is an abbreviation of (X × Y). Similarly, xy is preferred to (x, y)
whenever this cannot be misunderstood with a product. For N ∈ N+, [N] is an
abbreviation for the set {0, . . . , N − 1}. The indicator function I(ϕ) evaluates to
1 if the condition ϕ is true, 0 otherwise. For any function f , we write f ≡ g, if
f(x) = g(x) for all x, or f ≡ a, if f(x) = a, for some constant a.

The set of probability distributions on a set X is written ∆(X). If X is finite,
the set ∆(X) includes every function f : X → [0, 1] such that

∑
x∈X f(x) = 1. The

support of some f is written supp(f) := {x ∈ X | f(x) > 0}. We write z ∼ µ with
µ ∈ ∆(X) if z is a random variable distributed according to µ. For x ∈ X , we
use the Kronecker delta δx ∈ ∆(X) for the discrete and deterministic probability
distribution centred on x, that is δx(x′) := I(x′ = x). A function g returning a
probability distribution is written g : X → ∆(Y). In this case, we write g(x) to
denote the resulting probability distribution (which, for discrete sets, is itself a
function) or g(y | x) to represent the probability of y in g(x). Whenever appropriate,
we also interpret functions and probability distributions f ∈ ∆(X) as column vectors,

12 2. Background

for some fixed order of X . Then, both f(x) and the inner product 〈f, δx〉 evaluate to
the probability of x in f . Similarly, when explicitly stated, a function g : X → ∆(Y)
may also be interpreted as a matrix of |X | rows and |Y| columns.

Throughout this thesis, O, Ω, Θ are the symbols for the big-O asymptotic notation,
and Õ, Ω̃, Θ̃ are the respective symbols if poly-logarithmic terms are ignored. For
completeness, their meaning is summarised here. Given a function g : N→ N, we
write O(g) (and Ω(g)) for the set of functions f : N→ N for which there exist c > 0,
n0 ∈ N, such that f(n) ≤ c g(n) (and f(n) ≥ c g(n), respectively), for all n ≥ n0.
Also, Θ(g) := Ω(g) ∩O(g).

2.1 Decision Processes

As common in AI, we represent decision-making problems as agent–environment
interactions. A decision process is any environment model that represents a discrete-
time stochastic control process. In other words, in a decision process, the agent
and the environment take turns in selecting some variables. At each time step, the
agent selects one of the available actions, a ∈ A, and the environment selects an
observation o ∈ O and a reward r ∈ R. Actions and observations are visible to
both. The rewards R ⊂ R, on the other hand, are scalar values that are used to
evaluate the agent’s performance. This interaction gives rise to a random sequence
o0 a1 r1 o1 a2 Depending on the horizon setting, which might be finite or infinite,
this sequence is terminated at some fixed time step H ∈ N+, or it continues forever.
We refer to the sequence generated by this interaction as trace. It may be convenient
to include a null dummy reward r0 at the initial time step, r0o0, and an irrelevant
dummy action aH+1 at the final step. Thus, we can define traces as follows:

r0 o0 a1 . . . rH oH aH+1 ∈ (ROA)H+1 (finite horizon) (2.1)

r0 o0 a1 r1 o1 a2 . . . ∈ (ROA)∞ (infinite horizon) (2.2)

depending on whether we consider finite or infinite horizons. For either case, we
define finite traces containing t triples as elements of the set Tt := (ROA)t. Similarly,
we call history any finite sequence of actions and observations, ht = o0a1 . . . ot−1at,
and we define the set of histories of length t asHt := (OA)t. With T andH we denote
the sets of all possible traces and histories, respectively. Thus, these are defined
T := ∪t∈0,...,H+1Tt and H := ∪t∈0,...,HHt, for the finite horizon, and T := ∪t∈NTt and
H := ∪t∈NHt, for the infinite horizon. The length of a trace or history, denoted as |·|,
is defined as the number of tuples it contains. The history h0 is the empty sequence.

Unlike other works that also define values on sequences (Hutter 2009), this thesis
distinguishes between traces and histories, because rewards may or may not be

2.1 Decision Processes 13

regarded as observable in the strict sense. With the convention that histories omit
rewards, it is possible to represent the fact that the agent may not condition its
decisions on past rewards. The main motivation for this choice is to remain consistent
with a large part of the POMDP literature. However, we notice that this is not
a true restriction, since rewards may also be included as part of the observations,
whenever it is appropriate to regard them as observable.

Generic rewards rt, observations ot and actions at can be all considered random
variables. In this thesis, if x is some free random variable, P(x) represents the
probability distribution over every value of x. In discrete random variables, this
is a function or a vector of probabilities. On the other hand, when x appears as
a quantified variable, or is bound as in

∑
x, then P(x) should be interpreted as

the scalar probability that the associated random variable takes the single value x.
This is done to avoid cumbersome notations such as P(Ot = ot, Rt = rt | Ot−1 =
ot−1, At−1 = at−1, . . .), and only write P(ot, rt | ot−1, at−1, . . .) without ambiguity,
when these variables are properly quantified.

Acting Acting in a decision process amounts to following some action selection
rule, commonly called policy. In the most general case, policies are functions from
histories to the following actions, and they may be stochastic. Thus, a policy is a
function HO → ∆(A), and the set of all policies is Π := ∆(A)HO. Like in Puterman
(1994), we will also consider more restricted policy classes. We say that some π ∈ Π
is a deterministic policy if there exists some πd : HO → A such that π(ho) = δπd(ho),
for every ho ∈ HO. The set of deterministic policies is Πd ⊂ Π. With a slight abuse
of notation, we will often refer to πd as the deterministic policy and say that the
output is simply the selected action instead of the deterministic distribution.

The input space of policies may also be restricted. The set of stationary poli-
cies Πs is composed of all π ∈ Π, for which there exists some πs : O → ∆(A) such that
π(ho) = πs(o), for every ho ∈ HO. In other words, stationary policies only depend on
the last observation. Under the infinite horizon, the terms Markovian and stationary
are used interchangeably. In the finite-horizon setting, instead, the set of Markovian
policies Πm is the set of all π ∈ Π, for which there exists a collection of H stationary
policies πm := {πt}t∈[H], such that, for every t ∈ [H] and ho ∈ HtO, π(ho) = πt(o).
So, Markovian policies only depend on the last observation and, under the finite hori-
zon, they may also access the current time step. The policies just defined may be com-
bined arbitrarily. For example, the important class of stationary deterministic policies
is Πs ∩Πd. For simplicity, we will often use πd, πs, πm directly and call them policies.

Evaluating Decision processes define both the environment dynamics and the
task that the agent should accomplish. In fact, the only purpose of rewards is to

14 2. Background

provide a scalar measure to be maximised by the agent’s actions. More precisely,
the agent’s task is to maximise the expected return, which is the expected sum of
future rewards (Puterman 1994; Sutton and Andrew G. Barto 2018). Depending
on the horizon setting considered, the return at time t ∈ N+ is a random variable
defined as follows:

gt :=
∑

i=t,...,H

ri (finite horizon) (2.3)

gt :=
∑

i=t,...

γi−t ri (infinite horizon) (2.4)

where γ ∈ (0, 1) is a fixed discount factor, that gives more importance to immediate
rewards, compared to those distant in the future. For either horizon setting, at any
time step t, and history htot ∈ HtO, we define the value of any policy π ∈ Π in a
decision process D and htot as

V π
t (htot) := E[gt+1 | D, π, htot] (2.5)

where π is used to select at+1 and all the following actions. If, in addition to the
past variables htot, the following action is also set, for t ≥ 1, we write:

Qπ
t (ht) := E[gt | D, π, ht] (2.6)

To emphasize the differences between the two functions, we observe that htot is the
sequence of observable variables up to ot. On the other hand, the sequence htotat+1,
which we also write as ht+1, is the sequence of observables with an additional action
taken by the agent. For MDPs, Qπ

t (ht) is commonly called “Q-function”. Now, if
µ ∈ ∆(O) is the distribution over the initial observation in D, without referring to
any history, we define the value of a policy π as

V π
µ := E[V π

0 (o0) | µ] (2.7)

The dependency on the decision process will be often left implicit, when clear from
context. In particular, any decision process defines a unique initial distribution µ.

Note that V π
µ is a scalar. A policy π∗ ∈ Π is optimal if it satisfies V π∗

µ =
supπ∈Π V π

µ . V π∗
µ is often written as V ∗

µ . When planning and learning in decision
processes, it is often impossible or impractical to find an optimal policy (owing to
numerical estimates of known and unknown quantities). Thus, our learning objective
is often to reach near-optimality. Given an accuracy parameter ε ≥ 0, we say that a
policy π is ε-optimal if V ∗

µ − V π
µ ≤ ε.

The two horizon settings often need separate treatments and definitions, such
as the one of eqs. (2.3) and (2.4), because their arguments may rely on slightly

2.1 Decision Processes 15

different mathematical arguments. However, the two are closely related. Short finite
horizons H are related to small discount factors γ. In fact, in the infinite-horizon
setting, there is an effective finite horizon that scales proportionally to 1/(1− γ),
after which the rewards play little role in determining the overall value, due to the
geometric scaling. This relationship is well represented by Kearns and S. Singh
(2002, Lemma 2). This was originally stated for MDPs, but as its proof does not
depend on the Markov assumptions, it can also be formulated for generic decision
processes, as we do here. For any t ∈ N, let gt,H and gt,γ be the respective returns
of eqs. (2.3) and (2.4), for the finite- and infinite-horizon settings. If

H − t ≥ 1
1− γ

log
(1

ε(1− γ)

)
(2.8)

then, gt,H ≤ gt,γ ≤ gt,H + ε.

Planning and Learning The most common task in decision processes is finding a
(near-)optimal policies using the least amount of resources. Depending on the prior
knowledge that is assumed, the setting can be phrased as a planning or a learning
problem. In stochastic planning (Geffner and Bonet 2013), it is assumed that the
explicit decision process is known. Thus, the output policy can be directly computed
from the known conditional distribution generating the output trace, without any
interaction with the environment. For concreteness, we postpone the treatment of
specific planning algorithms after some classes of decision processes have been defined.

When learning in decision processes, on the other hand, since the environment
dynamics remains unknown, rewards and observations are only accessible via sam-
pling. As described at the beginning of this section, this thesis considers a very
classic sampling protocol. Starting from some random initial observation, the agent
and environment interleave their responses. The task of the learning agent is to find
some near-optimal policy, possibly satisfying some additional efficiency constraints
in the process. This is what is commonly referred to as the Reinforcement Learning
(RL) problem (Sutton and Andrew G. Barto 2018). Learning requires multiple
interactions with the environment. In some decision processes, actions selected at
the beginning of the episode may have a strong impact on future returns. Thus, to
ensure sufficient exploration from the initial distribution, the environment must be
regularly reset during learning. This may be done every H steps in both horizon
settings, or at random stopping times, specifically for infinite horizons. In fact, if the
episode is interrupted at each step with probability 1−γ, then the sum of all rewards
collected so far is an unbiased estimate of eq. (2.4) (Puterman 1994). Since this
thesis focuses mainly on RL in decision processes, not planning, when we say “given
an MDP”, we only require simulator access to it, one that allows episode-based

16 2. Background

sampling, as specified in this interaction protocol.

The Efficiency of Reinforcement Learning Unlike in planning, the most
precious resource that RL algorithms use is the environment that generates the
samples. Thus, under the common requirement that RL methods must generally
be tractable in time and memory, the efficiency of each algorithm is commonly
measured in relation to the number of samples that they require. More precisely,
in RL theory, the sample complexity of an RL algorithm is often quantified with
Probably Approximately Correct (PAC) guarantees (Fiechter 1994). Such statements
involve an accuracy parameter ε > 0, a confidence parameter δ > 0, and possibly
other parameters that depend on the specific decision process. An algorithm is said
to be (ε, δ)-PAC for a class of decision processes D if, for every D ∈ D, the algorithm
returns a policy that is ε-optimal in D, with probability at least 1− δ. For many
authors, being PAC also implies that the algorithm uses a number of samples that
is polynomial in all relevant parameters, including |O|, |A|, 1/ε, log(1/δ) and the
horizon H or 1/(1− γ). This is a sensible convention for algorithms that learn in
Markov Decision Processes, which is the most common setting from the literature.
However, the same complexity class cannot be required for more complex decision
processes, as they could be inherently intractable in these quantities.

Another very common performance measure is called regret (Auer, Cesa-Bianchi,
et al. 2002). Unlike sample efficiency, regret guarantees measure the sub-optimality
of the algorithm throughout learning. If we denote by Tj the global time step
at which episode j is initiated, and by πj the policy used in episode j, then the
regret of an RL algorithm at time T can be defined as:

∑
j: Tj<T V ∗

µ − V
πj

µ . As such,
regret is measured as a function of T , often in asymptotic notation. Similarly to
sample efficiency, any regret guarantee statement can be made in expectation or
as a high-probability statement. For other performance guarantees, the reader can
refer to Dann, Lattimore, et al. (2017).

Finally, the performance of RL algorithms can also be analysed and compared
empirically, both by estimating the value of the final policy and by observing the
associated learning curves. Clearly, both of these estimates should come with
empirical estimates of their average and standard deviation, in order to account for
the intrinsic stochasticity of the process or the algorithm.

2.2 Classes of Decision Processes

The previous section introduced values, policies, and all the most relevant variables
for RL. For greatest generality, these elements were defined as individual random
variables. However, an efficient RL algorithm must rely on some additional structure

2.2 Classes of Decision Processes 17

and independence assumptions within the decision process. Such dependencies are
captured by classes of decision processes, such as MDPs, that restrict how future
observations and rewards depend on past events. It is worth emphasising that
these models are possible formalizations of the environment dynamics over actions,
observations, and rewards. To be precise, these are not environments themselves,
and they may or may not be appropriate formalizations, depending on the decision
process at hand. Before proceeding, it is necessary to establish some basic notation
related to finite automata, which will be needed in defining one of the decision
processes in which we are interested.

In the context of formal languages, alphabets are finite sets of arbitrary symbols.
If Σ is an alphabet, any σ ∈ Σ is a symbol. The Kleene star applied to an alphabet,
Σ∗, is the set of all elements that belong to the free monoid constructed over Σ. In
other words, Σ∗ contains all sequences σ1 . . . σn ∈ Σ∗, also called strings, composed
of a finite number of arbitrary concatenations over the elements in Σ.

A Deterministic Finite Automaton (DFA) (Rabin and Scott 1959) is a tuple
〈Q,F , Σ, τ, q0〉, where Q is a finite set of states, F ⊆ Q is the set of final states,
q0 ∈ Q is the initial state, Σ is the input alphabet and τ : Q × Σ → Q is the
transition function. With τ̄ : Q × Σ∗ → Q we denote the transition function,
extended over strings, defined as τ̄(q, λ) := q, where λ is the empty string, and
τ̄(q, xσ) := τ(τ̄(q, x), σ), for x ∈ Σ∗ and σ ∈ Σ. A DFA is an acceptor on the set of
strings Σ∗, where some string x ∈ Σ∗ is accepted if and only if τ̄(q0, x) ∈ F .

A deterministic finite state transducer (Moore machine) is a tuple 〈Q, Σ, Ω, τ, θ, q0〉,
where Q, q0, Σ, τ are defined as in a DFA, Ω is a finite set of output symbols, and
θ : Q → Ω is the output function. The output function, extended over strings, is
θ̄ : Q× Σ∗ → Ω∗, defined as θ̄(q, λ) := θ(q) and θ̄(q, σx) := θ(q) θ̄(τ(q, σ), x). Each
Moore machine defines a unique function from any string in Σ∗ to some string in
Ω∗ of the same length, that is x 7→ θ̄(q0, x). A Mealy machine is defined with the
same tuple of a Moore machine, except for the output function θ : Q × Σ → Ω,
which also receives an input symbol for generating each output. The two finite-state
transducers, Mealy and Moore, have exactly the same expressive power, and they
can be translated one into the other, if some marginal padding symbol is ignored.

We can now define the most important classes of decision processes for this
thesis. We recall that decision processes can be regarded as having a finite or infinite
horizon. The following definitions are valid for both settings, provided that the
set of histories H is adapted as anticipated at the beginning of section 2.1. The
horizon H or the discount factor γ are also necessary in the two horizon settings.
Since we are mainly interested in the model dynamics here, these are left implicit
for now, but H or γ will be appended to the tuple of each decision process later on.

18 2. Background

Unless specified, in most of this thesis, the symbols O,A,R are always taken to be
finite sets of observations, actions, and rewards, respectively. Moreover, we assume
that the rewards are bounded as R ⊂ [0, 1]. All results of this thesis can be adapted
to general reward ranges, by linear scaling of the accuracy parameter ε.

NMDP A Non-Markov Decision Process (NMDP) (Hutter 2009; Brafman and
De Giacomo 2019) is a tuple N := 〈O,A,R, T̄ , R̄〉, where O, A, R are finite sets
of observations, actions and rewards, T̄ : H → ∆(O) is the transition function and
R̄ : H → ∆(R) is the reward function. The NMDP defines a decision process in
which, for each time step t and history ht ∈ Ht,

P(ot, rt | ht, N) = T̄ (ot | ht) R̄(rt | ht) (2.9)

In particular, the initial observation distribution, written as µ ∈ ∆(O), is encoded
as µ := T̄ (h0), computed from the empty history h0. The NMDP is the most general
formalisation of a decision process. Apparently, the only assumption appearing
in eq. (2.9) is the conditional independence assumption between observations and
rewards, written ot ⊥ rt | ht. However, this is a minor simplification since rt cannot
be used to predict ot, nor vice versa, because both have not yet been observed when
selecting at.

k-MDP For k ∈ N+, a k-Markov Decision Process (k-MDP) is a tuple M :=
〈O,A,R, T, R〉, where the transition and reward functions are T : Hk → ∆(O) and
R : Hk → ∆(R), and its dynamics only depends on the last k pairs in the history,
as ot ∼ T (ot−kat−k+1 . . . ot−1at) and rt ∼ R(ot−kat−k+1 . . . ot−1at). To represent the
initial distribution, we will write designated start symbols o◦ and a◦ that cannot
be used during normal operation. Then, we assume that oj = o◦ and aj+1 = a◦, if
j < 0. In particular o0 ∼ µ := T (o◦a◦ . . . o◦a◦).

A Markov Decision Process (MDP) is a 1-MDP. The observations of an MDP
are also called states, and the notation 〈S,A,R, T, R〉 is also common (Sutton and
Andrew G. Barto 2018). Despite this simplified representation, MDPs play a central
role in the RL literature. Under the finite-horizon setting, MDPs may also depend on
the current time step, if this information is included in the observation. However, as
in Puterman (1994), it is common to assume that this dependency is always explicitly
present. Thus, in the finite-horizon setting, (k-)MDPs would be defined as M :=
〈O,A,R, T, R〉, where T := {Tt}t∈[H] and R := {Rt}t∈[H] are collections of H transi-
tions and reward functions, one for each time step. If all such functions are identical,
we say that the MDP is stationary and we use the classic notation of T : OA → ∆(O)
and R : OA → ∆(R). In the infinite-horizon setting, MDPs are always stationary.

2.2 Classes of Decision Processes 19

RDP For defining RDPs, we first need regular functions. For some input alpha-
bet Σ, a function f : Σ∗ → Ω is said to be regular if Ω is finite and, for each ω ∈ Ω,
the set f−1(ω) := {x ∈ Σ∗ | f(x) = ω} is a regular language. A Regular Decision
Process (RDP) (Brafman and De Giacomo 2019) is an NMDP 〈O,A,R, T̄ , R̄〉, in
which the functions T̄ and R̄ are both regular. Despite the concise characterisation,
RDPs have interesting properties. The main principles and definitions are given
here. Then, an extended treatment of RDPs will be provided chapter 5.

RDPs have been recently proposed in Brafman and De Giacomo (2019), where
they have been mainly described using temporal logics over finite traces, and mainly
represented as finite state automata in some following works (Abadi and Brafman
2020; Ronca and De Giacomo 2021; Ronca, Licks, et al. 2022). The formulation we
will use in this thesis is the natural extension of these automata-based representations
for stochastic observations and rewards, and it is more closely related to the one
appearing in Cipollone, Jonsson, et al. (2024). The existence of an automaton
representation of RDPs comes from the fact that, if a function f is regular, then
there exists a finite state transducer 〈Q, Σ, Ω, τ, θ, q0〉, over some Q, τ, θ, q0, such
that for each x ∈ Σ∗, f(x) = θ(τ̄(q0, x)). Since the functions T̄ and R̄ are both
regular for RDPs, they can be associated with their respective automata, AT

and AR. Then, using classic arguments, we can take the synchronous product of
AT and AR and obtain a single finite state transducer with a composite set of
states Q := QT ×QR and a composite output space ∆(O)×∆(R). In this thesis,
we preferentially use this RDP representation in the form of a composite finite-state
transducer.

In summary, an RDP is represented as a Moore machine 〈Q, Σ, Ω, τ, θ, q0〉, where
the input alphabet is Σ := OA, and the output alphabet is some finite set of
distribution pairs Ω ⊂ ∆(O)×∆(R). Thus, if the RDP is in some state q ∈ Q, the
probability of the next observation and reward is given by θ(q) and the next RDP
state becomes q′ = τ(q, oa), where o ∈ O is the observation generated by the RDP
and a ∈ A is the action selected by the agent. We write θo(o | q) and θr(r | q) for the
individual probabilities and θ(or | q) for the joint ones. RDPs could also be defined
as Mealy machines, in which we would write o′ ∼ θo(q, oa) instead of o′ ∼ θo(q). In
fact, RDPs are properly characterised by the regularity of T̄ and R̄ and they are not
tied to a single representation. Chapter 5 will provide further insight and examples
for this decision process.

POMDP A Partially Observable Markov Decision Process (POMDP) is a classical
decision process that generalizes MDPs with incomplete state information (Åström
1965). A POMDP is a tuple P := 〈S,A,R,O, T, R, O〉, where 〈S,A,R, T, R〉 form
an MDP, O is a set of observations, and O : S → ∆(O) is the observation function.

20 2. Background

Whenever a POMDP is in some state s ∈ S, the agent can only observe o ∼ O(s),
not s. As usual, histories and traces are composed of observations, not states.
POMDPs are an intuitive but powerful extension of MDPs. A more in-depth
description of POMDPs is given in section 5.2.

2.3 Planning in MDPs

This section summarises some important properties and the most classic planning
algorithms for tabular MDPs. Although there are many similarities, due to some
technical differences, the two horizon settings will be presented independently in
sections 2.3.1 and 2.3.2.

2.3.1 Finite Horizon

As proven in Puterman (1994), in any MDP, there exists an optimal policy that is also
Markovian and deterministic. Thus, in this thesis, when discussing MDPs, we will
only consider the set of Markov policies Πm. Now, for any MDP M = 〈O,A,R, T, R〉
and policy π ∈ Πm, the value functions defined in eqs. (2.5) and (2.6) become
QH+1 ≡ 0 and, at any t ∈ [H + 1], ht = o0a1 . . . ot−1at ∈ Ht,

Qπ
t (ht) = E [gt |M, π, ht] (2.10)

= E [rt |M, π, ht] + E [gt+1 |M, π, ht] (2.11)

= E [rt |M, π, ht] + E [V π
t (htot) |M, π, ht] (2.12)

=
∑
r∈R

Rt(r | ot−1at) r +
∑
o∈O

Tt(o | ot−1at) V π
t (o) (2.13)

and V π
t (hto) =

∑
a∈A

π(a | hto) Qt+1(htoa) (2.14)

If, for induction hypothesis, Qt+1(htoa) is constant with respect to ht, then we can see
that the same is also true for Vt(ht−1ot) and Qt(ht−1otat). In other words, all value
functions of Markov policies in MDPs depend only on the last observation and the
following action. Thus, we overload the notation and write V π

t (ot) and Qπ
t+1(ot, at+1)

in MDPs. For any finite-horizon decision process with rewards bounded in [0, 1], the
value of any policy π is bounded as V π

µ ∈ [0, H], which is a commonly used fact.

Planning in a finite-horizon MDP M is the task of computing some optimal
policy when M is known. As for other computations in finite horizons, planning can
be solved with a linear backward-induction. In particular, computing the value of a
policy requires a repeated application of eq. (2.13). On the other hand, the value of

2.3 Planning in MDPs 21

an optimal policy can be computed by a repeated application, for t = H, . . . , 1, of

Q∗
t (o, a) =

∑
r∈R

Rt(r | ot−1at) r +
∑
o∈O

Tt(o | ot−1at) V ∗
t (o)

and V ∗
t (o) = max

a∈A
Q∗

t+1(o, a)
(2.15)

In particular, the greedy Markov policy with respect to Q∗, that is, π∗ := {πt}t∈[H],
with πt(o) := arg maxa∈A Q∗

t+1(o, a), is an optimal policy (Puterman 1994). This
covers the essentials of planning in finite-horizon MDPs.

2.3.2 Infinite Horizon

Planning In both chapters 3 and 4, the MDPs are treated under the infinite-
horizon setting. This is also the most common setting in the RL literature and
deserves a more complete preliminary section than its finite-horizon counterpart.
Nevertheless, many results for finite horizons are still applicable for infinite horizons.
Namely, we know that: the set of Markov policies Πm always contains an optimal
policy; the V- and Q- value functions only depend on the last observation and the
following action, and can be written V π(o) and Qπ(o, a), for any Markov policy π;
finally, all values are bounded in [0, 1/(1− γ)], since the rewards are in [0, 1] and
due to the geometric sum with factor γ < 1. In addition, there exist optimal policies
that are not only Markov but stationary.

Since there is no last instant, the same backward induction arguments for finite
horizons cannot be used here. However, thanks to Bellman (1956), it is known that
any function Q : O ×A → R is equal to the optimal Q-function, Q∗, iff, for every
o, a,

Q(o, a) =
∑
r∈R

R(r | oa) r + γ
∑
o∈O

T (o | oa) V (o)

with V (o) = max
a∈A

Q(o, a)
(2.16)

When treated as an assignment, eq. (2.16) can be applied repeatedly to compute
a sequence of updated Q-functions Q(0), Q(1), …, with their respective V-functions
V (0), V (1), This is known as the Value Iteration (VI) algorithm (Bellman 1958).
Since this assignment is a contraction mapping for Q, VI converges to the fixed
point Q∗, in the limit. Moreover, terminating VI after a finite number of iterations
returns near-optimal policies. In particular, if k ≥ − log((1− γ)2ε/2)/(1− γ), then
V (k)(o) ≥ V ∗(o)− ε, at all o ∈ O (Littman, Dean, et al. 1995; Agarwal, N. Jiang,
et al. 2021). VI is a planning algorithm for MDPs. Another very effective planning
algorithm is Policy Iteration (PI) (Howard 1960), that is simple to implement (Sutton
and Andrew G. Barto 2018), and it also enjoys similar convergence properties to
those of VI (Ye 2011). Note that both VI and PI depend on a factor of 1/(1− γ).

22 2. Background

This is analogous to what happens to the backward induction algorithm for finite
horizons, which depend on H. The effective horizon of (1− γ)−1 will often appear
when analysing planning and learning algorithms for MDPs.

As we can observe in eqs. (2.13), (2.15) and (2.16), the reward function always
appears as

∑
r R(r | oa) r. In fact, when maximising the expected return, the

value of a policy depends only on the expected rewards, not the specific reward
distributions. For this reason, most planning and learning algorithms make the
simplifying assumption that rewards are deterministic and equal to their expected
value. So, in the remaining part of this section, in section 2.4 and throughout part II,
we represent rewards with a deterministic function R : OA → [0, 1] returning the
immediate reward, not its distribution. Since MDP complexity is dominated by
transition dynamics, most MDP algorithms can be extended to stochastic rewards
with low overhead.

Occupancy Measures A group of important quantities for MDPs, which will be
thoroughly used in chapter 4, are occupancy measures. The state-action occupancy
measure under a policy π ∈ Π, is the discounted probability of reaching some
state and action (o, a) when starting from some state op. Namely, it is defined as
dπ

sa : O → OA with

dπ
sa(oa | op) := (1− γ)

∞∑
t=0

γt P(ot = o, at+1 = a | o0 = op, π) (2.17)

Marginalizing over the next action, we can also define the state occupancy measure

dπ
s (o | op) :=

∑
a∈A

dπ
sa(oa | op) = (1− γ)

∞∑
t=0

γt P(ot = o | o0 = op, π) (2.18)

Occupancy measures are important because the value function of any policy can
be expressed as a simple linear combination between dπ

sa and the expected reward
function. Namely, using the vector notation, this is

V π(o) = 〈d
π
sa(o), R〉
1− γ

= 1
1− γ

∑
o′a′

dπ
sa(o′a′ | o) R(o′a′) (2.19)

and the value from the initial distribution is V π
µ = 〈V π, µ〉.

2.4 Learning in MDPs

After we covered the fundamental planning algorithms, we now focus on the associated
learning problem. As for generic decision processes, Reinforcement Learning in MDPs
is the problem of learning near-optimal policies from interaction. The interaction

2.4 Learning in MDPs 23

protocol has been described in the paragraph on page 15. In particular, the MDP
and the agent interleave their outputs and the environment is periodically reset from
the initial distribution µ. Although we mostly focus on infinite-horizon MDPs in
this section, some of the following references also cover the finite-horizon case.

A classic RL algorithm for MDPs is Q-learning (Watkins and Dayan 1992).
This is arguably the most famous RL algorithm, because of its simplicity. The
algorithm acts on some stochastic exploration policy πb to collect samples. The
samples collected at each transition (oi−1, ai, ri, oi) are used only once to update the
Q-function according to:

Q(oi−1, ai)← (1− αi) Q(oi−1, ai) + αi (ri + γ max
a∈A

Q(oi, a)) (2.20)

where α0, α1, . . . is a sequence of learning rates that satisfy αi ∈ [0, 1),
∑∞

i=0 α =∞,
and

∑∞
i=0 α2 <∞. Provided that the policy selects all actions infinitely often, that

is, πb(a | o) > 0, then Q-learning converges to the optimal policy of the MDP, in
the limit. Since Q-learning does not require that the policy being optimised be the
one used to select actions, we say it is an off-policy algorithm. For a summary of
the different variants of Q-learning and some on-policy algorithms, the reader might
refer to Sutton and Andrew G. Barto (2018). Despite its simplicity, Q-learning
with generic Q-function initializations and exploration policies could require an
exponential number of interactions with respect to the number of MDP observations,
even for simple tasks (Koenig and Simmons 1996). In fact, the main challenge posed
by Reinforcement Learning in MDPs is the identification of an effective exploration
strategy. This is commonly referred to as the “exploration–exploitation” trade-off,
because algorithms need to carefully balance these two behaviours. In fact, while
persistent exploration is inefficient, premature exploitation can lead to greedy and
suboptimal policies.

The first RL algorithm to solve this trade-off and provide polynomial sample
complexity guarantees was E3 (Kearns and S. Singh 2002), which was later expanded
to a more general and simple algorithm, called R-max (Brafman and Tennenholtz
2003). Unlike Q-learning, which is model-free, R-max is a model-based algorithm.
This means that the algorithm internally estimates an approximate model of the
environment. The core idea of R-max is the distinction between the sets of known
and unknown states. Unknown states are those in which there is an action that has
been tried an insufficient number of times. Since R-max assumes that unknown
states are maximally rewarding, the policy obtained when planning is a compromise
between the exploitation of the known region and exploration of the unknown part.
This solution is an instantiation of the general principle called “optimism in the face
of uncertainty” that has been implemented by many online learning algorithms. In

24 2. Background

a similar spirit to R-max, Delayed Q-learning implements the same principle in a
model-free way. In particular, without estimating any transition function, Delayed
Q-learning initialises the value functions to their maximum, then, it updates them
using a finite number of samples. Both R-max and Delayed Q-learning are PAC for
MDPs with polynomial sample complexity (Strehl, L. Li, et al. 2006).

The online RL algorithms with regret guarantees follow slightly different tech-
niques, but they also implement the same optimism principle. Algorithms that
directly target regret as their optimisation objective are Jaksch, Ortner, et al. (2010),
Azar, Osband, et al. (2017), and Dann, Lattimore, et al. (2017).

Some lower bounds are also available. Regarding PAC lower-bounds, Dann and
Brunskill (2015) show that any (ε, δ)-PAC RL algorithm for stationary finite-horizon
MDPs, with ε and δ sufficiently small, must incur in an expected sample complexity
of

Ω̃
(
|OA|H2

ε2 log
(

c1
δ + c2

))
(2.21)

steps, where c1, c2 ∈ R+ are appropriate constants.
All the previous results and algorithms apply to tabular MDPs. More generally,

a decision process is tabular if its observation, state, and action spaces are finite,
and they may be enumerated. This informal requirement implies that any algorithm
for nontabular decision processes may not rely on counting arguments since each
space may be too large to cover exhaustively. The most common approaches for
non-tabular MDPs are Deep RL algorithms, which adopt Neural Networks (NN) as
general function approximators of their value functions and/or policies. Notable
Deep RL algorithms are DQN (Mnih, Kavukcuoglu, et al. 2015), DDQN (van Hasselt,
Guez, et al. 2016), Dueling DQN (Z. Wang, Schaul, et al. 2016), Distributional DQN
(Bellemare, Dabney, et al. 2017), Rainbow (Hessel, Modayil, et al. 2018), with respect
to approaches based on Q-learning, and TRPO (Schulman, Levine, et al. 2015),
PPO (Schulman, Wolski, et al. 2017), DDPG (Lillicrap, Hunt, et al. 2016), SAC
(Haarnoja, Zhou, et al. 2018), regarding policy gradient and actor-critic methods.
These algorithms are only some of the most effective RL methods that have been
validated with extensive experimentation. Most of them are heavily inspired by
the RL theory. However, since their aim is to be usable in practice, due to their
approximations and the use of Deep NNs, they do not provide explicit theoretical
guarantees.

Another long line of work for nontabular MDPs is focused on obtaining sample
efficiency guarantees under a pre-learnt feature network (L. Yang and M. Wang
2019; C. Jin, Z. Yang, et al. 2020). Such algorithms usually provide strong formal
guarantees at the cost of increased computational complexity or additional technical
complexity in their practical implementations.

25

Part II

Learning With MDP
Abstractions

27

Introduction to part II

As anticipated, this thesis explores two aspects of learning in complex environments:
learning in non-Markovian decision processes and learning with MDP abstractions.
Since the classes of environments considered in the two cases differ, the background
and techniques are partly specific to each of the two problems. However, as we will
see, both directions share one common need: respecting the Markov assumptions on
the constructed state space. This is something to achieve, in the former case, and to
preserve, so as to avoid nonstationarity, in the latter. In this part of the thesis, we
explore this second direction.

Hierarchical Reinforcement Learning (HRL) is the large subfield of RL that
studies abstractions of decision processes, and how they can be used to improve the
efficiency and the compositionality of RL algorithms. As in other research fields,
HRL is only a loose grouping of a series of works from the literature. The main
ambiguity in defining it comes from the fact that there is no universally shared
notion of what exactly an MDP abstraction is. In fact, defining abstractions is even
one of the main objectives of HRL. Rather, HRL is best described by the objectives it
aims to achieve. As well summarised by Abel (2020), abstractions have the following
desiderata:

• Efficient decision-making: planning or learning with a good abstraction should
be much faster than planning or learning without it;

• Near-optimality: an abstraction should enable agents to discover policies that
solve the original problem to a satisfactory degree.

However, we should note that the third desiderata reported in Abel (2020) has not
been shared here. Namely, this thesis does not require that abstractions should be
efficient to learn from experience. In fact, whether it is feasible to efficiently learn
an abstraction and effectively use it in the same learning routine still remains an
open research question, which might not admit a positive answer, outside continual
RL or multi-task RL.

This thesis defines MDP abstractions that satisfy the two properties above, also
improving on the definitions that can be found in the literature. As a whole, the
purpose of part II is to answer two important questions for Reinforcement Learning:
(i) What should be regarded as “good” MDP abstractions? (ii) How can abstractions
be used to improve the sample efficiency and compositionality of RL algorithms?
The two chapters of part II, 3 and 4, both address these two questions and provide
incremental results on the topic.

29

Chapter 3

Exploiting MDP Abstractions

The content of this chapter is based on the work: Roberto Cipollone,
Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, and Fabio Pa-
trizi (2023a). “Exploiting Multiple Abstractions in Episodic RL via
Reward Shaping”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 37, pp. 7227–7234.

3.1 Introduction

Among the many notions of MDP abstractions that can be found in the literature,
this work assumes that an abstraction essentially consists of a separate decision
process, with its own dynamics, which acts as an abstract representation of the
original domain. As we will see in the related work section at page 31, many
works struggle in defining explicit abstractions that involve both the states and
the actions, especially without incurring in inapplicable constraints or undesirable
non-stationarity effects. This chapter proposes a simple technique that does not incur
in these issues. The purpose is to define very flexible abstractions while improving in
sample complexity and retaining training stability towards the near-optimal policy.

Consider a generic MDP that we aim to solve efficiently. As in L. Li, Walsh,
et al. (2006), we refer to this decision process as ground MDP. This might be a
domain with a large or continuous state–action space, possibly with a complex
dynamics. This work considers a linear hierarchy of abstractions of the ground MDP
underlying the target domain. Each layer in this hierarchy is a simplified model,
still represented as an MDP, of the one immediately below. A simple example is
that of an agent moving in a map. The states of the ground MDP may capture
the real pose of the agent, such as continuous coordinates, orientation, and other
features. The states of its abstraction, instead, may provide a coarser description,
obtained by coordinate discretization, semantic map labelling (that is, associating

30 3. Exploiting MDP Abstractions

semantic labels to metric poses), or by projecting out state variables. Ultimately,
such a compression corresponds to partitioning the ground state space into abstract
states, implicitly defining a mapping from the former to the latter. The actions of
the two models can also differ, in general, because they would include the actions
that are most appropriate for each representation. In fact, a single abstract action
will generally correspond to a sequence of actions in the ground domain. Thus, with
reference to the related work section on page 31, the approach proposed in this
chapter is best regarded as a state-action abstraction.

This work assumes that the abstractions are available in the form of one or more
MDPs simulators. Simulators are commonly used in RL and robotics. Often, simply
through a different configuration of the same software, such as noiseless or ideal
movement actions, it is possible to obtain a simplified environment which acts as an
abstraction. Importantly, each simplified model also applies to a variety of tasks
that may be defined over the same domain.

Taking advantage of the abstraction hierarchy, we devise an approach that allows
any off-policy RL algorithm to efficiently explore the ground environment while
guaranteeing optimal convergence. The core intuition is that the value function of
the abstract MDP is a good proxy for the expected return of each group of ground
states. This work proposes a variant of Reward Shaping (RS), whose potential is
generated from the abstract value function. In this way, when learning in the ground
MDP, the agent is biased to first visit the states that correspond in the abstraction
to those that are preferred by the abstract policy, thus trying, in a sense, to replicate
its behaviour in the ground domain.

In order to characterise the effectiveness of the exploration bias, it is essential that
the transitions of the abstraction are good proxies for the dynamics of the ground
MDP. This relationship will be characterised by the identification of conditions
under which the abstraction induces an exploration policy that is consistent with the
ground optimal policy. To obtain this result, in theorem 3.4, we develop a general
result for comparing ground MDP policies in the presence of state partitions and
abstractions.

The chapter, together with the individual contributions, is summarised below.

• In section 3.4, we define an original Reward Shaping schema that allows for
transferring the acquired experience from coarser models to the more concrete
domains in the abstraction hierarchy. The algorithm is simple and can be
combined with generic offline RL algorithms for MDPs. Importantly, the link
between abstract and ground actions remains implicit. Although we choose to
provide a persistent bias to exploration, the algorithm guarantees convergence
towards the original policy.

3.2 Hierarchical Reinforcement Learning 31

• In section 3.5, we derive a relation between abstractions and ground MDPs,
obtained through the induced exploration policy in the lower domain. To
derive this result, we prove a more general statement in theorem 3.4, which
can be used to evaluate the suboptimality of generic policies in the presence of
state partitions. This bound strictly improves over analogous results in the
literature.

• To obtain this result, we identify two new parameters that characterise the
quality of an abstraction with respect to the ground MDP. In particular,
“abstract value approximation”, arises as a new condition to evaluate when
abstract states can be good representatives of the ground MDP values.

• In section 3.6, we conclude the chapter showing that our approach has a
positive impact on sample efficiency and that modelling errors yield only a
limited degradation in performance.

3.2 Hierarchical Reinforcement Learning

After the quick introduction to part II, which briefly introduces the main topics
of Hierarchical RL, we now need to describe more in detail what techniques and
methods are commonly used in the literature, in order to better understand how the
approaches described in this thesis relate to other works. This context will also be
useful for chapter 4. In this thesis, we only consider abstractions of MDPs, which is
by far the most common case in the literature.

Motivation We first want to draw the reader’s attention to the core motivation
for this research field. In other words, why should we study the role of MDP
abstractions in RL? After all, section 2.4 already anticipated some sample-efficient
RL algorithm for MDPs with near-optimality guarantees. HRL has been heavily
influenced by hierarchical methods for classical planning, and together, they share the
same core intuitions and motivations. In fact, HRL can be seen as a generalisation
of hierarchical planning to stochastic decision processes. For historical references
on hierarchical planning, the reader might refer to Russell and Norvig (2009). The
common intuition can be explained with the following example.

Suppose that an agent starts from a specific room of a house and its task is
to open the door in the entrance corridor. This objective requires the agent to
learn and plan for navigating toward the corridor and, only then, find a policy that
allows to grab the handle and pull. For an autonomous agent, this behaviour clearly
requires precise control of the force applied by each motor to achieve an accurate
manipulation of the door handle. However, the same level of modelling granularity

32 3. Exploiting MDP Abstractions

is not reasonable for navigating large distances. In the same way, a person would
first navigate through the house, planning at an abstract level, reasoning in terms of
rooms and changes between them, while individual muscle inputs would not matter.
On the other hand, when approaching the specific manipulation task, reasoning must
take place at a much more granular level (Tenenbaum, Kemp, et al. 2011; Eckstein
and Anne G. E. Collins 2020).

In the same way, HRL usually considers at least two levels: a detailed description
of the environment dynamics, which is represented by the “ground” MDP, and a more
coarse representation, the abstraction. The impact of such an abstraction depends
on the specific technique, but, generally, MDP abstractions allow for three important
benefits: efficiency, policy reuse, and interpretability. In fact, as for the example
above, efficient planning and learning consists of reasoning in a compositional way,
avoiding a multitude of small-scale decisions. Compositionality is also a step toward
policy reuse, which is a very relevant topic for RL, due to its specificity toward the
reward function used for learning. Finally, high-level descriptions are much more
interpretable to a human observer. Simply because “the agent is in room number 3”
and “the agent is trying to open the door” are much easier to understand than “the
agent configuration is (x, y, θ, . . .)” and the action is “(0.3, 0, 0.1, . . .)”.

Related Work The following paragraphs summarise the main achievements in the
Hierarchical RL literature. Some of these results and techniques will also be studied
in greater detail in the next sections, whenever they are needed as preliminaries for
the techniques proposed in this thesis.

One of the first works in HRL is Feudal Learning from (Dayan and Hinton 1992).
Although informally, this work has set the fundamental concepts of subtask decom-
position, high-level learning, and multiple levels of abstractions. They considered
a discrete navigation scenario and a linear abstraction hierarchy, where each level
in the hierarchy is optimised with Q-learning, while ignoring the details of the one
below. In a later work, Ravindran and Andrew G. Barto (2002) proposed that ab-
stractions should also be MDPs and these should be related to the ground MDP via
homomorphisms. This idea has also been extended to approximate homomorphisms
in Ravindran and Andrew G Barto (2004). As we will see, homomorphisms are
excellent for capturing symmetries in the ground MDP, and eliminate those regular-
ities by representing them only once in the abstraction. An influential work in this
line of research is L. Li, Walsh, et al. (2006), which analysed some state abstraction
formalisms that could be found in the literature. In particular, they considered
MDP compressions that preserved either the dynamics, the values, or the optimal
actions, and they showed the guarantees that could be derived with each formalism.
Moreover, their simple framework for presenting state abstractions was later used by

3.2 Hierarchical Reinforcement Learning 33

s1

s2 s̄1
φ

s3

s4

s̄2
φ

a a

ā

Figure 3.1. State abstraction (left). Multiple states in S map to one state in the abstract S̄.
The transitions are symmetric at both levels. Action abstraction (right). The state space
remains the same, but multiple actions in A are related to a single abstract action in Ā.

other papers (Abel, Umbanhowar, et al. 2020), and will also be adopted in this thesis.
These early approaches are mostly considered state abstractions. In other words, if

S is the state space of the ground MDP1 and S̄ is a set representing an abstract state
space, these works assume that there exists a function φ : S → S̄ which preserves
some important property of the ground MDP. In these early works, the property
to preserve was often related to some immediate behaviour, as in homomorphisms.
The intuition behind state-abstraction mappings is illustrated in fig. 3.1 (left).

In parallel to state abstractions, a second line of research developed an alternative
view of MDP abstractions that we generally consider action abstractions. Unlike
state abstractions, these place a major emphasis on defining what is a high-level
action. The theory of options is a very influential framework in this topic. Some
papers, such as Precup and Sutton (1997), Sutton, Precup, and S. P. Singh (1998),
and Sutton, Precup, and S. Singh (1999), successfully formalised a first notion
of high-level actions and behaviours, showing that these can be optimised with a
Q-learning style of update. Options will be formally defined in section 3.3, as this
thesis makes extensive use of options to define abstract actions. For now, they can
be regarded as partial policies with a termination condition. Clearly, depending on
which options are available to the learning agent, the utility of options to speed up
the learning process can change drastically (Jong, Hester, et al. 2008). The options
framework has been very influential in the field of HRL, and they have been extended
in multiple ways. Their internal policy can be learnt from experience with policy
gradient methods (Levy and Shimkin 2011), as well as their termination condition
(Bacon, Harb, et al. 2017), or the initiation sets (Khetarpal, Klissarov, et al. 2020).
This means that learning options is reasonably effective, even in large or continuous
state spaces, similarly to what happens when learning classic policies in MDPs.

Options can be very effective in reducing the effective planning horizon that
is needed to solve composite tasks. However, these techniques may not generally

1Throughout part II, S is used to represent the state/observation space of k-MDPs. Since these
chapters do not treat partial observability, this is done to better match the notation used in the
literature.

34 3. Exploiting MDP Abstractions

Figure 3.2. Intuition of state partitioning and φ-relative options. Graphic representation
of ground MDP (left) and abstraction (right). Figure from Abel, Umbanhowar, et al.
(2020).

correspond to a strong decomposition of the original MDP into subtasks because
the state space is not compressed. For this reason, more recent works study how
abstractions can involve both the state and the action spaces (Abel, Umbanhowar,
et al. 2020; Abel 2020). Here, abstract actions are interpreted as a specific class of
options that terminate only when the abstract state changes. These will be called
φ-relative options, and their intuition is depicted in fig. 3.2.

Other excellent papers do not clearly fit this ternary classification of related
work. Some of these papers are: G. D. Konidaris, Kaelbling, et al. (2018) and J. Lee,
Katz, et al. (2022), using classical planning domains as abstractions for RL; Jong
and Stone (2008), combining R-max with MAXQ (Dietterich 2000), a classical HRL
algorithm; Ravindran and Andrew G. Barto (2003) that aimed to combine options
and homomorphisms; Infante, Jonsson, et al. (2022) that develop HRL for “Linear
MDPs”; García, Visús, et al. (2022) that study how different MDPs can be related
via various metrics;

The biggest challenges of HRL are related to the following important question.
How can multiple states and multiple actions be related to one abstract state and
action in the abstraction? Somehow, being in a state in which a transition or
reward is very probable should be modelled very differently from other neighbouring
states with different probabilities. The grouping of states may be easy to decide
for simple domains with bottlenecks such as fig. 3.2 (although it remains complex
with respect to actions). However, in more general cases, the grouping provided by
the abstraction might introduce undesired discrepancies. This modelling issue could
be very effectively modelled with POMDPs, according to the observation function
φ : S → S̄. However, this may render the problem intractable. So, most authors
in HRL prefer to regard the lack of Markovianity in the abstraction as a generic
nonstationarity (Gürtler, Büchler, et al. 2021; Jothimurugan, Bastani, et al. 2021).
Nevertheless, as a result of this choice, stability and optimality guarantees might be
lost in the general case.

An excellent work in HRL is Wen, Precup, et al. (2020). Their main contribution
is to provide an algorithm with a formal efficiency guarantee, in the form of a
Bayesian regret, which depends on some features often encountered in HRL, such

3.3 Preliminaries and Formulation 35

as the maximum cardinality of the sets in the partition. Another feature they find
significant is a measure of the quality of the “exit profiles”, which quantifies the
extent and value of the boundaries between abstract states. This thesis also studies
the impact of “exit states” in chapter 4, and improves these formalizations.

We conclude this related work section by reviewing the papers that focus on
learning abstract representations. As for the papers presented up to this point,
the abstraction of an MDP is interpreted quite differently by each paper. So, in
general, they do not have the same learning objective. The intuition that learning in
HRL should target subtasks and bottleneck states was shared since the early works
(Simsek and Andrew G. Barto 2004). Based on these ideas, options discovery has
been at the core of learning abstractions ever since (P. S. Castro and Precup 2011;
Machado, Bellemare, et al. 2017). However, the target for learning such options
might also differ, as they may try to address cover time (Jinnai, Park, Abel, et al.
2019), goal states (Nachum, Gu, et al. 2019), state space covering (Jinnai, Park,
Machado, et al. 2020; S. Lee, Kim, et al. 2022), and information measures (Y. Jiang,
E. Z. Liu, et al. 2022). Finally, instead of options, some works directly optimise
over different state partitions (Biza and Jr. 2019; Steccanella, Totaro, et al. 2021;
Steccanella 2023).

3.3 Preliminaries and Formulation

As in the other chapters, all the global conventions that have been set in section 2.1
are also valid here. The additional notation and background that is needed is
discussed here below. The notation used in this chapter is for finite sets and
distributions because, for simplicity, we use sums instead of integrals, and we avoid
measure-theoretic quantities. However, the approach is not limited to finite MDPs.
As we shall see, only the abstraction must be represented by a finite MDP, but no
such limitation is required on the ground MDP.

As anticipated in section 2.2, the last observation of any MDP is a complete
description of the state of the environment, since it satisfies the Markov properties.
Therefore, observations are usually called states and the notation S is very common,
instead of O. This convention will be followed in both chapters 3 and 4. Regarding
rewards, instead, this chapter allows them to be stochastic in the last state and
action, under the condition that rewards are deterministic if the next state is also
given. Thus, as a recap of the global definitions and these specific choices, in this
chapter, an MDP is intended as M = 〈S,A, T, R, γ〉, with T : S × A → ∆(S),
R : S ×A×S → [0, 1], and γ ∈ (0, 1). Since rewards are deterministic and contained
in [0, 1], the set of output rewards R has been omitted from the MDP tuple.

36 3. Exploiting MDP Abstractions

With respect to notation, anything related to the abstraction is written with
a top bar. So, if S is the ground state space, S̄ would refer to some abstract
state space defined previously. Similarly to L. Li, Walsh, et al. (2006), we will use
φ : S → S̄ for the state-abstraction function, that we simply call mapping function.
For any function φ : S → S̄, we use bx̄cφ as an abbreviation for the set of ground
states that map to x̄. That is, for x̄ ∈ S̄, bx̄cφ := {x ∈ S | φ(x) = x̄}. Since the
mapping function will often be clear from the context, we will also use bx̄c. So,
any φ immediately induces a partition of the ground state space, {bs̄c}s̄∈S̄ . We will
informally refer to each set in this partition as a block of states. In the following, we
will always assume that φ is surjective.

The subscript notation si:j , for integers i, j, is an abbreviation of si, si+1, . . . , sj ,
if i ≤ j, or the empty sequence, if i > j. Similarly, φ(si:j) represents φ(si) . . . φ(sj),
if i ≤ j, or the empty sequence, otherwise.

Options (Sutton, Precup, and S. P. Singh 1998) An option for an MDP M,
is a temporally extended action, defined as o = 〈Io, πo, βo〉, where Io ⊆ S is an
initiation set, πo ∈ Π is the policy that o executes, and βo : S → {0, 1} is a
termination condition. With respect to Sutton, Precup, and S. Singh (1999), we
take the terminating condition to be stationary and deterministic. Relaxing the
usual notation, Qπ(s, a), we write Qπ(s, o), for the expected return of executing
the option o until termination, then following policy π afterwards. We will use the
letter Ω to denote sets of options and write o ∈ Ω. There should be no confusion
between the letter o and observations, since in MDPs the observations are represented
as states s ∈ S.

φ-Relative Options (Abel, Umbanhowar, et al. 2020) Given an MDP M and a
function φ : S → S̄, an option o = 〈Io, πo, βo〉 of M is said to be φ-relative if there
exists some s̄ ∈ S̄ such that

Io = bs̄cφ, βo(s) = I(s 6∈ bs̄cφ), πo ∈ Πs̄ (3.1)

where Πs̄ : bs̄cφ → ∆(A) is the set of partial policies defined for the relevant block.
Some set of options Ω is φ-relative iff all of its options are. In the following, we only
consider φ-relative options Ω = ∪s̄∈S̄Ωs̄, where Ωs̄ is the set of options that satisfies
eq. (3.1) with respect to s̄. Any high-level deterministic policy on φ-relative options
S̄ → Ω corresponds to a unique subset Ω′ ⊆ Ω, which contains one option per block.
We call Ω′ a policy of options, as it can be fully treated as a policy. For example,
V Ω′ is the value of the policy that always executes the only applicable option in Ω′

until termination.

3.3 Preliminaries and Formulation 37

Reward Shaping Reward Shaping (RS) is a technique for learning in MDPs
with sparse rewards, which rarely occur during exploration. The purpose of RS is
to guide the agent by exploiting some prior knowledge in the form of additional
rewards. Namely, the original reward function R is replaced by Rs(s, a, s′) :=
R(s, a, s′) + F (s, a, s′), where F is some shaping function. In the most classic
approach, called potential-based RS (A. Y. Ng, Harada, et al. 1999), the shaping
function for an MDP M is defined in terms of a potential function, Φ : S → R, as:

F (s, a, s′) := γ Φ(s′)− Φ(s) (3.2)

From now on we assume that Reward Shaping is always potential-based. If an infinite
horizon is considered, this definition and its variants (Eric Wiewiora, Cottrell, et al.
2003; Devlin and Kudenko 2012) guarantee that the set of optimal policies of M
and Ms := 〈S,A, T, Rs, γ〉 coincide. In fact, as shown by E. Wiewiora (2003), the
Q-learning algorithm executed on Ms performs the same updates as Q-learning on
M, with this modified initialisation: Q′

0(s, a) := Q0(s, a) + Φ(s).

Problem Formulation

Consider an environment in which experience is costly to obtain. This might be a
complex simulation or an actual environment in which a physical robot is acting.
This is our ground MDP M0 that we aim to solve while reducing the number of
interactions with the environment. Instead of learning on this MDP directly, we
choose to solve a simplified, related problem that we call the abstract MDP. This
idea is not limited to a single abstraction. In fact, we consider a linear hierarchy
of related MDPs M0, M1, . . . , Mn, with decreasing difficulty, where the experience
acquired by an expert acting in Mi can be exploited to accelerate learning in the
previous one, Mi−1.

Associated to each MDP abstraction Mi, we also assume the existence of a
mapping function φi : Si → Si+1, which projects states of Mi to states of its direct
abstraction Mi+1. This induces a partition of Si, where each block contains all
states that are mapped through φi to a single state in Mi+1. The existence of state
mappings is a classic assumption in Hierarchical RL (Ravindran and Andrew G.
Barto 2002; Abel, Hershkowitz, et al. 2016; Abel, Umbanhowar, et al. 2020). Unlike
other works, instead, we do not require any mapping between the ground and the
abstract actions. This relationship will remain implicit. This feature leaves a great
flexibility to designers in defining the abstraction hierarchy.

An abstract model is a suitable relaxation of the environment dynamics. For
example, in a navigation scenario, the ground MDP might model the little stochastic
effects of low-level controls. An abstraction, instead, could contain actions that allow

38 3. Exploiting MDP Abstractions

S

G

gS b o

p G G

r y B

Figure 3.3. A grid world domain (top) and an abstraction (bottom). The colours encode
the mapping function, G is the goal.

to just “leave the room”. In section 3.5, we formalise this intuition by deriving a
measure that quantifies the accuracy of an abstraction with respect to the lower
domain. However, as an even simpler example of abstractions, consider the grid
world domain, the abstract MDP, and the mapping in fig. 3.3. Thanks to the
abstraction, we can inform the agent that exploration should avoid the blue “room”
(b) and only learn options for moving to and within the other rooms. Note that the
same does not necessarily hold for the orange block (o), instead, since the optimal
path depends on the specific transition probabilities in each arc.

3.4 Exploiting Abstractions With Reward Shaping

This section presents our contribution, that is, a method to exploit abstract models
by using a specific form of reward shaping, in the context of episodic RL. Consider
a hierarchy of abstractions M0, . . . , Mn, together with the functions φ0, . . . , φn−1.
So, the abstraction of Mi is 〈Mi+1, φi〉.

The learning process proceeds incrementally, training in order from the easiest
to the hardest model. When learning in Mi, our method takes advantage of the
knowledge acquired from its abstraction by applying a form of reward shaping,
constructed from the estimated solution for Mi+1. In particular, we recognise that
the optimal value function V ∗

i+1 of Mi+1 is a helpful heuristic that can be used to
evaluate how desirable a group of states is according to the abstraction. We formalise
our application of RS in the following definition.

Definition 3.1. Let Mi be an MDP and 〈Mi+1, φi〉 its abstraction. We define the
biased MDP of Mi with respect to 〈Mi+1, φi〉 as the MDP Mb

i , resulting from the
application of reward shaping to Mi, using the potential:

Φ(s) := V ∗
i+1(φi(s)) (3.3)

where V ∗
i+1 is the optimal value function of Mi+1.

3.4 Exploiting Abstractions With Reward Shaping 39

This choice allows evaluating each state according to how much “desirable” the
corresponding abstract state is, according to the optimal policy for Mi+1. This is ben-
eficial, as high potentials are associated with high initializations of the Q-function (E.
Wiewiora 2003). In fact, already A. Y. Ng, Harada, et al. (1999) was the first to no-
tice that the MDP’s own optimal value function is a very natural potential for reward
shaping. We extend this idea by using the value function of the abstract MDP instead.

3.4.1 Reward Shaping for Episodic RL

Potential-based RS has been explicitly designed not to alter optimal policies. In
fact, regardless of potential, in the infinite-horizon setting, or if the episodes always
terminate in an absorbing state with zero potential, this is always guaranteed (A. Y.
Ng, Harada, et al. 1999). However, in RL, it is extremely common to diversify the
agent’s experiences by breaking up exploration into episodes of finite length. This
means that we are still optimising for values computed over infinite horizons, but
learning is carried out in an episodic manner. As a consequence, these guarantees
do not hold anymore, as episodes might end in states with arbitrary potential and
the optimal policy will be altered (Grzes 2017).

To see this, given an MDP M, consider the trace of an episode r0s0a1 . . . rnsnan+1

and the associated trace r′
0s0a1 . . . r′

nsnan+1, where rewards r′
i have been modified

via reward shaping. Let g and g′ be the discounted cumulative returns in the two
traces, respectively. Then, these are related as follows (Grzes 2017):

g′ :=
n∑

t=1
γn−1 r′

t = g + γn Φ(sn)− Φ(s0) (3.4)

because all intermediated potentials cancel out in the telescopic sum. Now, since
Φ(s0) is only a constant shift, the term γn Φ(sn) is the one responsible for modifying
the optimal policies, as it depends on the state reached at the end of the episode. The
solution proposed by Grzes (2017) for this problem is to assume the null potential for
every terminal state. Concretely, this means to set Φ(sn) = 0, each time an episode
is interrupted. We call this RS technique return-invariant, as this would, in fact,
preserve the total returns and the original optimal policies. However, this is not
always the only desirable solution. In fact, we might be interested in relaxing the
convergence guarantee to an identical policy in favour of a stronger impact on learning
speed. The same need has also been identified by Schubert, Oguz, et al. (2021).

As an example, let us consider an MDP with a null reward function everywhere,
except when transitioning to a distinct goal state. As a consequence of eq. (3.4) and
the choice Φ(sn) = 0, all finite trajectories that do not contain the goal state are
associated to the same return, regardless of how close they arrive to the goal state.

40 3. Exploiting MDP Abstractions

s0 sg

a1 a1 a1

+1a2 a2 a2

Φ(s)

Φ(sn) = 0

rn = −1

Figure 3.4. With the solution of Grzes (2017), any trajectory that does not reach the goal
receives a final reward that cancels out the accumulated return.

Moreover, this is achieved by a drop in potential, causing a negative reward to be
generated for that trajectory. This is illustrated in fig. 3.4. Since the agent cannot
estimate its distance to the goal through differences in return, return-invariant RS
of Grzes (2017) does not provide a persistent exploration bias to the agent. The
form of reward shaping adopted in this work, which is formulated in definition 3.1,
does not assign null potentials to terminal states. Therefore, we say that it is non
return-invariant. This explains why the MDP of definition 3.1 has been called
“biased”: optimal policies of Mb

i and Mi do not necessarily correspond. This is
addressed in the next section, where we show that the complete procedure recovers
optimal convergence.

3.4.2 The Algorithm

Since we deliberately adopted a form of RS which is not return invariant in the
episodic setting, we devised a technique to recover optimality. The present section
illustrates the proposed method and proves that it converges to the optimal policy
of the original MDP, when coupled with any off-policy algorithm.

The procedure is presented in detail in algorithm algorithm 3.1. Learning
proceeds sequentially, training from the most abstract model to the ground domain.
When learning in the i-th MDP, the estimated optimal value function V̂ ∗

i+1 of the
previous model is used to obtain a reward shaping function (line 4). Experience
is collected by sampling actions according to a stochastic exploration policy, as
determined by the specific learning algorithm A. This policy may be derived from
the current optimal policy estimate for Mb

i , such as an ε-greedy exploration policy in
Q̂b∗

i (line 9). For completeness, we recall that an ε-greedy policy with respect to some
Q is uniform with probability ε, and it returns the greedy action, arg maxa Q(s, a),
with probability 1− ε. Being ε-greedy with respect to Q̂b∗

i means using the biased
value function for action selection and exploration. Finally, the output of each
learning phase is the estimate π̂∗

i and V̂ ∗
i for the original MDP Mi. This allows

iterating the process with an unbiased value estimate, or closing the procedure with
the final learning objective π̂∗

0.

3.5 Abstraction Quality 41

Algorithm 3.1: Main algorithm
Input: Off-policy RL algorithm A
Input: M0, . . . , Mn, φ0, . . . , φn−1
Output: π̂∗

0, ground MDP estimated policy
1 V̂ ∗

n+1 : s 7→ 0
2 φn : s 7→ s

3 foreach i ∈ {n, . . . , 0} do
4 Fi ← Shaping(γi, φi, V̂ ∗

i+1)
5 Learner i ← A(Mi)
6 Learnerb

i ← A(Mi)
7 while not Learner i.Stop() do
8 s←Mi.State()
9 a← Learnerb

i .Action(s)
10 r, s′ ←Mi.Act(a)
11 rb ← r + Fi(s, a, s′)
12 Learnerb

i .Update(s, a, rb, s′)
13 Learner i.Update(s, a, r, s′)
14 end
15 π̂∗

i ← Learner i.Output()
16 V̂ ∗

i ← ComputeValue(π̂∗
i , Mi)

17 end

An RL algorithm for MDPs, A, is off-policy if, for any MDP, the sequence of
policy updates it generates always converges to the optimal policy, as long as the
transitions are produced with a sequence of policies {πl}l∈N satisfying πl(a | s) > 0,
at every s, a, and global learning time l ∈ N. As a consequence of off-policy learning,
algorithm 3.1 converges to the optimal policy, as stated below.

Proposition 3.1. Consider MDPs M0, . . . , Mn and their associated mapping func-
tions φ0, . . . , φn−1. If A is an off-policy RL algorithm, then, in every i-th iteration
of algorithm 3.1, π̂∗

i converges to π∗
i , as the number of environment interactions

increases.

Proof. See page 52.

3.5 Abstraction Quality

Our approach gives great flexibility in selecting an abstraction. Still, given some
ground MDP, not all models are equally helpful and beneficial, when used for reward
shaping or selected as abstractions. This section serves to define what properties
good abstractions should possess. As we can see from algorithm 3.1, they are used

42 3. Exploiting MDP Abstractions

to construct effective exploration policies (in row 9). Therefore, each abstraction
should induce a biased MDP that assigns higher rewards to regions of the state
space from which the optimal policy of the original problem can be easily estimated.
The exploration loss of an abstraction, introduced in definition 3.3, will capture this
idea.

Although we may apply the proposed method to generic MDPs, our analysis
focuses on a wide class of tasks that can be described with goal states.

Definition 3.2. We say that an MDP M = 〈S,A, T, R, γ〉 is a goal MDP if there
exists a set of goal states G ⊆ S such that:

R(s, a, s′) = 1 if s 6∈ G and s′ ∈ G, 0 otherwise (3.5)

V ∗(s) = 0 ∀s ∈ G (3.6)

Equation (3.6) simply requires that from any goal state, it is not possible to
re-enter any other goal and collect an additional reward. The task consists only in
reaching any goal state efficiently. Goal MDPs are very straightforward definitions
of tasks, but they are also sufficiently general, as we will see in the experimental
section. In fact, many composite and temporal tasks can be captured by goal MDPs
over an appropriately extended state space (Bacchus, Boutilier, et al. 1996; Brafman,
De Giacomo, and Patrizi 2018; Icarte, T. Q. Klassen, et al. 2022).

Assumption 3.1. The ground MDP M0 is a goal MDP.

Assumption 3.2. Given each goal MDP Mi, with goal states Gi, and abstraction
〈Mi+1, φi〉, we assume Mi+1 is a goal MDP with Gi+1 satisfying:

Gi = ∪s∈Gi+1 bsc (3.7)

In other words, the abstract goals should correspond through the mapping to all
and only the goal states in the ground domain. In the example of fig. 3.3, the grey
cells in the ground MDP are mapped to all and only the abstract goals labelled as G.
We start our analysis with two observations. First, due to the way the framework is
designed, convergence on any model Mi, does depend on its abstraction, Mi+1, but
not on any other model in the hierarchy. Therefore, when discussing convergence
properties, it suffices to talk about a generic MDP M = 〈S,A, T, R, γ〉 and its direct
abstraction M̄ = 〈S̄, Ā, T̄ , R̄, γ̄〉. Let φ : S → S̄ denote the relevant mapping.

Second, while a goal MDP M has sparse rewards, the reward function of the
biased MDP Mb is no longer sparse. Depending on the abstraction 〈M̄, φ〉, from
which it is defined, the rewards of Mb can be as dense as needed. As confirmed
empirically, this allows to achieve a faster convergence on the biased MDP. However,

3.5 Abstraction Quality 43

apart from convergence speed on Mb, the biased optimal policy should also be a
good exploration policy for the original domain. Therefore, we measure how similar
πb∗, the optimal policy for the biased MDP, is to some optimal policy π∗ of M.

Definition 3.3. Given an MDP M, the exploration loss of an abstraction 〈M̄, φ〉 is
the value loss of executing πb∗ in M, that is the optimal policy of the biased MDP:

L(M, 〈M̄, φ〉) := V ∗
µ − V πb∗

µ (3.8)

In order to bound this quantity in terms of the abstraction, we provide a more
general result in theorem 3.4, which compares generic policies of φ-relative options.
This is an independent result, and it will be applied to specific policies to obtain the
final result in corollary 3.5.

To start the analysis, we first observe that each abstract state s̄ ∈ S̄ is related
to the sets of states bs̄c ⊆ S in the ground MDP. Similarly, abstract actions ā ∈ Ā
correspond to non-interruptible policies that only terminate when leaving the current
block. So, a more appropriate correspondence can be identified between abstract
actions Ā and φ-relative options in M. We start by deriving, in eq. (3.9), the
multistep value of a φ-relative option in goal MDPs.

Multistep Value of Options By combining the classic multistep return of options
(Sutton, Precup, and S. Singh 1999), φ-relative options (Abel, Umbanhowar, et al.
2020), and goal MDPs of definition 3.2, we obtain the following.

Lemma 3.2. Given a goal MDP M and a function φ : S → S̄, for any s ∈ S and
φ-relative option o ∈ Ωφ(s), the optimal value of o is:

Q∗(s, o) =
∞∑

k=0
γk

∑
s1:k∈bφ(s)ck

∑
s′ /∈bφ(s)c

P(s1:ks′ | s, o)
(
I(s′ ∈ G) + γ V ∗(s′)

)
(3.9)

Proof. See page 53.

This expression sums over any sequence of states s1 . . . sk that remain within
bφ(s)c for k steps and leave the block to reach some s′. A similar result was derived
by Abel, Umbanhowar, et al. (2020) for a slightly different definition of goal MDPs.
However, eq. (3.9) is not yet an expression about abstract states, because it depends
on the specific ground state s′ that is reached at the end of the option. Therefore,
in the following definition, we introduce a parameter, ν, which quantifies how much
the reachable states s′ are dissimilar in value. This allows us to jointly talk about
the value of each group of states as a whole and only refer to blocks. Specifically, we
define a function Wν : S̄×S̄ → R, which, given a pair of abstract states s̄, s̄′, predicts,

44 3. Exploiting MDP Abstractions

with ν-approximation error, the value of any successor ground state s′ ∈ bs̄′c that
can be reached from some s ∈ bs̄c.

Definition 3.4. Consider an MDP M and a function φ : S → S̄. We define the
abstract value approximation as the smallest ν ≥ 0 such that there exists a function
Wν : S̄ × S̄ → R which, for all distinct s̄, s̄′ ∈ S̄, satisfies ∀s ∈ bs̄c, ∀s′ ∈ bs̄′c, ∀a ∈ A,

T (s′ | s, a) > 0 =⇒ |Wν(s̄, s̄′)− V ∗(s′)| ≤ ν (3.10)

According to this definition, the frontier separating any two sets of states in the
partition induced by φ must lie in ground states that can be approximated with the
same optimal value, with a maximum error ν. This implies that any small ν places
a constraint on the mapping function φ. In the example of fig. 3.3, each room is
connected to each other through a single location, so this condition is simply satisfied
for ν = 0. However, this definition can be applied in the general case. In fig. 3.9, for
example, a small ν means that every frontier state should have approximately the
same optimal value.

Thanks to definition 3.4, it will be possible to bound the value of options, only
taking future abstract states into consideration. For this purpose, when starting
from some s ∈ S with a φ-relative option o, we use P(k, sk+1 ∈ bs̄′c | s, o) to denote
the probability of the event of remaining for k steps in the same block as s, then
reaching any s′ ∈ bs̄′c in the next transition.

Lemma 3.3. Consider a goal M and a function φ : S → S̄. The value of any option
o ∈ Ωφ(s) in any s ∈ S admits the following lower bound:

Q∗(s, o) ≥
∑

s̄′∈S̄\{φ(s)}

∞∑
k=0

γk P(k, sk+1 ∈ bs̄′c | s, o)
(
I(s̄′ ∈ Ḡ) + γ (Wν(φ(s), s̄′)− ν)

)
(3.11)

where, ν and Wν follow definition 3.4.

Proof. See page 54.

This lemma provides a different characterisation of options, in terms of abstract
states, so that it can be exploited to obtain theorem 3.4.

Exploration Loss of Abstractions Thanks to the results of the previous section,
we can now provide a bound for the exploration loss of definition 3.3, for any
abstraction. We expand the results of Abel (2020) to limit this quantity.

First, we observe that, for any mapping function, any policy can also be regarded
as a policy of options, in the specific sense of section 3.3. Then, from lemma 3.3,
we know that an approximation for the value of options only depends on the k-step

3.5 Abstraction Quality 45

transition probability to each abstract state. So, we assume that this quantity is
bounded as follows.

Definition 3.5. Given an MDP M, a function φ : S → S̄ and two policies of options
Ω, Ω′, we say that Ω and Ω′ have abstract similarity ξ if

∀s ∈ S, ∀s̄′ ∈ S̄ \ {φ(s)}, ∀k ∈ N

|P(k, sk+1 ∈ bs̄′c | s, o)− P(k, sk+1 ∈ bs̄′c | s, o′) | ≤ ξ (3.12)

where the options o and o′ are the only applicable in bφ(s)c, meaning, o ∈ Ω ∩ Ωφ(s)

and o′ ∈ Ω′ ∩ Ωφ(s).

Intuitively, abstract similarity measures the difference between the two abstract
actions described by each policy, as it only depends on the probability of the next
abstract state that is reached, regardless of the single trajectories and the specific
final ground state. In the running example of fig. 3.3, two policies with low ξ,
after the same number of steps, would reach the same adjacent room with similar
probability. It is now finally possible to state the general result.

Theorem 3.4. Consider a goal MDP M, its optimal policy Ω∗, a function φ : S → S̄,
and a policy of φ-relative options, Ω. If ε is the abstract similarity of Ω∗ and Ω, and
the abstract value approximation is ν, then, Ω is ε-optimal, with

ε = 2|S̄|(ξ + γ ν)
(1− γ)2 (3.13)

Proof. See page 55.

The result shows that, provided that the abstraction induces a partition of states
whose frontiers have some homogeneity in value (definition 3.4), it is possible to
reason in terms of abstract transitions. Only for a ν = 0, this bound has similarities
with the inequality n. 5 in Abel, Umbanhowar, et al. (2020). Notice, however, that
the one stated here is expressed in terms of the size of the abstract state space, which
can usually be assumed to be much smaller than the ground state space, which
might be potentially even infinite.

To conclude this section, we apply the general result just derived to two policies,
π∗, the optimal policy of M, and πb∗, the optimal policy of the biased MDP. The
corollary below shows under which conditions an abstraction induces an exploration
policy that is similar to some optimal policy of the original domain. However, we
recall that optimal convergence is guaranteed regardless of the abstraction quality,
because the stochastic exploration policy satisfies the mild conditions posed by the
adopted off-policy learning algorithm.

46 3. Exploiting MDP Abstractions

Corollary 3.5. Consider an M and an abstraction 〈M̄, φ〉, both satisfying assump-
tions 3.1 and 3.2. Let ε be the abstract similarity of Ω∗ and Ωb∗, the optimal policies
of options in M and Mb, and let ν be the abstract value approximation. Then, the
exploration loss of the abstraction satisfies:

L(M, 〈M̄, φ〉) ≤ 2|S̄|(ξ + γ ν)
(1− γ)2 (3.14)

3.6 Validation

To verify the effectiveness of our reward shaping technique, we implemented the
approach in a public repository at https://github.com/cipollone/multinav2. The in-
structions for executing the software and reproducing each plot are available in
Appendix B and C of Cipollone, De Giacomo, et al. (2023b).

Environments We initially consider a navigation scenario, where some locations
in a map are selected as goal states. We start with two levels of abstractions, M1

and M2. The ground MDP M1 consists of a finite state space S1, containing a set
of locations, and a finite set of actions A1 that allows to move between neighbouring
states, with some small failure probability at each transition. Following the idea of
fig. 3.3, we also define an abstract MDP M2, whose states correspond to contiguous
regions of S1. Actions A2 allow moving, with high probability, from any region to
any other, only if there is a direct connection in M1. We instantiate this idea in
two domains. In the first, we consider a map as the one in the classic “4-rooms”
environment from Sutton, Precup, and S. Singh (1999) and fig. 3.2. The second is
the “8-rooms” environment shown in fig. 3.3.

Training Results In the plots of figs. 3.5a and 3.5b, for each of the two ground
MDPs, we compare the performance of the following algorithms:

Q-learning (Watkins and Dayan 1992);
Delayed Q-learning (Strehl, L. Li, et al. 2006);
Algorithm 3.1 (our approach) with Q-learning.

Each episode is terminated after a fixed timeout or when the agent reaches a
goal state. Therefore, shorter episode lengths are associated with higher cumulative
discounted returns. The horizontal axis spans the number of sampled transitions.
Each point in these graphs shows the average and standard deviation of the evalua-
tions of 10 different runs. The solid green line of our approach is shifted to the right,
to account for the number of time steps that were spent training the abstraction.
Further training details, together with all instructions for reproducing each run, can
be found in the appendix of Cipollone, De Giacomo, et al. (2023b).

https://github.com/cipollone/multinav2

3.6 Validation 47

(a) 4-rooms domain.

(b) 8-rooms domain.

Figure 3.5. Results on the two navigation tasks: Q-learning; Delayed Q-learning;
our approach.

As we can see from fig. 3.5a, all algorithms converge relatively easily in the small
4-rooms domain. In fig. 3.5b, as the state space increases and it becomes more
difficult to explore, a naive exploration policy does not allow Q-learning to converge
in reasonable time. Our agent, on the other hand, steadily converges to optimum,
even faster than Delayed Q-learning which has polynomial-time guarantees and a
more careful exploration strategy.

3.6.1 Return-Invariant Shaping

As discussed in section 3.4.1, when applying RS in the episodic setting, there is a
technical but delicate distinction to make between:

Return-invariant RS (null potentials at terminal states);
Non return-invariant RS (our approach).

In fig. 3.6 (top), we compare the two RS variants in the 8-rooms domain. Although
both agents receive RS from the same potential function, this minor modification
suffices to produce this noticeable difference. The reason lies in the returns the two
agents observe (bottom). Although they are incomparable in magnitude, in the
early learning phase, we can see that only our reward shaping is able to reward each
episode differently, depending on their estimated distance to the goal. Invariant RS,
on the other hand, appears as a flat line.

48 3. Exploiting MDP Abstractions

Figure 3.6. Return-invariant reward shaping and our approach .

Figure 3.7. Training in presence of errors: consistent abstraction , one large mismatch
, two large mismatches .

3.6.2 Robustness to Modelling Errors

We also considered the effect of significant modelling errors in the abstraction. In
fig. 3.7, we report the performance of our agent on the 8-rooms domain, when driven
by three different abstractions:

M2: is the same abstraction used in fig. 3.5b;
M(b)

2 : is M2 with an additional transition from the pink states (p) to the goal
(G), not achievable in the ground MDP M1.

M(c)
2 : is M(b)

2 with an additional transition from the blue (b) to the pink region
(p), not achievable in the ground MDP M1.

Clearly, abstractions with larger differences with respect to the underlying domain
cause the learning process to slow down. However, with any of these, Q-learning
converges to the desired policy and the performance degrades gracefully. Interestingly,
even in the presence of severe modelling errors, the abstraction still provides useful
information with respect to uninformed exploration.

3.6 Validation 49

¬Outi

Outi ∧ ¬Closed

¬Ini

Ini ∧ Person

Ini ∧ ¬Person ¬Talking

Talking

Closed

Figure 3.8. A temporally-extended task, repeated in series for i = 1, 2. The missing
transitions go to a sink state representing irreparable failure.

Figure 3.9. Two rooms environment with doors.

3.6.3 Interaction Task

In this section, we demonstrate that the proposed method applies to a wide range of
algorithms, dynamics, and tasks. With respect to variability in tasks, we emphasise
that goal MDPs can capture many interesting problems. For this purpose, instead
of just reaching a location, we consider a complex temporally extended behaviour
such as: “reach the entrance of the two rooms in sequence and, if each door is open,
enter and interact with the person inside, if present”. This task is summarised by
the DFA A of fig. 3.8, whose structure should be replicated sequentially for each
room (2 in this case). Note that there is a single accepting state, and arcs are
associated to environment events. Events refer to the conditions and locations for
the map in fig. 3.9. In particular, the two doors, which might be closed or open, are
in the locations coloured as pink and light blue. The rooms behind them are green
and yellow, and a person might only be found in those locations. Depending on the
transition dynamics, we observe that this is a very challenging task: The optimal
policy starts in the initial state “S”, then proceeds towards the left door, checks if
that is open, enters and interacts if appropriate, leaves the room, and repeats the
process for the rightmost room. Apart from the reward being very sparse due to
the whole sequence, trying to enter with a closed door or interacting when is not
appropriate leads to irreparable failure of the episode.

Regarding generalisation with respect to environment dynamics, instead, we
consider as ground MDP one with an infinite state space and continuous features.
Specifically, let M2,d and M1,d be the tabular MDPs dynamics, structured as we
have seen so far. Now we introduce a ground MDP M0,d at which the robot

50 3. Exploiting MDP Abstractions

Figure 3.10. Dueling DQN algorithm with our RS and without . Training episode
lengths, averaged over 5 runs. Shorter episodes have higher returns.

movements are modelled using continuous features. The state space S0 now contains
continuous vectors (x, y, θ, v) ∈ SE(2)× R, representing the pose and velocity of the
agent’s mobile base on the plane. The discrete set of actions A0 allows accelerating,
decelerating, rotating, and a special action denotes the initiation of an interaction
with a person. The specific navigation environment is shown in fig. 3.9, with colours
representing the mapping function.

Using some results from the literature (Brafman, De Giacomo, and Patrizi 2018;
Icarte, T. Klassen, et al. 2018; De Giacomo, Iocchi, et al. 2019; Icarte, T. Q. Klassen,
et al. 2022), we can automatically construct goal MDPs, M2, M1, M0 that capture
both the dynamics and the task defined above, which can be obtained through a
suitable composition of each Mi,d and the DFA A that describes the complex task.
Therefore, we can still apply our technique to the composed goal MDP.

Since M0 now includes continuous features, we combine our approach with Duel-
ing DQN (Z. Wang, Schaul, et al. 2016), a Deep RL algorithm. The plot in fig. 3.10
shows a training comparison between the Dueling DQN agent alone (dot-dashed
brown) and Dueling DQN receiving rewards from the grid-world abstraction (green).
As we can see, our method provides a useful exploration bias even in case of extremely
sparse goal states, as in this case. What we observe is not a full training, up to conver-
gence. This only serves to demonstrate that uninformed Deep RL struggles to sample
the optimum even once, whereas the biased exploration policy is able to achieve
some complete rewarding sequences, which are essential for the rest of the learning.

3.7 Discussion

The principles of Hierarchical Reinforcement Learning and some important references
have already been reviewed in section 3.2. In this small paragraph, we only want to
draw some specific connections of this work with the relevant literature.

The use of multiple abstractions, organised as a linear hierarchy, is a broad idea
that can be traced back to the origin of HRL, at Dayan and Hinton (1992). In this

3.7 Discussion 51

work, we take this intuition and extend it in the context of multiple MDPs. The
simple algorithm that we obtain is guaranteed to converge to the optimum and the
estimation errors obtained at one abstraction level do get propagated to the next
below, unlike in other analysis (Abel, Umbanhowar, et al. 2020).

The use of Reward Shaping is extensive in the RL literature. In relation to its
employment in HRL, we recall Gao and Toni (2015), whose technique is specific
to the MAXQ algorithm. In the experimental section, we demonstrated that our
technique can be coupled with temporally extended tasks and non-Markovian reward
specifications (Brafman, De Giacomo, and Patrizi 2018; Icarte, T. Klassen, et al.
2018; De Giacomo, Iocchi, et al. 2019; Icarte, T. Q. Klassen, et al. 2022). Our use of
RS, specifically for the application to non-Markovian rewards, can be compared with
Camacho, O. Chen, et al. (2017). However, in this last work, the reward specification,
in the form of a DFA, is regarded as a deterministic MDP in which every event is
possible. Our formulation captures this reward shaping, as well as others, in which
it is possible to represent that some events may be very unlikely to happen, and as
a consequence, they should be associated to very low potential values. Finally, for
abstractions with respect to task complexity, not domain, we recall Furelos-Blanco,
Law, et al. (2022).

As we have already discussed in the text, the theoretical analysis of this work
has been influenced by Abel, Umbanhowar, et al. (2020) and Abel (2020). Similarly
to these works, we adopt φ-relative options to describe the object that corresponds
to abstract actions. However, these works only use φ-relative options to describe
policies in the ground MDP, but they do not consider any real dynamics over the
abstract state space. In this work, on the other hand, we go beyond a simple state
partitioning and consider full MDPs as abstractions. Their purpose, in fact, was not
to show how effective HRL abstractions can be.

Our notion of abstract value approximation has interesting connections with the
“suboptimality of exit profiles” of Wen, Precup, et al. (2020), especially in the case
where the exit profile has a constant value for each neighbouring abstract state. The
role of exit states will be studied in more detail in the next chapter. The second
parameter, abstract similarity, is analogous to the one found in Abel, Umbanhowar,
et al. (2020), with the significant difference that only abstract states are considered,
not ground ones. This is important since assumptions regarding ground states are
very restrictive, and they can hardly be understood and verified in practice. The
abstract state space, which is always assumed to be discrete, is a more appropriate
target for such assumptions.

Future Work After some significant advantages, it is also worth emphasising the
limitations of this work and the opportunities for future development. Regarding the

52 3. Exploiting MDP Abstractions

experimental validation, we tested robustness to modelling errors, compared against
return-invariant shaping, and how our approach compares to other RL algorithms.
However, a more complete validation should also include a comparison with other
HRL approaches, especially those that utilise a similar amount of prior knowledge
from the abstraction.

We may also discuss the limitations of the theoretical treatment in section 3.5.
With this work, we provided one possible answer to question 2 at page 27, namely,
how can abstraction be used to improve sample efficiency of RL. Moreover, the
guarantee that we obtained in corollary 3.5 is also a possible answer for question 1,
that asks what is a “good” abstraction of an MDP. However, this last answer
to question 1 has two limitations: first, this definition of “good” abstractions is
closely related to the specific algorithm that we described, but it lacks a more
generic applicability and insight for this important HRL question; secondly, the two
parameters that we used to describe abstractions are hard to evaluate or estimate
for generic pairs of ground MDPs M and abstractions 〈M̄, φ〉. The exact purpose of
chapter 4 is to address all of these critiques in relation to the theoretical treatment
of abstractions in this chapter.

3.8 Proofs

This section contains all the proofs for this chapter. The reader may skip this section
and refer to it as needed.

Proposition 3.1. Consider MDPs M0, . . . , Mn and their associated mapping func-
tions φ0, . . . , φn−1. If A is an off-policy RL algorithm, then, in every i-th iteration
of algorithm 3.1, π̂∗

i converges to π∗
i , as the number of environment interactions

increases.

Proof. At any iteration i ∈ {n, . . . , 0} of algorithm 3.1, we are given Mi, φi and V̂ ∗
i+1.

By construction, the two instantiations of A, Learner i and Learnerb
i , perform updates

from transitions generated from Mi and Mb
i , respectively. Actions are selected

according to Learnerb
i which follows some exploration policies {πb

l }l. Since Mi and
Mb

i share the same state and action spaces, the off-policy algorithm A also converges
in Mi, under the same policies. Therefore, the output of Learner i also converges to
π∗

i , as the number of environment interactions t→∞.

3.8 Proofs 53

Lemma 3.2. Given a goal MDP M and a function φ : S → S̄, for any s ∈ S and
φ-relative option o ∈ Ωφ(s), the optimal value of o is:

Q∗(s, o) =
∞∑

k=0
γk

∑
s1:k∈bφ(s)ck

∑
s′ /∈bφ(s)c

P(s1:ks′ | s, o)
(
I(s′ ∈ G) + γ V ∗(s′)

)
(3.9)

Proof. By assumption, M is a goal MDP over some G ⊆ S. For s ∈ G, we know that
Q∗(s, o) = 0. We consider s 6∈ G. Since the MDP M is clear from the context, we
use P(s′ | s, a) to mean T (s′ | s, a). Actions will be selected according to the option
policy πo. Following a similar procedure as Abel, Umbanhowar, et al. (2020), for
our definition of goal MDPs:

Q∗(s, o) := Es′|s,o[R(s, πo(s), s′) + γ (

I(s′ ∈ bφ(s)c) Q∗(s′, o) + I(s′ 6∈ bφ(s)c) V ∗(s′))] (3.15)

=
∑

s′∈bφ(s)c
P(s′ | s, πo(s))[·] +

∑
s′ 6∈bφ(s)c

P(s′ | s, πo(s))[·] (3.16)

=
∑

s′∈bφ(s)c
P(s′ | s, πo(s)) γ Q∗(s′, o) +

∑
s′ 6∈bφ(s)c

P(s′ | s, πo(s))
(
I(s′ ∈ G) + γ V ∗(s′)

)
(3.17)

We abbreviate the second term of eq. (3.17) with Ψ and let s0 = s. Then, similarly
to the classic multistep value of options (Sutton, Precup, and S. Singh 1999), we
can expand over time.

Q∗(s, o) =
∑

s′∈bφ(s)c
P(s′ | s, πo(s)) γ Q∗(s′, o) + Ψ(s, o) (3.18)

= Ψ(s, o) + γ
∑

s′∈bφ(s)c
P(s′ | s, πo(s)) Ψ(s′, o) +

γ2 ∑
s′,s′′∈bφ(s)c2

P(s′ s′′ | s, πo(s) πo(s′)) Q∗(s′′, o) (3.19)

=
∞∑

k=0
γk

∑
s1:k∈bφ(s)ck

P(s1:k | s, πo) Ψ(sk, o) (3.20)

=
∞∑

k=0
γk

∑
s1:k∈bφ(s)ck

∑
s′ 6∈bφ(s)c

P(s1:ks′ | s, πo)
(
I(s′ ∈ G) + γ V ∗(s′)

)
(3.21)

54 3. Exploiting MDP Abstractions

Lemma 3.3. Consider a goal M and a function φ : S → S̄. The value of any option
o ∈ Ωφ(s) in any s ∈ S admits the following lower bound:

Q∗(s, o) ≥
∑

s̄′∈S̄\{φ(s)}

∞∑
k=0

γk P(k, sk+1 ∈ bs̄′c | s, o)
(
I(s̄′ ∈ Ḡ) + γ (Wν(φ(s), s̄′)− ν)

)
(3.11)

where, ν and Wν follow definition 3.4.

Proof. We recall that P(k, sk+1 ∈ bs̄′c | s, o) denotes the probability of the event of
remaining for k steps within bφ(s)c, then reaching s̄′ at the next transition, when
following option o ∈ Ωφ(s), starting from s. Also, we use P(k, sk+1 = s′ | s, o) to
represent the associated event of terminating in a specific ground state s′ ∈ S \bφ(s)c
after k transitions.

To obtain the result, we marginalize the probabilities appearing in lemma 3.2
over all possible trajectories s1:k:

Q∗(s, o) =
∑

s′∈S\bφ(s)c

∞∑
k=0

γk P(k, sk+1 = s′ | s, o)
(
I(s′ ∈ G) + γ V ∗(s′)

)
(3.22)

Now, for all s′, k such that P(k, sk+1 = s′ | s, o) > 0, there is one state sk ∈ bφ(s)c,
reachable in k steps from s under o, from which T (s′ | sk, πo(sk)) > 0. From
definition 3.4, we know |Wν(φ(sk), φ(s′))− V ∗(s′)| ≤ ν. Therefore, we can provide a
lower bound for each term V ∗(s′) in the sum above:

Q∗(s, o) ≥
∑

s′∈S\bφ(s)c

∞∑
k=0

γk P(k, sk+1 = s′ | s, o)
(
I(s′ ∈ G) + γ (Wν(φ(s), φ(s′))− ν)

)
(3.23)

because φ(sk) = φ(s). It is now possible to split the sum
∑

s′∈S\bφ(s)c into |S̄| − 1
sums over future blocks and marginalize among them to obtain:

Q∗(s, o) ≥
∑

s̄′∈S̄\{φ(s)}

∞∑
k=0

γk P(k, sk+1 ∈ bs̄′c | s, o)
(
I(s̄′ ∈ Ḡ) + γ (Wν(φ(s), s̄′)− ν)

)
(3.24)

since I(s ∈ G) = I(φ(s) ∈ Ḡ). This proves the lemma. With the same procedure, we
also obtain the upper bound:

Q∗(s, o) ≤
∑

s̄′∈S̄\{φ(s)}

∞∑
k=0

γk P(k, sk+1 ∈ bs̄′c | s, o)
(
I(s̄′ ∈ Ḡ) + γ (Wν(φ(s), s̄′) + ν)

)
(3.25)

3.8 Proofs 55

Theorem 3.4. Consider a goal MDP M, its optimal policy Ω∗, a function φ : S → S̄,
and a policy of φ-relative options, Ω. If ε is the abstract similarity of Ω∗ and Ω, and
the abstract value approximation is ν, then, Ω is ε-optimal, with

ε = 2|S̄|(ξ + γ ν)
(1− γ)2 (3.13)

Proof. To prove the result, we first compute the sub-optimality that is caused by
executing one option from Ω. This will be extended to multiple options to conclude
the proof. In other words, we compute what is the difference in value between
executing Ω∗ and Ω, for one option each, then following the optimal policy π∗

afterwards. For any s ∈ S \ G, let o∗ and o be the relevant options in Ω∗ and Ω,
respectively. We bound the following difference in value:

|Q∗(s, o∗)−Q∗(s, o)| = Q∗(s, o∗)−Q∗(s, o) (3.26)

From an application of the upper and lower bound of lemma 3.3,

|Q∗(s, o∗)−Q∗(s, o)| ≤ (3.27)

≤
∑

s̄′∈S̄\{φ(s)}

∞∑
k=0

γk P(k, sk+1 ∈ bs̄′c | s, o∗)
(
I(s̄′ ∈ Ḡ) + γ (Wν(φ(s), s̄′) + ν)

)
−

∑
s̄′∈S̄\{φ(s)}

∞∑
k=0

γk P(k, sk+1 ∈ bs̄′c | s, o)
(
I(s̄′ ∈ Ḡ) + γ (Wν(φ(s), s̄′)− ν)

)
(3.28)

=
∑

s̄′∈S̄\{φ(s)}

(
I(s̄′ ∈ Ḡ) + γ Wν(φ(s), s̄′)

) ∞∑
k=0

γk (
P(k, sk+1 ∈ bs̄′c | s, o∗)− P(k, sk+1 ∈ bs̄′c | s, o)

)
+∑

s̄′∈S̄\{φ(s)}

∞∑
k=0

γk (P(k, sk+1 ∈ bs̄′c | s, o∗) + P(k, sk+1 ∈ bs̄′c | s, o)
)

γ ν (3.29)

Now we apply the abstract similarity of definition 3.5 and bound

|Q∗(s, o∗)−Q∗(s, o)| (3.30)

≤
∑

s̄′∈S̄\{φ(s)}

(
I(s̄′ ∈ Ḡ) + γ Wν(φ(s), s̄′)

) ∞∑
k=0

γk ξ +
∑

s̄′∈S̄\{φ(s)}

∞∑
k=0

γk+1 2 ν (3.31)

=
∑

s̄′∈S̄\{φ(s)}

((
I(s̄′ ∈ Ḡ) + γ Wν(φ(s), s̄′)

) ξ

1− γ
+ 2 γ ν

1− γ

)
(3.32)

Since in a goal MDP the maximum value is 1, we know Wν(φ(s), s̄′) ≤ (1 + ν), for

56 3. Exploiting MDP Abstractions

all s ∈ S, s̄′ ∈ S̄. Moreover, if Wν satisfies eq. (3.10), the function W clip
ν (s̄, s̄′) :=

min{1, Wν(s̄, s̄′)} also satisfies it. Concluding,

|Q∗(s, o∗)−Q∗(s, o)| ≤
∑

s̄′∈S̄\{φ(s)}

((
1 + γ

) ξ

1− γ
+ 2 γ ν

1− γ

)
(3.33)

≤ |S̄|
(2 ξ

1− γ
+ 2 γ ν

1− γ

)
(3.34)

= 2|S̄|(ξ + γ ν)
1− γ

(3.35)

This is a bound on the value loss of executing a single option from the set Ω. To
this option set, equation (3) in Abel, Umbanhowar, et al. (2020) applies:

max
s∈S

V ∗(s)− V Ω(s) = 2|S̄|(ξ + γ ν)
1− γ

(3.36)

Then, the statement is also true, for any initial distribution µ.

57

Chapter 4

Realizing MDP decompositions

The content of this chapter is based on original work, developed in
collaboration with Luca Iocchi and Matteo Leonetti, and it will be
included as part of a future submission.

The previous chapter proposed a specific approach for utilising MDP abstractions
in RL algorithms, and it provided some results regarding how to relate the abstraction
and the ground MDP. This chapter is the natural continuation of the previous, since
it steps back from specific algorithms and applications, and aims to answer a
fundamental question: What is a “good” MDP abstraction? And, consequently,
what properties should it possess? These questions are very relevant for the broad
HRL community.

This chapter builds on previous material. We expect the reader to be familiar
with the background in section 3.2, for a broader picture of Hierarchical RL.

4.1 Introduction

There is a common intuition that drives many authors in HRL. That is, abstract
states correspond to sets of ground states, and abstract actions correspond to
sequences of ground actions. This was evident since the early work in HRL (Dayan
and Hinton 1992), and was largely derived from Hierarchical Planning, which HRL
extends. The works that focus on this double correspondence are the ones reported
in section 3.2 as state-action abstractions. However, two precise questions remain
still unanswered: which set of ground states should each abstract state correspond
to? Similarly, which sequence of actions should each abstract action correspond
to? The specific answers for both of these questions have a strong impact on the
applicability and the guarantees of the resulting abstractions.

Moreover, there is even no shared consensus on what MDP abstractions should

58 4. Realizing MDP decompositions

refer to. In the literature, the term “abstraction” is loosely used to refer to a variety
of concepts, including state partitions (L. Li, Walsh, et al. 2006; Wen, Precup, et al.
2020), bottleneck states (Jothimurugan, Bastani, et al. 2021), goal states (Nachum,
Gu, et al. 2018), options (Precup and Sutton 1997; Khetarpal, Klissarov, et al.
2020), entire MDPs (Ravindran and Andrew G. Barto 2002; Cipollone, De Giacomo,
et al. 2023a), or even the natural language (Y. Jiang, Gu, et al. 2019). Because of
all these scattered notions, this chapter explicitly and formally defines what MDP
abstractions are and what properties they should satisfy. This is not made in an
attempt to identify the best single definition of MDP abstractions and to discard
all the others. In fact, each work may have different needs and desires to provide a
specific amount of prior knowledge to the HRL algorithm they develop. However,
as we will see, the abstractions that we propose are general, they allow agents to
reason in a truly compositional way, and they satisfy near-optimal properties.

In this work, we say that the abstraction of an MDP is another decision process
together with a mapping function that relates the two state spaces. Specifically, an
abstraction for some MDP M is defined as the pair 〈M̄, φ〉, where M̄ is a 2-MDP
and φ : S → S̄ is a function connecting the two state spaces. We recall that k-MDPs
have been defined on page 18. This choice will be motivated in the next sections, but,
generally, 2-MDPs come from the need to capture dependencies on the previous time
step. With a minor inaccuracy, we will naturally say that MDPs are also 2-MDPs.
Specifically, they are 2-MDPs in which the penultimate observation and action have
no influence on the transition and reward functions. This is important because
some pair 〈M̄, φ〉, where M̄ is an MDP, also fits our definition of MDP abstractions.
This makes the abstraction used here consistent with that of chapter 3 and possibly
others in the literature, where abstract MDPs are more common (Ravindran and
Andrew G. Barto 2002).

Within this generic framework, we will be able to identify criteria that make
an MDP abstraction appropriate for some ground MDP. This answers the general
question of what is a “good” MDP abstraction and also identifies which ground
elements each abstract state or action corresponds to.

We summarise the contributions of this work.

• In section 4.3, we transform the most common intuitions in HRL into specific
relations, involving well known elements of MDPs. In particular, the probability
of the abstract transitions will be related to the occupancy measures of the
ground options. Similarly, the immediate rewards will be related to specific
ground values. These relationships are original contributions of this work.
Based on this, we define a new notion called realizable abstractions.

• In section 4.4, we verify that realizable abstractions allow us to obtain near-

4.2 Preliminaries 59

optimal policies in the ground MDP. In particular, theorem 4.1 shows that, if
an MDP abstraction is approximately realizable, any abstract policy can be
implemented as a policy for the ground MDP, achieving approximately the
same value obtained in the abstraction. Moreover, the ground policy can be
obtained compositionally.

• In section 4.5, we explore two complementary problems. We address how realiz-
able abstractions can be realized into ground policies, and how ground options
can be represented as abstract transitions. Both are important steps towards
the development of learning algorithms based on realizable abstractions.

• Finally, the analysis of the abstraction process allowed us to identify a specific
relationship between the abstract and the ground effective horizons, (1− γ)−1

and (1− γ̄)−1. It is a shared opinion that γ̄ may be reduced with respect to
γ, if the abstraction allows shortening of the effective horizon. However, we
identify a necessary condition, in assumption 4.1, that expresses when this
compression is indeed possible.

Although we will generally use mathematical notation for finite spaces, all properties
and methods remain well defined for ground MDPs with infinite state spaces.

4.2 Preliminaries

This chapter builds on the conventions set in the previous chapters. Apart from the
classic notions related to MDPs, we will need 2-MDPs, defined from k-MDPs on
page 18, occupancy measures at page 22, options, φ-relative options, and policies of
options from section 3.3.

For a uniform notation, in this chapter we use the term “states”, and write s ∈ S,
for the observations that are generated by both MDPs and 2-MDPs. In particular,
2-MDPs will be used as models for the abstract decision process. This allows us to
model dependencies on the penultimate state. Since the penultimate action will not
be used, we only consider 2-MDPs in which transitions and reward functions are
constant with respect to it. Also, we take the reward functions to be deterministic in
the last state and action. This last choice is only a slight simplification and only for
the learning setting, where rewards are sampled. For the most part, deterministic
rewards are fully equivalent to expectations of stochastic rewards functions. In
summary, in this chapter we work with 2-Markov Decision Processes defined as
tuples 〈S,A, T, R, γ〉, where the transition and reward functions are T : S2 → ∆(S)
and R : S2 →R. As usual, without loss of generality, we take rewards normalized as
R ⊆ [0, 1]. These models evolve as follows: s0 ∼ µ := T (s◦s◦a◦), s1 ∼ T (s◦s0a1), and

60 4. Realizing MDP decompositions

st ∼ T (st−2st−1at), where s◦ and a◦ are reserved start symbols. Rewards evolve in a
similar way, according to the function R. An MDP is a 1-Markov Decision Process.

Regarding options in MDPs, we extend the classic definition by generalising
initiation sets to pairs of states, thus introducing a similar dependency to the one
of 2-MDPs. An option for an MDP M, is a temporally extended action, defined
in this chapter as o = 〈Io, πo, βo〉, where Io ⊆ S2 is an initiation set composed
of pairs of states, πo ∈ Π is the policy that o executes, and βo : S → {0, 1} is a
termination condition. Then, any option is applicable at the end of a trajectory
at−1rt−1st−1atrtst iff st−1st ∈ Io. Note that this is not meant to be an option for
2-MDPs, but for MDPs, because the policy remains Markovian, only the initiation
set is generalised. So, this is only a minor change.

The option o = 〈Io, πo, βo〉 is said to be φ-relative if there exists two distinct
s̄p, s̄ ∈ S̄ such that

Io = bs̄pcφ × bs̄cφ, βo(s) = I(s 6∈ bs̄cφ), πo ∈ Πs̄ (4.1)

where Πs̄ : bs̄cφ → ∆(A) is the set of partial policies defined for the relevant block.
Some set of options Ω is φ-relative iff all of its options are. In the following, we only
consider sets φ-relative options Ω = {o ∈ Ωs̄ps̄ for s̄ps̄ ∈ S̄2, s̄p 6= s̄}, where Ωs̄ps̄ is
the set of all options satisfying eq. (4.1). In addition, we write generic φ-relative
options for s̄ as Ωs̄ := ∪s̄pΩs̄ps̄. Anhigh-level deterministicel policy π̄ : S̄2 → Ω over
φ-relative options Ω corresponds to a unique subset Ω′ ⊆ Ω, containing one option
per bs̄pcbs̄c pair. We call Ω′ a policy of options, as it can be fully treated as a policy.
In particular, V Ω′ is value of the policy that always executes the only applicable
option in Ω′ until termination.

Finally, to discuss connections with other methods from the literature, we also
introduce the following definition.

MDP Homomorphisms MDP homomorphisms are a classic formalism for MDP
minimisation (Ravindran and Andrew G. Barto 2002). A homomorphism from an
MDP M = 〈S,A, T, R, γ〉 to another M̄ = 〈S̄, Ā, T̄ , R̄, γ〉 is a pair 〈f, {gs}s∈S〉, with
a function f : S → S̄ and surjections gs : A → Ā, satisfying

T̄ (f(s′) | f(s) gs(a)) =
∑

s′′∈bf(s′)c
T (s′′ | s a) (4.2)

R̄(f(s) gs(a)) = R(s a) (4.3)

for all s, s′ ∈ S, a ∈ A. For simplicity, here we assumed that all actions are applicable
in any state. MDP homomorphisms can also be generalised to be approximate as
shown in Ravindran and Andrew G Barto (2004).

4.3 Realizable Abstractions 61

s̄1

s̄2
s̄3

x x x
x x

e e e

Figure 4.1. In this example, the ground MDP is a grid-world domain, and the abstraction
has three states. Entries e and exits x are explained in the paragraph of eq. (4.4).

4.3 Realizable Abstractions

As anticipated in the introduction, we say that the abstraction of an MDP M =
〈S,A, T, R, γ〉 is some pair 〈M̄, φ〉, where M̄ = 〈S̄, Ā, T̄ , R̄, γ̄〉 is a 2-MDP, and
φ : S → S̄ is a surjective function. Any such mapping function φ induces a partition
over the ground state space as {bs̄c}s̄∈S̄ . As we can see, each component of the tuple
that defines the abstract decision process can differ. Thus, it is essential to establish
some precise relation between the two models.

We will start this section with some intuitions, examples, and desired properties.
All these generic requirements will be then captured by the notion of “realizable
abstractions”. This will also motivate our use of abstract 2-MDPs instead of the
more classic MDPs. Let us set up the following running example of fig. 4.1. This
example will be used for illustrating some properties, but abstractions should be
very generic, and they should be appropriate for a variety of domains. The ground
MDP of the example is a small grid-world domain with actions that allow to move in
the four cardinal directions, unless there is a wall. Optionally, we may also consider
a failure probability with some unwanted effect. As abstraction, we choose a decision
process composed of three states S̄ = {s̄1, s̄2, s̄3} and three actions Ā = {ā1, ā2, ā3}.
The purpose of each action is to represent a “go to” movement for each destination
state. In the first discussion, we will say that M̄ is an MDP. Finally, the mapping
function φ : S → S̄ is chosen as indicated by the colours.

Assuming that all these elements are set, how should the other elements be
defined? How should we define the transition function, reward function, and discount
factor in the abstract decision process? If we choose to model the abstract decision
process as an MDP, we could make the following choices. Intuitively, the probability
T̄ (s̄3 | s̄1 ā3) should represent how likely it is, in the ground MDP, to end up in
the yellow block, when starting from the grey block, under some policy represented
by ā3. This policy should be some that attempts to reach any state in bs̄3c. So, as
an extreme case, T̄ (s̄3 | s̄2 ā3) = 0 should mean that no direct path is possible from
the green to the yellow block, which is the case in fig. 4.1. Regarding rewards, we

62 4. Realizing MDP decompositions

say that R̄(s̄1ā3) should represent the total return accumulated while executing the
policy represented by ā3 in bs̄1c.

We already identified a correspondence between the probability of abstract
transitions and the likelihood of ground paths between the corresponding blocks.
The second relationship we find is between abstract probabilities and a notion of
time in the ground MDP. In fact, we might expect that the cost (value loss) of
the abstract transition s̄1 s̄3 should also increase if, in the ground MDP, any
path between bs̄1c and bs̄3c requires many steps to complete. This relationship only
holds when working with discounted values. In fact, T̄ (s̄3 | s̄1 ā3) will also be low if
many steps are needed between the two respective blocks. Due to this effect, our
abstractions do not force a specific discount factor, but allow γ̄ < γ, whenever the
ground MDP admits a uniform compression of the effective horizon. This choice,
whenever possible, allows for transferring some value loss from the abstract transition
probabilities to the abstract discount factor.

These intuitions already allow one to make some specific choices. Since abstract
transitions should represent direct paths in the ground MDP, which do not end until a
new block is reached, we choose to associate abstract actions Ā to φ-relative options
in M. Also, because of this probability–time duality, abstract transitions will be
put in relation with occupancy measures of the ground MDP. Similarly, abstract
rewards will be related to specific ground value functions.

Finally, we motivate our choice of 2-MDPs for the abstract decision process. In
the above example, if M̄ is an MDP, then a single transition probability T̄ (s̄3 | s̄1 ā3)
would be taken as representative of a multitude of initial states in the grey block bs̄1c.
Since there might be many states in each block, in general, it would be infeasible
to represent their dynamics under a single value. Even in the small example of
fig. 4.1, depending on the initial grey state, the shortest path from bs̄1c to bs̄3c can
take from 1 to 18 steps. This issue is at the heart of what the literature calls the
non-stationarity effect of Hierarchical RL representations. To address this issue, we
observe that this path length is strongly dependent on whether the penultimate
block was bs̄3c or bs̄2c (being very easy to immediately re-enter bs̄3c from bs̄1c, just
after leaving it). For this reason, we generally consider abstract decision processes as
2-MDPs, in which it is possible to express that T̄ (s̄3 | s̄3 s̄2 ā3) should be associated
to a much higher value than T̄ (s̄3 | s̄1 s̄2 ā3).

We now proceed to make all the statements and intuitions formal. For each two
distinct abstract states s̄p, s̄ ∈ S̄, we define the set of entry states of s̄ as the set of
ground states of bs̄c, at which it is possible to enter bs̄c from bs̄pc. Namely,

Es̄ps̄ := {s ∈ bs̄c | ∃sp ∈ bs̄pc,∃a ∈ A, T (s | sp a) > 0} (4.4)

4.3 Realizable Abstractions 63

Also, we define the set of exit states of bs̄c as all the ground states outside the block,
reachable in one transition. This is Xs̄ := ∪s̄′ 6=s̄Es̄s̄′ . Exit states are an intuitive
way to discuss boundaries in contiguous state partitions and are often found in the
HRL literature (Wen, Precup, et al. 2020; Infante, Jonsson, et al. 2022). In fig. 4.1,
each entry state in Es̄ps̄ is marked with an e, and each exit in Xs̄ is marked with
an x. There is one last possibility of entering a block, that is, through the initial
distribution µ. Although this is a technical and less interesting case, to capture this
possibility we will also consider the entries Es̄◦s̄. In this regard, we assume that the
start states are properly mapped as bs̄◦cφ = {s◦}.

A careful treatment of exits and entries is essential, as it allows us to develop
a truly compositional approach in which each block is treated separately. For this
purpose, associated with each abstract state, we define the block MDP as the portion
of the original MDP that is restricted to a single block and its exit states.

Definition 4.1. Given an MDP M = 〈S,A, T, R, γ〉 and a surjective function
φ : S → S̄, we define block MDP of some s̄ ∈ S̄ as Ms̄ = 〈Ss̄,A, Ts̄, Rs̄, γ〉, where:
Ss̄ := bs̄c ∪ Xs̄ ∪ {s⊥} includes the interested block, all the reachable states in one
transition, and a new sink state s⊥; the transition function is Ts̄(sa) := T (sa) if
s ∈ bs̄c and T (sa) := δs⊥ otherwise;1 the reward function is Rs̄(sa) := R(sa) if
s ∈ bs̄c and 0 otherwise.

Since any φ-relative option is a complete policy for the block MDP of s̄, we will
use do

s̄ to denote the state occupancy measure, as defined in eq. (2.18), computed
from policy πo in Ms̄. State occupancies will often be computed at exit states. In
fact, the abstraction should only reflect the “external” behaviour of some option,
not the path in specific ground states within the block. Thus, we define block
occupancies as a simple marginalisation over blocks.

Definition 4.2. For every MDP M, surjective function φ : S → S̄, we define the block
occupancy measure of s̄ ∈ S̄ and option o ∈ Ωs̄ at some s ∈ bs̄c, as the distribution
over next blocks: ho

s̄(s) ∈ ∆(S̄ ∪{s⊥}), with ho
s̄(s̄′ | s) :=

∑
s′∈b̄s′c do

s̄(s′ | s), if s̄′ 6= s⊥,
and ho

s̄(s⊥ | s) := do
s̄(s⊥ | s), otherwise.

We emphasize the role of the sink state s⊥. Although some options might
spend multiple steps in bs̄c, each exit state is always visited at most once along any
trajectory. This is thanks to the sink s⊥, as it will always be reached in the next
step. The block occupancy measure will play a major role in defining the abstract
transition probabilities. The abstract reward, instead, will be put in relation to the
total return accumulated within the block before reaching the exit states. This is
exactly captured by V o

s̄ (s), that is, the value of the option o in the block MDP of s̄.
1We recall that δs⊥ is the deterministic distribution. For discrete sets, δs⊥ (s) = I(s = s⊥).

64 4. Realizing MDP decompositions

These two elements, ho
s̄ and V o

s̄ , that are relative to the ground MDP, will be
related to analogous quantities in the abstraction. Specifically, this work identifies
that the block occupancy should be compared with the discounted probability of
entering each abstract state. Similarly, the block value should be related to the total
reward accumulated in the corresponding abstract state. Expanding these terms for
2-MDPs, we define the respective target values as follows. For each s̄p, s̄, s̄′ ∈ S̄ and
ā ∈ Ā, with s̄p 6= s̄, these are:

h̃s̄ps̄ā(s̄′) := (1− γ)(γ̄ T̄ (s̄′ | s̄ps̄ā) + γ̄2 T̄s̄ps̄ā T̄ (s̄′ | s̄s̄ā)) (4.5)

Ṽs̄ps̄ā := R̄(s̄ps̄ā) + γ̄ T̄s̄ps̄ā R̄(s̄s̄ā) (4.6)

with T̄s̄ps̄ā = T̄ (s̄ | s̄ps̄ā)
1− γ̄ T̄ (s̄ | s̄s̄ā)

Their structure is mainly motivated by the fact that these expressions sum all
the transition probabilities and rewards, accumulated over an indefinite number of
self-loops in s̄.

Realizable Abstractions Using the concepts above, we are finally ready to
provide a complete description of our MDP abstractions. We say that an abstract
action is realizable if the behaviour described by the abstract transitions and rewards
can be replicated (realized) in the ground MDP. More precisely, realizable actions
can be associated to options in the lower MDP which are associated to the required
occupancy measure and value.

Definition 4.3. Given an MDP M and an abstraction 〈M̄, φ〉, an abstract tuple
(s̄ps̄ā), with s̄p 6= s̄, is said (α, β)-realizable if there exists a φ-relative option o ∈ Ωs̄ps̄,
such that

h̃s̄ps̄ā(s̄′)− ho
s̄(s̄′ | s) ≤ α (4.7)

(1− γ)(Ṽs̄ps̄ā − V o
s̄ (s)) ≤ β (4.8)

for all s̄′ 6= s̄ and s ∈ Es̄ps̄. The option o is called the realization of (s̄ps̄ā). An
abstraction 〈M̄, φ〉 is said (α, β)-realizable in M if any (s̄ps̄ā) ∈ (S̄ ∪ {s̄◦})× S̄ × Ā
with s̄p 6= s̄ also is. A (0, 0)-realizable abstraction is perfectly realizable.

This definition essentially requires that the desired block occupancy and value,
computed from the abstraction, should be similar to the ones that are possible in
the ground MDP, from each entry state. This can be interpreted as requiring that
the abstraction should not be too optimistic about the transitions and values that
are possible in the ground decision process. Thanks to these requirements, we will
be able to show that abstract policies for realizable abstractions can be translated

4.4 Properties 65

s̄1

s̄2
s̄3

s1 s2

Figure 4.2. If T̄ (s̄3 | s̄2s̄1ā3) is high, relatively to γ and α, the tuple (s̄2s̄1ā3) becomes not
realizable.

into near-optimal policies in the ground MDP. Also, in case the abstraction is an
MDP, eqs. (4.5) and (4.6) and the above constraints simplify. Finally, we note that
the scale factor of (1− γ) was only added to eq. (4.8) to obtain two parameters in
the same range: α, β ∈ [0, 1].

Any two given α and β put a restriction on the possible mapping functions. In
fact, some partitions of the state space may not admit any satisfying 2-MDP over
the induced abstract states, especially if some entry state can achieve very different
transition probabilities or rewards. This is the case for the partition of fig. 4.2, if we
assume homogeneous probabilities in the 2D plane. In particular, if T̄ (s̄3 | s̄2s̄1ā3) is
relatively high, say 0.95, then the state-action (s̄2s̄1ā3) will likely not be realizable
in the grid-world, for small α, β. In fact, this would imply that, for some o ∈ Ωs̄2s̄1 ,
ho

s̄1(s̄3 | s1) should be similar to ho
s̄1(s̄3 | s2). For sensible values of γ, this is unlikely

to be true, due to the many more steps required to reach the yellow block when
starting in s1 instead of s2. Similar counterexamples can be constructed for rewards,
for example, by making only the vertical path from s1 very rewarding. As we can
see, realizability purposefully captures ideas that were already present in the HRL
literature. In particular, when the agent is in bs̄2c, the value of reaching bs̄1c should
be treated atomically, regardless of the specific entry state in Es̄2s̄1 that is reached.

4.4 Properties

The previous section has defined realizable MDP abstractions and described their
meaning. However, the HRL literature already includes many notions of abstractions.
A new definition is only valuable if it is applicable, which we have discussed already,
and if it possesses strong properties. In this section, we show that any abstract
policy for a realizable abstraction can be transformed into a ground near-optimal
policy, in a purely compositional way.

If some abstraction 〈M̄, φ〉 is (α, β)-realizable, then it is possible to associate
to each (s̄ps̄ā) ∈ S̄2Ā its realizing option. This means that, for every deterministic
abstract policy π̄, there exists some policy of options Ωπ̄, where, for each s̄ps̄ ∈ S̄2,

66 4. Realizing MDP decompositions

there is an associated option o ∈ Ωπ̄ ∩ Ωs̄ps̄ that is a realization of (s̄ps̄ π̄(s̄ps̄)). We
say that Ωπ̄ is a realization of π̄. We can finally state the following result.

Theorem 4.1. Let 〈M̄, φ〉 be an (α, β)-realizable abstraction of an MDP M, whose
initial distributions satisfy maxs̄|µ̄(s̄)−

∑
s∈b̄sc µ(s)| ≤ ξ. Then, if Ω′ is the realization

of some deterministic abstract policy π̄,

V̄ π̄
µ̄ − V Ω′

µ ≤ β

(1− γ)2 + α |S̄|
(1− γ)2(1− γ̄) + ξ |S̄|

1− γ̄
(4.9)

Proof. See page 85.

As always, all the proofs and necessary lemmas are in a dedicated section (4.7,
for this chapter). As we can see, the difference on the left is between the value of π̄ in
the abstract M̄, and the value of the realization Ω for the ground M. So, the value
loss is computed between the two decision processes. Essentially, this theorem proves
that (α, β)-realizability is enough to have strong guarantees on the minimal value
achieved by the realization. This result is generally applicable and of independent
interest. Also, if π̄ is the optimal policy of M̄, we can obtain a near-optimality
guarantee for its realization. For this second result, we take inspiration from the
role of heuristics in classical planning and say that “admissible” abstractions should
be optimistic models of the ground MDP.

Definition 4.4. An abstraction 〈M̄, φ〉 of an MDP M is admissible if V̄ ∗ ≥ V ∗.

Since admissible abstractions are optimistic, an admissible and (α, β)-realizable
abstraction can be interpreted as being optimistic by a bounded margin. We obtain
the following result.

Corollary 4.2. The realization of the optimal policy of any admissible and (α, β)-
realizable abstraction is ε-optimal, for

ε = β

(1− γ)2 + α |S̄|
(1− γ)2(1− γ̄) + ξ |S̄|

1− γ̄
(4.10)

Proof. If Ω∗ is the realization of π̄∗, the result follows from V ∗ ≤ V̄ ∗ ≤ V Ω∗ + ε.

To fully appreciate the importance of theorem 4.1 and corollary 4.2, we need
to remember that realizations can be computed in a compositional way. In other
words, there is no global optimisation involved in computing the ground policy of
options. In fact, for an option to be part of the realization it is sufficient that it
satisfies the constraints in eqs. (4.7) and (4.8). Since these constraints are expressed
in terms of the block MDP, their computation is completely independent of all the

4.4 Properties 67

other blocks and options. In this light, such near-optimality is the cost to be paid
for finding a policy as a union of shorter policies, without further computation.

To evaluate the scale of the bound in eq. (4.9), we recall that α and β are in [0, 1],
and that γ̄ ≤ γ. Importantly, the number of abstract states |S̄| at the numerator is
always a finite number, and the size of the ground state space, which is usually very
large or infinite, does not appear.

Realizable abstractions are flexible representations because they can encode a
variable amount of information content. If the ground domain is a goal MDP, we
might consider two extremes. One abstraction can be composed by just two states:
a goal and a non-goal state. Although this might be an admissible and perfectly
realizable abstraction, for a suitable transition function, it provides no information
content. In fact, realizing the only option would be as complex as solving the entire
MDP. On the other extreme, any MDP M can be abstracted by itself as 〈M, I〉,
where I : x 7→ x is the identity function. However, many intermediate abstractions
are also possible, although these will often not be perfectly realizable.

Proposition 4.3. Any MDP M admits 〈M, I〉 as an admissible and perfectly
realizable abstraction.

Proof. See page 79.

Although our abstractions are able to represent compressions along the time
dimension, they are not restricted to those. In fact, as a special case, they can
capture any MDP homomorphism in which compression only takes place with respect
to parallel symmetries of the states, without impacting the effective horizon.

Proposition 4.4. If 〈f, {gs}s∈S〉 is an MDP homomorphism from M and M̄, then
〈M̄, f〉 is an admissible and perfectly realizable abstraction of M.

Proof. See page 80.

The Value of Policies of Options We conclude this section by studying the
value of any policy of options in the ground MDP. What we show here is that
for generic state partitions and MDPs, the value of any policy of options can be
expressed as a composition of its options. Somehow, these results do talk about
realizable abstractions directly, since no abstract dynamics is involved and only
ground MDP and the partition induced by the mapping function appear. However,
they are preparatory to them. We delay minor lemmas to the proofs’ section and only
report proposition 4.5 among these intermediate results. Proposition 4.6, instead, is
an independent result. What it shows is that different policies can be compared in
terms of their respective behaviours in each block MDP. This is an original way to
compare the value of generic policies and is applicable even outside of HRL.

68 4. Realizing MDP decompositions

The results that follow are stated for deterministic options, for simplicity, but
they can be readily generalised to stochastic options by an appropriate expectation
over the output action. First, we express the value of a single option as follows.

Proposition 4.5. Consider any MDP M and surjective function φ : S → S̄. Then,
from any state s ∈ S, the value of any deterministic φ-relative option o ∈ Ωφ(s) and
policy π is

Qπ(s, o) =
∑
s′∈S

do
φ(s)(s

′ | s)
1− γ

(
I(s′ ∈ bφ(s)c) R(s′ o(s′)) + I(s′ ∈ Xφ(s)) V π(s′)

)
(4.11)

where do
φ(s) is the state occupancy measure of πo in the block-restricted MDP Mφ(s).

Proof. See page 81.

As we can see, the contribution of a single φ-relative option to the total value
is made up of two parts. The first half is the expected return accumulated within
the block. For generic stochastic options, if do

sa,φ(s) is the state-action occupancy
distribution of o in Mφ(s), then, the first half of the expression becomes V o

φ(s) or,
equivalently, (1−γ)−1〈do

sa,φ(s)(s), Rφ(s)〉. The second term, instead, only comprehends
the values that are found when leaving the current block in the exit states. Which
exits are visited, and how frequently, is still dictated by do

φ(s)(s).
As a final result for this section, we show that entire policies can be compared

using the formalism of relative options. In fact, given any mapping function, or any
partition of S, any policy is equivalent to a unique policy of options whose second
component of the initiation sets corresponds to the block in the partition. Therefore,
the following result is true for generic policies and MDPs.

Proposition 4.6. Given a state partition, let Ω1, Ω2 be two deterministic policies
of options in M over that partition. For each s̄ ∈ S̄ and o1 ∈ Ωs̄ ∩ Ω1, o2 ∈ Ωs̄ ∩ Ω2,
assume that ‖do1

s̄ − do2
s̄ ‖1 ≤ α and maxs∈b̄sc|R(s o1(s))−R(s o2(s))| ≤ β. Then, for

any state s ∈ S,
|V Ω1(s)− V Ω2(s)| ≤ α + β

(1− γ)2 + α

(1− γ)3 (4.12)

Proof. See page 82.

This result can be directly compared with Abel (2020, Theorem 1, eq. (4)), since
it computes the same value difference as we do here, in presence of φ-relative options
and state partitions. The improvement we have here is significant, especially because
our result does not involve the cardinality of the ground state space |S|. This is
critical since we would like to apply abstractions in MDP with large or infinite state
spaces.

4.5 Abstracting and Realizing 69

4.5 Abstracting and Realizing

As we saw in the previous sections, realizable abstractions have very desirable
properties for HRL, including compositionality and near-optimality. Following the
natural progress of this work, this section aims to answer two questions: how can
realizable abstraction be found, and later, used in RL? The first question goes from
the ground MDP to the high-level and can be seen as “abstracting” the low-level
domain. The second process, instead, goes from the high-level to the ground MDP
and, thanks to the properties we have identified, we know that it can be solved by
“realizing” abstract states and actions into ground options. Targeting these two
questions will also reveal further insights that are widely applicable in the HRL
literature, such as identifying when it is feasible to reduce the planning horizon with
abstractions.

Realizability of definition 4.3 quantifies and constrains for each entry state
s ∈ Es̄ps̄. We now define a slight relaxation where we consider some initial distribution
over the entry states, µs̄ps̄ ∈ ∆(Es̄ps̄). Depending on the specific approach or
algorithm, µs̄ps̄ is usually determined by the global policy that was active in bs̄pc.
This distribution allows us to marginalise with respect to initial states and only
express realizability over blocks. This is the notion that will be abstracted or realized
in the following text.

Definition 4.5. Given an MDP M and an abstraction 〈M̄, φ〉, an abstract tuple
(s̄ps̄ā), with s̄p 6= s̄, is (α, β)-realizable from a distribution ν ∈ ∆(Es̄ps̄), if there
exists a φ-relative option o ∈ Ωs̄ps̄, such that

h̃s̄ps̄ā(s̄′)− ho
ν(s̄′) ≤ α (4.13)

(1− γ)(Ṽs̄ps̄ā − V o
ν) ≤ β (4.14)

for all s̄′ 6= s̄, where ho
ν(s̄′) :=

∑
s ho

s̄(s̄′ | s) ν(s) and V o
ν :=

∑
s V o

s̄ (s) ν(s). The
option o is the realization of (s̄ps̄ā) from ν.

Being a relaxed definition, every realization is also a realization from any dis-
tribution, but not vice versa. Note that, due to marginalization, the terms ho

ν and
V o

ν are no longer dependent on the ground states. This means that realizability
from distribution consists exactly of |S̄| constraints, where |S̄| − 1 comes from the
block occupancies in eq. (4.13) and one from the value in eq. (4.14). This will be
the notion of realizability to be abstracted and realized.

70 4. Realizing MDP decompositions

Abstracting

Learning realizable abstractions from online experience is a very interesting research
direction, but it remains outside the scope of this thesis. Instead, what we will
discuss here is how to identify a suitable abstract transition and reward dynamics
when the ground values and occupancies are known or their estimates are. Here
we assume that ground MDP M, abstract states S̄ and actions Ā, and a mapping
function φ : S → S̄ are all given. For each block, we aim to find abstract transitions,
rewards, and discount factor, such that the constructed abstraction is realizable
in the ground domain. Specifically, consider a single abstract state-action tuple
(s̄ps̄ā), with s̄p 6= s̄. We assume that some entry distribution ν ∈ ∆(Es̄ps̄) and an
option o ∈ Ωs̄ps̄ for the relevant block are given. Then, we want to set the local
probabilities for the abstract transitions and rewards such as o is a realization. If ho

ν

and V o
ν are the relevant quantities as in definition 4.5, then algorithm 4.1 reaches

the objective. The algorithm also receives the abstract MDP in input. Although its
initialisation is irrelevant, passing M̄ in successive iterations allows us to preserve
the partial assignment computed in previous runs for different state-action tuples.
The correctness of this algorithm is stated below.

Algorithm 4.1: AbstractOne
Input: Abstract MDP M̄, tuple (s̄ps̄ā)
Input: Target block occupancy ho

ν , target value V o
ν

Output: Updated abstract MDP

1 M̄.T̄ (s̄′ | s̄ps̄ ā)← ho
ν(s̄′)

(1−γ)γ̄ for each s̄′ 6= s̄

2 M̄.T̄ (s̄ | s̄ps̄ ā)← 1−
∑

s̄′′ 6=s̄ T̄ (s̄′′ | s̄ps̄ ā)
3 M̄.R̄(s̄ps̄ ā)← min{1, V o

ν }

4 M̄.R̄(s̄s̄ ā)← max{0, V o
ν − 1}

(
ho

ν(s̄)
1−γ̄ − 1

)−1

5 M̄.T̄ (s̄′ | s̄s̄ ā)← 0 for each s̄′ 6= s̄

6 M̄.T̄ (s̄ | s̄s̄ ā)← 1
7 foreach s̄′

p ∈ S̄ \ {s̄p, s̄} do

8 M̄.T̄ (s̄′ | s̄′
ps̄ā)←

h̃s̄′
ps̄ā(s̄′)

(1−γ)γ̄ for each s̄′ 6= s̄

9 M̄.T̄ (s̄ | s̄′
ps̄ ā)← 1−

∑
s̄′′ 6=s̄ T̄ (s̄′′ | s̄′

ps̄ ā)
10 M̄.R̄(s̄′

ps̄ ā)← min{1, Ṽs̄′
ps̄ā}

11 end
12 return M̄

Proposition 4.7. Consider an MDP M, an abstraction 〈M̄, φ〉, any tuple (s̄ps̄ā)
with s̄p 6= s̄, distribution ν ∈ ∆(Es̄ps̄), option o ∈ Ωs̄ps̄, with associated targets ho

ν , V o
ν .

Then, under assumption 4.1, the output of AbstractOne(M̄, (s̄ps̄ā), ho
ν , V o

ν) is a

4.5 Abstracting and Realizing 71

valid 2-MDP and the option o is a perfect realization of (s̄ps̄ā) from ν.

Proof. See page 87.

Assumption 4.1. Given an MDP M, and an abstraction 〈M̄, φ〉, the abstract
discount factor γ̄ must satisfy, for each s̄p, s̄ ∈ S̄, option o ∈ Ωs̄ps̄, and s ∈ Es̄ps̄,

ho
s̄(s̄ | s) ≥ 1− γ̄ (4.15)

V o
s̄ ≤ ho

s̄(s̄ | s)/(1− γ̄) (4.16)

Proposition 4.7 says that the output decision process is a well-formed 2-MDP,
and (s̄ps̄ā) is (0, 0)-realizable from ν after the update of M̄. This function is correct
if the abstract discount factor satisfies assumption 4.1, which is an interesting fact.
Specifically, assumption 4.1 is the condition needed to guarantee a well-formed 2-
MDP after the assignment. We give an interpretation of this condition below because,
beyond our specific algorithm, this assumption provides more general insights about
abstract horizons in HRL.

Assumption 4.1 can be compactly expressed with a single inequality: ho
s̄(s̄ | s) ≥

(1− γ̄) max{1, V o
s̄ }. However, we want to emphasise that this is actually composed

of two independent parts, eq. (4.15) which only constrains occupancy and eq. (4.16)
which also involves value. The first says that γ̄ can only be low if the occupancy
in every block is high. In particular, if there exists an option o that leaves some
bs̄c in one step, then ho

s̄(s̄′ | s) = 1 − γ, and eq. (4.15) is only satisfied for γ̄ = γ.
The second says that γ̄ can only be low if V o

s̄ is also low with respect to ho
s̄. In

particular, if there exists an option o that collects in bs̄c a reward of 1 at each step,
then V o

s̄ = ho
s̄(s̄ | s)/(1− γ), and eq. (4.16) is only satisfied for γ̄ = γ. This allows

us to conclude that a time compression in the abstraction is possible if and only
if: (i) the changes between blocks occur at some lower timescale; (ii) rewards are
temporally sparse. This confirms some common intuitive understanding of the role
of γ̄ in the HRL literature. In addition, it confirms that sparse rewards are also
important and which is the exact relation to satisfy. Note, in fact, that if either of
the conditions above are not verified, no time compression is possible. Importantly,
γ̄ := γ is always a feasible choice.

The assignment in algorithm 4.1 is only one of many ways to construct consistent
abstractions. Regardless of the specific assignment, the existence of abstract states
introduces inevitable interactions between the transition probabilities of the tuples
(s̄ps̄) and (s̄′

ps̄). Choosing 2-MDPs instead of MDP strongly alleviated unwanted
interactions between different options starting from different blocks. However, some
degree of interaction is at the heart of the abstraction process, and it ultimately
translates into a constraint for the mapping function φ. As a special case, we

72 4. Realizing MDP decompositions

reconsider fig. 3.3, which has a non-trivial compression of the state space. Since
this is a goal MDP, with null rewards in non-goal states, the transition probabilities
of each (s̄ps̄) can be independently set to match the desired options’ occupancy in
eq. (4.7). More precisely, we can say that for any MDP M whose ground transition
function matches the support shown in the drawing of fig. 3.3 (top), there exists a
〈M̄, φ〉 that is perfectly realizable in M, with φ matching the block colours.

Realizing

In this conclusive subsection, we study the opposite problem, that is, how to find
realizations of abstract actions. If some realizable abstraction for M is given, our ob-
jective is to find a ground policy of options Ω′ that is the realization of each abstract
state and action of M̄. This is the missing step to allow future researchers to develop
efficient RL algorithms for MDPs in the presence of realizable abstractions. Similarly
to the “Abstracting” subsection of the previous page, we do not aim to define a single
algorithm here. Rather, we will identify the core principles and two generic templates
that can be integrated in more complete learning algorithms. Specifically, instead of
seeking to realize a complete abstraction, which would translate to a policy of options,
we study how a single tuple (s̄ps̄ā) can be realized as some option o ∈ Ωs̄ps̄. From the-
orem 4.1, we know that groups of these options are sufficient to achieve near-optimal
behaviour. Also, as a simplifying choice, instead of seeking the generic realizing
options of definition 4.3, we assume some entry distribution ν ∈ ∆(Es̄ps̄) is given, and
we will optimize for realizing options of (s̄ps̄ā) from ν as defined in definition 4.5.

Let us write cardinalities with uppercase letters, such as S̄ := |S̄|. We observe
that realizability from initial distributions introduces S̄−1 constraints from eq. (4.13)
and 1 constraint from eq. (4.14), for a total of S̄ constraints for each (s̄ps̄ā) ∈ S̄2Ā
with s̄p 6= s̄. Since each (s̄ps̄ā) comes with S̄ transition probabilities and 1 reward, for
a total of S̄ degrees of freedom, the problem seems to be well constrained. However,
note that no constraints are set for the tuples (s̄s̄ā).

In the following, we illustrate the principles for two solution methods: constrained
MDP solutions and primal-dual approaches.

Constrained MDPs (Ross 1985; Altman 1999) Constrained MDPs (CMDPs)
are an extension of classic MDPs and their associated RL problem to constrained
optimisation problems. The original value maximisation problem of RL can be
regarded as unconstrained, because the agent could choose any policy in Π. In a
CMDP, the feasible set of solutions is restricted to some subset of policies Πc ⊆ Π.
Then, the solution of a CMDP is arg maxπ∈Πc V π

µ , as policy maximisation, restricted
to Πc. To define the feasible set, CMDPs augment MDPs with auxiliary reward

4.5 Abstracting and Realizing 73

functions R1, . . . , Rc and minimum associated values v1, . . . , vc. The feasible set
of policies Πc is defined as the union of all policies whose value with respect to
the reward function Ri is at least vi, for each i = 1, . . . , c. Using an equivalent
formulation, most CMDP papers prefer to formulate constraints with cost function
and maximum costs. The two formalisms are equivalent. Unlike standard RL,
CMDPs allow encoding of both soft and hard constraints. This field has received
attention because of its relevance for RL safety issues and the encoding of hard
constraints in safety-critical systems. Constrained RL is a general framework. Some
general solution algorithms are already available (Achiam, Held, et al. 2017; Y.
Zhang, Vuong, et al. 2020), and more are expected to be developed in the future
due to its relevance. By expressing the realizability problem as a CMDP, we do not
restrict ourselves to a specific technique. Rather, we could realize abstract actions
with any algorithm that may be developed in the future for constrained RL. This is
especially relevant since the ground MDP is expected to be non-tabular, in general,
thus preventing the application of the most standard techniques.

Among all S̄ constraints, we choose to represent the S̄ − 1 inequalities of (4.13)
over transition probabilities as explicit hard constraints and the single inequality
of eq. (4.14) as a soft constraint. Since we assumed that (s̄ps̄ā) is indeed (α, β)-
realizable, there will be at least one option o∗ ∈ Ωs̄ps̄, obtained as the maximization
of V o

ν , which satisfies all the S̄ original constraints. Specifically, we rewrite the hard
constraints as:

ho
ν(s̄′) ≥ h̃s̄ps̄ā(s̄′)− α (4.17)

1
1− γ

∑
s∈S

ho
s̄(s̄′ | s) ν(s) ≥

h̃s̄ps̄ā(s̄′)− α

1− γ
(4.18)

1
1− γ

∑
s,s′∈S

do
s̄(s′ | s) I(s′ ∈ bs̄′c) ν(s) ≥

h̃s̄ps̄ā(s̄′)− α

1− γ
(4.19)

V o
ν,s̄′ ≥

h̃s̄ps̄ā(s̄′)− α

1− γ
(4.20)

where V o
ν,s̄′ is the value function of o in the block MDP Ms̄ with reward function

I(s′ ∈ bs̄′c) instead of Rs̄. In summary, we have just reformulated the problem of
realizing any tuple (s̄ps̄ā) in some MDP M as the problem of solving the following
CMDP:

arg max
π∈Π

V π
s̄ s.t. V π

ν,s̄′ ≥
h̃s̄ps̄ā(s̄′)− α

1− γ
(4.21)

In other words, the auxiliary reward functions are Ri(s a) := I(s′ ∈ bs̄′c) with limits
vi := (h̃s̄ps̄ā(s̄′)− α)/(1− γ). The output is a policy for the block MDP Ms̄, which
can be equivalently seen as a φ-relative option for the full MDP M.

74 4. Realizing MDP decompositions

LP Formulation For this second solution approach, we show that the realizability
problem can be formulated as a linear program, and solved using primal-dual
techniques. This may come as little surprise, since the Lagrangian formulation is
one of the possible solution methods for constrained optimisation problems such as
CMDPs. However, we present these two techniques separately, since some CMDP
methods may be more closely related to Deep RL algorithms, and they can appear
quite different from online stochastic optimisation algorithms for linear programs.
An example of this second direction is Y. Zhang, Vuong, et al. (2020). Similarly,
primal-dual techniques have also been developed independently of CMDPs, and they
are often presented as solution methods for unconstrained RL.

The linear programming (LP) formulation of optimal planning in MDPs dates
back to Bertsekas (1995) and, later Puterman (1994). Planning with the tabular
formulation was already known. Later research focused on finding optimal policies
for non-tabular MDPs, in presence of generative simulators or online, (de Farias and
Roy 2003; Mahadevan, B. Liu, et al. 2014; Y. Chen and M. Wang 2016; Tiapkin
and Gasnikov 2022; Gabbianelli, Neu, et al. 2023; Neu and Okolo 2023). Currently,
research efforts focus on reaching all these objectives in the more demanding online
setting. Similarly to the CMDP formulation above, the linear program we propose
here may be solved with any feasible algorithm for this setting.

For a generic MDP, the classic LP formulation of optimal values can be compactly
expressed by using the vector notation for the reward function R ∈ RSA, the initial
distribution ν ∈ RS , and other matrices which will be introduced next. The matrix
that copies elements for each action is E ∈ RSA×S with E(sa, s′) := I(s = s′).
Transitions are also written as a matrix P ∈ RSA×S where P (sa, s′) := T (s′ | sa).
Consider the following linear program:

max
b∈RSA: b≥0

bT R

s.t. ET b− γ P T b = (1− γ) ν

(4.22)

The constraint expressed here in vector notation is the Bellman flow equation
on the state-action occupancy distribution b∗. At the optimum, the solution b∗

is the discounted state-action occupancy measure of the optimal policy, and we
have ET b∗ = dπ∗

ν . In addition, the objective is the scaled optimal value V ∗ =
〈b∗, R〉/(1− γ). The dual linear program is

min
V ∈RS

(1− γ) µT V

s.t. E V − γ P V ≥ R
(4.23)

and the optimum of this problem is V ∗, the value of the optimal policy. Solving either

4.5 Abstracting and Realizing 75

the primal or the dual problem is equivalent to solving the given MDP. The references
cited above are only some of the works that adopt this linear formulation to find
the optimal policy. For generalising to non-tabular MDPs, the linear formulation is
often expressed in feature space. Here we keep the tabular equations for simplicity.

The LP formulation above will be now applied for each block MDP and modified
to introduce additional constraints. Similarly to our choice for CMDPs, we only
express the constraint on occupancy distributions. Due to the equality constraint,
the vector b is forced to be a state-action occupancy distribution. Thus, all S̄ − 1
constraints (4.13) can be written in the primal program as BT b ≥ h̃s̄ps̄ā − α, where
BT ∈ RSA×(S̄−1) is the matrix that sums all occupancies across states and actions
for one block as BT (s̄, sa) := I(s̄ = φ(s)). The linear program becomes

max
b∈RSA: b≥0

bT R

s.t. ET b− γ P T b = (1− γ) µ

−BT b ≤ α− h̃s̄ps̄ā

(4.24)

Computing the dual of this program we have:

min
V ∈RS , y∈RS̄−1, y≥0

(
(1− γ) µ

α− h̃s̄ps̄ā

)T (
V

y

)

s.t.
(
E − γP −B

)(V

y

)
≥ R

(4.25)

We do not need to encode the second constraint on reward because, if (s̄ps̄ā)
is realizable, the optimum will satisfy both eqs. (4.13) and (4.14). Finally, the
Lagrangian can be written as:

L(V, y; b) = bT R + V T (ET b− γ P T b− (1− γ) µ) + yT (−BT b + h̃s̄ps̄ā − α) (4.26)

= (1− γ)µT V + (α− h̃s̄ps̄ā)T y + bT (γPV − EV + By + R) (4.27)

and the solution to the linear program expressed as

min
V, y≥0

max
b≥0

(1− γ)µT V + (α− h̃s̄ps̄ā)T y + bT (γPV − EV + By + R) (4.28)

This is a saddle-point problem whose solution encodes is the realizing option. Once an
optimum (V ∗, y∗, b∗) is found, the policy can be reconstructed by normalising b∗ over
states as πo(a | s) := b∗(sa)/

∑
s′ b∗(s′a). Although nontrivially, this saddle-point

may also approximated iteratively by online approximation methods by performing
(projected) gradient descent-ascent along the respective gradients. We do not explore
the details of this possibility here.

76 4. Realizing MDP decompositions

The dual vector y gives interesting insights about how this formulation works.
Looking at the constraint in (4.25), the variables y play the role of artificial rewards,
or terminal values, that are placed at exit states. In other words, these variables
are excess values that are needed to incentivise an increased state occupancy at
exit states. This is consistent with the classic interpretation of slack variables in
dual programs. From an HRL perspective, on the other hand, each entry of y is
related to the terminal value associated with neighbouring blocks. This is what
causes the optimization problem to shift from pure maximization of the block value
V o

ν , towards a compromise between the current block and future more rewarding
blocks. Therefore, if the optimal vector y∗ was known in advance, the realizability
problem of each abstract state and action could be solved simply by setting the
rewards of the block MDP as

Rs̄(sa) :=

R(sa) if s ∈ bs̄c

y∗(φ(s)) if s ∈ Xs̄

0 if s = s⊥

(4.29)

and optimizing the classic RL objective over Ms̄ with any (Deep) RL technique.

4.6 Discussion

We close this chapter with a conclusive description of the specific contributions.
Moreover, at this point of the text, we will be able to do a more detailed comparison
with related works from the literature.

This chapter addressed a very general issue in the HRL literature. It introduced a
precise class of MDP abstractions, and it showed their properties. These abstractions
have been presented independently of any learning algorithm because the properties
that we have identified have a more general significance. At the core of the new
realizable abstractions from definitions 4.3 and 4.5, there is the basic intuition that
realizing an abstract transition should aim to replicate both its probability and
the accumulated reward. In the presence of discounting, there is a well-understood
duality between probability and time. Therefore, these two had been related to their
discounted counterparts: occupancy measures and values. Although we have always
used the mathematical notation specific for finite sets, our concepts readily generalize
in the case where the ground state space is infinite. In particular, we notice that
all the relevant notions for ground MDPs, including block partitions, exit states,
block MDPs, occupancies, values and expectations, all remain well-defined when the
ground state space is infinite. In contrast, abstract states are always assumed to be in
finite number. We argue that this is often implicitly assumed in most work in HRL.

4.6 Discussion 77

In addition to being intuitive, our abstractions allow for obtaining near-optimality
guarantees on the ground policies, in corollary 4.2. Since ground policies are obtained
as the union of individual options, the learning algorithm for the ground MDP
can act in a truly compositional way, as desired. These abstractions also allow
for a significant reduction in the abstract effective horizon, whenever possible,
as expressed in assumption 4.1. Finally, in section 4.5, we highlighted the main
components for developing learning algorithms that are capable both of active
abstraction and of realization into ground policies. An important feature of realizable
abstractions is that they can incorporate a variable amount of information content.
In fact, they may be defined as having an identical state space with approximate
probabilities and overestimated rewards, or they may be composed of just two states
for goal MDPs. The formulation also adapts to many intermediate representations
in between.

This work represents abstract decision processes as 2-MDPs because their second-
order dependencies perfectly capture the differences in occupancy measures that
depend on the penultimate block visited. A similar beneficial effect can also be
observed for rewards. However, because rewards are accumulated within the block,
the effect is not as strong. Abstractions could also be modelled as MDPs without
any change to our approach. However, for nontrivial compressions of the state space,
this choice may result in larger parameters (α, β) and weaker guaranteed realizations.
On the opposite side of the spectrum, the advantage of using 3-MDPs instead of
2-MDPs would be marginal.

We will now try to connect our methods with others from the literature. Regard-
ing occupancy measures, our extensive use of state distributions is mostly motivated
by their widespread occurrence in MDP planning and learning, but we have also
been strongly influenced by the seminal work on Successor Representations (Dayan
1993). These representations have also been used very recently in (Machado, Barreto,
et al. 2023). However, their analysis falls short of capturing their prime role for
HRL, as well as the exact properties to satisfy.

Although (Abel, Umbanhowar, et al. 2020; Abel 2020) do not treat MDP
abstractions as separate decision processes, it is possible to have a comparison
specifically for the analyses of ground φ-relative options and policies of options. In
particular, proposition 4.6 can be compared with Abel, Umbanhowar, et al. (2020,
Theorem 1). The bound that we obtain is significantly improved, mainly because the
cardinality of the ground state space does not appear in the bound. We remind that
this might be very large or even infinite. Apart from this comparison, the two works
cannot be easily compared, since our work assumes explicit abstract transitions and
reward functions.

78 4. Realizing MDP decompositions

With respect to the previous chapter of this thesis, the parameterisation used
here, with (α, β), strictly improves over the abstract similarity and the abstract
value approximation of the previous work. In fact, the new analysis can consider
any policy, not only the optimal, it generalises over generic rewards, not only goal
states, and, unlike abstract similarity of chapter 3, α-realizability is not computed
by comparing probabilities for all time steps, but it results from the accumulation of
all probabilities.

The idea that state partitions can be seen as inducing a number of sub-MDPs
with independent dynamics has been used already in the HRL literature. See, for
example, Wen, Precup, et al. (2020) and Infante, Jonsson, et al. (2022). However,
in this work, through the introduction of the new sink state, it is possible to relate
the values and occupancies of the block MDP with abstract transitions and rewards.
These works have also been influential for our use of exit states and their value.
However, unlike in the algorithm “Planning with Exit Profiles” from Wen, Precup,
et al. (2020), our realization procedure does not assume that occupancy or the value
at exits is known in advance.

Similarly to our work, MDP homomorphisms are precise relations that link
two decision processes (Ravindran and Andrew G. Barto 2002, 2004). The most
significant difference is that, unlike our work, MDP homomorphisms cannot model
temporal abstraction and are mostly restricted to symmetries. Temporal abstraction
is a primary objective for this work. As such, we were able to avoid the collapsing state
abstractions and nonstationarity effects that often appear in HRL (Jothimurugan,
Bastani, et al. 2021).

Future Work This chapter provides a complete answer to the first general ques-
tion on page 27, namely, what should be considered “good” MDP abstractions.
However, the second question, asking how MDP abstractions can be used to improve
compositionality and sample efficiency, remains partially answered. Two directions
remain open to be explored in future work. The first is the development of a
complete and sample-efficient RL algorithm, which learns on the ground domain in a
compositional way by exploiting the properties of realizable abstractions. In fact, in
the second half of section 4.5, we have discussed the realization of each abstract tuple
independently, but we did not provide an end-to-end algorithm for HRL. The second
direction involves how to learn realizable abstractions from experience. The first half
of section 4.5, had provided essential insights, limited to each option. However, we
did not discuss how to estimate the abstract discount factor or the global transition
and rewards functions from experience. On the other hand, estimating good state
partitions may be too challenging to pursue at the moment.

4.7 Proofs 79

4.7 Proofs

This section contains all the proofs for this chapter. The reader may skip this section
and refer to it as needed.

Proposition 4.3. Any MDP M admits 〈M, I〉 as an admissible and perfectly
realizable abstraction.

Proof. The ground domain is M = 〈S,A, T, R, γ〉 and the abstraction is 〈M, I〉.
Since admissibility is trivially satisfied, we just need to show that this is a perfectly
realizable abstraction. The identity function induces the naive partitioning, in which
each state is in a separate block: bscI = {s}. Also, if we just consider deterministic
I-relative options, we see that these are simple repetitions of the same action for the
same state. We can now compute the un-normalized block occupancy measure at
any state s ∈ S and deterministic o ∈ Ωs. Then, for s′ 6= s,

ho
I(s)(s

′ | s)
1− γ

=
∑

s′∈bI(s′)c

∞∑
t=0

γt P(st = s′ | s0 = s, o, MI(s)) (4.30)

=
∞∑

t=1
γt P(s0:t−1 ∈ bsct, st = s′ | s0 = s, o, Ms) (4.31)

=
∞∑

t=1
γt T (s | s o(s))t−1 T (s′ | s o(s)) (4.32)

= γ T (s′ | s o(s))
1− γ T (s | s o(s)) (4.33)

Now we compute un-normalized eq. (4.5) for M. Importantly, since T (spsa) =
T (ssa), we can just write T (sa):

h̃spsa(s′)
1− γ

= γ T (s′ | s a) + γ2 T (s | s a) T (s′ | s a)
1− γ T (s | s a) = γ T (s′ | s a)

1− γ T (s | s a) (4.34)

This proves that πo(s) = a is a perfect realization of a with respect to eq. (4.7). We
now consider rewards. The term V o

s (s), appearing in eq. (4.8), is the cumulative
return obtained by repeating action a (since it is the only reward in Ms).

V o
s (s) =

∞∑
t=0

γt P(st = s | s0 = s, a, Ms̄) R(s a) (4.35)

=
∞∑

t=0
γt T (s | s a)t−1 R(s a) (4.36)

= γ R(s a)
1− γ T (s | s a) (4.37)

Following a similar procedure of eq. (4.34), we also verify eq. (4.8).

80 4. Realizing MDP decompositions

Proposition 4.4. If 〈f, {gs}s∈S〉 is an MDP homomorphism from M and M̄, then
〈M̄, f〉 is an admissible and perfectly realizable abstraction of M.

Proof. If the ground domain is M = 〈S,A, T, R, γ〉, we choose as abstraction 〈M̄, f〉.
We compute the un-normalized block occupancy measure at any state s ∈ S and
deterministic option o ∈ Ωf(s). We also assume that o selects the same action for
every bf(s)c. Then, for s̄′ 6= f(s),

ho
f(s)(s̄

′ | s)
1− γ

=
∑

s′∈b̄s′c

∞∑
t=0

γt P(st = s′ | s0 = s, o, Mf(s)) (4.38)

=
∑

s′∈b̄s′c

∞∑
t=1

γt P(s0:t−1 ∈ bf(s)ct, st = s′ | s0 = s, o, Mf(s)) (4.39)

=
∞∑

t=1
γt

∑
s0:t−1∈bf(s)ct

∑
s′∈b̄s′c

P(s0:t−1, st = s′ | s0 = s, o, Mf(s)) (4.40)

Now, summing from s′ to st−1 back to s0 and substituting eq. (4.2),

=
∞∑

t=1
γt T̄ (f(s) | f(s) gs(o(s))t−1 T̄ (s̄′ | f(s) gs(o(s))) (4.41)

= γ T̄ (s̄′ | f(s) gs(o(s)))
1− γ T̄ (f(s) | f(s) gs(o(s)))

(4.42)

Now we compute un-normalized eq. (4.5) for M. Just like in eq. (4.34), since
T̄ (s̄ps̄ā) = T (s̄s̄ā), we can just write T (s̄ā) and:

h̃s̄ps̄ā(s̄′)
1− γ

= γ T̄ (s̄′ | s̄ ā)
1− γ T̄ (s̄ | s̄ ā)

(4.43)

This proves that πo(s) ∈ g−1
s (ā) is a perfect realization of ā with respect to eq. (4.7).

We now consider rewards. The term V o
f(s)(s), appearing in eq. (4.8), is

V o
f(s)(s) =

∞∑
t=0

γt
∑

s0:t∈bf(s)ct+1

P(s0:t | s0 = s, o, Mf(s)) R(s a) (4.44)

=
∞∑

t=0
γt T̄ (f(s) | f(s) o(a))t R̄(f(s) o(a)) (4.45)

= γ R̄(f(s) o(a))
1− γ T̄ (f(s) | f(s) o(a))

(4.46)

By comparison with Ṽs̄ps̄ā in eq. (4.8), the same choice πo(s) ∈ g−1
s (ā) also satisfies

the second constraint.

4.7 Proofs 81

Proposition 4.5. Consider any MDP M and surjective function φ : S → S̄. Then,
from any state s ∈ S, the value of any deterministic φ-relative option o ∈ Ωφ(s) and
policy π is

Qπ(s, o) =
∑
s′∈S

do
φ(s)(s

′ | s)
1− γ

(
I(s′ ∈ bφ(s)c) R(s′ o(s′)) + I(s′ ∈ Xφ(s)) V π(s′)

)
(4.11)

where do
φ(s) is the state occupancy measure of πo in the block-restricted MDP Mφ(s).

Proof. Let bs̄c(t) := bs̄ct−1 × (S \ bs̄c) be the set including all trajectories that leave
the block in exactly t transitions. We also abbreviate s̄ := φ(s).

Qπ(s, o) = R(s o(s)) + γ Es′ [I(s′ ∈ bs̄c) Qπ(s′, o) + I(s′ 6∈ bs̄c) V π(s′))] (4.47)

= R(s o(s)) + γ
∑

s′∈b̄sc
T (s′ | s o(s)) Qπ(s′, o) + γ

∑
s′ 6∈b̄sc

T (s′ | s o(s)) V π(s′) (4.48)

=
∞∑

t=0
γt

∑
s1:t∈b̄sct

P(s1:t | s0 = s, o, M) R(st o(st))

+
∞∑

t=1
γt

∑
s1:t∈b̄sc(t)

P(s1:t | s0 = s, o, M) V π(st) (4.49)

=
∞∑

t=0
γt

∑
s1:t∈b̄sct

P(s1:t | s0 = s, o, Ms̄) Rs̄(st o(st))

+
∞∑

t=1
γt

∑
s1:t∈b̄sc(t)

P(s1:t | s0 = s, o, Ms̄) V π(st) (4.50)

In the last equation, all probabilities are computed on the block-restricted MDP Ms̄.
This is equivalent, since all probabilities of transitions from bs̄c are preserved. Since
every trajectory that leaves the block may only reach s⊥, without further rewards in
Ms̄, we can simplify as follows.

Qπ(s, o) =
∞∑

t=0
γt

∑
s1:t∈St

s̄

P(s1:t | s0 = s, o, Ms̄) Rs̄(st o(st))

+
∞∑

t=1
γt

∑
s′∈Xs̄

P(st = s′ | s0 = s, o, Ms̄) V π(s′) (4.51)

= E
[∞∑

t=0
γt rt | s, o, Ms̄

]

+
∑
s′∈S

∞∑
t=1

γt P(st = s′ | s0 = s, o, Ms̄) I(s′ ∈ Xs̄) V π(s′) (4.52)

= V o
s̄ (s) +

∑
s′∈S

∞∑
t=0

γt P(st = s′ | s0 = s, o, Ms̄) I(s′ ∈ Xs̄) V π(s′) (4.53)

82 4. Realizing MDP decompositions

= (1− γ)−1 ∑
s′∈b̄sc

do
s̄(s′ | s) R(s′ o(s′))

+ (1− γ)−1 ∑
s′∈S

do
s̄(s′ | s) I(s′ ∈ Xs̄) V π(s′) (4.54)

=
∑
s′∈S

(1− γ)−1 do
s̄(s′ | s) (I(s′ ∈ bs̄c) R(s′ o(s′)) + I(s′ ∈ Xs̄) V π(s′)) (4.55)

Proposition 4.6. Given a state partition, let Ω1, Ω2 be two deterministic policies
of options in M over that partition. For each s̄ ∈ S̄ and o1 ∈ Ωs̄ ∩ Ω1, o2 ∈ Ωs̄ ∩ Ω2,
assume that ‖do1

s̄ − do2
s̄ ‖1 ≤ α and maxs∈b̄sc|R(s o1(s))−R(s o2(s))| ≤ β. Then, for

any state s ∈ S,
|V Ω1(s)− V Ω2(s)| ≤ α + β

(1− γ)2 + α

(1− γ)3 (4.12)

Proof. Let us denote with V
Ω1,2

k (s) the value of the policy that executes k consecutive
options from Ω1, then the options from Ω2 thereafter. Specifically in this regard, this
is a similar proof structure than the one used in Abel, Umbanhowar, et al. (2020).
Now, with an inductive proof, we show that

|V Ω2(s)− V
Ω1,2

k (s)| ≤
(

α + β

1− γ
+ α

(1− γ)2

) k−1∑
t=0

γt (4.56)

For the base case, V
Ω1,2

0 (s) = V Ω2(s). So the hypothesis is satisfied. For the
inductive case, with k ≥ 1, we have, for any o1 ∈ Ωs̄ ∩ Ω1 and o2 ∈ Ωs̄ ∩ Ω2, using
proposition 4.5,

|V Ω2(s)− V
Ω1,2

k (s)| = (4.57)

= 1
1− γ

∣∣∣∑
s′∈S

do1
φ(s)(s

′ | s) (I(s′ ∈ bφ(s)c) R(s′ o1(s′)) + I(s′ ∈ Xφ(s)) V Ω2(s′))

−
∑
s′∈S

do2
φ(s)(s

′ | s) (I(s′ ∈ bφ(s)c) R(s′ o2(s′)) + I(s′ ∈ Xφ(s)) V
Ω1,2

k−1 (s′))
∣∣∣ (4.58)

≤ 1
1− γ

∣∣∣ ∑
s′∈bφ(s)c

(do1
φ(s)(s

′ | s) R(s′ o1(s′))− do2
φ(s)(s

′ | s) R(s′ o2(s′)))
∣∣∣

+ 1
1− γ

∣∣∣ ∑
s′∈Xφ(s)

(do1
φ(s)(s

′ | s) V Ω2(s′)− do2
φ(s)(s

′ | s) V
Ω1,2

k−1 (s′))
∣∣∣ (4.59)

≤ 1
1− γ

∑
s′∈bφ(s)c

|do1
φ(s)(s

′ | s) R(s′ o1(s′))− do1
φ(s)(s

′ | s) R(s′ o2(s′))|

+ 1
1− γ

∑
s′∈bφ(s)c

|do1
φ(s)(s

′ | s) R(s′ o2(s′))− do2
φ(s)(s

′ | s) R(s′ o2(s′))| (4.60)

4.7 Proofs 83

+ 1
1− γ

∑
s′∈Xφ(s)

|do1
φ(s)(s

′ | s) V Ω2(s′)− do2
φ(s)(s

′ | s) V Ω2(s′)|

+ 1
1− γ

∑
s′∈Xφ(s)

|do2
φ(s)(s

′ | s) V Ω2(s′)− do2
φ(s)(s

′ | s) V
Ω1,2

k−1 (s′)| (4.61)

≤ 1
1− γ

∑
s′∈bφ(s)c

do1
φ(s)(s

′ | s) |R(s′ o1(s′))−R(s′ o2(s′))|

+ 1
1− γ

∑
s′∈bφ(s)c

R(s′ o2(s′)) |do1
φ(s)(s

′ | s)− do2
φ(s)(s

′ | s)|

+ 1
1− γ

∑
s′∈Xφ(s)

V Ω2(s′) |do1
φ(s)(s

′ | s)− do2
φ(s)(s

′ | s)|

+ 1
1− γ

∑
s′∈Xφ(s)

do2
φ(s)(s

′ | s) |V Ω2(s′)− V
Ω1,2

k−1 (s′)| (4.62)

≤ β

1− γ
+ α

1− γ
+ α

(1− γ)2

+
∑

s′∈Xφ(s)

∞∑
t=0

γt P(st = s′ | s0 = s, o1, Ms̄) max
s′′∈Xφ(s)

|V Ω2(s′′)− V
Ω1,2

k−1 (s′′)|(4.63)

≤ α + β

1− γ
+ α

(1− γ)2 +

max
s′∈Xφ(s)

|V Ω2(s′)− V
Ω1,2

k−1 (s′)|
∞∑

t=1
γt P(st ∈ Xφ(s) | s0 = s, o1, Ms̄) (4.64)

since it is impossible to visit states in Xφ(s) twice in Ms̄,

≤ α + β

1− γ
+ α

(1− γ)2 + γ max
s′∈Xφ(s)

|V Ω2(s′)− V
Ω1,2

k−1 (s′)| (4.65)

from induction hypothesis,

≤ α + β

1− γ
+ α

(1− γ)2 + γ

(
α + β

1− γ
+ α

(1− γ)2

) k−2∑
t=0

γt (4.66)

=
(

α + β

1− γ
+ α

(1− γ)2

) k−1∑
t=0

γt (4.67)

Now, to conclude,

|V Ω1(s)− V Ω2(s)| = lim
k→∞
|V Ω2(s)− V

Ω1,2
k (s)| = α + β

(1− γ)2 + α

(1− γ)3 (4.68)

84 4. Realizing MDP decompositions

Lemma 4.8. Let Ms̄ be any block MDP, computed from some MDP M, mapping
function φ and abstract state s̄. Then, for any option o ∈ Ωs̄, it holds:

do
s̄(s⊥ | s) = (1− ho

s̄(s̄ | s)) γ (4.69)∑
s′∈Xs̄

do
s̄(s′ | s) = (1− ho

s̄(s̄ | s)) (1− γ) (4.70)

Proof. In a block MDP, we remind that the occupancy measure is spread between
the block bs̄c, the exits and the sink state s⊥. In other words,∑

s′∈Xs̄

do
s̄(s′ | s) = 1−

∑
s′∈b̄sc

do
s̄(s′ | s)− do

s̄(s⊥ | s) = 1− ho
s̄(s̄ | s)− do

s̄(s⊥ | s) (4.71)

From the definition of occupancy, we also know that

do
s̄(s⊥ | s) = (1− γ)

∞∑
t=0

γt P(st = s⊥ | s0 = s, o, Ms̄) (4.72)

= (1− γ)
∞∑

t=1
γt P(st = s⊥ | s0 = s, o, Ms̄) (4.73)

= (1− γ)
∞∑

t=1
γt P(st−1 ∈ Xs̄ ∪ {s⊥} | s0 = s, o, Ms̄) (4.74)

= γ (1− γ)
∞∑

t=0
γt P(st ∈ Xs̄ ∪ {s⊥} | s0 = s, o, Ms̄) (4.75)

= γ

 ∑
s′∈Xs̄

do
s̄(s′ | s) + do

s̄(s⊥ | s)

 (4.76)

Substituting eq. (4.71) into eq. (4.76) gives the result.

Lemma 4.9. In any 2-MDP M and deterministic policy π, for any two distinct
states sp ∈ S ∪ {s◦} and s ∈ S,

V π(sps) = Rsps +
γ Ts|sps

1− γ Ts|ss
Rss +

∑
s′∈S\{s}

(
γ Ts′|sps +

γ2 Ts|sps Ts′|ss

1− γ Ts|ss

)
V π(ss′)

(4.77)
where Ts3|s1s2 := T (s3 | s1s2 π(s1s2)) and Rs1s2 := R(s1s2 π(s1s2)).

Proof. We use the abbreviations Ts1|s1s2 and Rs1s2 to avoid excessive verbosity.
Then,

V π(sps) =
∑
s′∈S

Ts′|sps (Rsps + γ V π(ss′)) (4.78)

= Rsps +
∑

s′∈S\{s}
Ts′|sps γ V π(ss′) + Ts|sps γ V π(ss) (4.79)

4.7 Proofs 85

= Rsps +
∑

s′∈S\{s}
Ts′|sps γ V π(ss′) + Ts|sps γ Rss (4.80)

+ Ts|sps γ Ts|ss γ V π(ss) + Ts|sps γ
∑

s′∈S\{s}
Ts′|sps γ V π(ss′) (4.81)

= Rsps + γ Ts|sps Rss

∞∑
t=0

γt T t
s|ss

+
∑

s′∈S\{s}
γ Ts′|sps V π(ss′) + γ Ts|sps

∑
s′∈S\{s}

γ Ts′|ss V π(ss′)
∞∑

t=0
γt T t

s|ss (4.82)

= Rsps +
γ Ts|sps

1− γ Ts|ss
Rss +

∑
s′∈S\{s}

(
γ Ts′|sps +

γ2 Ts|sps Ts′|ss

1− γ Ts|ss

)
V π(ss′) (4.83)

Theorem 4.1. Let 〈M̄, φ〉 be an (α, β)-realizable abstraction of an MDP M, whose
initial distributions satisfy maxs̄|µ̄(s̄)−

∑
s∈b̄sc µ(s)| ≤ ξ. Then, if Ω′ is the realization

of some deterministic abstract policy π̄,

V̄ π̄
µ̄ − V Ω′

µ ≤ β

(1− γ)2 + α |S̄|
(1− γ)2(1− γ̄) + ξ |S̄|

1− γ̄
(4.9)

Proof. First, let us define an abbreviation for the set of previous states, S̄◦ := S̄∪{s̄◦}.
To relate the two values, we start by inductively defining a set of functions V0, V1, . . .

as V0(sps) := V̄ π̄(φ(sp)φ(s)), and

Vk(sps) := E
[
go + γt Vk−1(st−1st) | sps, o ∈ Ω′ ∩ Ωφ(sp)φ(s)

]
(4.84)

where go is the cumulative discounted return of the option o.
With an inductive proof, we show that, for every k ∈ N, s̄p ∈ S̄◦, sp ∈ bs̄pc,

s ∈ Xs̄p ,

V̄ π̄(s̄ps̄)− Vk(sps) ≤
k∑

i=0
γi β (1− γ̄) + α S̄

(1− γ)(1− γ̄) (4.85)

where, for this derivation, we are using the syntactic abbreviation s̄ := φ(s) and
S̄ := |S̄|. For the base case, k = 0 and V0(sps) = V̄ π̄(s̄ps̄) everywhere. Now, for the
inductive step, we apply lemma 4.9 and proposition 4.5 to the two value functions,
respectively. We also use the same abbreviations of lemma 4.9, T̄s̄3|s̄1s̄2 and R̄s̄1s̄2 .
Then,

V̄ π̄(s̄ps̄)− Vk(sps) = (4.86)

= R̄s̄ps̄ +
γ̄ T̄s̄|s̄ps̄

1− γ̄ T̄s̄|s̄s̄

R̄s̄s̄ +
∑

s̄′∈S̄\{s̄}

(
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)

86 4. Realizing MDP decompositions

−
∑

s′∈Ss̄

do
s̄(s′ | s)
1− γ

(I(s′ ∈ bs̄c) R(s′ o(s′)) + I(s′ ∈ Xs̄) Vk−1(s′)) (4.87)

= R̄s̄ps̄ +
γ̄ T̄s̄|s̄ps̄

1− γ̄ T̄s̄|s̄s̄

R̄s̄s̄ −
∑

s′∈b̄sc

do
s̄(s′ | s)
1− γ

R(s′ o(s′))

+
∑

s̄′∈S̄\{s̄}

(
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)−

∑
s′∈Xs̄

do
s̄(s′ | s)
1− γ

Vk−1(s′) (4.88)

If V o
s̄ is the value function of o in the block-restricted MDP Ms̄,

= R̄s̄ps̄ +
γ̄ T̄s̄|s̄ps̄

1− γ̄ T̄s̄|s̄s̄

R̄s̄s̄ − V o
s̄ (s)

+
∑

s̄′∈S̄\{s̄}

((
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)−

∑
s′∈Es̄s̄′

do
s̄(s′ | s)
1− γ

Vk−1(s′)
)

(4.89)

using the fact that s′ ∈ Es̄s̄′ , and 〈M̄, φ〉 is an (α, β)-realizable abstraction,

≤ β

1− γ
+

∑
s̄′∈S̄\{s̄}

((
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)−

∑
s′∈Es̄s̄′

do
s̄(s′ | s)
1− γ

Vk−1(s′)
)

(4.90)

Now, we add and subtract
∑

s̄′∈S̄\{s̄}
∑

s′∈Es̄s̄′
do

s̄(s′|s)
1−γ V̄ π̄(s̄s̄′),

= β

1− γ
+

∑
s̄′∈S̄\{s̄}

(∑
s′∈Es̄s̄′

do
s̄(s′ | s)
1− γ

V̄ π̄(s̄s̄′)−
∑

s′∈Es̄s̄′

do
s̄(s′ | s)
1− γ

Vk−1(s′)
)

+
∑

s̄′∈S̄\{s̄}

((
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)−

∑
s′∈Es̄s̄′

do
s̄(s′ | s)
1− γ

V̄ π̄(s̄s̄′)
)

(4.91)

= β

1− γ
+

∑
s̄′∈S̄\{s̄}

∑
s′∈Es̄s̄′

do
s̄(s′ | s)
1− γ

(
V̄ π̄(s̄s̄′)− Vk−1(s′)

)

+
∑

s̄′∈S̄\{s̄}

V̄ π̄(s̄s̄′)
((

γ̄ T̄s̄′|s̄ps̄ +
γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
− ho

s̄(s̄′ | s)
1− γ

)
(4.92)

applying the inductive hypothesis to the first line and the definition of an (α, β)-
realizable abstraction to the second line,

≤ β

1− γ
+
∑

s′∈Xs̄

do
s̄(s′ | s)
1− γ

k−1∑
i=0

γi β (1− γ̄) + α S̄

(1− γ)(1− γ̄) + α S̄

(1− γ)(1− γ̄) (4.93)

It only remains to quantify
∑

s′∈Xs̄
do

s̄(s′ | s). To do this, we apply lemma 4.8 which

4.7 Proofs 87

gives, ∑
s′∈Xs̄

do
s̄(s′ | s) = (1− ho

s̄(s̄ | s)) (1− γ) (4.94)

However, since the option starts in s ∈ bs̄c, the occupancy ho
s̄(s̄ | s) cannot be less

than (1− γ). This allows us to complete the inequality and obtain

V̄ π̄(s̄ps̄)− Vk(sps) ≤ β (1− γ̄) + α S̄

(1− γ)(1− γ̄) + γ
k−1∑
i=0

γi β (1− γ̄) + α S̄

(1− γ)(1− γ̄) (4.95)

=
k∑

i=0
γi β (1− γ̄) + α S̄

(1− γ)(1− γ̄) (4.96)

This verifies the inductive step.
To conclude the proof, we express the value difference from initial distributions:

V̄ π̄
µ̄ − V Ω′

µ =
∑
s̄∈S̄

µ̄(s̄) V̄ π̄(s̄◦s̄)−
∑
s∈S

µ(s) V Ω′(s) (4.97)

=
∑
s̄∈S̄

µ̄(s̄) V̄ π̄(s̄◦s̄)−
∑
s̄∈S̄

∑
s∈b̄sc

µ(s) V̄ π̄(s̄◦s̄)

+
∑
s̄∈S̄

∑
s∈b̄sc

µ(s) V̄ π̄(s̄◦s̄)−
∑
s∈S

µ(s) V Ω′(s) (4.98)

=
∑
s̄∈S̄

V̄ π̄(s̄◦s̄) (µ̄(s̄) −
∑

s∈b̄sc
µ(s)) +

∑
s∈S

µ(s) (V̄ π̄(s̄◦φ(s))− V Ω′(s)) (4.99)

using the assumption on initial distributions, and the derivation above,

≤
∑
s̄∈S̄

V̄ π̄(s̄◦s̄) ξ +
∑
s∈S

µ(s) lim
k→∞

(V̄ π̄(s̄◦φ(s))− Vk(s◦s)) (4.100)

≤ S̄ ξ

1− γ̄
+
∑
s∈S

µ(s) lim
k→∞

(V̄ π̄(s̄◦φ(s))− Vk(s◦s)) (4.101)

≤ S̄ ξ

1− γ̄
+ lim

k→∞

k∑
i=0

γi β (1− γ̄) + α S̄

(1− γ)(1− γ̄) (4.102)

≤ S̄ ξ

1− γ̄
+ β (1− γ̄) + α S̄

(1− γ)2(1− γ̄) (4.103)

Proposition 4.7. Consider an MDP M, an abstraction 〈M̄, φ〉, any tuple (s̄ps̄ā)
with s̄p 6= s̄, distribution ν ∈ ∆(Es̄ps̄), option o ∈ Ωs̄ps̄, with associated targets ho

ν , V o
ν .

Then, under assumption 4.1, the output of AbstractOne(M̄, (s̄ps̄ā), ho
ν , V o

ν) is a
valid 2-MDP and the option o is a perfect realization of (s̄ps̄ā) from ν.

Proof. The first property to verify is that the output of AbstractOne(M̄, (s̄ps̄ā), ho
ν , V o

ν)
is a valid MDP. In other words, the modified transition and reward functions must

88 4. Realizing MDP decompositions

be in the valid ranges. This is true for each s̄′
p ∈ S̄ \ {s̄p, s̄}. In fact, after the

assignment, R̄(s̄′
ps̄ ā) ∈ [0, 1]. Also, h̃s̄′

ps̄ā(s̄′) ∈ [0, (1 − γ)γ̄], thanks to eq. (4.5),
which is sufficient to guarantee that T̄ (s̄′

ps̄, ā) is indeed a probability distribution.

It only remains to verify T̄ (s̄ps̄ā) and R̄(s̄s̄ā). Since the input occupancy cor-
responds to some real option in M, using the fact that ho

ν is an expectation, and
according to eq. (4.15),

ho
ν(s̄) ≥ min

s∈Es̄ps̄

ho
s̄(s̄ | s) ≥ 1− γ̄ (4.104)

Then,
(1− γ)(1− ho

ν(s̄)) ≤ (1− γ)γ̄ (4.105)

We know that, similarly to eq. (4.70), it holds∑
s̄′∈S̄\{s̄}

ho
ν(s̄′) = (1− ho

ν(s̄)) (1− γ) (4.106)

Then, for each s̄′ 6= s̄,

ho
ν(s̄′) ≤

∑
s̄′′∈S̄\{s̄}

ho
ν(s̄′′) ≤ (1− γ)γ̄ (4.107)

This confirms that T̄ (s̄ps̄ā) is indeed a distribution after the assignment. It only
remains to verify R̄(s̄s̄ā). However, thanks to eq. (4.16), we also know that R̄(s̄s̄ā) ∈
[0, 1]. In the special case of ho

ν(s̄) = 1− γ̄, both the numerator and the denominator
become 0 in line 4 of the AbstractOne function. This is resolved with the
convention that 0/0 = 0.

The second half of the statement is that the option o generating V o
ν and ho

ν is a
(0, 0)-realization of (s̄ps̄, ā) from the entry distribution ν. To verify this, we compute
the desired block occupancy and value from eqs. (4.5) and (4.6) using the abstract
MDP returned by AbstractOne. Since T̄ (s̄′ | s̄s̄ā) ← 0 and T̄ (s̄′ | s̄ps̄ā) ←
ho

ν(s̄′)/((1 − γ)γ̄), we have h̃s̄ps̄ā = ho
ν , which satisfies eq. (4.13). For rewards, we

first quantify the following:

T̄ (s̄ | s̄ps̄ā)← 1−
∑

s̄′′ 6=s̄

T̄ (s̄′′ | s̄ps̄ā) = 1−
∑
s̄′ 6=s̄

ho
ν(s̄′)

(1− γ)γ̄ (4.108)

using the expectation of eq. (4.70), now,

T̄ (s̄ | s̄ps̄ā) = 1− 1− ho
ν(s̄)

γ̄
= ho

ν(s̄)− (1− γ̄)
γ̄

(4.109)

Substituting this and the other assignments of AbstractOne into eq. (4.6), we

4.7 Proofs 89

obtain

Ṽs̄ps̄ā = R̄(s̄ps̄ā) + γ̄ T̄s̄ps̄ā R̄(s̄s̄ā) (4.110)

= min{1, V o
ν }+

(
ho

ν(s̄)
1− γ̄

− 1
)

R̄(s̄s̄ā) (4.111)

= min{1, V o
ν }+ max{0, V o

ν − 1} (4.112)

= V o
ν (4.113)

91

Part III

Learning in Non-Markov
Decision Processes

93

Introduction to part III

MDPs have been extensively studied in the RL literature. They can be effectively
regarded as the target decision process of choice for introductory courses in RL
(Sutton and Andrew G. Barto 2018). The joint effort of the RL community is
mainly due to their very favourable properties. However, real-world applications
often cannot be regarded as Markovian. In particular, when considering AI agents
as individual actors with their own perceptions, the environment state inevitably
becomes partially observable, since no sensor can provide the agent with complete
information of the environment state. Apart from missing perceptions, this is also
true in environments with multiple agents. Despite the huge relevance for AI,
relatively limited progress has been made in POMDP with respect to MDPs. This
is clearly well motivated. A classic result from (Papadimitriou and Tsitsiklis 1987)
states that planning in POMDP is PSPACE-hard with respect to the horizon length.
For comparison, we recall that planning in MDPs is polynomial. This inevitably
makes many of these problems inherently complex to tackle.

In this second part of the thesis we consider RL in non-Markovian environments.
Specifically, we focus on a relatively recent decision process, which, like POMDPs,
does not rely on Markov assumptions. This is called the Regular Decision Process
(RDP) (Brafman and De Giacomo 2019). RDPs are very interesting models to
study because they are strictly more expressive than MDPs and k-MDPs, while
they are also less expressive than the full class of POMDPs, as we will show. In
fact, this model has the potential to act as an important middle ground between the
very distant classes of k-MDPs and POMDPs. They can capture many interesting
environment dynamics, which can be solved with RL algorithms specific to RDPs,
and would have to be solved with generic POMDP algorithms otherwise. As we
shall see, studying RL for RDPs also gives applicable insights for RL in POMDPs.

This part is composed of two chapters. After an introduction to RDPs, chapter 5,
discusses the properties of this model, and shows original results on their expressive
power and their relation to POMDPs. Chapter 6, instead, illustrates an original
RDP learning algorithm with formal efficiency guarantees.

95

Chapter 5

The Expressive Power of RDPs

The content of this chapter is based on original work.

5.1 Introduction

Regular Decision Processes have been introduced in Brafman and De Giacomo
(2019), as models for capturing a favourable class of history-dependent dynamics.
This allowed them to achieve the desired expressiveness, which, as stated in the
original paper, can be written as

MDP ⊂ k-MDP ⊂ RDP ⊆ POMDP (5.1)

Despite this very interesting positioning, planning in RDPs remains polynomial in
all relevant variables. This is somehow a surprising fact, since planning in POMDP
is PSPACE-hard. Given these very favourable computational properties, we aim
to answer two currently open questions: how can we characterise the expressive
power of RDPs? What is the complexity of learning in RDPs? This chapter mainly
addresses the first question. Although we will also provide a first answer to the
second question, this will be specifically addressed in chapter 6, which proposes an
original RL algorithm for RDPs.

Before proceeding, it is important to summarise the working principle of RDPs.
They have been formally defined in section 2.2, and we refer the reader to this intro-
duction first. Here, we aim to give a more explicit interpretation of that definition.
In this thesis, an RDP is represented as a finite-state transducer, in which each state
uniquely determines the output distributions on observations and rewards. The
automaton state of an RDP is not observable, since it does not appear in the trace.
In this regard, it acts as a hidden state of a POMDP. The major difference, however,
is that this hidden state can be deterministically computed from the features that

96 5. The Expressive Power of RDPs

at rt at+1 rt+1

ot−1 ot ot+1
T T

R R

MDP

at rt at+1 rt+1

st−1 st st+1

ot−1 ot ot+1

T T

R R

O O O

POMDP

at rt at+1 rt+1

qt−1 qt qt+1

ot−1 ot ot+1

θ θ θ

τ τ
RDP

Figure 5.1. Bayesian networks for different decision processes. The variables are hidden,
are observable, and are deterministic given the incoming arcs.

are present as visible quantities in the history. Although the RDP state is uniquely
determined by each history, the same is not true for POMDPs. We should not un-
derestimate the expressive power of RDPs: the hidden state can be deterministically
computed from ht, but not from the last observation, nor any proper subset of ht.

In fig. 5.1, we can see the directed graphical models for MDPs, POMDPs,
and RDPs. These are Bayesian networks, and they are associated with a specific
semantics. In particular, each node is a random variable, and two variables are not
connected by an arc if they are conditionally independent, given the other nodes.
More details are provided in the caption. For a more complete reference on Bayesian
networks, the reader may refer to chapter 10 of Murphy (2012).

In this chapter, RDPs are represented as Moore machines as defined in section 2.2.
However, we recall that this representation is not the only possibility. RDPs have
been previously defined in the literature from temporal logics (Brafman and De
Giacomo 2019), mealy machines (Abadi and Brafman 2020), and Moore machines
with conditional outputs (Cipollone, Jonsson, et al. 2024). Due to some classic results
in automata theory, these definitions are largely equivalent. The only meaningful
change is the extension from deterministic outputs to fully stochastic observations
and rewards. In fact, rather than being tied to a single automaton structure, we recall
that RDPs are more properly characterised by the regularity of the non-Markovian
transition and reward functions, T̄ and R̄.

5.1 Introduction 97

(a) Cookie domain.

? ?

?

(b) Agent’s view.

Figure 5.2. The cookie domain: the agent can only see what is in the room it occupies
(figure from Icarte, Waldie, et al. (2019)).

To further clarify how RDPs work, we define a concrete example, based on a
partially observable environment. We consider an environment called the “cookie
domain” from Icarte, Waldie, et al. (2019). The cookie domain (fig. 5.2a) has
three rooms connected by a hallway. The agent (purple triangle) can move in the
four cardinal directions. When pressing a button in the orange room, a cookie
randomly appears in either the green or the blue room. After finding the cookie,
the agent can eat it and the button can be pressed again. This domain is partially
observable because the agent can only see what is in the room it currently occupies
(fig. 5.2b). More precisely, it is a POMDP with actions A = {eat, push,→,←, ↑, ↓}
and observations O = Rooms × { , }, where Rooms is the colour of the current
room.

This domain can also be modelled as an RDP having states Q = Rooms × U ,
which keep track of the agent’s position and the current belief about the position of
the cookie. Because of these two independent components, the complete automaton
is also shown as a composition of two automata. In fig. 5.3, the one on the left
generates the observation in Rooms, while the automaton on the right generates the
observation in { , }. The full RDP is the synchronous composition of the two.

What is so peculiar of the RDP formulation of this domain is that, upon pushing
the button, the RDP goes into an uncertain state ? , where the cookie may be
generated in either the blue or the green room with uniform probability. In a
POMDP formulation, the button would cause a cookie to be generated somewhere,
possibly hidden from the agent’s perspective. In RDPs, instead, the cookie is not
generated at all, not until the agent enters one of the two rooms, at which point
it will remain where it appeared until it gets eaten. This interesting behaviour is
consistent with the conclusions that we draw in this chapter.

5.1.1 Contributions

Being RDPs relatively recent, studying the expressive power of this class is an
important topic on its own. However, the main motivation for this work comes
from the need of exploring new learning paradigms for partially observable and

98 5. The Expressive Power of RDPs

A

AA A

?
else else

else

else

push

eat

eat

:Unif{ , }
:Unif{ , }

else :

:
else :

:
else :

Figure 5.3. In these graphs, the arc label between q and q′ is oa if τ(q, oa) = q′. A
represents any action. The label of a state q is ν if θo(q) = ν (note that some outputs
are conditional on the current state of the left component). Finally, if the output is
deterministic, we just write o instead of δo.

non-Markovian environments. By characterising the expressive power of RDPs, it
may be possible to understand that the same RDP algorithms that are currently
available are also applicable in other decision processes, which might appear not
really related at first sight. This would allow for connecting branches of the RL
literature that currently evolve as separate and adopting innovative approaches in the
respective decision processes, without additional effort required. In fact, although
learning in RDPs remains a complex problem, planning over them is very effective.

The contributions of this work are multiple.

• After section 5.2, containing an extensive comparison of how RDPs and
POMDPs work, section 5.3.1 defines what does it mean for two generic decision
processes to be equivalent based on their external outputs. Using this notion,
in the first original contribution, theorem 5.4, we demonstrate that RDPs are
strictly less expressive than POMDPs. To confirm this fact, in proposition 5.5,
we verify that the class of optimal policies for POMDPs is not a regular
language.

• In section 5.3.3, we demonstrate a number of positive results that confirm that
RDPs can approximate, or exactly capture, many POMDPs. In particular, the
POMDPs for which an equivalent RDP exists are characterised in corollary 5.8.
Then, after defining what it means to approximate a decision process, we show
that ξ-observable and ρ-mixing POMDPs can both be approximated by RDPs.
Importantly, these results are applicable to infinite horizons and the arguments
do not involve any discount factor.

• In the conclusive section, we generalise the previous results and observe that

5.1 Introduction 99

RDPs can approximate a large group of POMDPs. Consistently with generic
POMDPs, in theorem 5.14, we show a generic sample efficiency lower bound
for RL in RDPs, with an exponential dependence on the horizon.

5.1.2 Related Work

Despite its complexity, the optimal control problem of partially observable systems in
discrete time dates back to very early works such as Åström (1965), which identified
closed-form solutions for the finite-horizon planning problem for POMDPs. Later,
Smallwood and Sondik (1973) explicitly expressed the recursive formulation of belief
states and showed that value functions in finite-horizon POMDPs are piecewise
linear convex. In the infinite horizon, instead, the value functions are only convex
(Sondik 1978). These two observations allowed the development of new exact and
approximate POMDP planning algorithms, such as Hansen (1998), N. L. Zhang,
S. S. Lee, et al. (1999), and Pineau, Gordon, et al. (2003).

Unfortunately, an important negative result from Papadimitriou and Tsitsiklis
(1987), demonstrated that optimal planning in POMDPs for finite horizons is
PSPACE-hard. Even computing optimal policies within important policy classes
is intractable (Mundhenk 2000). Moreover, in infinite horizons, deciding whether
there exists a policy achieving a value higher than some threshold is undecidable
(Madani, Hanks, et al. 1999). So, only near-optimal planning seems to be feasible.
Unfortunately, this thread of complexity results was complemented by Lusena,
Goldsmith, et al. (2001), which showed that near-optimal POMDP policies cannot
be computed in polynomial time. For comparison, planning optimal policies in
MDPs is P-complete under both horizon settings.

Due to all these negative results, many authors focused on favourable subclasses
of POMDPs or instance-dependent descriptions. Some characterisations are mainly
associated with transition functions and mixing times (Boyen and Koller 1998),
while others mainly target the observation function (Even-Dar, Sham M. Kakade,
et al. 2007; Golowich, Moitra, et al. 2022a). One very successful characterisation,
which is not associated with any strict assumption, is that of covering numbers (Hsu,
W. S. Lee, et al. 2007). These will be formally defined in section 5.2. Intuitively,
the covering number for a POMDP quantifies how many belief points are needed to
have a sufficient finite cover of the reachable belief space. As the authors show, the
time required to compute near-optimal policies can be expressed as a polynomial
function of this covering number. The same parameter has also been shown to well
characterise the efficiency of learning algorithms in POMDPs (Z. Zhang, Littman,
et al. 2012). In fact, perhaps unsurprisingly, without some assumptions or instance-
dependent parameters, RL in POMDPs is also intractable in the general case. As

100 5. The Expressive Power of RDPs

s0 s1 s2
…

sH−1

s′
1 s′

2
…

s′
H−1

s′
H

a∗
1 a∗

2

else else

A

A

A
A

Figure 5.4. Hard POMDP instance from Krishnamurthy, Agarwal, et al. (2016). Transitions
are deterministic, as shown by the arcs. The observation function is O(si) = O(s′

i) = δsi
,

for each i. The reward function is zero everywhere, except for the states sH−1, s′
H−1,

where it is R(s a) = Ber(0.5 + ε), if s = sH−1 and a = a∗
H , and R(s a) = Ber(0.5),

otherwise. A denotes any action.

shown in Krishnamurthy, Agarwal, et al. (2016), learning near-optimal policies can
require an exponential number of episodes, in the worst case. The worst-case instance
used for this result is shown in fig. 5.4. This POMDP is a simple combinatorial lock,
which generates null rewards up to the last states. This decision process is very
complex to solve because a single observation is associated to both states at each
time step, and the agent receives no information about its progress up to the last
action. After the complete sequence, the environment produces a positively biased
reward if the sequence of actions is a∗

1, a∗
2, . . . , a∗

H , while the rewards are uniform in
{0, 1}, for any other history. Because of this unobservable behaviour, the only way
to discover the winning sequence of actions is to try all sequences.

This thesis tries to follow a generic treatment of decision processes, by focusing
on the induced probability over traces. This view has been strongly influenced by
Hutter (2009), which perfectly emphasises how decision processes are formalizations
of, sometimes complex, environment dynamics. In this view, the Markov state is
only a sufficient statistics of the historical information, that allows us to accurately
predict future observations and rewards. This idea was then expanded in later works
(Lattimore, Hutter, et al. 2013; Hutter 2014, 2016). In Majeed and Hutter (2018),
the authors showed that any sufficient statistics for rewards, but not for observations,
is also a feasible state for learning algorithms. Although the agent may not predict
the observations accurately, rewards can be predicted. As the authors proved, a
simple algorithm such as Q-learning converges towards the optimal policy using
these states. The idea of approximate information states has been recently studied
in Subramanian, Sinha, et al. (2022).

The environments that we consider here exhibit complex non-Markovian depen-
dencies both in observations and in rewards. Restricting our attention to rewards,
there is a long line of research studying non-Markovian reward specifications (Bac-
chus, Boutilier, et al. 1996; Brafman, De Giacomo, and Patrizi 2018; Icarte, T.
Klassen, et al. 2018; Camacho, Icarte, et al. 2019; De Giacomo, Iocchi, et al. 2019;

5.2 Preliminaries 101

De Giacomo, Favorito, et al. 2020; Icarte, T. Q. Klassen, et al. 2022). With the
due differences, in the literature these approaches are called Rewards Machines
(RMs) or Restraining Bolts. Similarly to RDPs, these are also automata-based
formalisms. However, apart from targeting rewards specifically, the fundamental
difference between the topic discussed in this thesis and these works is that rewards
specifications are defined by a human, and therefore, they are known to the agent.
The dynamics considered here, instead, is unknown. This difference is crucial for
learning and planning complexity.

In Icarte, Waldie, et al. (2019), the authors draw connections between automata-
based reward specifications (RMs) and POMDPs. They observe that some automata
provide sufficient memory for planning in some POMDPs. These findings are also
relevant for this thesis. Unlike this work, however, this thesis targets Regular Decision
Processes, for multiple reasons. Firstly, RDPs are natively designed to handle both
non-Markovian rewards and observations; secondly, RDPs describe a specific property
of the environment dynamics, and are not tied to a single formalisation; lastly, RDPs
are decision processes, meaning, environment models, akin to MDPs, POMDPs, etc;
in fact, in their standard form, they do not include human-specific parts such as
labelling functions.

In this paragraphs, we reviewed some of the related literature for the theoretical
results about partially-observable environments. For other references, and those
more related to learning algorithms, the reader can refer to the related work section
of chapter 6.

5.2 Preliminaries

This chapter relies on the global preliminaries in chapter 2. In particular, we will be
using histories, traces, and values for the infinite-horizon setting, as well as all the
decision processes classes defined in section 2.2. Since this chapter discusses more
general models, we do not adopt the specific conventions that have been used in
part II for MDPs. In particular, MDP states will be denoted as observations o ∈ O.

Planning in POMDPs

As defined in section 2.2, a POMDP is a tuple P := 〈S,A,R,O, T, R, O〉, with
states S, actions A, rewards R, observations O, transition function T : SA → ∆(S),
reward function R : SA → ∆(R) and observation function O : S → ∆(O). The
initial state distribution is µ := T (s◦ a◦). For simplicity, we assume that all the sets
above are finite, and the POMDP is tabular.

A fundamental object associated with POMDPs is the concept of belief. With

102 5. The Expressive Power of RDPs

this term, we may refer to any probability distribution over the state space. The
belief space is B := ∆(S). This is an important concept, because only the history
of actions and observations is observable and the agent can only rely on stochastic
estimates of the current state. For constructing such a state estimate, the agent may
use the whole sequence of actions and observations produced so far. Since rewards
also depend on the hidden state, similarly to observations, they are also informative
of the unknown state. So, it may be sensible to compute beliefs over the full trace
of observations actions and rewards. However, in order to be consistent with the
POMDP literature, we do not explore this possibility here, and we only regard
actions and observations as observable, in the strict sense. This motivates our initial
distinction between histories and traces in section 2.1. However, we observe that
they may always be incorporated within the observation space, whenever needed.

A belief state is the belief associated with the posterior distribution computed
up to the current time step. Specifically, the belief state of some POMDP P at time
t ∈ N, history ht ∈ Ht, and observation ot ∈ O is P(st | htot, P). We recall that the
history ht = o0a1 . . . ot−1at ends with the last action. Using common terminology
for POMDPs, we refer to P(st | ht) as the “prior” belief and P(st | htot) as the
“posterior”, because the latter is obtained after conditioning on ot.

The posterior belief state at time t will be written as bt ∈ B. The belief
states can be updated from one time step to the next, after each action a and
observation o, via the belief update function U : B ×A×O → B. In turn, this can
be decomposed in two operators, UT : B×A → B and UO : B×O → B, and written
as U(b, a, o) = UO(UT (b, a), o), for:

UT (s′ | b, a) :=
∑
s∈S

T (s′ | sa) b(s) (5.2)

UO(s | b, o) := O(o | s) b(s)∑
s′∈S O(o | s′) b(s′) (5.3)

Sometimes we also write UO(s | b, o) ∝ O(o | s) b(s), for hiding the unique nor-
malization factors that are constant in the main argument. In summary, we have
bt = U(bt−1, at, ot). This update is the transformation needed to update the poste-
riors from P(st−1 | ht−1ot−1) to P(st | htot). This process is illustrated in fig. 5.5.
The posterior belief bt associated to P and sequence htot is computed recursively as
U∗(htot) := U(U∗(ht−1ot−1), at, ot), and U∗(o0) := UO(µ, o0).

Definition 5.1. The belief construction of a POMDP P = 〈S,A,R,O, T, R, O〉 is
an MDP Mb = 〈B,A,R, Tb, Rb〉, with:

µb(b) = T (b | s◦a◦) := P(b0 | P) (5.4)

5.2 Preliminaries 103

at rt at+1 rt+1 at+2 rt+2

st−1 st st+1 st+2

ot−1 ot ot+1 ot+2

T T T

R R R

O O O O

bt(s) bt+1(s)U

Figure 5.5. Illustration of the posterior belief update. White nodes are not observed.

=
∑
o∈O

∑
s∈S

δUO(µ,o)(b) O(o | s) µ(s) (5.5)

Tb(b′ | b a′) := P(b′ | b, a′, P) (5.6)

=
∑

o′∈O

∑
s,s′∈S

δU(b,a′,o′)(b′) O(o′ | s′) T (s′ | sa′) b(s) (5.7)

Rb(r′ | ba′) := P(r′ | b, a′, P) (5.8)

=
∑
s∈S

R(r′ | sa′) b(s) (5.9)

So, the belief construction is a fully observable decision process over the posterior
beliefs. A fundamental property of this MDP is that it encodes all the information
for decision-making. In particular, any action is optimal for a P in htot if and only if
it is optimal for Mb at state U∗(htot). Note that the belief construction is an MDP
with an infinite state space.

Covering number

Definition 5.2. Consider any metric space 〈X , l〉, for some metric l. The covering
number, cµ(X , l) ∈ N, is the smallest number such that there exists a set of points
X̃ ⊂ X , with |X̃ | = cµ(X , l), that satisfies:

∀x ∈ X , ∃x̃ ∈ X̃ : l(x, x̃) < µ (5.10)

The set X̃ is called a µ-cover of 〈X , l〉.

The covering number has been found to be an important complexity measure for
POMDPs, where it is usually computed over the reachable space of the associated
belief construction (Q. Liu, Chung, et al. 2022; Hsu, W. S. Lee, et al. 2007). In
these cases, this is computed for X ⊆ B.

Planning in RDPs A very appealing property of RDPs is that it is very efficient
to plan and compute optimal policies for them. In fact, if the RDP is known, it

104 5. The Expressive Power of RDPs

is possible to simulate its deterministic automaton and compute the hidden state
without uncertainty. When the RDP is known, the automaton states can be regarded
observable and the whole system evolves as an MDP (Brafman and De Giacomo
2019). More precisely, the observations and rewards are Markovian with respect to
the automaton states Q. As a result, it is possible to find the optimal policy of any
RDP by planning over an associated MDP that has Q as observations. Therefore,
planning in RDPs is P-complete (reduction from Brafman and De Giacomo (2019)
and complexity from Papadimitriou and Tsitsiklis (1987)).

An important class of policies for RDPs is the set of regular policies. Given
an RDP R, a policy π : HO → ∆(A) is called regular if π(ho) = π(h′o) whenever
τ̄(h) = τ̄(h′), for all h, h′ ∈ H. Let ΠR denote the set of regular policies for R.
Regular policies exhibit powerful properties. First, under any regular policy, suffixes
have the same probability of being generated for histories that map to the same
RDP state. Second, for any RDP there exists at least one optimal policy that is
regular and deterministic. The reader can find more properties about regular policies
in Brafman and De Giacomo (2019) and section 6.2.

5.3 The Expressive Power of RDPs

In this section, we study the expressive power of Regular Decision Processes. In
order to follow a generic approach, we define what it means to be equivalent, or to
approximate, a decision process, not only RDPs. This definition simply encodes
the fact that two processes can be regarded as equivalent if they induce the same
conditional probability over observations and rewards. In this case, the two models
are perfectly indistinguishable, based on their external behaviours. To express this
simple idea, we use NMDPs as the common formalism for comparing diverse decision
processes. In fact, Non-Markov Decision Processes, as defined in section 2.2, are the
most general formalism possible, and allow for representing any history-dependent
probability distribution.

Definition 5.3. Given a decision process D over observations O, rewards R and
actions A, we define the induced NMDP of D as the NMDP N = 〈O,A,R, T̄ , R̄〉,
with µ = T̄ (h0) := P(o0 | D), and, for all ht ∈ H, T̄ (ot | ht) := P(ot | ht, D) and
R̄(rt | ht) := P(rt | ht, D).

Except for minor differences in the function arguments, which can be added
appropriately, we can immediately observe that each MDP and k-MDP is also the
induced NMDP of itself. The same is also true for RDPs, since they are already
defined as NMDPs. However, when starting from the automaton representation,
it is convenient to explicitly write the associated probabilities over traces. So, the

5.3 The Expressive Power of RDPs 105

NMDP induced by an RDP R = 〈Q, Σ, Ω, τ, θ, q0〉 is N = 〈O,A,R, T̄ , R̄〉, where, for
each ht ∈ H, T̄ (o | ht) = θo(o | qt) and R̄(r | ht) = θr(r | qt), where qt := τ̄(q0, ht),

Lastly, we compute the NMDP associated with any POMDP. This is stated
without proof, as it directly follows from the meaning of posterior beliefs, as computed
in the preliminaries of this chapter.

Proposition 5.1. The NMDP induced by a POMDP P = 〈S,A,R,O, T, R, O〉 is
N = 〈O,A,R, T̄ , R̄〉, where, for each ht ∈ H,

T̄ (o | h0) =
∑
s∈S

O(o | s) µ(s) (5.11)

T̄ (o′ | htat+1ot+1) =
∑

s,s′∈S
O(o′ | s′) T (s′ | s at+1) bt(s) (5.12)

R̄(r′ | htat+1ot+1) =
∑
s∈S

R(r′ | s at+1) bt(s) (5.13)

where the belief state is bt = U∗(htot).

These definitions allow us to compare decision processes in terms of their visible
traces.

Definition 5.4. Two decision processes are equivalent iff their induced NMDPs
coincide.

Equivalence also allows us to establish relations between classes of decision
processes. For this purpose, we will use the names of the decision processes, such as
MDP and POMDP, as classes. In these statements, k-MDP refers to the class of
k-MDPs, for any positive k. In general, we write C1 ⊆ C2 if the class C2 is at least as
expressive as C1. Precisely,

Definition 5.5. For two classes of decision processes, we write C1 ⊆ C2 iff, for all
D1 ∈ C1, there exists some D2 ∈ C2 such that D1 and D2 are equivalent.

5.3.1 Strict Relations

The first known result on the topic of RDPs expressiveness is that these models
are strictly more expressive than MDPs and k-MDPs. This has been first stated
in Brafman and De Giacomo (2019). For completeness, we restate the result here
using our notion of equivalence and inclusion, and we provide a complete proof.

Proposition 5.2. k-MDP ⊂ RDP

Proof. See page 117.

106 5. The Expressive Power of RDPs

As a second important relation, Brafman and De Giacomo (2019) stated that
POMDPs are at least as expressive as RDPs. In light of definition 5.5, we restate
the result here, and we also provide a proof.

Proposition 5.3. RDP ⊆ POMDP

Proof. See page 118.

We are now ready to show an original statement that proves that RDPs are
strictly less expressive than POMDPs. In other words, there are decision processes
that can be modelled as POMDPs, but not as RDPs.

Theorem 5.4. RDP ⊂ POMDP.

Proof. See page 118.

The proof is based on a POMDP whose reachable belief space is infinite. This
allows us to create marginal distributions that are impossible to generate in RDPs,
which can only produce finite sets of output distributions. This leads to the conclusive
strict hierarchy of models as:

MDP ⊂ k-MDP ⊂ RDP ⊂ POMDP (5.14)

A similar result for this strict containment can also be obtained in policy space.
Since optimal RDP policies are known to be regular, if we show that optimal POMDP
policies are not regular, the two models are clearly distinct.

Proposition 5.5. Consider the set X = {hoa ∈ HOA | ∃π∗ : π∗(ho) = a}, composed
of all histories that end in some optimal action. Then, there exists a POMDP in
which X is not a regular language.

Proof. See page 119.

Both theorem 5.4 and proposition 5.5 might appear as strong negative results
for RDPs, at first sight. However, because of the inherent complexity of partial
observations, POMDPs should be solved only at near-optimality, in the general case.
Therefore, one sensible question to ask is: can POMDPs be approximated by RDPs?
This is not possible between k-MDPs and RDPs, for example, since they simply lack
the expressive power to capture long-term dependencies. However, between RDPs
and POMDPs, we cannot easily identify such a clear separation.

5.3 The Expressive Power of RDPs 107

5.3.2 Belief Covers

With the purpose of constructing POMDP approximations, we immediately notice
a significant difference. In RDPs, if the actions and observations are given, the
transitions are deterministic. Generic POMDPs, on the other hand, do not have
deterministic transitions. However, there is one general deterministic transformation
in POMDPs: the belief update. Following this intuition, we aim to construct RDPs
whose automaton states are to be interpreted as specific beliefs of the POMDP to
approximate.

More precisely, due to the way RDPs are defined here, we will find a relationship
between the RDP states and prior beliefs. We recall that the posterior beliefs
are bt := P(st | htot) = U(htot). On the other hand, prior beliefs are written
pt := P(st | ht). Priors can be defined in a very similar way to posteriors, with a
recursive update as U∗

p (h0) := T (s◦a◦) and U∗
p (ht) := Up(U∗

p (ht−1), ot−1, at), with
Up(h, o, a′) := UT (UO(h, o), a′). Therefore, pt = U∗

p (ht). Based on prior beliefs, we
define a new POMDP construction as follows.

Definition 5.6. The prior belief construction (or simply, prior construction), of
a POMDP P = 〈S,A,O,R, T, R, O〉 is a POMDP Pp := 〈Sp,A,O,R, Tp, Rp, Op〉.
Each state po ∈ Sp := BO represents the current prior belief p and the current
observation o. Transition, reward and observation functions are defined as:

Tp(po | s◦ a◦) := P(p0 = p, o0 = o | P) (5.15)

= δµ(p)
∑
s∈S

O(o | s) µ(s) (5.16)

Tp(p′o′ | (po) a′) := P(p′, o′ | p, o, a′, P) (5.17)

= δUp(p,o,a′)(p′)
∑
s′∈S

O(o′ | s′) p′(s′) (5.18)

Rp(r′ | (po) a′) :=
∑
s∈S

R(r′ | s a′) UO(s | p, o) (5.19)

Op(o′ | (po)) := δo(o′) (5.20)

There are two important differences with respect to the classic belief construction
of definition 5.1. First, although each state is composed of variables that may be
observed, we adopt the POMDP formulation, instead of an MDP, so to distinguish
between original observations and other quantities. This allows the induced NMDP
of a prior construction to be defined over the original observations only. Second,
prior beliefs, which are used in this definition, are predictions over the next state
when an action has been performed, but the following observation has not been
received yet: hence the name “prior”. With reference to fig. 5.5, the prior pt+1 would
be represented by changing ot+1 to be white.

108 5. The Expressive Power of RDPs

As for the classic belief construction, the prior construction also preserves optimal
actions. In fact, a stronger result can be stated:

Proposition 5.6. Any POMDP is equivalent to its prior construction.

Proof. See page 120.

Prior beliefs and the prior construction are particularly useful for defining RDPs
that approximate the POMDPs dynamics. Essentially, we will choose the RDP
states to be appropriate points within the prior belief space. In case the reachable
portion of this space is finite, we immediately obtain an equivalence result. The
reachable prior belief space (prior space, for short) is defined as follows. Let P be
a POMDP and let H′ ⊆ H be the set of reachable histores in P under any policy.
The reachable prior space is P := {U∗

p (h)}h∈H′ ⊆ B.

Theorem 5.7. Any POMDP, whose reachable prior space is finite, admits an RDP
that is equivalent to it.

Proof. See page 121.

The equivalent RDP, constructed for the proof of theorem 5.7 has an automaton
state space of POA. However, in alternative representations, this may change
slightly. In RDPs defined as Mealy machines, for example, the output function
would also receive the last input symbol as θo : Q×OA → ∆(O). Thus, allowing the
RDP state space to be defined simply as P. The core intuition is, in fact, to define
automaton states as carefully placed points within the reachable prior space. The
other two symbols are only needed to generate properly conditioned rewards. Since
observation space is also finite, however, if the posterior belief space is finite, then
also the prior space is finite (since it is obtained after conditioning). This means
that we can state the theorem above in a slightly different form.

Corollary 5.8. Any POMDP with finite observation and action spaces, whose
reachable belief space is finite, admits an RDP equivalent to it.

When stated in this form, using posteriors, we can also find some relations
with Icarte, Waldie, et al. (2019, Theorem 4.1). However, unlike Reward Machines,
RDPs are decision processes, and we have the explicit expression of the equivalent
environment model.

Ultimately, finite belief spaces can be caused by various assumptions, includ-
ing deterministic transition functions and deterministic initial belief, block MDP
assumptions, and all the behaviours that are more specific to RDPs, such as the one
of fig. 5.2.

5.3 The Expressive Power of RDPs 109

5.3.3 POMDP Approximations

The previous section has characterised which POMDPs can be captured by RDPs
exactly. However, in light of the negative result of theorem 5.4, a more sensible
objective to pursue is understanding whether RDPs can at least approximate the
POMDPs which they do not exactly capture. Fortunately, as we will see, the answer
is affirmative in many cases. We first formalise what it means for a decision process
to approximate any other.

Definition 5.7. A decision process D1 is said to be an ε-approximation for another
decision process D2 iff, N1 = 〈O,A,R, T̄1, R̄1〉 and N2 = 〈O,A,R, T̄2, R̄2〉, the
respective NMDPs induced by D1 and D2, satisfy:

Eht∼D2|a1:t |T̄1(o | ht)− T̄2(o | ht)| ≤ ε (5.21)

Eht∼D2|a1:t |R̄1(r | ht)− R̄2(r | ht)| ≤ ε (5.22)

for all t ∈ N, a1:t ∈ At, o ∈ O, r ∈ R.

Similarly to equivalence, approximation should also be defined solely on the
visible quantities. This is why the comparison is made on the induced probabilities
represented by the NMDPs. There are many other, equally valid, definitions of
approximations, alternatives to the one used here. However, we emphasise a couple
of interesting features of our notion. First, approximation implies that the two
processes are related by similar discounted values in the following sense.

Proposition 5.9. For any policy π, let V π
1 and V π

2 be the discounted values that π

obtains in two NMDPs, N1 and N2, from the respective initial distributions. If N1

is an ε-approximation of N2, then π∗
1, the optimal policy in N1, satisfies

V ∗
2 − V

π∗
1

2 ≤ 2ε|R|
1− γ

+ 2γε|O|
(1− γ)2 (5.23)

Proof. See page 122.

This result says that if N1 approximates N2, then the optimal policies computed
from N1 are near-optimal when executed in N1. Note that the cardinalities of R
and O only appear because definition 5.7 amounts to some L∞ distance and can
be omitted by adopting L1 instead. However, the most interesting characteristic of
definition 5.7, which does not rely on discount factors and optimal values, is that it
quantifies over histories of unbounded length. This is a particularly strict requirement
that can be easily interpreted in case of deterministic decision processes. In fact, if
D2 is deterministic, then D1 should approximate its outputs with constant accuracy,
even after arbitrarily long histories. For stochastic processes, however, we do allow

110 5. The Expressive Power of RDPs

some major discrepancy for histories that are very unlikely under the decision process
to approximate. This motivates the asymmetric expectation ht ∼ D2.

What drives us to pursue such a strong approximation criterion is that many
POMDPs, which cannot be exactly captured by RDPs, can, in fact, be approximated.
This is even true for the POMDP of fig. 5.6, which has been used as a counterexample
to prove theorem 5.4.

Proposition 5.10. For any 0 ≤ ε1 ≤ 1 and ε > 0, there exists an RDP which is an
ε-approximation of P1, the POMDP of fig. 5.6.

Proof. See page 124.

Motivated by this positive result, we aim to find sufficient conditions that
guarantee the existence of approximating RDPs. By now, we know that the structure
of the approximating RDP should reflect the structure of the prior construction.
However, if the reachable prior space is infinite, the RDP states cannot cover these
beliefs exhaustively. Inspired by finite covers of compact spaces, we observe that B
is a probability simplex, which can be “covered” with a finite set of appropriately
spaced points. The notion of “cover” may be derived from the classic one, the
one used to define covering numbers from definition 5.2. Let P̃ ⊆ P represent
some finite set of prior beliefs. Then, for any POMDP, we define its “covering
RDP” as we did in the proof of theorem 5.7, with the difference that after each
update the new belief is projected into P̃. The projection operator f̃ : P → P̃,
returns f̃(p) := arg minp̃∈P̃ d(p, p̃), that is, the point minimising the distance function
d : B × B → R+. We will give more details about this function later. Then, the
structure of a covering RDP is as follows.

Definition 5.8. Given a POMDP P and a finite set P̃ ⊆ P, with associated
projection f̃ , the covering RDP of P into P̃ is RP = 〈P̃OA,OA, Ω, τ, θ, p̃0〉, with
p̃0 := f̃(p0), and transition and output functions chosen as:

τ(p̃oa, o′a′) := (f̃(Up(p̃, o, a′)), o′, a′) (5.24)

θo(o′ | p̃oa) :=
∑
s′∈S

O(o′ | s) p̃(s) (5.25)

θr(r′ | p̃oa) :=
∑
s′∈S

R(r′ | sa) UO(p̃(s), o) (5.26)

Similarly to the RDP constructed in the proof of theorem 5.7, covering RDPs
defined as Mealy machines, not Moore, would only require a state space of P̃ . Apart
from these minor details, the main question that covering RDPs leave open regards
the error accumulated after each projection step. In fact, each belief update might
lead to portions of the belief space that are not accurately covered. In general,

5.3 The Expressive Power of RDPs 111

nothing prevents successive approximation errors from building up and diverging from
real beliefs. This is especially possible after conditioning with very rare observations.
Therefore, some form of stability is needed in the belief dynamics and there should
be a stabilising effect preventing this divergence. In this thesis, we identify two
sufficient conditions.

The first criterion we analyse is a notion called ξ-observability.

Definition 5.9. A POMDP is ξ-observable if its observation function satisfies

‖O(o | p1)−O(o | p2)‖1 ≥ ξ ‖p1 − p2‖1 (5.27)

for any two beliefs p1, p2 ∈ P, and some ξ > 0. The parameter ξ is called value of
observation. With a slight abuse of notation, we wrote the marginal distribution
over observations as O(o | p) :=

∑
s∈S O(o | s) p(s).

This definition has been introduced in Even-Dar, Sham M. Kakade, et al. (2007)
and recently used in Golowich, Moitra, et al. (2022b,a). It is also connected with
other assumptions from the literature, since any ξ-observable POMDP is at least
(ξ/
√
|S|) weakly-revealing. The weakly-revealing condition has been used in Q. Liu,

Chung, et al. (2022).
According to definition 5.9, the differences in belief are reflected as small dif-

ferences in the observation distributions. This assumption has a stabilising effect
on beliefs, because, although each observation may not allow the identification
of the hidden state, it contains some, possibly low, information content about it.
However, there is still nothing to prevent approximation errors that are caused
by misplaced RDP states. One possibility would be to require the points to be
accurately spaced according to some Euclidean norm. However, the error introduced
after each conditioning step cannot be uniformly bounded in all directions. For this
reason, we choose a projection operator that keeps the Kullback–Leibler divergence
small.

Definition 5.10. We say that a finite set P̃ is a η-divergent cover of P if the
maximum relative information between any belief and its approximation is bounded
by η. In other words, for

ιp‖p′ := sup
s∈S

log p(s)
p′(s) and f̃(p) := arg min

p̃∈P̃
ιp‖p̃ (5.28)

it satisfies ιp‖f̃(p) ≤ η, ∀p ∈ P.

Also, we will say that P̃ is a (η, ν)-divergent cover if it is η-divergent and there is
some minimum probability associated to each state, namely ∀p ∈ P̃, s ∈ S : p(s) ≥

112 5. The Expressive Power of RDPs

ν. This is useful whenever we need to require divergent covers that are not too
deterministic. We are finally ready to state the following result.

Theorem 5.11. Given any ξ-observable POMDP P, if P̃ is a (η, ν)-divergent cover
of the reachable prior space, the covering RDP of P into P̃ is an ε-approximation of
P, for ε =

√
4η

ξ2 ν
, provided that ν < 2/ξ2.

Proof. See page 126.

This theorem is a positive result regarding a first general subclass of POMDPs
that can be approximated by RDPs. We remind the reader that our notion of ap-
proximation is more demanding than others that can be found in the literature. This
is important, because in the finite-horizon setting, POMDPs may be approximated
by k-MDPs with arbitrary precision. This is the approach followed in Brafman and
De Giacomo (2019, Theorem 3). Also, approximating POMDPs in belief space,
rather than in history space, has a strong advantage when the reachable belief
space is “small”, since we do not need to encode historical data explicitly, which is
exponential on the horizon.

However, we should note that theorem 5.11 does not imply that it is possible to
construct approximations for POMDPs with arbitrary accuracy ε > 0, because, in
general, η cannot be arbitrarily small for a given ν > 0. This can be seen when a
deterministic belief is passed to the projection function: The minimum probability
of any state ν has an impact on the minimum divergence achievable η. However,
we hypothesise that this may be an artefact of the proof structure, which uses an
argument from Even-Dar, Sham M. Kakade, et al. (2007). Using more advanced
concentration techniques, such as the ones of Golowich, Moitra, et al. (2022b), it
should be possible to achieve a similar result for a generic ε. If possible, this would
be achieved by η-divergent covers, with no lower bound to the minimum probability
of a state.

Next, we consider a second sufficient condition for the existence of approximating
RDPs that involves the transition function instead of the observation function. This
definition appears in Boyen and Koller (1998), here adapted for POMDPs.

Definition 5.11. The mixing rate ρ of a POMDP P is

ρ := min
s1,s2∈S

min
a∈A

∑
s′

min{T (s′ | s1a), T (s′ | s2a)} (5.29)

In other words, the mixing rate is the minimum probability mass that any two
states have in common, according to the transition function. This is a measure of the
total probability that any two states assign for the same event. Unlike ξ-observability,
positive mixing guarantees contraction of beliefs after marginalisation, instead of
conditioning.

5.3 The Expressive Power of RDPs 113

Lemma 5.12. (Boyen and Koller 1998) Given a POMDP P with mixing rate
ρ > 0, for any two beliefs p1, p2 ∈ P and action a ∈ A, the relative entropy after a
prediction step satisfies

DKL(UT (p1, a) ‖ UT (p2, a)) ≤ (1− ρ) DKL(p1 ‖ p1) (5.30)

This allows us to obtain an even stronger result than the one we have for
observable POMDPs, that is, approximating RDPs with arbitrary accuracy.

Theorem 5.13. For any ε > 0 and POMDP P whose mixing rate is ρ > 0, there
exists a covering RDP that is an ε-approximation of P.

Proof. See page 127.

The mixing assumption is relatively restrictive because, for positive ρ, it severely
constraints the transition function. However, together with the observability assump-
tion, it allows us to identify an interesting pattern: both are sufficient conditions
for contraction of beliefs from different initializations. Belief contraction has been
described in Golowich, Moitra, et al. (2022b). We adapt it here for generic actions
and prior beliefs. Let U∗

p (p, h) be the belief update function, where the initial prior
is set to p. We can say that beliefs contract in a POMDP P with respect to some
divergence D : B × B → R+ if, for any initial history ht ∈ Ht, and a successive
sequence of actions at+1 . . . an,

Ehn|ht
D(U∗

p (Unif(S), hn), U∗
p (pt, hn)) ≤ g(n) (5.31)

for a strictly decreasing function g : N→ R+, and where D can be a divergence or
a norm. Intuitively, belief contraction can compensate for erroneous initialisation
of beliefs, where the wrong initial belief is represented by the uniform distribution.
Essentially, it is acceptable to forget the initial belief after a sufficient number of
correct updates. This is also relevant for covering RDPs, because, after each update,
the projection operator introduces some error, which can be regarded as a tiny
initialisation error for U . This discrepancy should contract in expectation, not
diverge. Finally, we observe that expectation is essential since beliefs might diverge
for some unlikely observations.

The class of POMDPs with contracting beliefs, which is closely related to “filter
stability” (Kara and Yüksel 2022), might seem sufficiently general. However, we can
reason that, if the beliefs contract, then the POMDP is not only approximated by
an RDP, but also by some k-MDP, for sufficiently large k. Namely, its transition
function could emulate the belief update from any stochastic prior distribution, that
is T̄ (ot | ht) := O(ot | U∗

p (Unif(S), ht−k)). Clearly, a covering RDP that reproduces
the same dynamic could have a much more compact state space with respect to

114 5. The Expressive Power of RDPs

this k-MDP, in which it is (OA)k. However, the pure existence of approximating
k-MDPs shows how limiting the assumption of contracting beliefs might be for
POMDPs, when taken alone. Essentially, it prevents past transitions from having
lasting impacts that extend arbitrarily far into the future. This behaviour, on the
other hand, is exactly what characterises RDPs.

We can identify two classes. Let POMDPC ⊂ POMDP be the class of POMDPs
with contracting beliefs (according to some D and g). Also, let POMDPR ⊂ POMDP
be the class of POMDPs for which there exists an equivalent RDP. Then, we can
expect that RDPs can approximate any decision process in the combination of
the two classes. Consider any two PC ∈ POMDPC and PR ∈ POMDPR, with
their respective state spaces SC and SR. It is possible to construct a new POMDP,
obtained by composition of the two sets of features, whose state space is SCSR,
in which beliefs do not contract, but can be approximated by some RDP. In fact,
only the beliefs in SC contract, while those in SR do not. However, when initialised
correctly, the hidden states SR can be tracked exactly through some transducer.
More generally, as long as the beliefs in SC contract, it is also possible to introduce
additional dependencies from the features in SR, in the form of

T (s′
cs

′
r | scsra) = Tc(s′

c | scsra) Tr(s′
r | sra) (5.32)

In this section, we discussed some general sufficient conditions for the existence
of approximating RDPs. Some dynamics can be captured exactly, while others can
only be approximated. One remaining open question is the following: is there any
POMDP which cannot be approximated by some RDP? If this question could be
answered negatively, RDPs would be generic approximators for POMDPs. In light
of related positive results in the literature (Yu and Bertsekas 2008), we currently
believe that this generic approximation result could be true for RDPs.

5.3.4 Learning With Partial Observations via RDPs

Regular Decision Processes are interesting environment models, and studying their
expressive power is relevant in its own right. One second motivation for addressing
this problem is the development of alternative learning algorithms for POMDPs.
POMDPs are very expressive. With just a few variables, they can capture very
complex environment dynamics. This behaviour is not specific to POMDPs, but
is shared with many other models with latent variables (Murphy 2012). Thanks
to compactness, it is very convenient for a person to specify them, in case some
dependencies are known.

These advantages, on the other hand, do not imply that POMDPs are the best
suitable models for learning. In a pure learning setting, the agent observes a stream of

5.3 The Expressive Power of RDPs 115

variables, or multiple traces of them, whose probability depends on past actions and
observations in ways that are hard to predict. The POMDP approach suggests that
the agent should assume the existence of an unknown number of hidden variables,
which might justify the observations. However, since the transition between the new
hidden states is also stochastic, the agent should also estimate the current state after
learning. In an RDP formulation of the same dynamics, instead, a state would only
be generated if it serves to distinguish two conditional distributions. Importantly,
thanks to deterministic transitions, no state estimation is necessary since they can
be tracked with certainty after learning. In this subsection, we argue that RDPs are
suitable models for performing model-based RL over POMDPs.

As we have seen in section 5.3.3, no POMDP is known at the moment, which
cannot be approximated by some RDP. In general, let POMDPr ⊆ POMDP be the
class of POMDPs for which approximating RDPs exist. The above results, and
definition 5.7, seem to suggest that no learning algorithm relying on probabilistic
estimates can distinguish if the observations are generated by a POMDP or a
carefully constructed RDP with a sufficiently large state space. In other words,
RDP learning algorithms may also provide original methods for finding near-optimal
solutions in the presence of partial observations. In fact, especially for equivalence,
RDP learning algorithms can be applied to POMDP with finite reachable beliefs,
without modifications. Ultimately, a similar possibility also opens for all POMDPs
that RDPs approximate.

Clearly, it is also important to understand whether learning in RDPs is funda-
mentally easier than in POMDPs. This does not seem to be the case for generic
RDP instances, as we show in the result below.

Theorem 5.14. Consider the fixed-horizon setting with horizon H ∈ N+, and fix
A ≥ 2, ε ∈ (0,

√
1/8). For any RL algorithm, there exists an RDP with A actions

and at most 3HA total states, such that the probability that the algorithm outputs an
ε-optimal policy after T ≤ cAH/ε2 episodes is at most 2/3, where c > 0 is a global
constant.

Proof. The result follows from the sample complexity lower bound for POMDPs
from proposition 1 of Krishnamurthy, Agarwal, et al. (2016). The POMDP instance
used in their proof, P, is shown in fig. 5.4. We observe that this is an RDP. More
precisely, there exists and RDP R that is equivalent to it. Since P has a single initial
state and its transition function is deterministic, the reachable prior belief space P is
finite. Then, equivalence follows from theorem 5.7 and the number of RDP states of
the equivalent RDP comes from the proof of this theorem. In particular, since both
the initial belief and the POMDP transitions are deterministic, the cardinality of the
reachable prior space P coincides with |S| = 2H. Then, there exists an equivalent

116 5. The Expressive Power of RDPs

RDP with POA = 3HA states. Ultimately, equivalence means that P and R cannot
be distinguished from traces, and if theorem 5.14 was false, then proposition 1 of
Krishnamurthy, Agarwal, et al. (2016) would be false.

Due to this theorem, we see that learning with RDPs may not be strictly more
effective in the general case. However, the approach of learning in POMDPs using
RDP representations is particularly relevant for model-based learning. In fact, while
planning in POMDPs is PSPACE-hard, planning in RDPs is in P. This allows
algorithms to maintain very effective state representations, which are convenient for
planning, since they do not require belief estimations, which are computationally
demanding. This does not contradict the hypothesis that RDPs can be general
POMDP approximators because it might be necessary to have an exponential number
of RDP states in the general case.

5.4 Discussion

In this chapter, we have shown multiple results regarding the expressive power of
RDPs. Among the negative results, that is, those that identify a clear separation
between RDPs and POMDPs, we demonstrated theorem 5.4, showing the strict
containment RDP ⊂ POMDP, and proposition 5.5, for an analogous separation in
policy space. Among the positive results, on the other hand, we have characterised
in theorem 5.7 the POMDPs that admit equivalent RDPs. Moreover, we have shown
in theorems 5.11 and 5.13 that both ξ-observable and ρ-mixing POMDPs can be
approximated by RDPs in the infinite horizon. More in general, these two last results
suggest that POMDPs with stable belief dynamics, which would include the two
classes above, could be approximated by RDPs. Together with the class of POMDPs
that RDPs exactly capture, the relationship between the two classes becomes very
strong. Currently, whether RDPs are universal POMDP approximators remains an
open question. In fact, although this work does not give a conclusive statement to
this issue, it also fails to identify a counterexample that would clearly separate the
two classes in approximation.

The relationship between these two models is especially tight in light of the lower
bound of theorem 5.14. In fact, this exponential lower bound is shared by both
RDPs and POMDPs. The main difference between these two models is planning
complexity, which is only polynomial for RDPs.

Most of the positive results of this chapter have been obtained by relating the
RDP states to a finite set of beliefs of the prior construction. In this regard, prior
beliefs have been the appropriate target to approximate because, similarly to RDP
states, they represent the environment configurations after the agent has taken an

5.5 Proofs 117

action. Some RDP representations, such as the one that will be used in chapter 6,
are more agent-oriented, in the sense that each RDP state corresponds to a decision
point, after the environment has selected an observation. In this case, RDP states
would be more properly related to a finite set of posterior beliefs, instead.

Future Work Many directions remain unexplored and are excellent candidates for
future work. Although we gave multiple results and insights on this topic, the question
of whether RDPs are general approximators for POMDPs still remains partially open.
This could be resolved both positively and negatively, with interesting directions
in either case. This result would also largely depend on the specific definition of
the approximation adopted. The one proposed here in definition 5.7 is only one of
various possibilities.

This topic has an impact on RL algorithms for both RDPs and POMDPs.
However, we did not study the practical applicability of RDP algorithms to POMDPs,
nor vice versa. An RDP learning algorithm will be proposed in chapter 6.

5.5 Proofs

This section contains all the proofs for this chapter. The reader may skip this section
and refer to it as needed.

Proposition 5.2. k-MDP ⊂ RDP

Proof. We first show k-MDP ⊆ RDP. Let M = 〈O,A,R, T, R〉 be any M ∈ k-MDP
for a specific k ∈ N+. We define the RDP that stores the last k state-action tuples
in its automaton states as R := 〈Hk,OA, Ω, τ, θ, q0〉, for q0 := s◦a◦ . . . s◦a◦. For any
hk = ot−kat−k+1 . . . at ∈ Hk, the transition and output functions are:

τ(hk, oa′) := ot−k+1at−k+2 . . . atoa′ (5.33)

θo(hk) := R(hk) (5.34)

θr(hk) := T (hk) (5.35)

M and R are clearly equivalent, because both models compute the output distribu-
tions from T and R and the last k transitions.

To show k-MDP 6= RDP, we can just construct an RDP whose dynamics have
history dependency that extends arbitrarily far into the future. We choose, R := 〈Q,

OA, Ω, τ, θ, q0〉, with Q := {q0, q1}, O := {>,⊥}, and a single action A := {a}.
The RDP memorizes whether ⊥ was observed at least once along the history:
τ(q0,>a) = q0, τ(q0,⊥a) = q1, and τ(q1, oa) = q1. The output probabilities

118 5. The Expressive Power of RDPs

depend on this condition: θo(> | q0, oa) = 0.5 and θo(> | q1, oa)> = 0.4. Now,
for any k ∈ N+ and k-MDP M, consider two histories hk+1 := ⊥a(>a)k and
h′

k+1 := >a(>a)k. Under R, the probability of the following > differs in the two
histories, P(> | hk+1, R) 6= P(> | h′

k+1, R). Since this cannot be captured with the
most k recent observations in hk+1 and k′

k+1, M cannot represent the probability
induced by R. This proof can be repeated for any k.

Proposition 5.3. RDP ⊆ POMDP

Proof. Consider any RDP R = 〈Q,OA, Ω, τ, θ, q0〉. We define a POMDP P :=
〈S,A,R,O, T, R, O〉, in which S := QO, and:

T (qo | s◦a◦) := δq0(q) θo(o | q0) (5.36)

T (q′o′ | (qo) a′) := δτ(q,oa′)(q′) θo(o′ | q′) (5.37)

O(o′ | qo) := δo(o′) (5.38)

R(r′ | (qo) a′) := θr(r′ | q) (5.39)

We now show that R and P are equivalent. To do so we need to compute the
respective induced NMDPs, NR and NP. First, from eqs. (5.36) and (5.38), the
distribution of o0 is θo(q0) under both models. Next, we compute the beliefs of
P, which are required in proposition 5.1 for computing NP. Since the transition
function T is deterministic in Q and stochastic in O, but the stochastic component
is observable, we recognize that beliefs of P are fully deterministic. In particular,
we can show by induction that bt(qo) = δot(o) δqt(q), by starting from the initial
(deterministic) belief, and recursively applying the update function. Now that the
expression for the beliefs of NP is known, we can compute its transition and reward
probabilities and verify equivalence:

µNP = θo(q0) = µNR (5.40)

T̄NP(o | ht) = θo(o | qt) = T̄NR(o | ht) (5.41)

R̄NP(r | ht) = θr(r | qt) = R̄NR(r | ht) (5.42)

Theorem 5.4. RDP ⊂ POMDP.

Proof. As a consequence of proposition 5.3, we prove we only need to show that
POMDP 6= RDP. To do so, we construct a POMDP for which no equivalent
RDP exists. Consider the POMDP P1 = 〈{s0, s1, s2}, {a0, a1},R, {>,⊥}, T, R, O〉,
illustrated in fig. 5.6. Each arc is labelled with an action and the associated

5.5 Proofs 119

s0

⊥

s1

⊥

s2

>

a0, ε1

a1, 1
a0, 1 − ε1 a0, 1

a1, 1

a0, 1
a1, 1

Figure 5.6. POMDP used in proof of theorem 5.4.

probability for that transition. The observations are deterministic and shown below
each node.

For arbitrarily long repetitions of a0, P1 only assigns positive probability to
equally long sequences of observations ⊥. Now consider what is the probability
assigned to > if a1 is executed at the end of this sequence. Let 〈O,A,R, T̄ , R̄〉 be
the NMDP induced by P1. We are asking what is the value of T̄ (> | ht+1) for
ht+1 = (⊥ a0)t⊥ a1. According to equation (5.12), it is necessary to evaluate the
belief at time t, as bt = U∗((⊥ a0)t). Since observations provide no information, each
application of UO leaves the belief unchanged and we can only consider the impact
of UT . This leads to the probability vector bt = [(1− ε1)t, 1− (1− ε1)t, 0]. From here,
we know that after executing the next action, a1, T̄ (> | ht+1) = bt(s1) = 1− (1− ε1)t.

This shows that, for 0 < ε1 < 1, for histories (⊥ a0)∗⊥ a1 of increasing length,
the probability of > increases without ever repeating. On the other hand, RDPs
can only generate one in a finite number of distributions, one for each state in the
finite set Q. Thus, there is no RDP which that is equivalent to P1.

Proposition 5.5. Consider the set X = {hoa ∈ HOA | ∃π∗ : π∗(ho) = a}, composed
of all histories that end in some optimal action. Then, there exists a POMDP in
which X is not a regular language.

Proof. We define a POMDP P3 = 〈Q,A,O, T, R, O〉, with statesQ = {qs, q+, q−, qw, ql},
actions A = {ā0, ā1, ā2}, observations O = {S, +,−, W, L}. Intuitively, the obser-
vation are associated to the start state qs, to states q+, q−, and the winning and
losing states qw, ql. Transitions and reward functions are defined as in fig. 5.7. The
stochastic transitions are shown in the arc labels and A denotes any action. The
symbol δx is the deterministic distribution at x, and vξ is the distribution defined
as vξ(+) = (1 + ξ)/2 and vξ(−) = (1− ξ)/2. We assume 0 < ξ < 0.5. The reward
function is zero everywhere except for any action in state qw.

As we can see, the first transition uniformly leads to q+ or q−. The optimal
action from each of these states is ā1 and ā2, respectively. Intuitively, a good policy
should first execute ā0 for a number of time steps to receive observations. The exact

120 5. The Expressive Power of RDPs

q+

vξ

qw δW

qsδS

q−

v−ξ

ql δL

ā0, 1

ā0, 1

A, 0.5

A, 0.5

A, 1

ā1, 1

ā1, 1

ā2, 1

ā2, 1
A, 1

Figure 5.7. The POMDP used in the proof of proposition 5.5.

number depends on the discount factor. This allows to collect sufficient evidence
from the observations about whether the current state is q+ or q−.

Now, we restrict our attention to the sequences in HO that only contains
action ā0. Under this sequence of actions, the only set of possible sequences is
X± := {S} ({ā0} {+,−})∗, all of which have a positive probability of occurring. Let
Xā1 ⊆ X± be the set sequences for which ā1 is optimal. We show that Xā1 is not
a regular language. First, we construct b(q+ | htot), the belief associated to any
htot ∈ X±, computed at q+.

b(q+ | ht−1ot−1ā0ot) ∝ O(ot | q+)
∑
q∈Q

T (q+ | qā0) b(q | ht−1ot−1) (5.43)

= O(ot | q+) b(q+ | ht−1) (5.44)

We recall that O(+ | q+) = (1 + ξ)/2 and O(− | q+) = (1− ξ)/2. Then, expanding
over time,

b(q+ | htot) ∝
1
2

(1 + ξ

2

)n+

+ 1
2

(1− ξ

2

)n−

(5.45)

where n+, n− is the number of occurrences in ht of +, −, respectively, and we have
used the fact that, at the initial transition, b(q+ | S) = 1/2. Similarly,

b(q− | htot) ∝
1
2

(1 + ξ

2

)n−

+ 1
2

(1− ξ

2

)n+

(5.46)

for the same normalizing factor. Then, the action ā1 is optimal at htot iff b(q+ |
htot) ≥ b(q− | htot). This is true iff n+ ≥ n−. This means Xā1 is the subsets of
sequences ho ∈ X± for which the number of occurrences of + is higher of equal than
the number of −. We have that both Xā1 and Xā1{ā1} are strictly context-free.

Proposition 5.6. Any POMDP is equivalent to its prior construction.

5.5 Proofs 121

Proof. The statement might be verified by simply observing that the prior construc-
tion preserves the original conditional probabilities over observations and rewards.
For a more formal proof, we should follow the procedure outlined below.

Consider a POMDP P = 〈S,A,O, T, R, O〉 and its prior construction Pp =
〈Sp,A,O, Tp, Rp, Op〉. Let N = 〈O,A,R, T̄ , R̄〉 and Np = 〈O,A,R, T̄p, R̄p〉 be the
respective induced NMDPs. To prove equivalence, we need to show that T̄ ≡ T̄p and
R̄ ≡ R̄p, for all histories. For comparing each pair of functions we should compute
the transition and reward functions of the two NMDPs. As dictated by eqs. (5.12)
and (5.13), this requires computing the expressions for the posterior beliefs of P and
of Pp. In particular, this last belief space would be ∆(Sp), where Sp includes itself
a distribution. However, we observe that the computed posterior would collapse
to being deterministic in the first component, since prior beliefs are deterministic
given the actions and the observations. The remaining algebraic substitutions are
omitted.

Theorem 5.7. Any POMDP, whose reachable prior space is finite, admits an RDP
that is equivalent to it.

Proof. We know that the set P := {U∗
p (h)}h∈H′ is finite. Hence, it is possible to

define an RDP having a state space of POA that mimics the behaviour of the prior
construction. Let us define an RDP R := 〈POA,OA, Ω, τ, θ, p0oa〉, with initial state
composed of the prior belief p0 = µ = T (s◦ a◦), and any observation and action oa.
The transition function updates the prior belief and stores the new observation
action pair as τ(poa, o′a′) := (Up(p, o′, a′), o′, a′). The transitions and rewards are
defined as:

θo(o′ | poa) :=
∑
s∈S

O(o′ | s) p(s) (5.47)

θr(r′ | poa) :=
∑
s∈S

R(r′ | s a) UO(s | p, o) (5.48)

This RDP perfectly mimics the dynamics of the prior construction. In fact, by
comparing the respective induced NMDPs of the RDP R and the original POMDP P,
we can see that the probabilities from all histories are the same. To verify this, we
remind that bt = UO(pt, ot) and pt = UT (bt−1, at).

Proposition 5.9. For any policy π, let V π
1 and V π

2 be the discounted values that π

obtains in two NMDPs, N1 and N2, from the respective initial distributions. If N1

is an ε-approximation of N2, then π∗
1, the optimal policy in N1, satisfies

V ∗
2 − V

π∗
1

2 ≤ 2ε|R|
1− γ

+ 2γε|O|
(1− γ)2 (5.23)

122 5. The Expressive Power of RDPs

Proof. Let π∗
1 and π∗

2 be optimal policies in the two NMDPs.

V ∗
2 − V

π∗
1

2 = |V π∗
2

2 − V
π∗

1
2 | (5.49)

≤ |V π∗
2

2 − V
π∗

1
1 |+ |V

π∗
1

1 − V
π∗

1
2 | (5.50)

= |sup
π

V π
2 − sup

π
V π

1 |+ |V
π∗

1
1 − V

π∗
1

2 | (5.51)

≤ sup
π
|V π

2 − V π
1 |+ |V

π∗
1

1 − V
π∗

1
2 | (5.52)

≤ 2 sup
π
|V π

2 − V π
1 | (5.53)

now we apply lemma 5.15,

≤ 2
1− γ

Eht∼d′π |Ert∼R̄(ht) rt − Ert∼R̄′(ht) rt|

+ 2γ

1− γ
Eht∼d′π |Eot∼T̄ (ht) V π(htot)− Eot∼T̄ ′(ht) V π(htot)|

(5.54)

≤ 2
1− γ

Eht∼d′π

∑
r∈R
|R̄(r | ht)− R̄′(r | ht)|

+ 2γ

(1− γ)2 Eht∼d′π

∑
o∈O
|T̄ (o | ht)− T̄ ′(o | ht)|

(5.55)

using the fact that N1 approximates N2,

≤ 2ε|R|
1− γ

+ 2γε|O|
(1− γ)2 (5.56)

Lemma 5.15. For any policy π and any two NMDPs N and N′, let V π
µ and V ′π

µ′ be
their respective values. Then,

|V π
µ − V ′π

µ′ | ≤
1

1− γ
Eht∼d′π |Ert∼R̄(ht) rt − Ert∼R̄′(ht) rt|

+ γ

1− γ
Eht∼d′π |Eot∼T̄ (ht) V π(htot)− Eot∼T̄ ′(ht) V π(htot)|

(5.57)

Proof. This result is the analogue of what the Simulation Lemma (Kearns and S.
Singh 2002) is for MDPs. Let N and N′ be two NMDPs, and V π, V ′π their values
functions for some policy π. Then, for any initial observation o0 ∈ O,

V π(o0)− V ′π(o0) (5.58)

= Ea1∼π(o0) Er1,o1∼R̄(h1),T̄ (h1)[r1 + γ V π(h1o1)]

+ Ea1∼π(o0) Er1,o1∼R̄′(h1),T̄ ′(h1)[r1 + γ V ′π(h1o1)]
(5.59)

= Ea1∼π(o0)[Er1∼R̄(h1) r1 − Er1∼R̄′(h1) r1]

+ γ Ea1∼π(o0)[Eo1∼T̄ (h1) V π(h1o1)− Eo1∼T̄ ′(h1) V ′π(h1o1)]
(5.60)

5.5 Proofs 123

= Ea1∼π(o0)[Er1∼R̄(h1) r1 − Er1∼R̄′(h1) r1]

+ γ Ea1∼π(o0)[Eo1∼T̄ (h1) V π(h1o1)− Eo1∼T̄ ′(h1) V π(h1o1)]

+ γ Ea1∼π(o0)[Eo1∼T̄ ′(h1) V π(h1o1)− Eo1∼T̄ ′(h1) V ′π(h1o1)]

(5.61)

Let πT̄ : HO → ∆(AO) represent the joint probability function over the next action
and observation. We continue,

= Ea1∼π(o0)[Er1∼R̄(h1) r1 − Er1∼R̄′(h1) r1]

+ γ Ea1∼π(o0)[Eo1∼T̄ (h1) V π(h1o1)− Eo1∼T̄ ′(h1) V π(h1o1)]

+ γ Ea1o1∼πT̄ ′(o0)[V
π(h1o1)− V ′π(h1o1)]

(5.62)

and expand the third term recursively,

= Ea1∼π(o0)[Er1∼R̄(h1) r1 − Er1∼R̄′(h1) r1]

+ γ Ea1o1a2∼πT̄ ′π(o0)[Er2∼R̄(h2) r2 − Er2∼R̄′(h2) r2]

+ γ Ea1∼π(o0)[Eo1∼T̄ (h1) V π(h1o1)− Eo1∼T̄ ′(h1) V π(h1o1)]

+ γ2 Ea1o1a2∼πT̄ ′π(o0)[Eo2∼T̄ (h2) V π(h2o2)− Eo2∼T̄ ′(h2) V π(h2o2)]

+ γ2 Ea1o1a2o2∼πT̄ ′πT̄ ′(o0)[V
π(h2o2)− V ′π(h2o2)]

(5.63)

=
∞∑

t=1
γt−1 Eht∼N′,π,o0 [Ert∼R̄(ht) rt − Ert∼R̄′(ht) rt]

∞∑
t=1

γt Eht∼N′,π,o0 [Eot∼T̄ (ht) V π(htot)− Eot∼T̄ ′(ht) V π(htot)]
(5.64)

Now, let us extend the usual notion of state occupancy measure to NMDPs. This
would be a probability distribution dπ ∈ ∆(H), defined as

dπ(h) := (1− γ)
∞∑

t=0
γt P(ht = h | N, π) (5.65)

Note that this object already takes the expectation with respect to the initial
distribution. Then, we can resume the computation above, and take its absolute
value as:

|V π
µ − V ′π

µ′ | ≤
∣∣∣ ∞∑
t=1

γt−1 Eht∼N′,π[Ert∼R̄(ht) rt − Ert∼R̄′(ht) rt]
∣∣∣

+
∣∣∣ ∞∑
t=1

γt Eht∼N′,π[Eot∼T̄ (ht) V π(htot)− Eot∼T̄ ′(ht) V π(htot)]
∣∣∣ (5.66)

= 1
1− γ

|Eht∼d′π [Ert∼R̄(ht) rt − Ert∼R̄′(ht) rt]|

+ γ

1− γ
|Eht∼d′π [Eot∼T̄ (ht) V π(htot)− Eot∼T̄ ′(ht) V π(htot)]|

(5.67)

124 5. The Expressive Power of RDPs

≤ 1
1− γ

Eht∼d′π |Ert∼R̄(ht) rt − Ert∼R̄′(ht) rt|

+ γ

1− γ
Eht∼d′π |Eot∼T̄ (ht) V π(htot)− Eot∼T̄ ′(ht) V π(htot)|

(5.68)

Proposition 5.10. For any 0 ≤ ε1 ≤ 1 and ε > 0, there exists an RDP which is an
ε-approximation of P1, the POMDP of fig. 5.6.

Proof. Let us define an RDP RP1 = 〈P̃O,OA, Ω, τ, θ, v0⊥〉. For a number n ∈ N+,
to be specified, we define P̃ := {p2, v0, . . . , vn, w0, . . . , wn}, where p2 = δs2 , vi :=
[(1− ε1)i, 1− (1− ε1)i, 0] and wi := [(1− ε1)i, 0, 1− (1− ε1)i]. The output function
θ is a composition between null rewards and the distribution over observations,
θo(po) = Ber(> | p(s2)). As a side note, the term p(s2) can be interpreted as
the approximate prior probability associated to s2, the priors vi are associated to
sequences of consecutive a0, and the priors wi are associated to sequences of a0

followed by one a1. Finally, the transition function is defined:

τ(vio, o′a′) =

(vi+1, o′) if i < n and a′ = a0

(vn, o′) if i = n and a′ = a0

(wi, o′) if a′ = a1

(5.69)

τ(wio, o′a′) =

(p2, o′) if o′ = >

(v1, o′) if o′ = ⊥ and a′ = a0

(v0, o′) if o′ = ⊥ and a′ = a1

(5.70)

τ(p2o, o′a′) = p2o′ (5.71)

It now remains to show that RP1 ε-approximates P1. By construction, over any
history ht of arbitrarily length that does not end in more than n consecutive
repetitions of a0, the current state τ̄(v0⊥, ht) is equal to the prior belief P(st | ht).
On the other hand, the belief δs1 , which is only reachable in the limit of hi = (⊥ a0)i

for i that tends to infinity, is approximated by vn. It can be shown that this
approximation error is the maximum reachable distance with true beliefs, that is
maxh∈H‖τ̄(v0⊥, h) − P(s | h)‖1 ≤ ‖δs1 − vn‖1. Computing this distance explicitly,
we have ‖δs1 − vn‖1 = 2(1− ε1)n. Also, since observations of the induced NMDPs
satisfy

‖θo(τ̄(v0⊥, ht))− P(ot | ht, P1)‖1 ≤ ‖τ̄(v0⊥, ht)− P(st | ht, P1)‖1 (5.72)

it suffices to ensure 2(1− ε1)n ≤ ε. This is true for n ≥ log1−ε1(ε/2).

5.5 Proofs 125

Lemma 5.16. (Even-Dar, Sham M. Kakade, et al. 2007) Given a POMDP P, for
any two beliefs b, b′ ∈ B and action a ∈ A, the expected relative entropy after a belief
update satisfies,

Eo∼O(b)
[
DKL(Up(b, o, a′) ‖ Up(b′, o, a′))

]
≤ DKL(b ‖ b′) − DKL(O(b) ‖ O(b′))

(5.73)

for all a′ ∈ A.

Proof. This is an application of the data processing inequality. It can be also seen
as an instance of proposition 3.4 of Even-Dar, Sham M. Kakade, et al. (2007), for
εU = εO = εT = 0.

Lemma 5.17. Given a ξ-observable POMDP P and a (η, ν)-divergent cover of P,
for any p ∈ P and p̃ := f̃(p),

DKL(O(p) ‖ O(p̃)) ≥ ξ2 ν

2 DKL(p ‖ p̃) (5.74)

Proof. From the Pinsker’s inequality and the definition of ξ-observable POMDP,

DKL(O(p) ‖ O(p̃)) ≥ ‖O(p)−O(p̃)‖21 /2 (5.75)

≥ ξ2

2 ‖p− p̃‖21 (5.76)

From theorem 2 of Verdú (2014) (derived from Csiszár and Talata (2006)), we can
lower bound the last term to obtain

DKL(O(p) ‖ O(p̃)) ≥ ξ2 ν

2 DKL(p ‖ p̃) (5.77)

Lemma 5.18. Given a POMDP P and a η-divergent cover P̃ of P, for any p, ṗ ∈ P,

DKL(p ‖ f̃(ṗ))−DKL(p ‖ ṗ) ≤ η (5.78)

Proof. This statement first appeared in Boyen and Koller (1998). We provide a
proof here. For any p, ṗ ∈ B,

DKL(p ‖ f̃(ṗ))−DKL(p ‖ ṗ) = (5.79)

=
∑
s∈S

p(s)
(

log
(

p(s)
f̃(s | p)

)
− log

(
p(s)
ṗ(s)

))
(5.80)

= Es∼p

[
log
(

ṗ(s)
f̃(s | ṗ)

)]
(5.81)

126 5. The Expressive Power of RDPs

≤ ιṗ‖f̃(s|ṗ) (5.82)

The result now follows from the definition of η-divergent cover.

Theorem 5.11. Given any ξ-observable POMDP P, if P̃ is a (η, ν)-divergent cover
of the reachable prior space, the covering RDP of P into P̃ is an ε-approximation of
P, for ε =

√
4η

ξ2 ν
, provided that ν < 2/ξ2.

Proof. We use pt ∈ P to represent the exact prior belief pt := U∗
p (ht). Let RP be the

approximating RDP and P̃ the (η, ν)-divergent cover of P. We write p̃t to denote
the approximate prior belief, computed from RP, as p̃t := τ̄(p̃0, ht). Also, let ṗt be
the approximate belief before the projection into P̃, that is ṗt := Up(p̃t−1, ot−1, at).

Now, regarding observations, to verify the theorem we need to show that,

Eht∼P|a1:t |T̄RP(o | ht)− T̄P(s | ht)| ≤ ε (5.83)

which, by definition of P and RP is equivalent to ensure

Eo:t−1‖O(pt)−O(p̃t)‖∞ ≤ Eo:t−1‖O(pt)−O(p̃t)‖1 ≤ ε (5.84)

where here and in the following, expectations are implicitly computed with respect to
P|a1:t. We start by observing that the error induced over the generated observations
is limited by the error in prior belief:

‖O(pt)−O(p̃t)‖1 ≤ ‖pt − p̃t‖1 (5.85)

which, under Pinsker’s inequality satisfies

‖pt − p̃t‖1 ≤
√

2 DKL(pt ‖ p̃t) (5.86)

Thus, we now proceed to show that the relative entropy between real and approxi-
mated beliefs remains bounded at all t ∈ N. This is proved via induction. Specifically,
we show

Eo:t−1

[
DKL(pt ‖ p̃t)

]
≤

t∑
i=0

η(1− ξ2 ν/2)i (5.87)

for any a1:t ∈ At, at all t ∈ N.
For the base case, at t = 0, we have by definition p̃0 := f̃(p0). Therefore,

DKL(p0 ‖ f̃(p0)) ≤ ιp0‖f̃(p0) ≤ η (5.88)

where the second inequality follows by construction of η-divergent cover of P . For the
inductive step, assume (5.87) is true at some t. For any history ht, from lemma 5.16,

5.5 Proofs 127

we know that, in expectation, divergence of beliefs reduces after a belief update:

Eot∼O(bt)
[
DKL(pt+1 ‖ ṗt+1)

]
≤ DKL(pt ‖ p̃t)−DKL(O(pt) ‖ O(p̃t)) (5.89)

for all at+1 ∈ A. Furthermore, from an application of lemma 5.17, we get

Eot∼O(bt)
[
DKL(pt+1 ‖ ṗt+1)

]
≤ DKL(pt ‖ p̃t)−

ξ2 ν

2 DKL(pt ‖ p̃t) (5.90)

Taking expectations over o:t−1 ∼ P | a:t, in both sides, yields

Eo:t

[
DKL(pt+1 ‖ ṗt+1)

]
≤ (1− ξ2 ν/2)Eo:t−1

[
DKL(pt ‖ p̃t)

]
(5.91)

for all at+1 ∈ A. Now, with an application of lemma 5.18 over pt+1 and ṗt+1,

Eo:t

[
DKL(pt+1 ‖ f̃(ṗt+1))

]
− η ≤ (1− ξ2 ν/2)Eo:t−1

[
DKL(pt ‖ p̃t)

]
(5.92)

Eo:t

[
DKL(pt+1 ‖ p̃t+1)

]
≤ (1− ξ2 ν/2)Eo:t−1

[
DKL(pt ‖ p̃t)

]
+ η (5.93)

Finally, from an application of the inductive hypothesis,

Eo:t

[
DKL(pt+1 ‖ p̃t+1)

]
≤

t+1∑
i=0

η(1− ξ2 ν/2)i (5.94)

This proves eq. (5.87). For ν < 2/ξ2, each term is positive and we also know

Eo:t

[
DKL(pt ‖ p̃t)

]
≤

∞∑
i=0

η(1− ξ2 ν/2)i = 2η

ξ2 ν
(5.95)

To conclude, because of eq. (5.86), to verify eq. (5.21), it suffices that√
4η

ξ2 ν
≤ ε (5.96)

The same derivation is also sufficient for rewards.

Theorem 5.13. For any ε > 0 and POMDP P whose mixing rate is ρ > 0, there
exists a covering RDP that is an ε-approximation of P.

Proof. We follow the same definitions and reasoning as the proof for theorem 5.11
up to eq. (5.86). In the inductive proof, instead, we show

Eo:t−1∼P|a1:t

[
DKL(pt ‖ p̃t)

]
≤

t∑
i=0

η (1− ρ)t (5.97)

for any a1:t ∈ At, at all t ∈ N. The base case also applies without modifications. In
the inductive step, assume at some t, eq. (5.97) holds. For any history ht, divergence

128 5. The Expressive Power of RDPs

in beliefs does not increases in expectation after a conditioning step:

Eot∼O(bt)
[
DKL(UOpt, ot ‖ UOp̃t, ot)

]
≤ DKL(pt ‖ p̃t) (5.98)

This can be seen as an instance of lemma 3.9 in (Even-Dar, Sham M. Kakade, et al.
2007) with εO = 0. Furthermore, from lemma 5.12, divergence in beliefs decreases
after a prediction step. Combining the two results:

DKL(pt+1 ‖ ṗt+1) ≤ (1− ρ) DKL(pt ‖ p̃t) (5.99)

Taking expectations and with an application of lemma 5.18 over pt+1 and ṗt+1,

Eo:t

[
DKL(pt+1 ‖ p̃t+1)

]
≤ (1− ρ)Eo:t−1

[
DKL(pt ‖ p̃t)

]
+ η (5.100)

which proves the inductive step. As a consequence,

Eo:t

[
DKL(pt ‖ p̃t)

]
≤

∞∑
i=0

η(1− ρ)i = η

ρ
(5.101)

Because of eqs. (5.85) and (5.86), to ensure

‖P(ot | pt, P)− P(ot | p̃t, RP))‖1 ≤ ε (5.102)

it suffices that √
2 η

ρ
≤ ε (5.103)

The same is also sufficient for rewards.

129

Chapter 6

Offline Reinforcement Learning
in RDPs

The content of this chapter is based on the work: Roberto Cipollone, An-
ders Jonsson, Alessandro Ronca, and Mohammad Sadegh Talebi (2024).
“Provably Efficient Offline Reinforcement Learning in Regular Decision
Processes”. In: Thirty-Seventh Conference on Neural Information Pro-
cessing Systems, NeurIPS 2024.

The previous chapter had been an in-depth study of how Regular Decision
Processes work, what are their properties, and their relevance for environments with
complex history dependencies or partial observations. In this chapter, we provide a
complete RL algorithm for RDPs with sample efficiency guarantees.

6.1 Introduction

When learning in RDPs, the RL algorithm has no access to the hidden states of
the RDP, but it may only observe the executed actions and the generated rewards
and observations. The objective of an RL algorithm is to learn a near-optimal
policy for the unknown RDP, by only receiving the traces produced as a result of
the interaction. In this work, we specifically consider the Offline Reinforcement
Learning setting. In offline RL, the agent may not interact with the environment
directly. Rather, it is only given access to a dataset of environment interactions
that have been previously collected using some behaviour policy. In MDPs, the
dataset is usually composed of tuples of individual transitions. In RDPs, on the
other hand, the entire interaction sequence is relevant. For this reason, the dataset
is composed of some number of complete episode traces. In this work, we consider
the finite-horizon setting. In summary, the purpose of the learning algorithm is

130 6. Offline Reinforcement Learning in RDPs

to compute a near-optimal policy for an unknown RDP R in the finite horizon
setting, by receiving a finite number of episodes that have been sampled with an
unknown behaviour policy in R. Despite the extensive and rich literature on MDPs,
comparatively little work exists on offline RL in non-Markovian decision processes.
The scarcity of results may likely be attributed to the difficult nature of the problem,
rather than the lack of interest.

6.1.1 Contributions

In this work, we establish a first, to the best of our knowledge, sample complexity
lower bound for offline RL of RDPs (section 6.6). We introduce an offline RL
algorithm, called RegORL, that learns ε-optimal policies for any RDP, in the episodic
setting. At the core of RegORL, there is a component called AdaCT–H, which is a
variant of AdaCT (Balle, J. Castro, et al. 2013), carefully tailored to episodic RDPs.
AdaCT–H learns a minimal automaton that underlies the unknown RDP, without
any prior knowledge. The output automaton is then used to construct a Markovian
transformation of the input data. Thus, for solving the original RDP, the resulting
dataset can be passed to any off-the-shelf algorithm for offline RL in episodic MDPs.

We present a sample-complexity bound for AdaCT–H to return a minimal
automaton consistent with the input data with high probability. This bound
substantially improves the existing bound for the original AdaCT, and can be of
independent interest. In view of the modular design of RegORL, the total sample
complexity is controlled by twice that of AdaCT–H (theorem 6.6) and that for the
incorporated off-the-shelf algorithm.

We also present another variant of AdaCT–H, called AdaCT–H–A. In contrast
to AdaCT–H, which learns a complete RDP, AdaCT–H–A only reconstructs the
subset of states that are likely under the behaviour policy, in relation to an input
accuracy parameter. As such, AdaCT–H–A is more aligned with the common
practice of RL than AdaCT–H.

Furthermore, we provide a first lower bound for offline RL in RDPs that involves
the relevant parameters for the problem, such as the RDP single-policy concentra-
bility, which extends an analogous notion for MDPs from the literature. Finally,
if contrasted to both online learning in RDPs and automata learning, our results
suggest possible improvements in sample complexity results for both areas.

6.1.2 Related Work

Offline RL in MDPs There is a rich and growing literature on offline RL, and
provably sample efficient algorithms have been proposed for various settings of MDPs
(Uehara and Sun 2022; Yin and Y.-X. Wang 2021; J. Chen and N. Jiang 2019; Xie,

6.1 Introduction 131

N. Jiang, et al. 2021; Rashidinejad, Zhu, et al. 2021; G. Li, L. Shi, et al. 2022; Zhan,
Huang, et al. 2022; Y. Jin, Z. Yang, et al. 2021; Ren, J. Li, et al. 2021; Uehara, X.
Zhang, et al. 2022). In the case of episodic MDPs, it is established that the optimal
sample size in offline RL depends on the size of state-space, the episode length, as
well as some notion of concentrability, reflecting the distribution mismatch between
the behaviour and optimal policies. A closely related problem is off-policy learning;
see, for example, P. S. Thomas and Brunskill (2016), Maei, Szepesvári, et al. (2010),
and Kallus and Uehara (2020) and the recent survey Uehara, C. Shi, et al. (2022).
For offline RL in MDPs, the papers cited above report learning algorithms with
theoretical guarantees on their sample efficiency. The majority of these algorithms
are designed based on the pessimism principle. While most literature focuses on
tabular MDPs, the case of linear function approximation is discussed in some papers,
such as, Uehara, X. Zhang, et al. (2022).

Online RL in RDPs RDPs have been introduced in Brafman and De Giacomo
(2019) as a formalism based on temporal logic. They admit an equivalent formulation
in terms of automata, which is favoured in the context of RL. Several algorithms
for online RL in RDPs exist (Abadi and Brafman 2020; Ronca and De Giacomo
2021; Ronca, Licks, et al. 2022), but complexity bounds are only given in Ronca
and De Giacomo (2021) for the infinite-horizon discounted setting. This last work
shows the correspondence between RDPs and Probabilistic Deterministic Finite
Automata (PDFAs), and it introduces the idea of using PDFA-learning techniques
to learn RDPs. Their sample complexity bounds are not immediately comparable
to ours, due to the different setting. Importantly, this algorithm uses the uniform
policy for learning. So, the algorithm might be adapted to our setting only under
the assumption that the behaviour policy is uniform. Even in this case, our bounds
show an improved dependency on several key quantities. Furthermore, we provide a
sample complexity lower bound, whereas their results are limited to showing that a
dependency on the quantities occurring in their upper bounds is necessary.

The first RL algorithm for RDPs appears in (Abadi and Brafman 2020) for
the online discounted setting. It is automaton-based, and in particular, it learns
the RDP in the form of a Mealy machine. The algorithm is shown in (Ronca and
De Giacomo 2021) to incur in an exponential dependency on the length of the
relevant histories. An algorithm that integrates a more effective exploration strategy
is given in (Ronca, Licks, et al. 2022). This work also introduces the idea of seeing
the transition function of a PDFA as a Markov abstraction of the histories to be
passed to an RL algorithm for MDPs, so as to employ it in a modular manner.

The algorithms in Icarte, Waldie, et al. (2019), Hutter (2009), Veness, K. S. Ng,
et al. (2011), and Mahmud (2010) apply to RDPs even though they have not been

132 6. Offline Reinforcement Learning in RDPs

developed specifically for RDPs. In Icarte, Waldie, et al. (2019) the authors present
an RL algorithm for the subclass of POMDPs that have a finite set of reachable
belief states. As we saw in the previous chapter, these means that they can be
modelled as RDPs. Their algorithm is based on automata learning, but it does not
come with an analysis of its performance guarantees.

The RL techniques presented in (Hutter 2009; Veness, K. S. Ng, et al. 2011)
for feature MDPs are in fact applicable to episodic RDPs. The techniques are
based on suffix trees, rather than automata. However, there are cases when the
size of the smallest suffix tree is exponential in the horizon, while an automaton
of linear size exists. Thus, their techniques cannot yield optimal bounds for RDPs.
Mahmud (2010) introduces an RL algorithm for Deterministic Markov Decision
Models (MDDs). Such MDDs are also automaton-based, and their RL algorithm
applies to RDPs as well. However, the algorithm is provided without guarantees.

Non-Markov Rewards and Reward Machines MDPs with non-Markov re-
wards are a special case of NMDPs, where only rewards are non-Markovian. Namely,
observations satisfy the Markov property, while rewards may depend on the entire
history. The specific kind of non-Markovian rewards considered in the literature
amount to the subclass of RDPs where the automaton state is only needed to
predict the next reward—while the next observation can be predicted from the last
observation. The relation between RDPs and automata-based formalisms for reward
specifications has been discussed in the related work section of chapter 5.

More relevant to this work are Gaon and Brafman (2019) and Xu, Gavran, et al.
(2020). These are RL algorithms with unknown reward machines, meaning, un-
known temporal specifications, however they are also presented with no performance
guarantees.

State Representations State representations are maps from histories to a finite
state space. The map defined by the transition function of an RDP is a state
representation. Works, such as Maillard, Munos, et al. (2011), Nguyen, Maillard,
et al. (2013), Maillard, Nguyen, et al. (2013), and Ortner, Pirotta, et al. (2019),
are studies on state representations, that focus on regret bounds for RL given a
candidate set of state representations. While in our case the state representations
are concretely defined by the class of finite-state automata, in their case they are
arbitrary maps. This is a challenging setting, which does not allow for taking
advantage of the properties of specific classes of state representations. The regret
bounds in Maillard, Munos, et al. (2011), Maillard, Nguyen, et al. (2013), and
Ortner, Pirotta, et al. (2019) are for finite sets of state representations, and they all
show a linear dependency on the cardinality of the given set of state representations.

6.1 Introduction 133

In our case, the candidate state representations corresponds to the set of automata
with at most Q = 2(AO)H states and AO input letters. Such a set contains at least
QQAO automata—the number of distinct transition functions. Thus, if we could
instantiate their bounds in our setting, they would have an exponential dependency
on the number Q of RDP states, and hence a doubly-exponential dependency on
the horizon H. We avoid this dependency, obtaining polynomial bounds in the
mentioned quantities.

Nguyen, Maillard, et al. (2013) consider the case of a countably infinite set of
state representations, and present an algorithm whose regret bound does not show
a dependency such as the one discussed above. Instead, they show a dependency
on a quantity K0, which admits several interpretations, including one based on the
descriptional complexity of the candidate state representations. Thus, there may
be a way to relate K0 to the quantities we use in our bounds. However, the formal
relationship between the two, if any, renders highly non-trivial, which prevents one
to use their ideas in the case of RDPs. We believe establishing a formal relationship
between their model and RDPs is an interesting, yet challenging, topic for future
work. Furthermore, it should be stressed that even if the relationship was clear and
one could borrow ideas from this paper, the resulting sample complexity bound
would have to grow as 1/ε3 in view of their regret bound scaling as T 2/3. In contrast,
our bounds achieve an optimal dependency of 1/ε2 on ε.

PSRs Predictive State Representations (PSRs) (Littman, Sutton, et al. 2001; S. P.
Singh, Littman, et al. 2003; James and S. Singh 2004; Bowling, McCracken, et al.
2006; Kulesza, N. Jiang, et al. 2015) are general descriptions of dynamical systems
that capture POMDPs and hence RDPs. There exist polynomial PAC bounds for
online RL in PSRs (Zhan, Uehara, et al. 2023). Nonetheless, these bounds are looser
than the one we show here, since they must necessarily consider a wider class of
models. Moreover, although a minimum core set for PSRs is similar to a minimal
RDP, the bounds feature a number of quantities that are specific to PSRs (such as,
the regularity parameter) and do not immediately apply to RDPs. Since POMDPs
are more restrictive than PSRs, in the specific subclass of POMDPs, we remind
Monte-Carlo algorithms (Silver and Veness 2010).

Feature MDPs and General RL Hutter (2009) introduces feature MDPs, where
histories are mapped to states by a feature map. This relates to our work since the
map provided by the transition function of an RDP is a feature map. The concrete
feature maps they consider are based on U-Trees (McCallum 1996). The idea is
also revisited in (Veness, K. S. Ng, et al. 2011) with Prediction Suffix Trees (PSTs)
(Rissanen 1983; Ron, Singer, et al. 1996). Both U-Trees and PSTs are suffix trees.

134 6. Offline Reinforcement Learning in RDPs

There are cases when their size is exponential in the horizon, while an automaton of
linear size exists. For instance, in the case of a parity condition over the history. To
see this, note that a suffix x of a bit string bx does not suffice to establish parity of
bx. In fact, the parity of 0x is different from the parity of 1x. Thus, a suffix tree
for parity must encode all suffixes, and hence it will have a number of leaves that is
exponential in the maximum length of a relevant string—the horizon H in the case
of episodic RL.

Lattimore, Hutter, et al. (2013) consider General RL as the problem of RL when
we are given a set of candidate NMDPs, rather than assuming the decision process
to belong to a fixed class. Similarly to the works on state representations, it does not
commit to specific classes of NMDPs, and their bounds have a linear dependency
on the number of candidate models. As remarked above, in our setting, it amounts
to an exponential dependency on the number of states of the candidate RDPs, and
hence a doubly-exponential dependency on the horizon; we avoid such exponential
dependencies.

Learning PDFA Our algorithms for learning an RDP borrow and improve over
techniques for learning Probabilistic-Deterministic Finite Automata (PDFA). The
first PAC learning algorithm for acyclic PDFA has been presented in Ron, Singer,
et al. (1998), then followed by extensions and variants that can handle PDFA with
cycles (Clark and Thollard 2004; Palmer and Goldberg 2007; Balle, J. Castro, et al.
2013; Balle Pigem 2013; Balle, J. Castro, et al. 2014). All bounds feature some
variant of a distinguishability parameter, which we adopt in our bounds, properly
adapting it to the offline RL setting. Our algorithm builds upon the state-of-the-art
algorithm AdaCT (Balle, J. Castro, et al. 2013), and we derive bounds that are a
substantial improvement over the ones that can be obtained from a straightforward
application of any existing PDFA-learning algorithm to the offline RL setting.

RL with Neural Networks Among the approaches without formal guarantees,
arguably the most common solution technique is to use Deep RL algorithms, coupled
with Neural Networks architectures that are able to process sequences, instead of
individual observations. In fact, applying Deep RL with feed-forward architectures
to partially-observable environments may lead to arbitrarily suboptimal results,
even for very promising learning algorithms (see for example the worst performing
environments in Mnih, Kavukcuoglu, et al. (2015)). For processing sequences,
Recurrent Neural Networks (RNNs) are a very natural choice. The integration of
RL with RNN has been advised as a promising solution since Lin and Mitchell
(1993) and Hauskrecht (2000). The idea was later expanded to LSTMs (Bakker 2001;
Hausknecht and Stone 2015; Heess, Hunt, et al. 2015) and policy gradients (Wierstra,

6.2 Preliminaries 135

Förster, et al. 2007). Thanks to these successes, since Mnih, Badia, et al. (2016),
each new RL algorithm is natively compatible with recurrent architectures. This has
led to impressive results in video games with first-person view (Oh, Chockalingam,
et al. 2016; Lample and Chaplot 2017; Mirowski, Pascanu, et al. 2017). Model-based
learning algorithms have also been developed, with similar techniques (X. Li, L. Li,
et al. 2015; Ha and Schmidhuber 2018). We also remind a different approach based
on variational RL (Igl, Zintgraf, et al. 2018), and an in-depth study about the impact
of the experience replay buffer in non-Markovian RL (Kapturowski, Ostrovski, et al.
2019). Lastly, we recall that any NN architecture for sequences may be suitable for
the purpose, even attention mechanisms (Vaswani, Shazeer, et al. 2017). Although
very related to the problem studied here, these works mostly provide no correctness
guarantees, and they may fail to converge for the hardest temporal dependencies.

6.2 Preliminaries

This chapter adopts most of the common notation that has been set in chapter 2, with
some differences that we will highlight next. Since we work under the finite-horizon
setting, all the appropriate definitions apply, including the finiteness of histories,
traces, episodes, and undiscounted value functions. Each episode will be composed
by H ∈ N+ transition steps, after which, the interaction stops, and it may only be
resumed from the initial distribution.

The only significant difference with the shared notation used in the rest of the
these regards how histories and RDPs are represented. In this chapter, an RDP will
be defined as a Moore machine, with input symbols in AO. This is different from the
definition that we have in section 2.2 and in chapter 5, where the input alphabet was
OA. Because of this choice, the most recent action has not been consumed after a
transition, yet. Therefore, similarly to what would happen in a multi-armed bandit,
each RDP state outputs a conditional distribution that associates each action to
stochastic observations and rewards. As we discussed in the previous chapter, all
these definitions are largely equivalent, since they still satisfy the main property of
RDPs, namely, that the non-Markovian functions over histories T̄ and R̄ are regular.
Therefore, every result be derived here and in other chapters continue to hold.

Consistently with this choice of the RDP inputs, histories will be defined analo-
gously, as a concatenation of symbols in AO. Unlike the rest of this thesis, then, they
will not terminate with the last action, but the last observation, instead. This will
allow writing h, instead of ho, in many locations, including the input arguments of
policies, of value functions, and of RDP transition functions, extended over sequences.
This change in how histories and RDPs are represented is motivated by specific needs.

136 6. Offline Reinforcement Learning in RDPs

In chapter 5, RDPs have been solely used as representations of the environment
dynamics, and compactness has been of key importance. In this chapter, on the
other hand, we are developing a learning algorithm. Therefore, RDP states should
represent the agent’s decision points, where the environment has generated and
observation, but the agent has not selected an action yet.

Summarizing, in this chapter, histories and traces are defined as Ht := (AO)t

and Tt := (ARO)t. The set of all histories and traces is H := ∪i=0,...,HHt and
T := ∪i=0,...,H+1Tt An episode e0:H ∈ TH+1 is a complete trace of H transitions, as

eH = a0r0o0a1r1o1 . . . oH ∈ TH+1 (6.1)

In general ei:j ∈ Ti−j+1 denotes a trace from time i to time j, included. The irrelevant
variables a0r0 are only included for simplifying the notation. They are always set to
a0 = a◦ and r0 = 0. Histories are defined analogously, by omitting all rewards.

Generic policies are functions in Π := H → ∆(A). With the due changes, the
definitions of Markovian and stationary policies from page 13 still apply. The value
function of a policy π in any decision process is written

V π
t (ht) := E[gt+1 | D, π, ht] (6.2)

and V π
H ≡ 0. Without referring to any history, the value of a policy is V π

µ :=
Eo0∼µ[V π

0 (a◦o0)], with respect to the initial observation distribution µ. Optimality
and near-optimality is defined as usual.

Following the decisions above, we formalize an episodic Regular Decision Process
(RDP) as a finite transducer (Moore machine) 〈Q, Σ, Ω, τ, θ, q0〉, where Q is a finite
set of states, Σ := AO is a finite input alphabet composed of actions and observations,
Ω is a finite output alphabet, τ : Q×Σ→ Q is a transition function, θ : Q → Ω is an
output function, and q0 ∈ Q is a fixed initial state. The output space Ω := Ωo × Ωr

consists of a finite set of functions that compute the conditional probabilities of
observations and rewards, meaning Ωo ⊂ A → ∆(O) and Ωr ⊂ A → ∆(R). For
simplicity, we use two output functions, θo : Q×A → ∆(O) and θr : Q×A → ∆(R),
to denote the individual conditional probabilities. Also, let τ−1 denote the inverse of
τ . In other words, τ−1(q) ⊆ Q×AO is the subset of state-symbol pairs that map to
q ∈ Q. An RDP R implicitly represents a function τ̄ : H → Q from histories in H to
states in Q, recursively defined as τ̄(h0) := τ(q0, a0o0) and τ̄(ht) := τ(τ̄(ht−1), atot).
The dynamics and of R are defined as T̄ (o | ha) = θo(o | τ̄(h), a) and R̄(r | ha) =
θr(o | τ̄(h), a), ∀h ∈ H,∀aro ∈ ARO. In this context, an input symbol is an element
of AO. We use A, R, O, Q to denote the cardinality of A,R,O,Q, respectively.

In the RL literature for episodic settings, the environment is often regarded to be
non-stationary. To capture this time dependency in RDPs, we define episodic RDPs

6.2 Preliminaries 137

to be acyclic. This means that the states can be partitioned as Q = Q0∪ · · · ∪QH+1,
where each Qt is the set of states generated by histories in Ht. An RDP is minimal
if its Moore machine is minimal. Since there is nothing to predict at time H + 1,
a minimal RDP contains a single state qH+1 in QH+1. To ensure that an acyclic
RDP R is minimal, we introduce a designated termination observation o⊥ in O and
define τ(qH+1, ao) = qH+1 and θo(qH+1, a) = δo⊥ for any ao ∈ AO. Hence, qH+1

is absorbing, and the states in Q must implicitly count how many steps are left
until we observe o⊥. This ensured the partitioned structured. Without o⊥, a Moore
machine could potentially represent all episodes using fewer than H + 2 states.

As usual, since the conditional probabilities of observations and rewards are fully
determined by the current state-action pair (q, a), an RDP R adheres to the Markov
property over its states, but not over the observations. Given a state qt ∈ Q and an
action at ∈ A, the probability of the next transition is

P(rt, ot, qt+1 | qt, at, R) = θr(rt | qt, at) θo(ot | qt, at) I(qt+1 = τ(qt, atot))

Evidently, in the special case where an RDP is Markovian in both observations and
rewards, it reduces to an episodic MDP. More precisely, any episodic MDP with
actions A, states O and horizon H can be represented by some episodic RDP with
states Q ⊆ O × [H + 2] and inputs AO.

As already we know, an important class of policies for RDPs are the regular
policies. We summarize the main results here using this slightly modified RDP
definition. Given an RDP R, a policy π : H → ∆(A) is called regular if π(h1) = π(h2),
whenever τ̄(h1) = τ̄(h2), for all h1, h2 ∈ H. Let ΠR denote the set of regular policies
for R. Regular policies exhibit powerful properties. First, under a regular policy,
suffixes have the same probability of being generated for histories that map to the
same RDP state. Second, there exists at least one optimal policy that is regular,
deterministic, and it can be written as Q → A. The following statements appear in
Brafman and De Giacomo (2019), in analogous forms. We report the statements
here and provide the proofs for completeness.

Proposition 6.1. Consider an RDP R, a regular policy π ∈ ΠR and two histories
h1 and h2 in Ht, t ∈ [H], such that τ̄(h1) = τ̄(h2). For each suffix et+1:H ∈ TH−t, the
probability of generating et+1:H is the same for h1 and h2, i.e. P(et+1:H | h1, π, R) =
P(et+1:H | h2, π, R).

Proof. See page 148.

Proposition 6.2. Each RDP R has at least one optimal policy π∗ ∈ ΠR.

Proof. See page 149.

138 6. Offline Reinforcement Learning in RDPs

Due to proposition 6.2, when solving an RDP R, we can restrict our search
to the set of regular policies ΠR. A regular policy can be compactly defined as
π : Q → ∆(A), with value function expressed as V π

t : Q → R, for t ∈ [H + 1].
Next, we define occupancy measures for RDPs. Given a regular policy π :

Q → ∆(A) and t ∈ [H + 1], let dπ
t ∈ ∆(Qt × AO) be the induced probability

distribution over the states in Qt and input symbols in AO, recursively defined as
dπ

0 (q0, a0o0) := θo(o0 | q0, a0) and

dπ
t (qt, atot) :=

∑
(q,ao)∈τ−1(qt)

dπ
t−1(q, ao) π(at | qt) θo(ot | qt, at)

We also overload the notation by writing dπ
t (qt, at) =

∑
o∈O dπ(qt, ato). Of particular

interest is the occupancy distribution d∗
t := dπ∗

t , associated with an optimal policy π∗.

6.3 Offline RL in RDPs

We are now ready to formalize the offline RL problem in episodic RDPs. Assume that
we have access to a batch dataset D, collected by interacting with an unknown (but
fixed) episodic RDP R, using a regular behaviour policy πb. We assume that D com-
prises N episodes, where the k-th episode is of the form ek

0:H = ak
0rk

0ok
0 · · · ak

Hrk
Hok

H ,
where qk

0 = q0 and where, for each t ∈ [H],

ak
t ∼ πb(qk

t), rk
t ∼ θr(qk

t , ak
t), ok

t ∼ θo(qk
t , ak

t), qk
t+1 = τ(qk

t , ak
t ok

t) (6.3)

We remind that πb, θo, θr, τ are all unknown to the learner. The goal is to compute
a near-optimal policy π̂ using the dataset D, without further exploration. More
precisely, for a pre-specified accuracy ε ∈ (0, H], we aim to find an ε-optimal policy π̂,
using the smallest dataset D possible.

By virtue of proposition 6.2, one may expect that it is sufficient to search for
regular ε-optimal policies, which is indeed the case. In order to learn an ε-optimal
policy from D, some assumption is necessary regarding the policy πb that was used
to collect the episodes. Let db

t := dπb
t be the occupancy distribution of πb. The

following assumption requires that the behaviour policy assigns a positive probability
to all actions, which ensures that πb explores the entire minimal RDP.

Assumption 6.1. mint∈[H+1],q∈Qt,a∈A db
t (q, a) > 0

This assumption is only needed by theorem 6.6, which reconstructs the full
unknown RDP. Theorem 6.8, instead, relies on a weaker assumption that can be
expressed with the coefficient that will be introduced in definition 6.1.

The second assumption we require concerns the richness of πb and its capability to
allow us to distinguish the various RDP states. This is perfectly captured by notions

6.3 Offline RL in RDPs 139

of distiguishability arising in automata theory, such as in Balle Pigem (2013). We
apply these concepts in our context, where such discrete distributions are generated
from an RDP and a policy. Consider a minimal RDP R, with states Q = ∪t∈[H+2]Qt.
Given some policy π, at each time step t ∈ [H + 1], every RDP state q ∈ Qt defines
a unique probability distribution over the episode suffixes TH−t+1 = (ARO)H−t+1.
Then, the states in each Qt can be compared through the probability distributions
they induce over TH−t+1. Consider any L = {L`}H+1

`=1 , where each L` is a metric
over ∆(T`). We define the L-distinguishability of R and π as the maximum µ0 such
that, for any t ∈ [H + 1] and any two distinct q, q′ ∈ Qt, the probability distributions
over suffix traces et:H ∈ T` from the two states satisfy

LH−t+1(P(et:H | qt = q, π),P(et:H | qt = q′, π)) ≥ µ0

We will often omit the remaining length of the episode ` = H − t + 1 from L` and
simply write L. We consider the Lp

∞-distinguishability, constructed by instantiating
the definition above with the metric Lp

∞(p1, p2) = maxu∈[`+1],e∈Tu
|p1(e ∗)− p2(e ∗)|,

where pi(e ∗) represents the probability of the trace prefix e ∈ Tu, followed by any
trace e′ ∈ T`−u. The Lp

1-distinguishability is defined analogously using Lp
1(p1, p2) =

maxu∈[`+1]
∑

e∈Tu
|p1(e ∗)− p2(e ∗)|. Instead of comparing the probability of entire

suffixes, both the metrics just defined compare their respective probabilities, together
with the probability of any of their prefixes. An extended description of the various
distinguishability parameters is provided in section 6.8.5. We can now require a
positive distinguishability with our second assumption.

Assumption 6.2. The Lp
∞-distinguishability of the input RDP and the behaviour

policy πb is at least µ0 > 0.

Finally, in order to capture the mismatch in occupancy measure between the
optimal policy and the behaviour policy, we introduce a key quantity called single-
policy RDP concentrability coefficient, which extends the single-policy concentrability
coefficient in MDPs to RDPs:

Definition 6.1. The single-policy RDP concentrability coefficient of an RDP R
with episode horizon H and with respect to a policy πb is defined as:

C∗
R = max

t∈[H+1],q∈Qt,ao∈AO

d∗
t (q, ao)

db
t (q, ao)

(6.4)

This concentrability coefficient resembles similar notions of concentrability in
MDPs, such as Xie, N. Jiang, et al. (2021) and Rashidinejad, Zhu, et al. (2021). It
should be stressed, however, that those for MDPs are defined in terms of observation-
action pairs (o, a), whereas C∗

R is defined in terms of hidden RDP states and

140 6. Offline Reinforcement Learning in RDPs

actions-observations, (q, ao). It is worth remarking that C∗
R could be equivalently

defined in terms of state-action pairs (q, a), only. Finally, in the special case where
the RDP is Markovian – in which case it coincides with an episodic MDP – we have
Q ⊆ O × [H + 2] and C∗

R coincides with the standard single-policy concentrability
coefficient for MDPs in Rashidinejad, Zhu, et al. (2021). This fact will be also shown
in the proof of proposition 6.17.

6.4 RegORL: Learning an Episodic RDP

In this section, we present an algorithm for learning the transition function of an
unknown RDP R from a dataset D of episodes generated by an unknown regular
behaviour policy πb. To simplify the presentation, we treat D as a multiset of traces
in TH+1. The learning agent has only access to the non-Markovian traces in D, and
needs prior knowledge of A, R and O, but no prior knowledge of πb and R. Our
algorithm is an adaptation of AdaCT (Balle Pigem 2013) to episodic RDPs, and
we thus refer to the algorithm as AdaCT–H.

Function AdaCT–H(D, δ)
Input: Dataset D containing N traces in TH+1, failure probability 0 < δ < 1
Output: Set Q of RDP states, transition function τ : Q×AO → Q

1 Q0 ← {q0}, X (q0)← D // initial state
2 for t = 0, . . . , H do
3 Qc,t+1 ← {qao | q ∈ Qt, ao ∈ AO} // make candidate states
4 foreach qao ∈ Qc,t+1 do
5 X (qao)← {et+1:H | aroet+1:H ∈ X (q)} // compute suffixes
6 end
7 qmamom ← arg maxqao∈Qc,t+1 |X (qao)| // most common candidate
8 Qt+1 ← {qmamom}, τ(qm, amom) = qmamom // promote candidate
9 Qc,t+1 ← Qc,t+1 \ {qmamom} // remove from candidate states

10 foreach qao ∈ Qc,t+1 do
11 Similar ← {q′ ∈ Qt+1 | not TestDistinct(t,X (qao),X (q′), δ)}
12 if Similar = ∅ then // promote candidate
13 Qt+1 ← Qt+1 ∪ {qao}, τ(q, ao) = qao
14 else // merge states
15 q′ ← element in Similar
16 τ(q, ao) = q′, X (q′)← X (q′) ∪ X (qao)
17 end
18 end
19 return Q0 ∪ · · · ∪ QH+1, τ

20 Function TestDistinct(t, X1, X2, δ)
21 return Lp

∞(X1,X2) ≥
√

2 log(8(ARO)H−t/δ)/ min(|X1|, |X2|)

The intuition behind AdaCT–H is that due to proposition 6.1, two histories
h1 and h2 should map to the same RDP state if they induce the same probability

6.4 RegORL: Learning an Episodic RDP 141

distribution on suffixes. AdaCT–H starts by adding an initial RDP state q0 to Q0,
whose suffixes are the full traces in D (line 1). The algorithm then iteratively
constructs the state sets Q1, . . . ,QH+1. In each iteration t ∈ [H + 1], AdaCT–H
creates a set of candidate states Qc,t+1 by extending all states in Qt with symbols
in AO (line 3). We use qao to simultaneously refer to a candidate state and its
state-symbol prefix (q, ao). We associate each candidate state qao with a multiset of
suffixes X (qao), which are traces in TH−t, obtained by selecting all suffixes in X (q)
that start with action a and observation o (line 5).

Next, AdaCT–H finds the candidate state whose suffix multiset has maximum
cardinality, and promotes this candidate to Qt+1 by defining the transition function τ

accordingly (lines from 7 to 9). The algorithm then iterates over each remaining
candidate states qao ∈ Qc,t+1, comparing the distribution on suffixes in X (qao) to
those of states in Qt+1 (line 11). If the suffix distribution is different from that of
each state in Qt+1, qao is promoted to Qt+1 (line 11), else qao is merged with a
state q′ ∈ Qt+1 that has a similar suffix distribution (line 16). Finally, AdaCT–H
returns the set of RDP states Q and the associated transition function τ .

The function TestDistinct compares two multisets X1 and X2 of traces in TH−t

using the metric Lp
∞. For i ∈ {1, 2} and each trace e ∈ TH−t, let p̂i(e) =

∑
x∈Xi

I(x =
e)/|Xi| be the empirical estimate of pi, as the proportion of elements in Xi equal
to e. TestDistinct compares Lp

∞(X1,X2) := Lp
∞(p̂1, p̂2) to a confidence threshold.

Markov Transformation We are now ready to connect the RDP learning phase
with the MDP learning phase. RDPs do not respect the Markov property over their
observations and rewards, if automaton states remain hidden. However, we can
use the reconstructed transition function τ returned by AdaCT–H, extended over
histories τ̄ : H → Q, to recover the Markov property. In what follows, we formalize
the notion of Markov transformation and the properties that its outputs satisfy.

Definition 6.2. Let e0:H ∈ TH+1 be an episode collected from an RDP R and
a policy πb that is regular in R. The Markov transformation of eH with respect
to R is the episode constructed as a0r0q1 . . . aHrHqH+1, where qt = τ̄(ht) and
ht = a0o0 · · · at−1ot−1 ∈ Ht, t ∈ [H + 1]. The Markov transformation of a dataset D
is the Markov transformation of all the episodes it contains.

A Markov transformation discards all observations from D and replaces them
with RDP states generated by τ̄ . The dataset so constructed can be seen as generated
from an MDP, which we define next.

Definition 6.3. The episodic MDP associated to an episodic RDP R is MR =
〈Q,A,R, T, θr, H〉, where T (q′ | qa) =

∑
o∈O I(q′ = τ(q, ao)) θo(o | q, a) for each

(q, a, q′) ∈ Q×A×Q.

142 6. Offline Reinforcement Learning in RDPs

The associated MDP in definition 6.3 is the decision process that corresponds to
the Markov transformation of definition 6.2: any episode produced with the Markov
transformation can be equivalently seen as being generated from the associated
MDP, in the sense of the following proposition.

Proposition 6.3. Let e0:H be an episode sampled from an episodic RDP R under
a regular policy π ∈ ΠR, with π(a | h) = πr(a | τ̄(h)). If e′

H is the Markov
transformation of eH with respect to R, then P(e′

H | R, π) = P(e′
H |MR, πr), where

MR is the MDP associated to R.

Proof. See page 149.

Rewards are not affected by the Markov transformation, only observations,
implying the following.

Proposition 6.4. Let π ∈ ΠR be a regular policy in R such that π(a | h) =
πr(a | τ̄(h)). Then V π

R = V πr
MR

, where V π
R and V πr

MR
are the values from the initial

distributions in the respective decision processes.

Proof. See page 150.

Corollary 6.5. Given ε ∈ (0, H], if πr : Q → ∆(A) is an ε-optimal policy of MR,
the MDP associated to some RDP R, then, π(a | h) = πr(a | τ̄(h)) is ε-optimal in R.

Summarizing, from proposition 6.3, if Dm is the Markov transformation of a
dataset D with respect to an RDP R, then, Dm can be seen as being generated from
the associated MDP MR. Hence, any offline RL algorithm for MDPs can be used
for learning in Dm. Moreover, according to corollary 6.5, any solution for MR can
be translated via τ̄ into a policy for the original RDP, with the same guarantees.

Complete Algorithm The complete procedure is illustrated in algorithm 6.1.
Initially, the input dataset D is separated in two halves. The first portion is used
for learning the transition function of the unknown RDP with AdaCT–H. If an
upper bound Q on |Q| is available, it can optionally be provided to compute a more
appropriate failure parameter for AdaCT–H. If not available, we adopt the upper
bound of 2(AO)H states, which is valid for any instance, due to histories having
finite length. As we will see in theorem 6.6, this would only contribute linearly in
H to the required dataset size. The output function computed by AdaCT–H is
then used to compute a Markov transformation of the second phase, as specified in
definition 6.2. The resulting dataset, now Markovian, can be passed to a generic
offline RL algorithm, which we represent with the function OfflineRL(D, ε, δ). In
section 6.8.6, we instantiate it for a specific state-of-the-art offline RL algorithm.

6.5 Theoretical Guarantees 143

Algorithm 6.1: Full procedure (RegORL)
Input: Dataset D, accuracy ε ∈ (0, H], failure probability 0 < δ < 1, (optionally)

upper bound Q on |Q|
Output: Policy π̂ : H → ∆(A)

1 D1,D2 ← separate D into two datasets of the same size
2 Q, τ ← AdaCT–H(D1, δ/(4AOQ)), where Q = 2(AO)H if not provided
3 D′

2 ← Markov transformation of D2 with respect to τ̄ as in definition 6.2
4 π̂m ← OfflineRL(D′

2, ε, δ/2)
5 return π̂ : h 7→ π̂m(τ̄(h))

6.5 Theoretical Guarantees

We now turn to theoretical performance guarantees of RegORL. Our main performance
result is a sample complexity bound in theorem 6.7, ensuring that, for any accuracy
ε ∈ (0, H], RegORL finds an ε-optimal policy. We also report a sample complexity
bound for AdaCT–H in theorem 6.6, and an alternative bound in theorem 6.8. For
comparison, the sample complexity bound for AdaCT from Balle, J. Castro, et al.
(2013) is

Õ

(
Q4A2O2H5 log(1/δ)

ε2 max
{

1
µ2

0
,
H4O2A2

ε4

})
(6.5)

We achieve a tighter bound by using Bernstein’s inequalities and exploiting the
finiteness of histories.

Theorem 6.6. Consider a dataset D of episodes sampled from an RDP R and a reg-
ular policy πb ∈ ΠR. With probability 1− δ, the output of AdaCT–H(D, δ/(2QAO))
is the transition function of the minimal RDP equivalent to R, provided that |D| ≥ Nδ,
where

Nδ := 21 log(8QAO/δ)
db

min µ0

√
H log(2ARO) ∈ Õ

(√
H

db
min µ0

)
(6.6)

db
min := min{db

t (q, ao) | t ∈ [H + 1], q ∈ Qt, ao ∈ AO, db
t (q, ao) > 0} is the minimal

occupancy distribution, and µ0 is the Lp
∞-distinguishability.

Proof. See section 6.8.3.

This theorem tells us that the sample complexity of AdaCT–H, to return a
minimal RDP, is inversely proportional to µ0, the Lp

∞-distinguishability of R and πb,
and the minimal occupancy db

min. Note that db
min ≤ 1/(QOA). The bound also

depends on Q, the number of RDP states, implicitly through db
min, and explicitly

via a logarithmic term. In the absence of prior knowledge of Q, one may use in the
argument of algorithm 6.1 the worst-case upper bound Q = 2(AO)H . The sample
complexity would then have an additional linear term in H, since Q is only used in

144 6. Offline Reinforcement Learning in RDPs

the logarithmic term to set the appropriate value of δ. However, this will not impact
the value of the db

min term.
Theorem 6.6 is a sample complexity guarantee for the first phase of the algorithm,

which learns τ , the structure of the minimal RDP underlying the domain. If δ is the
desired failure probability of the complete algorithm, RegORL executes AdaCT–H
so that its success probability is at least 1− δ/2. This means that with the same
probability, D′

2 is an MDP dataset with the properties listed in section 6.4. As a
consequence, provided that OfflineRL is some generic (ε, δ/2)-PAC offline RL
algorithm for MDPs, the output of RegORL is an ε-optimal policy with probability
1− δ.

Theorem 6.7. Consider a dataset D of episodes sampled from an RDP R and
a regular policy πb ∈ ΠR. For any ε ∈ (0, H] and 0 < δ < 1, if OfflineRL is
an (ε, δ/2)-PAC offline algorithm for MDPs with sample complexity Nm, then, the
output of RegORL(D, ε, δ) is an ε-optimal policy in R, with probability at least 1− δ,
provided that |D| ≥ 2 max{Nδ/2, Nm}.

As we can see, the sample complexity requirement is separate for the two phases.
While Nδ/2 is due to the RDP learning component, defined in eq. (6.6), the quantity
Nm completely depends on the offline RL algorithm for MDPs that is adopted.
Among other terms, the performance guarantees of offline algorithms can often
be characterized through the single-policy concentrability for MDPs C∗. However,
since states become observations in the associated MDP, due to the properties of
proposition 6.3, C∗ coincides with C∗

R, the RDP single-policy concentrability of
definition 6.1.

In section 6.8.6, we demonstrate a specific instantiation of RegORL with an off-
the-shelf offline RL algorithm from the literature by G. Li, L. Shi, et al. (2022). This
yields the following requirement for Nm:

Nm ≥
c H3QC∗

R log 2HNm
δ

ε2 (6.7)

for a constant c > 0.
To eliminate the dependence that theorem 6.6 has on db

min, we develop a variant
of AdaCT–H which does not learn a complete RDP. Rather, it only reconstructs a
subset of states that are likely under the behaviour policy. The algorithm, which we
call AdaCT–H–A (with ‘A’ standing for “approximation”), is defined at page 155.
Theorem 6.8 is an upper bound on the sample complexity of AdaCT–H–A, that takes
the accuracy ε as input and returns the transition function of an ε/2-approximate
RDP R′, whose optimal policy is ε/2-optimal for the original RDP R. By performing
a Markov transformation for R′, and by using an (ε/2, δ/2)-PAC offline algorithm

6.6 Sample Complexity Lower Bound 145

for MDPs, we can compute an ε-optimal policy for R. The total sample complexity
can be combined in the same way as in theorem 6.7. Also, this theorem does not
rely on assumption 6.1, because a finite C∗

R suffices.

Theorem 6.8. Consider a dataset D of episodes sampled from an RDP R and
a regular policy πb ∈ ΠR. With probability 1 − δ, the output of AdaCT–H–A,
called with D, δ/(2QAO) and ε ∈ (0, H] in input, is the transition function of an
ε/2-approximate RDP R′, provided that |D| ≥ N ′

δ, where

N ′
δ := 504HQAOC∗

R′ log(16QAO/δ)
ε µ0

√
H log(2ARO) ∈ Õ

(
H3/2QAOC∗

R′

ε µ0

)

Proof. See section 6.8.4.

6.6 Sample Complexity Lower Bound

The main result of this section is theorem 6.9, a sample complexity lower bound for
offline RL in RDPs. It shows that the dataset size required by any RL algorithm
scales with the relevant parameters.

Theorem 6.9. For any (C∗
R, H, ε, µ0) satisfying C∗

R ≥ 2, H ≥ 2 and ε ≤ Hµ0/64,
there exists an RDP with horizon H, Lp

1-distinguishability µ0 and a regular behaviour
policy πb with RDP single-policy concentrability C∗

R, such that if D has been generated
using πb and R, and

|D| /∈ Ω
(

H

µ0
+ C∗

RH2

ε2

)
(6.8)

then, for any algorithm A : D 7→ π̂ returning non-Markov deterministic policies, the
probability that π̂ is not ε-optimal is at least 1/4.

Proof. See section 6.8.7.

The proof relies on worst-case RDP instances that carefully combine two-armed
bandits with noisy parity functions. This last component allows capturing the
difficulty of learning in presence of temporal dependencies. Figure 6.1 shows an RDP
in this class. At the beginning of each episode, the observation causes a transition
towards either the bandit component (bottom branch) or the noisy parity function
(top branches). Acting optimally in the two parity branches requires predicting
the output of a parity function, which depends on some unknown binary code (of
length 3, in the example). The first term in theorem 6.9 is due to this component,
because the code scales linearly with H, while the amount of information revealed
about the code is controlled by µ0. The second term is caused by the required
optimality in the bandit. Since the number of states scales linearly with H, the

146 6. Offline Reinforcement Learning in RDPs

q01

∗.u

q02

∗.u

q03

a′
0.vξ

a′
1.v−ξ

qs

∗.s

q11

∗.u

q12

∗.u

q13

a′
0.v−ξ

a′
1.vξ

qb1

∗.δ+

qb2

∗.δ+

qb3

a′
0.u+

a′
1.vη

q+4 q+5

q−4 q−5

qo⊥

0

1

∗

∗

0
1

0
1

−

+

+
∗ ∗

+

−

∗

∗

∗

∗

∗

Figure 6.1. One episodic RDP instance R101,1 ∈ R(L, H, ξ, η), associated to the parity
function f101, with code 101, and the optimal arm a′

1. Only the gray states are rewarding.
The code length is L = |101| = 3, the horizon H = 5, the noise parameter is ξ > 0
and the bandit bonus parameter is η > 0. The transition function only depends
on the observations, not the actions. The output distributions are: u = Unif{0, 1},
u+ = Unif{+,−}, vα(+) = (1 + α)/2, vα(−) = (1− α)/2. The star denotes any symbol.
If the label of a state q is a.d, then the observation function is θo(a | q) = d. Refer to
section 6.8.7 for details.

lower bound could be also expressed in terms of Q, instead of H. Moreover, by
simply extending the number of action in the branch of the bandit, it should be
possible to make A appear in the right term.

Differently from this lower bound, the parameter µ0, appearing in the up-
per bounds of theorems 6.6 and 6.8, is a Lp

∞-distinguishability. However, the
two are related, since we always have Lp

1(q, q′) ≥ Lp
∞(q, q′). Intuitively, the Lp

1-
distinguishability accounts for all the information that is available as differences
for each prefix length. The Lp

∞-distinguishability, on the other hand, quantifies
the maximum the difference in probability associated to one specific suffix, the one
maximizing the distance. This is the information used by the algorithm and the one
appearing in the two upper bounds. A similar lower bound also appears in the paper
this chapter refers to (Cipollone, Jonsson, et al. 2024). However, the definition of
Lp

1 that can be found here is slightly different from the one of this paper, as it is
based on a double sum,

∑
u∈[H−t+1],e∈Tu+1 . In particular, there are RDPs in which

the parameter used here is exponentially smaller in H, than the one found in the
paper. As a result, the expression in (6.8) is stronger. An extended discussion on
distinguishability parameters can be found in section 6.8.5

6.7 Discussion

In this chapter, we proposed an algorithm for Offline RL in episodic Regular Decision
Processes, when both the RDP and the behaviour policy are unknown. Our algorithm

6.8 Proofs 147

exploits automata learning techniques to reduce the problem of offline RL in RDPs,
in which observations and rewards are non-Markovian, into standard offline RL for
MDPs. We provide the first high-probability sample complexity guarantees for this
setting, as well as a new lower bound that shows how its complexity relates to the
parameters that characterize the decision process and the behaviour policy. We
identify the RDP single-policy concentrability as an analogous quantity to the one
used for MDPs in the literature.

Although the results obtained in this chapter are specific for offline RL, we could
loosely compare the lower bound obtained here with the one of theorem 5.14 in the
previous chapter. We observe that, the general lower bound can be exponential for
the general case. However, when the RDP can be characterized more precisely, as we
did with distinguishability parameters here, for some instances, the required number
of samples decreases significantly. Comparing the lower and the two upper bounds,
instead, we notice that the most significant difference is that they use two different
distinguishability parameters, defined through Lp

1 and Lp
∞. This is a meaningful gap,

that we aim to tighten in a future work. Specifically, we currently hypothesize that
is the upper bound which could be significantly improved, with some non-trivial
algorithmic changes. Finally, our results have strong implications for online learning
in RDPs, which is a relevant setting to be explored.

6.8 Proofs

This section contains every proof for this chapter. The reader may skip this section
and refer to it as needed.

6.8.1 Preliminaries

We first state Hoeffding’s inequality for Bernoulli variables. In what follows we take
log to be the natural logarithm.

Lemma 6.10 (Hoeffding’s inequality). Let X1, . . . , XN be N independent random
Bernoulli variables with the same expected value E[X1] = p, and let p̂N =

∑N
i=1 Xi/N

be an empirical estimate of p. Then, for any δ ∈ (0, 1),

P

|p̂N − p| ≥

√
log(2/δ)

2N

 ≤ δ. (6.9)

An alternative to Hoeffding’s inequality is the empirical Bernstein inequality,
which can be expressed as follows for Bernoulli variables (Maurer and Pontil 2009;
Dann, Lattimore, et al. 2017).

148 6. Offline Reinforcement Learning in RDPs

Lemma 6.11 (Empirical Bernstein inequality). Let X1, . . . , XN be N independent
random Bernoulli variables with the same expected value E[X1] = p, and let p̂N =∑N

i=1 Xi/N be an empirical estimate of p. Then, for any δ ∈ (0, 1),

P

|p̂N − p| ≥

√
2p̂ log(4/δ)

N
+ 14 log(4/δ)

3N

 ≤ δ. (6.10)

If X ∼ pX is a discrete random variable, the entropy of X is

H(X) = −
∑
x∈X

pX(x) log pX(x) (6.11)

Further, for x ∈ (0, 1), we define the binary entropy function as H2(x) = −x log(x)−
(1 − x) log(1 − x). If (X, Y) ∼ pXY are two discrete variables, the conditional
entropy is H(Y | X) =

∑
x∈X pX(x) H(Y | X = x). The mutual information is

I(X; Y) = I(Y ; X) = DKL(pXY ‖ pX · pY), where DKL is the Kullback–Leibler
divergence. If X, Y, Z are three random variables, we write X → Y → Z if the
conditional distribution of Z does not depend on X, given Y . With these definitions,
we state Fano’s inequality, as one can find in Cover and J. A. Thomas (2006), (2.140).

Theorem 6.12 (Fano’s inequality). Let X → Y → X̂, for X, X̂ ∈ X and Pe =
P(X̂ 6= X). Then,

H2(Pe) + Pe log(|X | − 1) ≥ H(X | Y). (6.12)

6.8.2 RDP Properties

Proposition 6.1. Consider an RDP R, a regular policy π ∈ ΠR and two histories
h1 and h2 in Ht, t ∈ [H], such that τ̄(h1) = τ̄(h2). For each suffix et+1:H ∈ TH−t, the
probability of generating et+1:H is the same for h1 and h2, i.e. P(et+1:H | h1, π, R) =
P(et+1:H | h2, π, R).

Proof. By induction on t. For t = H, all histories in HH generate the empty suffix in
(ARO)0 with probability 1 (the stop symbol is omitted). For t < H , the probability
of generating a suffix aroet+2:H is

P(aroet+2:H | h1, π) = π(a | h1)P(r, o | τ̄(h1), a, R)P(et+2:H | h1ao, π)

= π(a | h2)P(r, o | τ̄(h2), a, R)P(et+2:H | h2ao, π) = P(aroet+2:H | h2, π) (6.13)

6.8 Proofs 149

where we have used the fact that π is regular, τ̄(h1) = τ̄(h2), τ̄(h1ao) = τ(τ̄(h1), ao) =
τ(τ̄(h2), ao) = τ̄(h2ao), and the induction hypothesis.

Proposition 6.2. Each RDP R has at least one optimal policy π∗ ∈ ΠR.

Proof. Given R, consider any optimal policy π∗ : H → ∆(A), not necessarily regular.
We prove the statement by constructing a policy π and showing by induction on
t ∈ [H + 1] that π is both optimal and regular. The base case is given by t = H. In
this case, for an arbitrary a ∈ A, define π(h) := δa for each history h ∈ HH . Since
V π

H(h) = 0 by definition, π is optimal for each history h ∈ HH , and regular since it
always selects the same action.

For t ≤ H, we first construct a new policy πc which is the composition of policies
π∗ and π. Concretely, for each history h ∈ Hu such that u ≤ t, πc(h) = π∗(h) acts
according to π∗, while for each history h ∈ Hu such that u > t, πc(h) = π(h) acts
according to π. Clearly, πc is an optimal policy for R since π∗ is optimal and since
by induction, π is optimal for histories in Hu, u > t.

Consider a pair of histories h1 and h2 in Ht such that τ̄(h1) = τ̄(h2) but
πc(h1) 6= πc(h2). Define π(h1) := π(h2) := πc(h1). Since the value function can be
written as an expectation over suffixes, due to proposition 6.1 and the fact that π is
regular for histories in Hu, u > t, we have V π

t (h1) = V π
t (h2). Since πc is the same

as π for histories in Hu, u > t, this implies V π
t (h1) = V πc

t (h1) ≤ V πc
t (h2) since πc

is optimal for h2. If we were to instead define π(h1) := π(h2) := πc(h2), we would
obtain V πc

t (h2) ≤ V πc
t (h1). The only possibility is V πc

t (h1) = V πc
t (h2), which is the

same value achieved by the policy π. Hence, π is optimal for h1 and h2.
We now repeat the same procedure for each pair of histories h1 and h2 in Ht such

that τ̄(h1) = τ̄(h2) but πc(h1) 6= πc(h2). If necessary, we complete the definition of
π by copying the action choices of πc. The resulting policy π is optimal for each
history h ∈ Ht, and regular since it makes the same action choices for each pair of
histories h1 and h2 in h ∈ Ht such that τ̄(h1) = τ̄(h2).

Proposition 6.3. Let e0:H be an episode sampled from an episodic RDP R under
a regular policy π ∈ ΠR, with π(a | h) = πr(a | τ̄(h)). If e′

H is the Markov
transformation of eH with respect to R, then P(e′

H | R, π) = P(e′
H |MR, πr), where

MR is the MDP associated to R.

Proof. For t ∈ [H +2], let et ∈ Tt = (ARO)t be an episode prefix in R, φ(et) ∈ T ′
t =

(ARQ)t its Markov transformation and e′
t ∈ T ′

t an episode of the associated MDP.
The function φ : T → T ′ transforms the observations according to τ̄ , and preserves
actions and rewards. The statement says that P(φ(et) | R, π) = P(e′

t |MR, πr) (note

150 6. Offline Reinforcement Learning in RDPs

that φ(et) and e′
t are distinct random variables). We prove this by induction. For

t = 0, we recall that the irrelevant quantities a0, r0 are constant and,

P(φ(a0r0o0) = a0r0q | R, π) =
∑
o∈O

I(τ(q0, a0o) = q) θo(o | q0, a0)

= T (q | q0a0)

= P(e′
0 = a0r0q |MR, πr) (6.14)

where T : Q×A → ∆(Q) is the transition function of MR, from definition 6.3. Due
to the role of the dummy action, T (q0a0) is the initial distribution of the MDP.

For the inductive step, assume that P(φ(et−1) | R, π) = P(e′
t−1 |MR, πr). Then,

for any e′ ∈ T ′
t−1, arq ∈ ARQ, if q′ is the last element of e′, we have

P(φ(et) = e′arq | R, π) =

= P(φ(et−1) = e′ | R, π)P(atrtqt+1 = arq | φ(et−1) = e′, R, π) (6.15)

= P(e′
t−1 = e′ |MR, πr)P(atrtqt+1 = arq | qt = q′, R, π) (6.16)

= P(e′
t−1 = e′ |MR, πr) πr(a | q′) θr(r | q′, a)

·
∑
o∈O

θo(o | q′, a) I(q = τ(q′, ao)) (6.17)

= P(e′
t−1 = e′ |MR, πr) πr(a | q′) θr(r | q′, a) T (q | q′a) (6.18)

= P(e′
t = e′arq |MR, πr) (6.19)

where, in (6.16), we have used the induction hypothesis and the fact that atrtqt+1

are Markov in q′ by regularity of the policy.

Proposition 6.4. Let π ∈ ΠR be a regular policy in R such that π(a | h) =
πr(a | τ̄(h)). Then V π

R = V πr
MR

, where V π
R and V πr

MR
are the values from the initial

distributions in the respective decision processes.

Proof. The statement is composed of two parts. First, we show that V π
R = V πr

MR
,

which is a direct consequence of proposition 6.3. Following the same convention
as in the proof of proposition 6.3, we use T ′

t = (ARQ)t and φ for the Markov
transformation. Then,

V π
R =

∑
r1...rH∈RH+1

P(r1:H = r1 . . . rH | R, π)
H∑

i=1
ri (6.20)

=
∑

e′∈T ′
H+1

P(φ(eH) = e′ | R, π)
H∑

i=1
ri (6.21)

6.8 Proofs 151

=
∑

e′∈T ′
H+1

P(e′
H = e′ |MR, πr)

H∑
i=1

ri (6.22)

= V πr
MR

(6.23)

For the second part of the statement, let ΠR and ΠM be the regular and the Markov
policies in R and MR, respectively. Then, using proposition 6.2 and the first part
of this statement,

V ∗
R = max

π∈ΠR
V π

R = max
π∈ΠR

V πr
MR

= max
πr∈ΠM

V πr
MR

= V ∗
MR (6.24)

6.8.3 Sample Complexity of AdaCT-H

In this section, we prove theorem 6.6, which is a high-probability upper bound
on the sample complexity of AdaCT–H. The first two lemmas are adaptations of
lemmas 19 and 20 in Balle, J. Castro, et al. (2013) to the episodic setting.

Lemma 6.13. For t ∈ [H +1], let X1 and X2 be multisets sampled from distributions
p1 and p2 in ∆(TH−t). If p1 = p2, then TestDistinct(t,X1,X2, δ) returns False
with probability 1− δ.

Proof. For each i ∈ {1, 2} and each trace e ∈ TH−t, we can view each episode as a
random Bernoulli variable with expected value pi(e) that takes value 1 if we observe e,
and 0 otherwise. Let p̂i(e) =

∑
x∈Xi

I(x = e)/|Xi| be the empirical estimate of pi,
i.e. the proportion of elements in Xi equal to e. For each i ∈ {1, 2}, each u ∈ [H − t]
and each prefix e0:u ∈ Tu+1, Hoeffding’s inequality yields

P
(
|p̂i(e0:u ∗)− pi(e0:u ∗)| ≥

√
log(2/δs)

2|Xi|

)
≤ δs (6.25)

The total number of non-empty prefixes of TH−t equals a geometric sum:

(ARO)1 + · · ·+ (ARO)H−t = (ARO)H+1−t − 1
ARO − 1 − 1 ≤ 2(ARO)H−t (6.26)

Choosing δs = δ/4(ARO)H−t and taking a union bound implies that the above
inequality holds for each i ∈ {1, 2} and each e0:u simultaneously with probability
1− 4(ARO)H−tδs = 1− δ, implying

Lp
∞(X1,X2) = max

u,e0:u
|p̂1(e0:u∗)− p̂2(e0:u∗)| (6.27)

≤ Lp
∞(p1, p2) +

√
log(2/δs)

2|X1|
+
√

log(2/δs)
2|X2|

(6.28)

152 6. Offline Reinforcement Learning in RDPs

≤ 0 + 2
√

log(2/δs)
2 min(|X1|, |X2|)

(6.29)

=
√

2 log(8(ARO)H−t/δ)
min(|X1|, |X2|)

, (6.30)

which is precisely the condition under which TestDistinct(t,X1,X2, δ) returns
False.

Lemma 6.14. For t ∈ [H + 1], let X1 and X2 be multisets sampled from dis-
tributions p1 and p2 in ∆(TH−t). If the Lp

∞-distinguishability of πb is µ0, then
TestDistinct(t,X1,X2, δ) returns True with probability 1− δ, provided that

min(|X1|, |X2|) ≥
8
µ2

0

(
log(2(ARO)H−t) + log(4/δ)

)
(6.31)

Proof. Using the same argument as in the proof of lemma 6.13, Hoeffding’s inequality
yields

P
(
|p̂i(e0:u ∗)− pi(e0:u ∗)| >

√
log(2/δs)

2|Xi|

)
≤ δs, (6.32)

with the inequality holding simultaneously for i ∈ {1, 2} and each prefix e0:u with
probability 1−δ, by choosing δs = δ/4(ARO)H−t. Choosing µ0 ≥ 4

√
log(2/δs)/2|Xi|

for each i ∈ {1, 2} yields

|Xi| ≥ min(|X1|, |X2|) ≥
8
µ2

0
log(2/δs) = 8

µ2
0

(
log(2(ARO)H−t) + log(4/δ)

)
(6.33)

In this case we have

Lp
∞(X1,X2) = max

u,e0:u
|p̂1(e)− p̂2(e)| ≥ Lp

∞(p1, p2)−
√

log(2/δs)
2|X1|

−
√

log(2/δs)
2|X2|

≥ µ0 −
µ0
4 −

µ0
4 = µ0

2 ≥ 2
√

log(2/δs)
2 min(|X1|, |X2|)

=
√

2 log(8(ARO)H−t/δ)
min(|X1|, |X2|)

which is precisely the condition under which TestDistinct(t,X1,X2, δ) returns
True.

We are now ready to prove theorem 6.6, which we restate below:

Theorem 6.6. Consider a dataset D of episodes sampled from an RDP R and a reg-
ular policy πb ∈ ΠR. With probability 1− δ, the output of AdaCT–H(D, δ/(2QAO))
is the transition function of the minimal RDP equivalent to R, provided that |D| ≥ Nδ,
where

Nδ := 21 log(8QAO/δ)
db

min µ0

√
H log(2ARO) ∈ Õ

(√
H

db
min µ0

)
(6.6)

6.8 Proofs 153

db
min := min{db

t (q, ao) | t ∈ [H + 1], q ∈ Qt, ao ∈ AO, db
t (q, ao) > 0} is the minimal

occupancy distribution, and µ0 is the Lp
∞-distinguishability.

Proof. The proof consists in choosing N and δ such that the condition in lemma 6.14
is true with high probability, for each application of TestDistinct. Consider
an iteration t ∈ [H + 1] of AdaCT–H. For a candidate state qao ∈ Qc,t+1, its
associated probability is db

t (q, ao) with empirical estimate p̂t(qao) = |X (qao)|/N ,
i.e. the proportion of episodes in D that are consistent with qao. We can apply the
empirical Bernstein inequality in eq. (6.10) to show that

P

∣∣∣p̂t(qao)− db
t (q, ao)

∣∣∣ ≥
√

2p̂t(qao)`
N

+ 14`

3N
=
√

2M` + 14`/3
N

 ≤ δ (6.34)

where M = |X (qao)|, ` = log(4/δ), and δ is the failure probability of AdaCT–H. To
obtain a bound on M and N , assume that we can estimate db

t (q, ao) with accuracy
db

t (q, ao)/2, which yields

db
t (q, ao)

2 ≥
√

2M` + 14`/3
N

(6.35)

p̂t(qao) ≥ db
t (q, ao)−

√
2M` + 14`/3

N
≥ db

t (q, ao)− db
t (q, ao)

2 = db
t (q, ao)

2 (6.36)

Combining these two results, we obtain

M = Np̂t(qao) ≥ Ndb
t (q, ao)/2

≥ N

2N

(√
2M` + 14`/3

)
= 1

2
(√

2M` + 14`/3
)

(6.37)

Solving for M yields M ≥ 4`, which is subsumed by the bound on M in lemma 6.14,
since µ0 < 1. Hence, the bound on M in lemma 6.14 is sufficient to ensure that we
estimate db

t (q, ao) with accuracy db
t (q, ao)/2. We can now insert the bound on M

from lemma 6.14 into (6.35) to obtain a bound on N :

N ≥ 2(
√

2M` + 14`/3)
db

t (q, ao)
(6.38)

≥ 2`

db
t (q, ao)

 4
µ0

√
(H − t) log(2ARO)

`
+ 1 + 14

3

 =: N1 (6.39)

To simplify the bound, we can choose any value larger than N1:

N1 ≤
2`

db
t (q, ao)

(4
µ0

√
H log(2ARO) + H log(2ARO) + 14

3µ0

√
H log(2ARO)

)
<

21`

db
min µ0

√
H log(2ARO) =: N0 (6.40)

154 6. Offline Reinforcement Learning in RDPs

where we have used db
t (q, ao) ≥ db

min, µ0 < 1, ` = log 4+log(1/δ) ≥ 1, H log(2ARO) ≥
log 4 ≥ 1 and 4

√
2 + 14/3 < 21

2 . Choosing δ := δ0/2QAO, a union bound implies
that accurately estimating db

t (q, ao) for each candidate state qao, and accurately
estimating p(e0:u∗) for each prefix in the multiset X (qao) associated with qao, occurs
with probability 1− 2QAOδ = 1− δ0, since there are at most QAO candidate states.
Substituting the expression for δ in N0 yields the bound in the theorem.

It remains to show that the resulting RDP is minimal. We show the result by
induction. The base case is given by the set Q0, which is clearly minimal since it
only contains the initial state q0. For t ∈ [H + 1], assume that the algorithm has
learned a minimal RDP for sets Q0, . . . ,Qt. Let Qt+1 be the set of states at layer
t + 1 of a minimal RDP. Due to proposition 6.1, each pair of histories that map to a
state qt+1 ∈ Qt+1 generate the same probability distribution over suffixes. Hence, by
lemma 6.13, with high probability, TestDistinct(t,X (qao),X (q′a′o′), δ) returns
false, for each pair of candidate states qao and q′a′o′ that map to qt+1. Consequently,
the algorithm merges qao and q′a′o′. On the other hand, by assumption, each pair of
histories that map to different states of Qt+1 have Lp

∞-distinguishability µ0. Hence,
by lemma 6.14, with high probability, TestDistinct(t,X (qao),X (q′a′o′), δ) returns
true, for each pair of candidate states qao and q′a′o′ that map to different states in
Qt+1. Consequently, the algorithm does not merge qao and q′a′o′. It follows that
with high probability, AdaCT–H will generate exactly the set Qt+1, which is that
of a minimal RDP.

6.8.4 Sample Complexity of AdaCT-H-A

In this section we prove theorem 6.8, which states an alternative upper bound on
the sample complexity of AdaCT–H. The proof requires an alternative definition of
the algorithm, which we call AdaCT–H–A, with A for “approximation”.

Theorem 6.8. Consider a dataset D of episodes sampled from an RDP R and
a regular policy πb ∈ ΠR. With probability 1 − δ, the output of AdaCT–H–A,
called with D, δ/(2QAO) and ε ∈ (0, H] in input, is the transition function of an
ε/2-approximate RDP R′, provided that |D| ≥ N ′

δ, where

N ′
δ := 504HQAOC∗

R′ log(16QAO/δ)
ε µ0

√
H log(2ARO) ∈ Õ

(
H3/2QAOC∗

R′

ε µ0

)

Proof. AdaCT–H–A returns the set of RDP states Q′ and transition function τ ′ of
an approximate RDP R′, taking as input the accuracy ε, an upper bound Q on |Q′|,
and an upper bound C on the concentrability C∗

R′ of R′. As a side note, for the
relation between C∗

R′ and C∗
R, the reader can refer to lemma 6.15.

6.8 Proofs 155

Function AdaCT–H–A(D, δ, ε, Q, C)
Input: Dataset D, failure probability 0 < δ < 1, accuracy ε, upper bounds Q on

|Q′| and C on C∗
R′

Output: Set of states Q′ and transition function τ ′ : Q′ ×AO → Q′ of an
approximate RDP R′

1 Q′
0 ← {q0}, X (q0)← D // initial state

2 Q′
0 ← Q′

0 ∪ {qe
0}, X (qe

0)← ∅ // initial side state

3 for t = 0, . . . , H do
4 Q′

t+1 ← {qe
t+1} // make side state

5 foreach ao ∈ AO do
6 τ ′(qe

t , ao) = qe
t+1

7 X (qe
t+1)← {et+1:H | aroet+1:H ∈ X (qe

t)}
8 end
9 Q′

c,t+1 ← {qao | q ∈ Q′
t, ao ∈ AO} // make candidate states

10 foreach qao ∈ Q′
c,t+1 do

11 X (qao)← {et+1:H | aroet+1:H ∈ X (q)} // compute suffixes
12 end
13 qmamom ← arg maxqao∈Q′

c,t+1
|X (qao)| // most common candidate

14 Q′
t+1 ← Q′

t+1 ∪ {qmamom}, τ ′(qm, amom) = qmamom // promote candidate
15 Q′

c,t+1 ← Q′
c,t+1 \ {qmamom}

16 foreach qao ∈ Q′
c,t+1 such that |X (qao)|/N ≥ ε/(4QAOHC) do

17 Similar ← {q′ ∈ Q′
t+1 | not TestDistinct(t,X (qao),X (q′), δ)}

18 if Similar = ∅ then
19 Q′

t+1 ← Q′
t+1 ∪ {qao}, τ ′(q, ao) = qao // promote candidate

20 end
21 else
22 q′ ← element in Similar
23 τ ′(q, ao) = q′, X (q′)← X (q′) ∪ X (qao) // merge states
24 end
25 if |Q′

0|+ · · ·+ |Q′
t+1| > Q then

26 return Failure
27 end
28 end
29 foreach qao ∈ Q′

c,t+1 such that |X (qao)|/N < ε/(4QAOHC) do
30 τ ′(q, ao) = qe

t+1, X (qe
t+1)← X (qe

t+1) ∪ X (qao) // merge with side state
31 end
32 end
33 return Q′

0 ∪ · · · ∪ Q′
H+1, τ ′

156 6. Offline Reinforcement Learning in RDPs

If, at any moment, the number of RDP states |Q′| exceeds Q, the algorithm
returns Failure (line 26). AdaCT–H–A defines a sequence of side states qe

0, . . . , qe
H+1

(lines 2 and 4), and defines τ ′(qe
t , ao) = qe

t+1 for each t ∈ [H +1] and ao ∈ AO (line 6).
For each candidate state qao ∈ Q′

c,t+1 such that |X (qao)|/N ≥ ε/(4QAOHC), the
definition of AdaCT–H–A is the same as that of AdaCT–H, including the call to
TestDistinct (the lines in the block at 16). For each candidate state qao ∈ Q′

c,t+1
such that |X (qao)|/N < ε/(4QAOHC), instead of mapping (q, ao) to the correct
RDP state, AdaCT–H–A maps (q, ao) to the side state qe

t+1 (line 30). Once in
qe

t+1, R′ remains in a side state for the rest of the episode. We observe that the side
states do not satisfy proposition 6.1, since the histories that map to side states may
assign different probabilities to suffixes (and TestDistinct is never called).

We define an alternative occupancy measure d′
t(q, ao) associated with the ap-

proximate RDP R′ and the behaviour policy πb. The new definition is given by
d′

0(q0, a0o0) = θo(o0 | q0, a0) and

d′
t(qt, atot) =

∑
(q,ao)∈τ ′−1(qt)

d′
t−1(q, ao)πb(at | qt)θo(ot | qt, at) (6.41)

The only difference between d′
t and db

t is that d′
t is defined with respect to the

transition function τ ′ of the approximate RDP R′, instead of the transition function
τ associated with the original RDP R. Note that apart from the side states, R′ will
contain the same states as R, as long as the candidate states satisfy the condition
on line 16, and τ ′ will be the same as τ on those states. Because of this relationship,
Lp

∞-distingishability µ0 of R′ is at least as that of R.

First consider each candidate state qao ∈ Q′
c,t+1 such that |X (qao)|/N ≥

ε/(4QAOHC). In this case, AdaCT–H–A calls TestDistinct, so lemmas 6.13
and 6.14 apply to these candidate states. The associated occupancy is d′

t(q, ao) with
empirical estimate p̂t(qao) = |X (qao)|/N . Hence, the empirical Bernstein inequality
applies to d′

t(q, ao) and p̂t(qao). Just as in the proof of theorem 6.6, we choose
X (qao) large enough to accurately estimate d′

t(q, ao) within a factor d′
t(q, ao)/2 with

probability 1− δ. Thus, we obtain an alternative upper bound on d′
t(q, ao) as follows:

d′
t(q, ao) ≥ |X (qao)|

N
− d′

t(q, ao)
2 ⇔ 3d′

t(q, ao)
2 ≥ |X (qao)|

N
≥ ε

4QAOHC
(6.42)

From here, we can use the proof of theorem 6.6 by substituting d′
t for db

t , up until
the definition of the bound N1 on |D| in (6.39). Inserting the bound on d′

t(q, ao)
into the expression for N1 yields

N1 ≤
2`

d′
t(q, ao)

(4
µ0

√
H log(2ARO) + H log(2ARO) + 14

3µ0

√
H log(2ARO)

)

6.8 Proofs 157

≤ 126QAOHC`

εµ0

√
H log(2ARO) =: N2 (6.43)

Next, consider each candidate state qao ∈ Q′
c,t+1 such that |X (qao)|/N < ε/(4QAOHC).

In this case, we instead choose X (qao) large enough to estimate d′
t(q, ao) with accu-

racy β with probability 1− δ. From the empirical Bernstein inequality, estimating
d′

t(q, ao) with accuracy β implies

β ≥

√
2p̂t(qao)`

N
+ 14`

3N
⇔ N ≥ 2`

β

(14
3 + p̂t(qao)

β

)
=: N3 (6.44)

Choosing β = ε/(4QAOHC) implies p̂t(qao) < β, and we can thus simplify N3 as

N3 = 2`

β

(14
3 + p̂t(qao)

β

)
<

12`

β
= 48QAOHC`

ε
=: N4 (6.45)

In addition, this choice of β yields the following bound on d′
t(q, ao):

d′
t(q, ao) ≤ p̂t(qao) + β <

ε

4QAOHC
+ ε

4QAOHC
= ε

2QAOHC
(6.46)

To conclude the proof, we verify that R′ is an ε/2-approximation of the original
RDP R. We briefly overload notation by letting d∗

t (q, ao) refer to the occupancy of an
optimal policy π∗ with respect to the transition function τ ′ of R′. Consider a candidate
state qao ∈ Q′

c,t+1 such that |X (qao)|/N < ε/(4QAOHC). The contribution to the
expected optimal reward of R of all histories that map to qao is bounded as

d∗
t (q, ao)(H − t) ≤ C∗

R′ d′
t(q, ao)H <

ε

2QAO
(6.47)

since (H − t) is the maximum reward obtained during the remaining time steps.
Since qao is mapped to a side state of R′, an optimal policy for R′ may not
accurately estimate the expected optimal value for qao, but the contribution of all
such candidate states to the expected optimal value is at most∑

t∈[H]

∑
q∈Qt

∑
ao∈AO

d∗
t (q, ao)(H − t) ≤

∑
t∈[H]

∑
q∈Qt

∑
ao∈AO

ε

2QAO
≤ ε

2 , (6.48)

since there can be at most QAO such candidate states. Hence, any optimal policy
for R′ is an ε/2-optimal policy for R, which implies that we can approximate an
ε-optimal regular policy for the exact RDP R by finding an ε/2-optimal policy for
the approximate RDP R′.

It is easy to verify that the bound N4 in (6.45) is less than the bound N2 in (6.43).
Hence, a worst-case bound is obtained by assuming that |X (qao)|/N ≥ ε/(4QAOHC)
for each t ∈ [H + 1] and each candidate state qao ∈ Q′

c,t+1, which yields an upper

158 6. Offline Reinforcement Learning in RDPs

bound N2. Note that AdaCT–H–A takes as input an upper bound Q on the
number of RDP states |Q′| of R′, as well as an upper bound C of the concentrability
coefficient C∗

R′ . If the learning agent has no prior knowledge of Q and C, it could start
with small estimates of Q and C, and in the case that AdaCT–H–A returns Failure,
or the resulting policy has larger concentrability than C for R′, it could iteratively
double the estimates Q and/or C and call the algorithm again. This only increases
the computational complexity of AdaCT–H–A by a factor O(log QC∗

R′), and the
resulting upper bounds Q and C do not exceed 2Q and 2C∗

R′ . Since we already have
an estimate Q, in each iteration we can call AdaCT–H–A with δ = δ1/(2QAO)
to ensure that the bound N2 holds for each candidate state simultaneously with
probability 1 − δ1. Substituting this value of δ in the bound N2 in (6.43) and
using Q < 2Q and C < 2C∗

R′ yields the sample complexity bound stated in the
theorem.

Lemma 6.15. The concentrability C∗
R′ of the approximate RDP R′ from theorem 6.8

satisfies
C∗

R′ ≤ C∗
R(1 + 3QAO) (6.49)

Proof. In this proof, we use the same conventions as the proof of theorem 6.8. For
each t > 0, let d′

t(qe
t) be the occupancy of the side state qe

t in the approximate RDP
R′. We prove by induction on t that d′

t(qe
t) satisfies

d′
t(qe

t) <
ε
∑t−1

u=0 |Qu|
2QHC

≤ ε

2HC
(6.50)

The base case is given by t = 1. In this case, a candidate state (q0, ao) is mapped to qe
1

if db
t (q0, ao) = d′

t(q0, ao) < ε/(2QAOHC). Since there can be at most AO = |Q0|AO

such candidate states, we have

d′
t(qe

t) <
ε|Q0|AO

2QAOHC
= ε|Q0|

2QHC
(6.51)

For t > 1, a candidate state (qt−1, ao) is mapped to qe
t if d′

t(qt−1, ao) < ε/(2QAOHC).
Again, there can be at most |Qt−1|AO such candidate states. Since all occupancy of
qe

t−1 is also mapped to qe
t , we have

d′
t(qe

t) < d′
t−1(qe

t−1) + ε|Qt−1|AO

2QAOHC
<

ε
∑t−2

u=0 |Qu|
2QHC

+ ε|Qt−1|
2QHC

= ε
∑t−1

u=0 |Qu|
2QHC

(6.52)

where we have used the induction hypothesis.
Consider a candidate state (q, ao) of R at time t. Due to approximation, some

histories in τ̄−1(q) are mapped to side states in R′ instead of q, and we can therefore
write db

t (q, ao) = d′
t(q, ao) + ξ ≤ d′

t(q, ao) + d′
t(qe

t), where ξ is the total occupancy of

6.8 Proofs 159

histories in τ̄−1(q) mapped to side states. In turn, this implies

d∗
t (q, ao) ≤ db

t (q, ao)C∗
R ≤ (d′

t(q, ao) + d′
t(qe

t))C∗
R <

(
d′

t(q, ao) + ε

2HC

)
C∗

R (6.53)

The concentrability of a candidate state (q, ao) in the approximate RDP R′ that is
not mapped to a side state (i.e. d′

t(q, ao) ≥ ε/(6QAOHC)) can now be bounded as

d∗
t (q, ao)

d′
t(q, ao) <

d′
t(q, ao) + ε/(2HC)

d′
t(q, ao) C∗

R =
(

1 + ε

2HCd′
t(q, ao)

)
C∗

R

≤ C∗
R(1 + 3QAO) (6.54)

This concludes the proof of the lemma.

6.8.5 Distinguishability Parameters

As defined in the main text, for t ∈ [H +1], we consider a metric L over distributions
over the remaining part of the episode ∆(T`), for ` = H − t + 1. Then, the L-
distinguishability of an RDP R and a policy π is the maximum µ0 such that, for
any t ∈ [H + 1] and any two distinct q, q′ ∈ Qt, the probability distributions over
suffix traces et:H ∈ T` from the two states satisfy

L(P(et:H | qt = q, π),P(et:H | qt = q′, π)) ≥ µ0 (6.55)

So, µ0 is a feature of the RDP and the policy combined, and it quantifies the distance
between any two distinct states of the RDP with respect to the distributions they
induce over the observable quantities. Distinguishability parameters have been first
introduced in Ron, Singer, et al. (1998), later generalized for other metrics. They
can be also found in Balle Pigem (2013), for PDFA learning, and in Ronca and
De Giacomo (2021) and Ronca, Licks, et al. (2022), for RDP learning.

According to the definition we adopt, there exists an L-distinguishability for any
RDP and policy. However, as stated in assumption 6.2, we require µ0 to be strictly
positive. This does not constitute a restriction for the RDP, since it can be always
minimized while preserving all conditional probabilities. Though it implies that,
in any state, the behaviour policy takes with positive probability all actions that
are needed to observe episode suffixes that have different probability under the two
states. Clearly if this was not the case for two distinct q, q′ ∈ Qt at some t ∈ [H + 1],
P(et:H | qt = q, π) = P(et:H | qt = q′, π) and no information would be available for
the algorithm to distinguish q and q′.

The metric selected also influences the actual value of the distinguishability
parameter. In this work, we adopt Lp

∞, as it can be seen from the TestDistinct
function in the two algorithms. A more standard distance would be L∞. According

160 6. Offline Reinforcement Learning in RDPs

to eq. (6.55), an L∞-distinguishability of µ0 implies that for any t ∈ [H + 1] and
two distinct q, q′ ∈ Qt,

max
e∈TH−t+1

|P(et:H = e | qt = q)− P(et:H = e | qt = q′)| ≥ µ0 (6.56)

This means that some sequence until the end of the episode has a different probability
of being generated from the two states. Although similar, the Lp

∞ distance, maximizes
for the full trace, as in the previous expression, as well as any of its prefixes:

max
u∈[H−t+1]

max
e∈Tu+1

|P(et:H = e ∗ | qt = q)− P(et:H = e ∗ | qt = q′)| ≥ µ0 (6.57)

As it has been discussed in Balle Pigem (2013, Appenix A.5), the prefix Lp
∞ metric

always upper bounds the L∞ metric, up to a multiplicative factor, and there are
pairs of distributions in which L∞ is exponentially smaller than Lp

∞ with respect
to the expected suffix length. This motivates our choice. Moreover, in the specific
case of our fixed horizon setting, we have that the Lp

∞-distinguishability is never
lower than L∞-distinguishability. Note that in the hard instance of fig. 6.1, the two
coincide.

The lower bound is stated in terms of the Lp
1-distinguishability of the RDP,

instead. While Lp
∞ is achieved for one specific trace prefix, maximizing the difference

in probability, Lp
1 takes all traces prefixes for each length into account as

max
u∈[H−t+1]

∑
e∈Tu+1

|P(et:H = e ∗ | qt = q)− P(et:H = e ∗ | qt = q′)| (6.58)

Due to this relation, the Lp
∞-distinguishability always lower bounds the Lp

1-distinguishability
in the fixed horizon setting. Note that the definition of Lp

1 used in this thesis differs
from the one used in the paper this chapter is based from. In fact, in (Cipollone,
Jonsson, et al. 2024), Lp

1 was defined as:∑
u∈[H−t+1]

∑
e∈Tu+1

|P(et:H = e ∗ | qt = q)− P(et:H = e ∗ | qt = q′)| (6.59)

The motivation for this change is that with the new definition of Lp
1 we were able to

achieve here a much stronger lower bound, since the associated parameter appears
in the denominator of eq. (6.8).

6.8.6 RegORL With Subsampled VI-LCB

In this section, we demonstrate the composition of our algorithm with a specific Of-
fline Reinforcement Learning algorithm for MDPs. Specifically, we adopt Subsampled
VI-LCB, from of G. Li, L. Shi, et al. (2022, Algorithm 3) and report the combined

6.8 Proofs 161

sample complexity of this choice, through a simple application of theorem 6.7.
First, we introduce the occupancy distribution and the single-policy conentrability

coefficient for MDPs. Let M = 〈Q,A,R, T, R, H〉 be a finite-horizon MDP with
states Q, horizon H, transition function T : Q×A → ∆(Q) and reward function
R : Q×A → ∆(R). The state-action occupancy distribution of a policy π : Q →
∆(A) in M at step t ∈ [H + 1] is dπ

m,t(q, a) = P(qt = q, at+1 = a |M, π). For our
purposes, it suffices to consider a fixed initial state q0. Finally, the MDP single-policy
concentrability of a behaviour policy πb is (Rashidinejad, Zhu, et al. 2021):

C∗ = max
t∈[H+1],q∈Q,a∈A

dπ∗
m,t(q, a)

dπb
m,t(q, a)

(6.60)

We can now express the sample complexity of Subsampled VI-LCB.

Theorem 6.16 (G. Li, L. Shi, et al. (2022)). Let D be a dataset of Nm episodes,
sampled from an MDP M with a Markovian policy πb. For any ε ∈ (0, H] and
0 < δ < 1/12, with probability exceeding 1− δ, the policy π̂ returned by Subsampled
VI-LCB obeys V ∗

µ − V π̂
µ ≤ ε, as long as:

Nm ≥
c H3QC∗ log NmH

δ

ε2 (6.61)

for a fixed, positive constant c.

The analysis in G. Li, L. Shi, et al. (2022) of Subsampled VI-LCB assumes that the
reward function is deterministic and known. Thus, restricting our attention to this
setting, we consider any episodic RDP with history-dependent, deterministic rewards.
The reward function can be regarded as known, since it may be easily extracted
from the dataset resulting from the Markov transformation of definition 6.2.

Proposition 6.17. Let D be a dataset of N episodes, sampled with a regular policy
πb ∈ ΠR from an RDP R with deterministic rewards. If Subsampled VI-LCB is the
OfflineRL algorithm in algorithm 6.1, then, for any ε ∈ (0, H] and 0 < δ < 1/12,
with probability exceeding 1− δ, the output of RegORL(D, ε, δ) is an ε-optimal policy
of R, as long as

N ≥ 2 max
{

21 log(8QAO/δ)
db

min µ0

√
H log(2ARO),

c H3QC∗
R log 2NH

δ

ε2

}
(6.62)

Proof. This statement follows as a direct application of theorem 6.16 to theorem 6.6.
It only remains to verify that the single-policy concentrability of the MDP underlying
the dataset D′ that Subsampled VI-LCB receives is C∗

R. The dataset D′ is generated
according to the Markov transformation τ̄ from definition 6.2. We only consider the
cases in which AdaCT–H succeeds. Let π ∈ ΠR be any regular policy and qt, q′

t the

162 6. Offline Reinforcement Learning in RDPs

states reached at step t by R and MR, respectively. Then for t > 0,

dπ
t (q, a) := P(qt = q | R, π) πr(a | q) (6.63)

= P(τ̄(ht−1) = q | R, π) πr(a | q) (6.64)

= P(q′
t = q |MR, πr) πr(a | q) (6.65)

= dπr
m,t(q, a) (6.66)

This is valid for any regular policy, and for the optimal and behaviour policies in
particular. Then,

C∗
R = max

t∈[H+1],q∈Qt,ao∈AO

d∗
t (q, ao)

db
t (q, ao)

(6.67)

= max
t∈[H+1],q∈Qt,ao∈AO

dπ∗
t (q, a) θo(o | q, a)

dπb
t (q, a) θo(o | q, a)

(6.68)

= max
t∈[H+1],q∈Q,a∈A

d
π∗

r
m,t(q, a)

d
πb

r
m,t(q, a)

(6.69)

= C∗ (6.70)

Similarly to the previous proposition, it is also possible to combine theorem 6.16
with theorem 6.8. In this case, the sample complexity of Subsampled VI-LCB for
learning an ε/2-accurate policy with probability 1− δ/2 would be combined with
N ′

δ/2 of theorem 6.8.

6.8.7 Sample Complexity Lower Bound

In this section, we prove the sample complexity lower bound of theorem 6.9. The
proof is based on a suitable composition of a two-armed bandit and a learning
problem associated to noisy parity functions. We first describe this latter class of
problems and its sample-complexity lower bound below. Then, we compose a hard
class of RDP instances at page 164, and prove the final statement at page 165.

Learning Parity With Noise

Let B := {0, 1} and L ∈ N. For any string x ∈ BL, the parity function fx : BL → B is
fx(y) = ⊕i∈[L]xiyi, where ⊕ is addition modulo 2. For noise parameter ξ ∈ (0, 0.5),
a noisy parity function fx,ξ returns fx(y) with probability 0.5 + ξ and 1 − fx(y)
otherwise. Consider the class of parity functions F(L) = {fx}x∈BL and the class of
noisy parity functions F(L, ξ) = {fx,ξ}x∈BL . Assume that x, y1, y2, …∼ Unif(BL) are
uniformly sampled. The success probability of a streaming algorithm A for F(L, ξ)

6.8 Proofs 163

is the probability that A recovers x, the hidden code, given in input a sequence of
observations (yi, fx,ξ(yi))i.

Lemma 6.18. Any streaming algorithm for F(L, ξ) with a success probability higher
than O(2−L) requires at least Ω(L/ξ) or 2Ω(L) input samples (yi, fx,ξ(yi))i.

Proof. Learning in F(L, ξ) is the problem of recovering x ∈ 2B from noisy data
(yi, bi), where bi = fx(yi) with probability 0.5 + ξ, and bi = 1 − fx(yi) otherwise.
This is the problem of learning in F(L) with corruption rate 0.5− ξ. Hence, we focus
on the problem of learning noiseless parity first.

The Statistical Query dimension SQdim(C, d), characterizes the complexity of
learning in the class C with respect to the prior distribution d ∈ ∆(C). As defined in
Szörényi (2009), SQdim(C, d) is the maximum n ∈ N such that there exist distinct
f1, . . . , fn ∈ C, such that their pairwise correlations with respect to d are between
−1/n and 1/n. For the class of parity functions, under the uniform distribution
over x, SQdim(F(L), Unif) = 2L. This was already observed in (Blum, Furst,
et al. 1994), for a slightly different notion of SQ dimension. However, to verify
this, we can consider a natural ordering over binary strings in X , and represent
the problem of learning F(L) as a matrix M = (mij) ∈ {1,−1}2L×2L , defined as
mij = (−1)fxj (yi) = (−1)yi·xj , where scalar product is modulo 2. We have that M

is a Hadamard matrix. Then, since every row is orthogonal to the others, and the
same is true for columns, every couple of parity functions are uncorrelated under
the uniform distribution over x.

Regarding the noisy parity problem, since SQdim(F(L), Unif) = 2L, we can
apply Garg, Raz, et al. (2018, corollary 8) with m = 2L, to have that the matrix
M corresponding to the parity problem is a (k, l)-L2-extractor with error 2−r, for
k, l, r ∈ Ω(L). Since M is a suitable extractor, we can apply Garg, Kothari, et al.
(2021, theorem 1), which considers the problem of learning the extractor matrix M

with the additional noise parameter ξ. We obtain that, in the streaming setting, any
branching program B for F(L, ξ) whose depth is at most 2f1(k,l,r) and width is at
most 2ckl/ξ has a success probability of at most O(2−f1(k,l,r)), where c is a suitable
constant and f1 is from Garg, Kothari, et al. (2021, equation (1)).

Then, if the success probability of the program A is not in O(2−f1(k,l,r)), meaning
it is higher, we have that the depth of A exceeds 2f1(k,l,r) or the width of A exceeds
2ckl/ξ. Expanding f1, since k, l, r ∈ Ω(L), if the success probability is not in O(2−L),
then the depth of A is 2Ω(L) or the width of A is 2Ω(L2)/ξ. Width and depth refer to
the computational model that represents A as a branching program. A branching
program is a directed acyclic graph in which internal nodes have one outgoing edge
for each possible input sample, that is |BL × B| = 2L+1 in our problem, and leaves
correspond to algorithm decisions. From the required width and depth we know that

164 6. Offline Reinforcement Learning in RDPs

q01

∗.u

q02

∗.u

q03

a′
0.vξ

a′
1.v−ξ

qs

∗.s
q11

∗.u

q12

∗.u

q13

a′
0.v−ξ

a′
1.vξ

qb1

∗.δ+

qb2

∗.δ+

qb3

a′
0.v0

a′
1.vη

q+4 q+5

q−4 q−5

qo⊥

0

1

∗

∗

0
1

0
1

−

+

+
∗ ∗

+

−

∗

∗

∗

∗

∗

Figure 6.2. One episodic RDP instance R101,1 ∈ R(L, H, ξ, η), associated to the parity
function f101, with code 101, and the optimal arm a′

1. The length is L = |101| = 3, the
horizon H = 5, the noise parameter is ξ > 0 and the bandit bonus parameter is η > 0.
The transition function only depends on the observations, not the actions. The star
denotes any symbol. If the label of a state q is a.d, then the observation function is
θo(a | q) = d, where d ∈ ∆(O) (some irrelevant outputs are omitted). Only the gray
states are rewarding. More details are in the main body.

A has a leaf in layer 2Ω(L) or in a layer that contains 2Ω(L2)/ξ nodes. The former
case implies a worst case sample complexity requirement that is exponential in L.
For the latter, we observe that in order to reach that width, at least log2L+1 2Ω(L2/ξ)

transitions and input samples, are required. This is Ω(L/ξ).

Class of Hard RDP Instances

For our main lower bound, we define a class of hard RDP instances. Figure 6.2 shows
one possible instance in this class. This is the same as fig. 6.1, reported here for
convenience, next to the proof where it is used. We will soon define it formally, but
we can observe that its structure is organized in two main paths. The two branches
in the top part encode a parity computation according to some hidden code x ∈ BL,
so that behaving optimally in that region requires solving a parity problem (exactly
one of lemma 6.18). The bottom part, instead, reaches a two-armed bandit whose
optimal action is c. The right-most nodes are winning or losing states that provide
a positive and null reward accordingly.

Formally, we define a class of hard RDP instances as R(L, H, ξ, η) = {Rx,c}x∈BL,c∈{0,1}

where Rx,c = 〈Q,AO, Ω, τ, θ, qs, H〉, for Q = {qs, qo⊥} ∪ {q0i, q1i, qbi}i=1,...,L ∪
{q+,i, q−,i}i=L+1,...,H , A = {a′

0, a′
1}, O = {0, 1, +,−}. Assume L ≥ 1 and H > L.

Rewards are zero everywhere, except in the winning states,

θr(r | q, a) = δ1, if q = q+i with i > L, and δ0, otherwise (6.71)

6.8 Proofs 165

where we recall that δx represents the deterministic distribution on x. For observation
probabilities, we denote the distributions u(o) := Unif{0, 1} and

vα(o) :=

1+α

2 if o = +
1−α

2 if o = −

0 otherwise

s(o) :=

1/4 if o = 0

1/4 if o = 1

1/2 if o = +

(6.72)

Now define observations as

θo(q, a, o) =

s(o) if q = qs

u(o) if q ∈ {q0i, q1i}i=1,...,L−1

vξ(o) if q = q0L ∧ a = a′
0 or q = q1L ∧ a = a′

1

v−ξ(o) if q = q0L ∧ a = a′
1 or q = q0L ∧ a = a′

1

δ+(o) if q = qbi with i < L

v0(o) if q = qbL ∧ a = a′
0

vη(o) if q = qbL ∧ a = a′
1 ∧ c = 1

v−η(o) if q = qbL ∧ a = a′
1 ∧ c = 0

δo⊥(o) if q = qo⊥

(6.73)

Finally, the transition function is defined such that τ̄(qs, hL−1) = qiL with i =
fx(o0:L−1), and

τ(qkL, a+) = q+,L+1 τ(qkL, a−) = q−,L+1 for k = 1, 2 (6.74)

τ(qbL, a+) = q+,L+1 τ(qbL, a−) = q−,L+1 (6.75)

τ(q+i, ao) = q+,i+1 τ(q−i, ao) = q−,i+1 (6.76)

τ(qs, a+) = qb1 τ(qbi, ao) = qb,i+1 for i < L (6.77)

τ(q+H , ao) = qo⊥ τ(q−H , ao) = qo⊥ τ(qo⊥ , a, o) = qo⊥ (6.78)

All the choices above reflect what is shown in the figure. In addition, the transitions
τ(q0i, ao) and τ(q1i, ao), for i < L, are defined according to o ∈ {0, 1} and the
parity code x. Namely, τ(q0i, ao) equals q1,i+1 iff o⊕ x(i) = 1, and q0,i+1, otherwise.
τ(q1i, ao) is defined analogously.

Proof of theorem 6.9

Theorem 6.9. For any (C∗
R, H, ε, µ0) satisfying C∗

R ≥ 2, H ≥ 2 and ε ≤ Hµ0/64,
there exists an RDP with horizon H, Lp

1-distinguishability µ0 and a regular behaviour
policy πb with RDP single-policy concentrability C∗

R, such that if D has been generated

166 6. Offline Reinforcement Learning in RDPs

using πb and R, and

|D| /∈ Ω
(

H

µ0
+ C∗

RH2

ε2

)
(6.8)

then, for any algorithm A : D 7→ π̂ returning non-Markov deterministic policies, the
probability that π̂ is not ε-optimal is at least 1/4.

Proof. Denote with πb a regular policy in R and D ∈ D a dataset of episodes
of length H, collected from R and the behaviour policy πb. For an RDP R, let
Πd = AH be the set of deterministic non-Markov policies and A ∈ (D → Πd) an
offline RL algorithm. For δ < 0.5, we say that an algorithm A is (ε, δ)-PAC for the
class of RDPs R under condition ϕ, if, for every R ∈ R and D ∈ D, if the condition
ϕ(D, πb) is verified, then the output policy A(D) is ε-optimal in R, with probability
1− δ. One notable case is that of ϕ requiring a minimum dataset size.

Since the output of a generic algorithm might be any generic non-Markov
deterministic policy, we cannot restrict our attention to regular policies. We expand
the value of any history-dependent policy π : H → A in an RDP Rx,c ∈ R(L, H, ξ, η)
as follows:

V π
µ = E

[
H∑

i=1
ri | π

]
(6.79)

= (H − L)P(qL+1 = q+,L+1 | π) (6.80)

= (H − L)
∑

q∈QL

P(qL = q | π)P(qL+1 = q+,L+1 | qL = q, π) (6.81)

= (H − L) (P(qL = q0L | π)P(qL+1 = q+,L+1 | qL = q0L, π)

+ P(qL = q1L | π)P(qL+1 = q+,L+1 | qL = q1L, π))

+ (H − L) (P(qL = qbL | π)P(qL+1 = q+,L+1 | qL = qbL, π)) (6.82)

= H − L

2 (P(qL = q0L | o0 ∈ {0, 1}, π)P(qL+1 = q+,L+1 | qL = q0L, π)

+ P(qL = q1L | o0 ∈ {0, 1}, π)P(qL+1 = q+,L+1 | qL = q1L, π))

+ H − L

2 P(qL+1 = q+,L+1 | qL = qbL, π) (6.83)

= H − L

4 (P(qL+1 = q+,L+1 | qL = q0L, π) + P(qL+1 = q+,L+1 | qL = q1L, π))

+ H − L

2 P(qL+1 = q+,L+1 | qL = qbL, π) (6.84)

= H − L

4 (P(aL = a′
0 | qL = q0L, π)P(oL = + | qL = q0L, aL = a′

0)

+ (1− P(aL = a′
0 | qL = q0L, π))P(oL = + | qL = q0L, aL = a′

1)

+ (1− P(aL = a′
1 | qL = q1L, π))P(oL = + | qL = q1L, aL = a′

0)

+ P(aL = a′
1 | qL = q1L, π)P(oL = + | qL = q1L, aL = a′

1))

6.8 Proofs 167

+ H − L

2 (P(aL = a′
0 | qL = qbL, π)P(oL = + | qL = qbL, aL = a′

0)

+ P(aL = a′
1 | qL = qbL, π)P(oL = + | qL = qbL, aL = a′

1)) (6.85)

where in eq. (6.84) we have used the uniform probability over x. Now, for any
history-dependent deterministic policy π in episodic RDPs, it is possible to identify
an associated regular stochastic policy πr : Q′ → ∆(A), where Q′ := Q\ {qo⊥} and:

πr(a | q) := P(π(h) = a | τ̄(h) = q) (6.86)

=
∑

h′∈τ̄−1(q)
I(π(h′) = a) P(h = h′ | π)

P(q | π) (6.87)

In other words, πr encodes the probability that π takes action a, given that some
history has led to state q. With this convention, we resume from eq. (6.85)

V π
µ = H − L

4 (πr(a′
0 | q0L) vξ(+) + (1− πr(a′

0 | q0L)) vξ(−)

+ (1− πr(a′
1 | q1L)) vξ(−) + πr(a′

1 | q1L) vξ(+)) (6.88)

+ H − L

2 (πr(a′
0 | qbL) u(+) + πr(a′

1 | qbL) (I(c = a′
1) vη(+) + I(c = a′

0) vη(−))

= H − L

8 (πr(a′
0 | q0L) (1 + ξ) + (1− πr(a′

0 | q0L)) (1− ξ)

+ (1− πr(a′
1 | q1L)) (1− ξ) + πr(a′

1 | q1L) (1 + ξ)) (6.89)

+ H − L

4 (πr(a′
0 | qbL) + πr(a′

1 | qbL) (I(c = a′
1) (1 + η) + I(c = a′

0) (1− η)))

= H − L

4 (1− ξ + ξ πr(a′
0 | q0L) + ξ πr(a′

1 | q1L)

+ πr(a′
0 | qbL) + πr(a′

1 | qbL) (1 + η I(c = a′
1)− η I(c = a′

0))) (6.90)

For the optimal policy, in particular, this becomes:

V ∗
µ = H − L

4 (1 + ξ + I(c = a′
0) + (1 + η) I(c = a′

1)) (6.91)

From the ε-optimality of π = A(D), then,

ε ≥ V ∗
µ − V π

µ (6.92)

= H − L

4 (2ξ − ξ πr(a′
0 | q0L)− ξ πr(a′

1 | q1L)

+ η I(c = a′
1) (1− πr(a′

1 | qbL)) + η I(c = a′
0) πr(a′

1 | qbL)) (6.93)

= H − L

4 (ξ (2− πr(a′
0 | q0L)− πr(a′

1 | q1L)) + η (1− πr(c | qbL))) (6.94)

≥ H − L

4 max{ξ (1− πr(a′
0 | q0L)), ξ (1− πr(a′

1 | q1L)), η (1− πr(c | qbL))} (6.95)

168 6. Offline Reinforcement Learning in RDPs

Now, assume that

min{ξ, η} ≥ 16 ε

H − L
(6.96)

Then, all the following is true: πr(a′
0 | q0L) ≥ 3/4, πr(a′

1 | q1L) ≥ 3/4, πr(c | qbL) ≥
3/4. This means that, for small ε, any ε-optimal policy must frequently select the
optimal action for both the parity problem and the bandit. Let us represent the first
two events with Bp and the third with Bb. Since A is (ε, δ)-PAC for R(L, H, ξ, η)
under ϕ, the probability of Bp ∧ Bb is at least 1 − δ, for any D and πb satisfying
ϕ(D, πb).

We proceed to compute the necessary data to satisfy both events with high
probability. The dataset D can be partitioned in two subsets Dp and Db, con-
taining any episode from D whose initial observation is {0, 1} and +, respectively.
The two datasets share no information and Dp and Db are mutually independent.
To see this, we observe that the sequence aL+1rL+1oL+1 . . . oH is independent of
a0r0o0 . . . aL given oL, since the observations + and − at step L uniquely deter-
mine the rest of the episode. Also, for any two episodes eH , e′

H , the sequence
a1r1o1 . . . oL is independent of a′

1r′
1o′

1 . . . o′
L given o0. Since, o0 ∼ µ = s, that is the

initial observation distribution in these RDPs, the two datasets are independent.
Let Qp = {qs, qo⊥} ∪ {q0i, q1i}i=1,...,L ∪ {q+,i, q−,i}i=L+1,...,H and Qb = {qs, qo⊥} ∪
{qbi}i=1,...,L∪{q+,i, q−,i}i=L+1,...,H be the reachable states in the two datasets. Then,
we consider two separate classes R(L, H, ξ) and R(L, H, η) as the sets of RDPs
in R(L, H, ξ, η), restricted to Qp and Qb, respectively. To do so, we construct
Rr ∈ R(L, H, ξ) and Rc ∈ R(L, H, η) such that the initial observation follows
Unif({0, 1}) in Rr and δ+ in Rc. Now, from the independence of the two datasets
and the fact that A is (ε, δ)-PAC in D, there must exist an algorithm Ap : Dp 7→ πp

that is (2ε, δ)-PAC in R(L, H, ξ) under some ϕp, and Ab : Db 7→ πb that is (2ε, δ)-
PAC in R(L, H, η) under some ϕb. If this was not the case, Bp ∧Bb could not be
verified in one of the two terms.

We analyse Ap first, and we show that its requirement ϕp is |Dp| ∈ Ω(L/ξ)∪2Ω(L).
For a contradiction, assume this is not the case and that |Dp| = g(L, ξ) /∈ (Ω(L/ξ) ∪
2Ω(L)) is allowed. Then, we can use Ap to solve the noisy parity problem under the
streaming setting with g(L, ξ) samples (this setting has been introduced at page 162).
We proceed as follows. Consider any noisy parity function fx,ξ with unknown x.
Sample a sequence of strings {yi}i ∈ 2L from the uniform distribution and collect
g(L, ξ) pairs (yi, pi), sampling pi ∼ fx,ξ(yi). Then, for H > L, compose a dataset of
episodes {ei}i. All actions of ei are selected uniformly in {a′

0, a′
1}. The observations

o0:L−1 are yi and oL equals pi if aL = a′
0, 1− pi, otherwise (0 and 1 take roles of +

and − symbols here). Rewards rL+1:H are equal to one if oL = 1, null otherwise.

6.8 Proofs 169

We obtain that dataset so constructed is equally likely under this procedure than
under the uniform policy and the RDP Rx ∈ R(L, H, ξ). Since Ap is (2ε, δ)-PAC for
R(L, H, ξ), with probability 1− δ, the output policy πp satisfies:

min{πpr(a′
0 | q0L), πpr(a′

1 | q1L)} ≥ 3/4 (6.97)

where πpr is the stochastic regular policy for πp. This can be seen by our assumption
in eq. (6.96) and doubling both ε and the sub-optimality gap of eq. (6.95), due to
the updated probability for the initial observation. Then, for any sequence y ∈ 2L

and associated history hL−1 with o0:L−1 = y,

fx(y) = arg max
i=0,1

πp(a′
i | hL−1) (6.98)

which is the noiseless parity function based on x. This means that it is possible to
reconstruct x solely by interacting with πp, without collecting further samples. The
solution we have described is a streaming algorithm with sample complexity g(L, ξ).
Since this contradicts lemma 6.18, we have proven |Dp| ∈ Ω(L/ξ) ∪ 2Ω(L).

We now consider the bandit problem, which is solved by Ab. Similarly to the
previous case, from the ε-optimality of Ab(Db), we obtain the necessary condition:
πbr(c | qbL) ≥ 3/4 from eq. (6.95). This condition is expressed for the stochastic
policy πbr. However, we notice that for qbL in particular, the only possible history is
hL−1 = a0+a1. . .+, where all actions must also be deterministic. Then,

πbr(c | qbL) = P(πb(h) = c | τ̄(h) = qbL) = I(πb(hL−1) = c) (6.99)

implying that πbr can only be deterministic for qbL. This means that Ab must solve
best-arm identification in the two arm bandit at qbL. We can compose a simplified
dataset that is relevant for the bandit as:

D′
b = {aLoL : eH ∈ Db} (6.100)

Since Db can be deterministically reconstructed from D′
b, we have the following

conditional independence: πb ⊥ c | D′
b, where c ∈ {a′

0, a′
1} is the optimal arm, and

πb = Ab(Db) is the output of the algorithm. Denoting with ĉ = πb(hL−1) the selected
arm, the error probability is Pe := P(ĉ 6= c). The application of Fano’s inequality
from theorem 6.12 to the variables c→ D′

b → ĉ gives:

H2(Pe) ≥ H(c | D′
b) (6.101)

= H(c)− I(c;D′
b) = log 2− I(c;D′

b) (6.102)

where we have used the fact that ĉ is a Bernoulli variable and the uniform prior over

170 6. Offline Reinforcement Learning in RDPs

c. Now, assuming C ≥ 2, we construct a behaviour policy as πb(a0 | qbL) = 1− 1/C

and πb(a1 | qbL) = 1/C. In the following, we write Nb := |Db| and omit the implicit
dependency on πb.

I(c ; D′
b) = H(D′

b)−H(D′
b | c) (6.103)

= Nb(H(aLoL)−H(aLoL | c)) (6.104)

= NbDKL(P(aLoL, c) ‖ P(aLoL)P(c)) (6.105)

= Nb
2

∑
a,c′∈A,o∈O

P(a, o | c′) log P(a, o | c′)
P(a, o) (6.106)

= Nb
2

∑
a,c′∈A,o∈O

P(a, o | c′) log P(a | c′)P(o | c′, a)∑
c′′ P(a | c′′)P(o | c′′, a)/2 (6.107)

= Nb
2

∑
a,c′∈A,o∈O

P(a, o | c′) log 2P(o | c′, a)∑
c′′ P(o | c′′, a) (6.108)

= Nb
2

∑
a,c′∈A,o∈O

P(a, o | c′) log(2P(o | c′, a)) (6.109)

= Nb
2

∑
c′∈A,o∈O

P(a′
1, o | c′) log(2P(o | c′, a′

1)) (6.110)

= Nb
2
∑
o∈O

(P(a′
1, o | c = a′

0) log(2P(o | c = a′
0, a′

1))

+ P(a′
1, o | c = a′

1) log(2P(o | c = a′
1, a′

1))) (6.111)

= Nb(P(a′
1, + | c = a′

0) log(2P(+ | c = a′
0, a′

1))

+ P(a′
1, + | c = a′

1) log(2P(+ | c = a′
1, a′

1))) (6.112)

= Nb
(1− η

2C
log(1− η) + 1 + η

2C
log(1 + η)

)
(6.113)

= Nb
C

DKL(vη ‖ v0) (6.114)

≤ Nb η2

C
(6.115)

Then from eq. (6.102), and the fact that Ab is (2ε, δ)-PAC,

H(δ) ≥ H2(Pe) ≥ log 2− Nb η2

C
(6.116)

=⇒ Nb ≥
C

η2 (log 2−H(δ)) (6.117)

Which means that this must be ϕb, the requirement for Ab.

Finally, to compose the results from both branches, we observe that |D| =
|Dp| + |Db|. Also, for any δ ∈ (0, 0.5), say 1/4, (log 2 −H(δ)) becomes a positive

6.8 Proofs 171

constant, and we can add both sizes asymptotically:

|D| ∈ Ω
(

H

ξ
+ C

η2

)
(6.118)

To relate the parameters to features of the RDP, we observe that the number of
states of any RDP in R(L, H, ξ, η) is Q ≤ 3H. Also, the behaviour policy is uniform
everywhere except in qbL. Assuming C ≥ 2, the computation of the single-policy
concentrability coefficient yields C∗

R = C, for any c ∈ {a′
0, a′

1}. Next, we compute
the Lp

1-distinguishability of any RDP in this class. The Lp
1-distinguishability of a set

of states Q is the minimum L1 distance in distribution between episodes prefixes
that are generated starting from any two states in Q. Let us consider the L1 norm
for the pair q01 and q11,

‖P(e1:H | q01, πb)− P(e1:H | q01, πb)‖1 = (6.119)

=
∑

e∈TH

|P(e1:H = e | q01)− P(e1:H = e | q11)| (6.120)

=
∑

earo∈TL+1

P(e1:L−1 = e)|P(aL = a, rL = r, oL = o | q01, e)

− P(aL = a, rL = r, oL = o | q11, e)| (6.121)

=
∑

ao∈AO
|P(aL = a, oL = o | q0L)− P(aL = a, oL = o | q1L)| (6.122)

= (1/2)
∑
o∈O
|P(oL = o | aL = a′

0, q0L)− P(oL = o | aL = a′
0, q1L)| (6.123)

+ (1/2)
∑
o∈O
|P(oL = o | aL = a′

1, q0L)− P(oL = o | aL = a′
1, q1L)| (6.124)

=
∑
o∈O
|P(oL = o | aL = a′

0, q0L)− P(oL = o | aL = a′
0, q1L)| (6.125)

= 2|P(oL = + | aL = a′
0, q0L)− P(oL = + | aL = a′

0, q1L)| (6.126)

= 2ξ (6.127)

The L1 distance of suffixes from q01, q11 that are longer than L have also a distance
of 2ξ. On the other hand, any shorter prefix has a distance of 0. Since, Lp

1 minimizes
across all these distances, the minimum is attained for any q0i and q1i, which
determines µ0 ≥ 2ξ. In fact, the distance between any other pair of states in the
same layer is strictly higher, since they differ deterministically in some reward or
observation. Hence, the Lp

1-distinguishability of the entire RDP is µ0 = 2ξ. Now, we
choose L = H/2, η = 32 ε/H and we assume ε ≤ Hµ0/64, H ≥ 2. We can verify
that these choices are consistent with the previous assumption min{ξ, η} ≥ 16 ε

H−L .
Substituting, the final requirement ϕ for the complete algorithm A is an exponential

172 6. Offline Reinforcement Learning in RDPs

number of episodes in H or:

|D| ∈ Ω
(

H

µ0
+ C∗

RH2

ε2

)
(6.128)

Now, for any H, µ0, C∗
R, ε satisfying the previous assumptions, any algorithm

cannot be (ε, 1/4)-optimal for the instances in R(H/2, H, µ0, 32 ε/H) if eq. (6.128)
is not satisfied.

Note that in our RDP instance, the number of states and the horizon length
scale linearly. So, we might equivalently write HQ instead of H2.

173

Chapter 7

Conclusion

Thanks to the many successes achieved in complex environments, Reinforcement
Learning is now the leading AI research field for the development of intelligent
agents for decision-making. In simulated environments, specifically, there has
been impressive progress in many benchmarks, including ATARI games, physical
simulations, games with first-person views, and open, strategic games, (Mnih,
Kavukcuoglu, et al. 2015; Schulman, Levine, et al. 2015; Kempka, Wydmuch, et al.
2016; Mnih, Badia, et al. 2016; Pohlen, Piot, et al. 2018; Lample and Chaplot 2016;
Oh, Chockalingam, et al. 2016). This is significant, especially considering the little
prior knowledge that RL requires. However, despite the significant progress, two
important features remain unsatisfactory in AI agents. Namely, RL algorithms
should be both generally applicable and efficient. Although these two features are
arguably part of an inevitable compromise and may not be perfectly optimised at the
same time, there still seem to be plenty of opportunities to improve RL algorithms
in both directions.

This dissertation summarises a progressive effort whose purpose is improving RL
methods in both the directions just described: efficiency and general applicability.
Regarding efficiency, a series of excellent results showed that it is possible to apply RL
algorithms in large MDPs (C. Jin, Z. Yang, et al. 2020; François-Lavet, Henderson,
et al. 2018). However, despite the increased efficiency, the classic “flat” RL algorithms
often fail to exploit specific structures in the environment dynamics. For example,
by recognising that a complex problem can be regarded as the composition of two
connected subtasks, a person would easily approach each subtask independently and,
when possible, would reconstruct the global solution by composing its parts. The
whole field of Hierarchical RL aims at developing RL agents that are capable of this
reasoning. This would also allow us to reuse previous solutions, when available. As
a whole, part II of this dissertation proceeds in this research direction.

174 7. Conclusion

The second general objective that we identified above is the achievement of a
more general applicability of the RL algorithms. Specifically, many theoretical results
and algorithms are available for fully observable environments. However, despite
the pervasive presence of partial information in realistic scenarios, comparatively
little progress has been made with respect to MDPs. This does not mean that RL
algorithms are not currently employed in the presence of partial observations. As a
significant example, some simulators with first-person views provide very limited
perceptions. Nonetheless, some excellent results are already available (Lample
and Chaplot 2017; Baker, Kanitscheider, et al. 2020). However, instead of directly
accounting for partial observations and non-Markovian dependencies in the algorithm,
most RL methods employ techniques that have been originally developed for MDPs
and delegate all the temporal complexity to the internal neural network architecture.
Although recurrent architectures do have the expressive power for capturing such
dependencies, in principle, complex non-Markovian relations strongly complicate the
optimisation landscape and may lead to well-known instabilities for RNNs. Unlike
these works, in part III, we directly target the Reinforcement Learning problem in
non-Markovian environments.

Together, the two parts of this thesis share the common need of developing
algorithms that target the most appropriate state representation for each environment.
In fact, selecting appropriate representations should be an important component for
flexible AI agents (G. Konidaris 2019). For part II, this would be a representation
that allows near-optimal behaviours, while avoiding non-stationarity effects. For
part III, instead, this would be a representation that allows the agents to accurately
predict future rewards and plan for them. Despite the similarities, each part operates
in a different context and requires some specific techniques. Therefore, we summarise
some specific conclusions for each of them in the following. A detailed list of
contributions can be found at the beginning of this thesis and in the opening and
closing of each chapter. Instead, the purpose of the next sections is to summarise
the general state of this work and to suggest directions for future work.

Learning With MDP Abstractions

In chapter 3, we proposed a new RL algorithm for incorporating additional prior
knowledge, in the form of an abstract MDP simulator, into the learning routine.
Specifically, the algorithm persistently influences the exploration policy of the ground
MDP, while retaining the original optimal convergence guarantees. Furthermore, we
identified a relationship between abstraction and ground MDP, through a comparison
of the induced exploration policy.

175

Beyond the specific results, it is worth noting that the associated theoretical
results had required the identification of two very intuitive parameters, abstract
value approximation and abstract similarity, that characterise the quality of the state
partitioning and the ground options for those partitions. In fact, these parameters
have been the core motivation for seeking a more elegant and direct relationship
between the two models in chapter 4. In this follow-up work, we step back from
the specific algorithms and try to answer a more general question for HRL. Namely,
the purpose of this chapter is to identify sufficient conditions that would enable
the translation of abstract policies into ground policies by learning in a truly
compositional way. This chapter is a major step forward, with respect to more sound
definitions of MDP abstractions, since it gives important insights related to the
quality of different state partitions, the nature of values at exit states, the constrained
MDP formulation of the realizability problem, and the conditions allowing for a
compressed effective horizon in the abstraction.

Although we were able to conclude this part of the dissertation with a good
number of insights related to HRL theory, the specific applicability of realizable
abstractions remains open-ended. In fact, we have identified some specific components
and solutions related to the realizability problem. However, a complete RL algorithm
based on realizable abstractions has not been developed yet. There are two very
natural directions for future work that extend from this dissertation. The first
is the development of a highly sample-efficient algorithm that takes advantage of
the nature of realizable abstractions. The second is the development of learning
algorithms that are capable of finding realizable abstractions from ground MDPs.

Learning in Non-Markov Decision Processes

In chapter 5, we studied the expressive power of Regular Decision Processes. This is
a very relevant topic for RL in non-Markovian environments, because it is motivated
by the general intractability of RL in POMDPs. In this thesis, we have shown that
the class of RDPs is distinct from POMDPs and is placed in the strict relation:
k-MDP ⊂ RDP ⊂ POMDP. So, RDPs have the potential to be a very interesting
middle ground between relatively limited models, such as k-MDPs, and the full
expressiveness of POMDPs. We also showed that RDPs can approximate a large
subset of POMDPs. In chapter 6, on the other hand, we have provided an original
offline RL algorithm for RDPs, with associated sample-efficiency guarantees.

Although this dissertation contributes significantly to the current understanding
of RDPs, many questions remain open. With respect to expressive power, we have
not yet proved whether RDPs can act as general approximators for POMDPs. In

176 7. Conclusion

both cases of a positive or negative response, this result would have an interesting
impact in shaping the landscape of the existing models for non-Markovian RL.

With respect to the theoretical results regarding the complexity of RDP learning,
both chapters showed lower bounds on the sample complexity of RL in RDPs, for the
online and the offline setting, respectively. The lower bound of chapter 5 indicates
that, in the general case, RL in RDPs can be intractable. However, as we saw from
the lower bound in chapter 6, the complexity of (offline) RL in RDPs can also be
characterised with more precision, if some notion related to temporal complexity is
introduced. In this work, we have used “distinguishability” parameters, which come
from the theory of probabilistic automata. Interestingly, this parameter has not been
previously used for POMDPs. In fact, RDPs might admit different parameterizations
compared to those currently available for POMDPs.

In conclusion, the algorithm proposed in chapter 6 has the advantage of being
extremely modular, thanks to its internal reduction to a Markovian environment.
However, this two-step approach precludes a series of optimisations that are also
worth exploring. This is especially important when developing RL algorithms for
the online setting, in which careful exploration is of paramount importance.

Both parts of this dissertation are related to two very active branches of
the RL literature. I am confident that many of the open questions that
we discussed in this conclusion will be solved in the near future, thanks
to the joint effort of this active community.

177

Bibliography

Abadi, Eden and Ronen I. Brafman (2020). “Learning and Solving Regular Decision
Processes”. In: Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20. International Joint Conferences on Artificial
Intelligence Organization, pp. 1948–1954.

Abel, David (2020). “A Theory of Abstraction in Reinforcement Learning”. PhD
thesis. Brown University, USA.

Abel, David, David Hershkowitz, and Michael Littman (2016). “Near Optimal
Behavior via Approximate State Abstraction”. In: Proceedings of The 33rd
International Conference on Machine Learning. Vol. 48. Proceedings of Machine
Learning Research. PMLR, pp. 2915–2923.

Abel, David, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup,
and Michael Littman (2020). “Value Preserving State-Action Abstractions”.
In: Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics. Vol. 108. Proceedings of Machine Learning Research.
PMLR, pp. 1639–1650.

Achiam, Joshua, David Held, Aviv Tamar, and Pieter Abbeel (2017). “Constrained
Policy Optimization”. In: Proceedings of the 34th International Conference on Ma-
chine Learning, ICML 2017. Vol. 70. Proceedings of Machine Learning Research.
PMLR, pp. 22–31.

Agarwal, Alekh, Nan Jiang, Sham M. Kakade, and Wen Sun (2021). Reinforcement
Learning: Theory and Algorithms. 205 pp.

Altman, Eitan (1999). Constrained Markov Decision Processes. 1st ed. 256 pp. isbn:
978-1-315-14022-3.

Åström, K.J (1965). “Optimal Control of Markov Processes with Incomplete State
Information”. In: Journal of Mathematical Analysis and Applications 10.1, pp. 174–
205. issn: 0022-247X.

Auer, Peter, Nicolò Cesa-Bianchi, and Paul Fischer (2002). “Finite-Time Analysis of
the Multiarmed Bandit Problem”. In: Machine Learning 47.2, pp. 235–256. issn:
1573-0565.

178 Bibliography

Azar, Mohammad Gheshlaghi, Ian Osband, and Rémi Munos (2017). “Minimax
Regret Bounds for Reinforcement Learning”. In: Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017. Vol. 70. Proceedings of
Machine Learning Research. PMLR, pp. 263–272.

Azizzadenesheli, Kamyar, Alessandro Lazaric, and Animashree Anandkumar (2016).
“Reinforcement Learning of POMDPs Using Spectral Methods”. In: COLT. Vol. 49.
JMLR Workshop and Conference Proceedings. JMLR.org, pp. 193–256.

Bacchus, Fahiem, Craig Boutilier, and Adam Grove (1996). “Rewarding Behaviors”.
In: Proceedings of the Thirteenth National Conference on Artificial Intelligence
- Volume 2 (Portland, Oregon). AAAI’96. AAAI Press, pp. 1160–1167. isbn:
0-262-51091-X.

Bacon, Pierre-Luc, Jean Harb, and Doina Precup (2017). “The Option-Critic Ar-
chitecture”. In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence. AAAI Press, pp. 1726–1734.

Baker, Bowen, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, et al. (2020).
“Emergent Tool Use from Multi-Agent Autocurricula”. In: 8th International
Conference on Learning Representations, ICLR 2020. OpenReview.net.

Bakker, Bram (2001). “Reinforcement Learning with Long Short-Term Memory”. In:
Advances in Neural Information Processing Systems 14, NIPS 2001. MIT Press,
pp. 1475–1482.

Balle, Borja, Jorge Castro, and Ricard Gavaldà (2013). “Learning Probabilistic
Automata: A Study in State Distinguishability”. In: Theoretical Computer Science
473, pp. 46–60. doi: 10.1016/j.tcs.2012.10.009.

— (2014). “Adaptively Learning Probabilistic Deterministic Automata from Data
Streams”. In: Machine Learning 96.1, pp. 99–127. issn: 1573-0565. doi: 10.1007/
s10994-013-5408-x.

Balle Pigem, Borja de (2013). “Learning Finite-State Machines: Statistical and
Algorithmic Aspects”. Universitat Politècnica de Catalunya. 175 pp.

Bellemare, Marc G., Will Dabney, and Rémi Munos (2017). “A Distributional
Perspective on Reinforcement Learning”. In: ICML. Vol. 70. Proceedings of
Machine Learning Research. PMLR, pp. 449–458.

Bellman, Richard (1956). “Dynamic Programming and Lagrange Multipliers”. In:
Proceedings of the National Academy of Sciences 42.10, pp. 767–769.

— (1958). “Dynamic Programming and Stochastic Control Processes”. In: Inf.
Control. 1.3, pp. 228–239.

Bertsekas, Dimitri P. (1995). Dynamic Programming and Optimal Control. Athena
Scientific.

https://doi.org/10.1016/j.tcs.2012.10.009
https://doi.org/10.1007/s10994-013-5408-x
https://doi.org/10.1007/s10994-013-5408-x

Bibliography 179

Biza, Ondrej and Robert Platt Jr. (2019). “Online Abstraction with MDP Homomor-
phisms for Deep Learning”. In: Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS ’19. International
Foundation for Autonomous Agents and Multiagent Systems, pp. 1125–1133.

Blum, Avrim, Merrick L. Furst, Jeffrey C. Jackson, Michael J. Kearns, Yishay
Mansour, and Steven Rudich (1994). “Weakly Learning DNF and Characterizing
Statistical Query Learning Using Fourier Analysis”. In: Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing. ACM, pp. 253–262.
doi: 10.1145/195058.195147.

Bowling, Michael H., Peter McCracken, Michael James, James Neufeld, and Dana F.
Wilkinson (2006). “Learning Predictive State Representations Using Non-Blind
Policies”. In: Machine Learning, Proceedings of the Twenty-Third International
Conference, ICML 2006. Vol. 148. ACM International Conference Proceeding
Series. ACM, pp. 129–136. doi: 10.1145/1143844.1143861.

Boyen, Xavier and Daphne Koller (1998). “Tractable Inference for Complex Stochastic
Processes”. In: Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, UAI ’98. Morgan Kaufmann, pp. 33–42.

Brafman, Ronen I. and Giuseppe De Giacomo (2019). “Regular Decision Processes:
A Model for Non-Markovian Domains”. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19. International
Joint Conferences on Artificial Intelligence Organization, pp. 5516–5522. isbn:
978-0-9992411-4-1.

Brafman, Ronen I., Giuseppe De Giacomo, and Fabio Patrizi (2018). “LTLf / LDLf
Non-Markovian Rewards”. In: 32nd AAAI Conference on Artificial Intelligence,
AAAI 2018, pp. 1771–1778.

Brafman, Ronen I. and Moshe Tennenholtz (2003). “R-Max - a General Polynomial
Time Algorithm for near-Optimal Reinforcement Learning”. In: J. Mach. Learn.
Res. 3 (null), pp. 213–231. issn: 1532-4435.

Camacho, Alberto, Oscar Chen, Scott Sanner, and Sheila A. McIlraith (2017). “Non-
Markovian Rewards Expressed in LTL: Guiding Search via Reward Shaping”.
In: Proceedings of the Tenth International Symposium on Combinatorial Search,
SOCS 2017. AAAI Press, pp. 159–160.

Camacho, Alberto, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valen-
zano, and Sheila A. McIlraith (2019). “LTL and beyond: Formal Languages for
Reward Function Specification in Reinforcement Learning”. In: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019. ijcai.org, pp. 6065–6073. doi: 10.24963/IJCAI.2019/840.

https://doi.org/10.1145/195058.195147
https://doi.org/10.1145/1143844.1143861
https://doi.org/10.24963/IJCAI.2019/840

180 Bibliography

Castro, Pablo Samuel and Doina Precup (2011). “Automatic Construction of Tem-
porally Extended Actions for MDPs Using Bisimulation Metrics”. In: Recent
Advances in Reinforcement Learning - 9th European Workshop, EWRL 2011.
Vol. 7188. Lecture Notes in Computer Science. Springer, pp. 140–152.

Chen, Jinglin and Nan Jiang (2019). “Information-Theoretic Considerations in Batch
Reinforcement Learning”. In: Proceedings of the 36th International Conference
on Machine Learning, ICML 2019. Vol. 97. Proceedings of Machine Learning
Research. PMLR, pp. 1042–1051.

Chen, Yichen and Mengdi Wang (2016). “Stochastic Primal-Dual Methods and
Sample Complexity of Reinforcement Learning”. In: CoRR abs/1612.02516. arXiv:
1612.02516.

Cipollone, Roberto, Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, and Fabio
Patrizi (2023a). “Exploiting Multiple Abstractions in Episodic RL via Reward
Shaping”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 37, pp. 7227–7234.

— (2023b). “Exploiting Multiple Abstractions in Episodic RL via Reward Shaping”.
In: CoRR abs/2303.00516.

Cipollone, Roberto, Anders Jonsson, Alessandro Ronca, and Mohammad Sadegh
Talebi (2024). “Provably Efficient Offline Reinforcement Learning in Regular Deci-
sion Processes”. In: Thirty-Seventh Conference on Neural Information Processing
Systems, NeurIPS 2024.

Clark, Alexander and Franck Thollard (2004). “PAC-learnability of Probabilistic
Deterministic Finite State Automata”. In: Journal of Machine Learning Research
5, pp. 473–497.

Cover, Thomas M. and Joy A. Thomas (2006). Elements of Information Theory (2.
Ed.) Wiley. isbn: 978-0-471-24195-9.

Csiszár, Imre and Zsolt Talata (2006). “Context Tree Estimation for Not Necessarily
Finite Memory Processes, via BIC and MDL”. In: IEEE Trans. Inf. Theory 52.3,
pp. 1007–1016. doi: 10.1109/TIT.2005.864431.

Dann, Christoph and Emma Brunskill (2015). “Sample Complexity of Episodic
Fixed-Horizon Reinforcement Learning”. In: Advances in Neural Information
Processing Systems 28, NIPS 2015, pp. 2818–2826.

Dann, Christoph, Tor Lattimore, and Emma Brunskill (2017). “Unifying PAC and
Regret: Uniform PAC Bounds for Episodic Reinforcement Learning”. In: Advances
in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, pp. 5713–5723.

https://arxiv.org/abs/1612.02516
https://doi.org/10.1109/TIT.2005.864431

Bibliography 181

Dayan, Peter (1993). “Improving Generalization for Temporal Difference Learning:
The Successor Representation”. In: Neural Computation 5.4, pp. 613–624. doi:
10.1162/neco.1993.5.4.613.

Dayan, Peter and Geoffrey E. Hinton (1992). “Feudal Reinforcement Learning”.
In: Advances in Neural Information Processing Systems 5, NIPS 1992. Morgan
Kaufmann, pp. 271–278.

De Giacomo, Giuseppe, Marco Favorito, Luca Iocchi, Fabio Patrizi, and Alessan-
dro Ronca (2020). “Temporal Logic Monitoring Rewards via Transducers”. In:
Proceedings of the 17th International Conference on Principles of Knowledge Rep-
resentation and Reasoning, KR 2020, pp. 860–870. doi: 10.24963/KR.2020/89.

De Giacomo, Giuseppe, Luca Iocchi, Marco Favorito, and Fabio Patrizi (2019).
“Foundations for Restraining Bolts: Reinforcement Learning with LTLf/LDLf Re-
straining Specifications”. In: Proceedings International Conference on Automated
Planning and Scheduling, ICAPS (Brooks 1991), pp. 128–136. issn: 23340843.

De Farias, Daniela Pucci and Benjamin Van Roy (2003). “The Linear Programming
Approach to Approximate Dynamic Programming”. In: Operations Research 51.6,
pp. 850–865. doi: 10.1287/OPRE.51.6.850.24925.

Devlin, Sam and Daniel Kudenko (2012). “Dynamic Potential-Based Reward Shap-
ing”. In: International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2012. IFAAMAS, pp. 433–440.

Dietterich, Thomas G. (2000). “Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition”. In: J. Artif. Intell. Res. 13, pp. 227–303.

Eckstein, Maria K. and Anne G. E. Collins (2020). “Computational Evidence for
Hierarchically Structured Reinforcement Learning in Humans”. In: Proceedings
of the National Academy of Sciences 117.47, pp. 29381–29389.

Efroni, Yonathan, Chi Jin, Akshay Krishnamurthy, and Sobhan Miryoosefi (2022).
“Provable Reinforcement Learning with a Short-Term Memory”. In: ICML.
Vol. 162. Proceedings of Machine Learning Research. PMLR, pp. 5832–5850.

Even-Dar, Eyal, Sham M. Kakade, and Yishay Mansour (2007). “The Value of
Observation for Monitoring Dynamic Systems”. In: Proceedings of the 20th
International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 2474–
2479.

Fiechter, Claude-Nicolas (1994). “Efficient Reinforcement Learning”. In: Proceedings
of the Seventh Annual ACM Conference on Computational Learning Theory,
COLT 1994. ACM, pp. 88–97.

François-Lavet, Vincent, Peter Henderson, Riashat Islam, Marc G Bellemare, and
Joelle Pineau (2018). “An Introduction to Deep Reinforcement Learning”. In:

https://doi.org/10.1162/neco.1993.5.4.613
https://doi.org/10.24963/KR.2020/89
https://doi.org/10.1287/OPRE.51.6.850.24925

182 Bibliography

Foundations and Trends in Machine Learning 11.3-4, pp. 219–354. issn: 1935-8237.
doi: 10.1561/2200000071.

Furelos-Blanco, Daniel, Mark Law, Anders Jonsson, Krysia Broda, and Alessandra
Russo (2022). “Hierarchies of Reward Machines”. In: CoRR abs/2205.15752.

Gabbianelli, Germano, Gergely Neu, Nneka Okolo, and Matteo Papini (2023).
“Offline Primal-Dual Reinforcement Learning for Linear MDPs”. In: CoRR
abs/2305.12944. doi: 10.48550/ARXIV.2305.12944. arXiv: 2305.12944.

Gao, Yang and Francesca Toni (2015). “Potential Based Reward Shaping for Hier-
archical Reinforcement Learning”. In: Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2015. AAAI Press,
pp. 3504–3510.

Gaon, Maor and Ronen I. Brafman (2019). “Reinforcement Learning with Non-
Markovian Rewards”. arXiv: 1912.02552 [cs].

García, Javier, Álvaro Visús, and Fernando Fernández (2022). “A Taxonomy for
Similarity Metrics between Markov Decision Processes”. In: Machine Learning
111.11, pp. 4217–4247.

Garg, Sumegha, Pravesh K. Kothari, Pengda Liu, and Ran Raz (2021). “Memory-
Sample Lower Bounds for Learning Parity with Noise”. In: CoRR abs/2107.02320.
arXiv: 2107.02320.

Garg, Sumegha, Ran Raz, and Avishay Tal (2018). “Extractor-Based Time-Space
Lower Bounds for Learning”. In: Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018. ACM, pp. 990–1002. doi:
10.1145/3188745.3188962.

Geffner, Hector and Blai Bonet (2013). A Concise Introduction to Models and
Methods for Automated Planning. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers. isbn: 978-1-60845-969-8.
doi: 10.2200/S00513ED1V01Y201306AIM022.

Golowich, Noah, Ankur Moitra, and Dhruv Rohatgi (2022a). “Learning in Observable
POMDPs, without Computationally Intractable Oracles”. In: Advances in Neural
Information Processing Systems 35, NeurIPS 2022.

— (2022b). “Planning in Observable POMDPs in Quasipolynomial Time”. In: CoRR
abs/2201.04735. arXiv: 2201.04735.

Grzes, Marek (2017). “Reward Shaping in Episodic Reinforcement Learning”. In:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2017. ACM, pp. 565–573.

Guo, Hongyi, Qi Cai, Yufeng Zhang, Zhuoran Yang, and Zhaoran Wang (2022).
“Provably Efficient Offline Reinforcement Learning for Partially Observable
Markov Decision Processes”. In: International Conference on Machine Learn-

https://doi.org/10.1561/2200000071
https://doi.org/10.48550/ARXIV.2305.12944
https://arxiv.org/abs/2305.12944
https://arxiv.org/abs/1912.02552
https://arxiv.org/abs/2107.02320
https://doi.org/10.1145/3188745.3188962
https://doi.org/10.2200/S00513ED1V01Y201306AIM022
https://arxiv.org/abs/2201.04735

Bibliography 183

ing, ICML 2022. Vol. 162. Proceedings of Machine Learning Research. PMLR,
pp. 8016–8038.

Guo, Zhaohan Daniel, Shayan Doroudi, and Emma Brunskill (2016). “A PAC RL
Algorithm for Episodic POMDPs”. In: Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, AISTATS 2016. Vol. 51.
JMLR Workshop and Conference Proceedings. JMLR.org, pp. 510–518.

Gürtler, Nico, Dieter Büchler, and Georg Martius (2021). “Hierarchical Reinforcement
Learning with Timed Subgoals”. In: CoRR abs/2112.03100.

Ha, David and Jürgen Schmidhuber (2018). “Recurrent World Models Facilitate
Policy Evolution”. In: Advances in Neural Information Processing Systems 31,
NeurIPS 2018, pp. 2455–2467.

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey Levine (2018). “Soft
Actor-Critic: Off-policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor”. In: Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018. Vol. 80. Proceedings of Machine Learning Research.
PMLR, pp. 1856–1865.

Hansen, Eric A. (1998). “Solving POMDPs by Searching in Policy Space”. In:
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,
UAI ’98. Ed. by Gregory F. Cooper and Serafín Moral. Morgan Kaufmann,
pp. 211–219.

Hausknecht, Matthew J. and Peter Stone (2015). “Deep Recurrent Q-learning for
Partially Observable MDPs”. In: 2015 AAAI Fall Symposia. AAAI Press, pp. 29–
37.

Hauskrecht, Milos (2000). “Value-Function Approximations for Partially Observable
Markov Decision Processes”. In: Journal of Artificial Intelligence Research 13,
pp. 33–94. doi: 10.1613/jair.678.

Heess, Nicolas, Jonathan J. Hunt, Timothy P. Lillicrap, and David Silver (2015).
“Memory-Based Control with Recurrent Neural Networks”. In: CoRR abs/1512.04455.

Hessel, Matteo, Joseph Modayil, Hado van Hasselt, Tom Schaul, et al. (2018). “Rain-
bow: Combining Improvements in Deep Reinforcement Learning”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 32.1.

Howard, Ronald A. (1960). Dynamic Programming and Markov Processes. Dynamic
Programming and Markov Processes. John Wiley, pp. viii, 136. viii, 136.

Hsu, David, Wee Sun Lee, and Nan Rong (2007). “What Makes Some POMDP
Problems Easy to Approximate?” In: Advances in Neural Information Processing
Systems 20, NIPS 2007. Curran Associates, Inc., pp. 689–696.

https://doi.org/10.1613/jair.678

184 Bibliography

Hutsebaut-Buysse, Matthias, Kevin Mets, and Steven Latré (2022). “Hierarchical
Reinforcement Learning: A Survey and Open Research Challenges”. In: Machine
Learning and Knowledge Extraction 4.1, pp. 172–221. issn: 2504-4990.

Hutter, Marcus (2009). “Feature Reinforcement Learning: Part I. Unstructured
MDPs”. In: J. Artif. Gen. Intell. 1.1, pp. 3–24.

— (2014). “Extreme State Aggregation beyond MDPs”. In: Algorithmic Learning
Theory - 25th International Conference, ALT 2014. Vol. 8776. Lecture Notes
in Computer Science. Springer, pp. 185–199. doi: 10.1007/978-3-319-11662-
4_14.

— (2016). “Extreme State Aggregation beyond Markov Decision Processes”. In:
Theor. Comput. Sci. 650, pp. 73–91. doi: 10.1016/j.tcs.2016.07.032.

Icarte, Rodrigo Toro, Toryn Klassen, Richard Valenzano, and Sheila McIlraith (2018).
“Using Reward Machines for High-Level Task Specification and Decomposition in
Reinforcement Learning”. In: Proceedings of the 35th International Conference on
Machine Learning. Vol. 80. Proceedings of Machine Learning Research. PMLR,
pp. 2107–2116.

Icarte, Rodrigo Toro, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A.
McIlraith (2022). “Reward Machines: Exploiting Reward Function Structure
in Reinforcement Learning”. In: Journal of Artificial Intelligence Research 73,
pp. 173–208.

Icarte, Rodrigo Toro, Ethan Waldie, Toryn Q. Klassen, Richard Anthony Valenzano,
Margarita P. Castro, and Sheila A. McIlraith (2019). “Learning Reward Ma-
chines for Partially Observable Reinforcement Learning”. In: Advances in Neural
Information Processing Systems 32, NeurIPS 2019, pp. 15497–15508.

Igl, Maximilian, Luisa M. Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson
(2018). “Deep Variational Reinforcement Learning for POMDPs”. In: Proceedings
of the 35th International Conference on Machine Learning, ICML 2018. Vol. 80.
Proceedings of Machine Learning Research. PMLR, pp. 2122–2131.

Infante, Guillermo, Anders Jonsson, and Vicenç Gómez (2022). “Globally Optimal
Hierarchical Reinforcement Learning for Linearly-Solvable Markov Decision
Processes”. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022. AAAI Press, pp. 6970–6977.

Jaksch, Thomas, Ronald Ortner, and Peter Auer (2010). “Near-Optimal Regret
Bounds for Reinforcement Learning”. In: Journal of Machine Learning Research
11, pp. 1563–1600.

James, Michael R. and Satinder Singh (2004). “Learning and Discovery of Predictive
State Representations in Dynamical Systems with Reset”. In: Machine Learning,
Proceedings of the Twenty-First International Conference, ICML 2004. Vol. 69.

https://doi.org/10.1007/978-3-319-11662-4_14
https://doi.org/10.1007/978-3-319-11662-4_14
https://doi.org/10.1016/j.tcs.2016.07.032

Bibliography 185

ACM International Conference Proceeding Series. ACM. doi: 10.1145/1015330.
1015359.

Jiang, Yiding, Shixiang Gu, Kevin Murphy, and Chelsea Finn (2019). “Language
as an Abstraction for Hierarchical Deep Reinforcement Learning”. In: Advances
in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pp. 9414–9426.

Jiang, Yiding, Evan Zheran Liu, Benjamin Eysenbach, J. Zico Kolter, and Chelsea
Finn (2022). “Learning Options via Compression”. In: Advances in Neural Infor-
mation Processing Systems 35, NeurIPS 2022.

Jin, Chi, Sham M. Kakade, Akshay Krishnamurthy, and Qinghua Liu (2020). “Sample-
Efficient Reinforcement Learning of Undercomplete POMDPs”. In: Advances in
Neural Information Processing Systems 33, NeurIPS 2020.

Jin, Chi, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan (2020). “Provably
Efficient Reinforcement Learning with Linear Function Approximation”. In:
Conference on Learning Theory, COLT 2020. Vol. 125. Proceedings of Machine
Learning Research. PMLR, pp. 2137–2143.

Jin, Ying, Zhuoran Yang, and Zhaoran Wang (2021). “Is Pessimism Provably Efficient
for Offline RL?” In: Proceedings of the 38th International Conference on Machine
Learning, ICML 2021. Vol. 139. Proceedings of Machine Learning Research.
PMLR, pp. 5084–5096.

Jinnai, Yuu, Jee Won Park, David Abel, and George Dimitri Konidaris (2019).
“Discovering Options for Exploration by Minimizing Cover Time”. In: Proceedings
of the 36th International Conference on Machine Learning, ICML 2019. Vol. 97.
Proceedings of Machine Learning Research. PMLR, pp. 3130–3139.

Jinnai, Yuu, Jee Won Park, Marlos C. Machado, and George Dimitri Konidaris
(2020). “Exploration in Reinforcement Learning with Deep Covering Options”.
In: 8th International Conference on Learning Representations, ICLR 2020. Open-
Review.net.

Jong, Nicholas K., Todd Hester, and Peter Stone (2008). “The Utility of Temporal
Abstraction in Reinforcement Learning”. In: 7th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2008). IFAAMAS,
pp. 299–306.

Jong, Nicholas K. and Peter Stone (2008). “Hierarchical Model-Based Reinforcement
Learning: R-Max + MAXQ”. In: Proceedings of the 25th International Conference
on Machine Learning. ICML ’08. Association for Computing Machinery, pp. 432–
439. isbn: 978-1-60558-205-4.

https://doi.org/10.1145/1015330.1015359
https://doi.org/10.1145/1015330.1015359

186 Bibliography

Jothimurugan, Kishor, Osbert Bastani, and Rajeev Alur (2021). “Abstract Value
Iteration for Hierarchical Reinforcement Learning”. In: The 24th International
Conference on Artificial Intelligence and Statistics, AISTATS 2021. Vol. 130.
Proceedings of Machine Learning Research. PMLR, pp. 1162–1170.

Kakade, Sham Machandranath (2013). “On the Sample Complexity of Reinforcement
Learning”.

Kallus, Nathan and Masatoshi Uehara (2020). “Double Reinforcement Learning for
Efficient Off-Policy Evaluation in Markov Decision Processes”. In: Journal of
Machine Learning Research 21, 167:1–167:63.

Kapturowski, Steven, Georg Ostrovski, John Quan, Rémi Munos, and Will Dabney
(2019). “Recurrent Experience Replay in Distributed Reinforcement Learning”.
In: 7th International Conference on Learning Representations, ICLR 2019. Open-
Review.net.

Kara, Ali Devran and Serdar Yüksel (2022). “Near Optimality of Finite Memory
Feedback Policies in Partially Observed Markov Decision Processes”. In: Journal
of Machine Learning Research 23, 11:1–11:46.

Kearns, Michael J. and Satinder Singh (2002). “Near-Optimal Reinforcement Learn-
ing in Polynomial Time”. In: Machine Learning 49.2-3, pp. 209–232.

Kempka, Michal, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech
Jaskowski (2016). “ViZDoom: A Doom-based AI Research Platform for Visual
Reinforcement Learning”. In: IEEE Conference on Computational Intelligence
and Games, CIG 2016. IEEE, pp. 1–8. doi: 10.1109/CIG.2016.7860433.

Khetarpal, Khimya, Martin Klissarov, Maxime Chevalier-Boisvert, Pierre-Luc Bacon,
and Doina Precup (2020). “Options of Interest: Temporal Abstraction with Inter-
est Functions”. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020. AAAI Press, pp. 4444–4451.

Koenig, Sven and Reid G. Simmons (1996). “The Effect of Representation and Knowl-
edge on Goal-Directed Exploration with Reinforcement-Learning Algorithms”.
In: Machine Learning 22.1, pp. 227–250. issn: 1573-0565.

Konidaris, George (2019). “On the Necessity of Abstraction”. In: Current Opinion in
Behavioral Sciences 29, pp. 1–7. issn: 2352-1546. doi: 10.1016/j.cobeha.2018.
11.005.

Konidaris, George Dimitri, Leslie Pack Kaelbling, and Tomás Lozano-Pérez (2018).
“From Skills to Symbols: Learning Symbolic Representations for Abstract High-
Level Planning”. In: Journal of Artificial Intelligence Research 61, pp. 215–
289.

Krishnamurthy, Akshay, Alekh Agarwal, and John Langford (2016). “PAC Rein-
forcement Learning with Rich Observations”. In: NIPS, pp. 1840–1848.

https://doi.org/10.1109/CIG.2016.7860433
https://doi.org/10.1016/j.cobeha.2018.11.005
https://doi.org/10.1016/j.cobeha.2018.11.005

Bibliography 187

Kulesza, Alex, Nan Jiang, and Satinder Singh (2015). “Spectral Learning of Predictive
State Representations with Insufficient Statistics”. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence. AAAI Press, pp. 2715–2721.
doi: 10.1609/AAAI.V29I1.9635.

Lample, Guillaume and Devendra Singh Chaplot (2016). “Playing FPS Games with
Deep Reinforcement Learning”. In: CoRR abs/1609.05521. arXiv: 1609.05521.

— (2017). “Playing FPS Games with Deep Reinforcement Learning”. In: Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Press,
pp. 2140–2146.

Lattimore, Tor, Marcus Hutter, and Peter Sunehag (2013). “The Sample-Complexity
of General Reinforcement Learning”. In: Proceedings of the 30th International
Conference on Machine Learning, ICML 2013. Vol. 28. JMLR Workshop and
Conference Proceedings. JMLR.org, pp. 28–36.

Lattimore, Tor and Csaba Szepesvári (2020). Bandit Algorithms. Cambridge Univer-
sity Press. isbn: 978-1-108-57140-1.

Lee, Junkyu, Michael Katz, Don Joven Agravante, Miao Liu, et al. (2022). “AI
Planning Annotation for Sample Efficient Reinforcement Learning”. In: CoRR
abs/2203.00669.

Lee, Seungjae, Jigang Kim, Inkyu Jang, and H. Jin Kim (2022). “DHRL: A Graph-
Based Approach for Long-Horizon and Sparse Hierarchical Reinforcement Learn-
ing”. In: Advances in Neural Information Processing Systems 35, NeurIPS 2022.

Levy, Kfir Y. and Nahum Shimkin (2011). “Unified Inter and Intra Options Learning
Using Policy Gradient Methods”. In: Recent Advances in Reinforcement Learning
- 9th European Workshop, EWRL 2011. Vol. 7188. Lecture Notes in Computer
Science. Springer, pp. 153–164.

Li, Gen, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei (2022). “Settling the
Sample Complexity of Model-Based Offline Reinforcement Learning”. In: CoRR
abs/2204.05275. doi: 10.48550/ARXIV.2204.05275. arXiv: 2204.05275.

Li, Lihong, Thomas J. Walsh, and Michael L. Littman (2006). “Towards a Unified
Theory of State Abstraction for MDPs”. In: International Symposium on Artificial
Intelligence and Mathematics, ISAIM 2006.

Li, Xiujun, Lihong Li, Jianfeng Gao, Xiaodong He, et al. (2015). “Recurrent Re-
inforcement Learning: A Hybrid Approach”. In: CoRR abs/1509.03044. arXiv:
1509.03044.

Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, et al.
(2016). “Continuous Control with Deep Reinforcement Learning”. In: 4th Inter-
national Conference on Learning Representations, ICLR 2016.

https://doi.org/10.1609/AAAI.V29I1.9635
https://arxiv.org/abs/1609.05521
https://doi.org/10.48550/ARXIV.2204.05275
https://arxiv.org/abs/2204.05275
https://arxiv.org/abs/1509.03044

188 Bibliography

Lin, Long-Ji and Tom M. Mitchell (1993). “Reinforcement Learning with Hidden
States”. In: Proceedings of the Second International Conference on from Animals
to Animats. MIT Press, pp. 271–280. isbn: 0-262-63149-0.

Littman, Michael L., Thomas L. Dean, and Leslie Pack Kaelbling (1995). “On the
Complexity of Solving Markov Decision Problems”. In: UAI ’95: Proceedings of
the Eleventh Annual Conference on Uncertainty in Artificial Intelligence. Morgan
Kaufmann, pp. 394–402.

Littman, Michael L., Richard S. Sutton, and Satinder P. Singh (2001). “Predictive
Representations of State”. In: Advances in Neural Information Processing Systems
14, NIPS 2001. MIT Press, pp. 1555–1561.

Liu, Qinghua, Alan Chung, Csaba Szepesvári, and Chi Jin (2022). “When Is Partially
Observable Reinforcement Learning Not Scary?” In: Conference on Learning
Theory, COLT. Vol. 178. Proceedings of Machine Learning Research. PMLR,
pp. 5175–5220.

Lusena, Christopher, Judy Goldsmith, and Martin Mundhenk (2001). “Nonapprox-
imability Results for Partially Observable Markov Decision Processes”. In: Journal
of Artificial Intelligence Research 14, pp. 83–103. doi: 10.1613/jair.714.

Machado, Marlos C., André Barreto, Doina Precup, and Michael Bowling (2023).
“Temporal Abstraction in Reinforcement Learning with the Successor Represen-
tation”. In: Journal of Machine Learning Research 24, 80:1–80:69.

Machado, Marlos C., Marc G. Bellemare, and Michael H. Bowling (2017). “A
Laplacian Framework for Option Discovery in Reinforcement Learning”. In:
Proceedings of the 34th International Conference on Machine Learning, ICML
2017. Vol. 70. Proceedings of Machine Learning Research. PMLR, pp. 2295–2304.

Madani, Omid, Steve Hanks, and Anne Condon (1999). “On the Undecidability of
Probabilistic Planning and Infinite-Horizon Partially Observable Markov Decision
Problems”. In: AAAI/IAAI. AAAI Press / The MIT Press, pp. 541–548.

Maei, Hamid Reza, Csaba Szepesvári, Shalabh Bhatnagar, and Richard S. Sutton
(2010). “Toward Off-Policy Learning Control with Function Approximation”. In:
Proceedings of the 27th International Conference on Machine Learning, ICML-10.
Omnipress, pp. 719–726.

Mahadevan, Sridhar, Bo Liu, Philip S. Thomas, William Dabney, et al. (2014).
“Proximal Reinforcement Learning: A New Theory of Sequential Decision Making
in Primal-Dual Spaces”. In: CoRR abs/1405.6757. arXiv: 1405.6757.

Mahmud, M. M. Hassan (2010). “Constructing States for Reinforcement Learning”.
In: Proceedings of the 27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel. Omnipress, pp. 727–734.

https://doi.org/10.1613/jair.714
https://arxiv.org/abs/1405.6757

Bibliography 189

Maillard, Odalric-Ambrym, Rémi Munos, and Daniil Ryabko (2011). “Selecting
the State-Representation in Reinforcement Learning”. In: Advances in Neural
Information Processing Systems 24, NIPS 2011, pp. 2627–2635.

Maillard, Odalric-Ambrym, Phuong Nguyen, Ronald Ortner, and Daniil Ryabko
(2013). “Optimal Regret Bounds for Selecting the State Representation in Re-
inforcement Learning”. In: Proceedings of the 30th International Conference
on Machine Learning, ICML 2013. Vol. 28. JMLR Workshop and Conference
Proceedings. JMLR.org, pp. 543–551.

Majeed, Sultan Javed and Marcus Hutter (2018). “On Q-learning Convergence
for Non-Markov Decision Processes”. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018. Ed. by
Jérôme Lang. ijcai.org, pp. 2546–2552. doi: 10.24963/IJCAI.2018/353.

Maurer, Andreas and Massimiliano Pontil (2009). “Empirical Bernstein Bounds and
Sample-Variance Penalization”. In: The 22nd Conference on Learning Theory,
COLT 2009.

McCallum, Andrew Kachites (1996). “Reinforcement Learning with Selective Per-
ception and Hidden State”. PhD thesis. University of Rochester.

Mirowski, Piotr, Razvan Pascanu, Fabio Viola, Hubert Soyer, et al. (2017). “Learning
to Navigate in Complex Environments”. In: 5th International Conference on
Learning Representations, ICLR 2017. OpenReview.net.

Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, et al.
(2016). “Asynchronous Methods for Deep Reinforcement Learning”. In: Proceed-
ings of the 33nd International Conference on Machine Learning, ICML 2016.
Vol. 48. JMLR Workshop and Conference Proceedings. JMLR.org, pp. 1928–1937.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, et al. (2015).
“Human-Level Control through Deep Reinforcement Learning”. In: Nature 518.7540,
pp. 529–533. issn: 14764687.

Mundhenk, Martin (2000). “The Complexity of Optimal Small Policies”. In: Mathe-
matics of Operations Research 25.1, pp. 118–129. doi: 10.1287/moor.25.1.118.
15214.

Murphy, K.P. (2012). Machine Learning: A Probabilistic Perspective. Adaptive
Computation and Machine Learning Series. MIT Press. isbn: 978-0-262-01802-9.

Nachum, Ofir, Shixiang Gu, Honglak Lee, and Sergey Levine (2018). “Data-Efficient
Hierarchical Reinforcement Learning”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 31. Curran Associates, Inc.

— (2019). “Near-Optimal Representation Learning for Hierarchical Reinforcement
Learning”. In: 7th International Conference on Learning Representations, ICLR
2019. OpenReview.net.

https://doi.org/10.24963/IJCAI.2018/353
https://doi.org/10.1287/moor.25.1.118.15214
https://doi.org/10.1287/moor.25.1.118.15214

190 Bibliography

Neu, Gergely and Nneka Okolo (2023). “Efficient Global Planning in Large MDPs
via Stochastic Primal-Dual Optimization”. In: International Conference on Algo-
rithmic Learning Theory. Vol. 201. Proceedings of Machine Learning Research.
PMLR, pp. 1101–1123.

Ng, Andrew Y., Daishi Harada, and Stuart J. Russell (1999). “Policy Invariance
Under Reward Transformations: Theory and Application to Reward Shaping”.
In: Proceedings of the Sixteenth International Conference on Machine Learning
(ICML 1999). Morgan Kaufmann, pp. 278–287.

Nguyen, Phuong, Odalric-Ambrym Maillard, Daniil Ryabko, and Ronald Ortner
(2013). “Competing with an Infinite Set of Models in Reinforcement Learning”. In:
Proceedings of the Sixteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2013. Vol. 31. JMLR Workshop and Conference Proceedings.
JMLR.org, pp. 463–471.

Oh, Junhyuk, Valliappa Chockalingam, Satinder P. Singh, and Honglak Lee (2016).
“Control of Memory, Active Perception, and Action in Minecraft”. In: Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016. Vol. 48.
JMLR Workshop and Conference Proceedings. JMLR.org, pp. 2790–2799.

Ortner, Ronald, Matteo Pirotta, Alessandro Lazaric, Ronan Fruit, and Odalric-
Ambrym Maillard (2019). “Regret Bounds for Learning State Representations in
Reinforcement Learning”. In: Advances in Neural Information Processing Systems.
Vol. 32. Curran Associates, Inc.

Palmer, Nick and Paul W. Goldberg (2007). “PAC-learnability of Probabilistic Deter-
ministic Finite State Automata in Terms of Variation Distance”. In: Theoretical
Computer Science 387.1, pp. 18–31. doi: 10.1016/J.TCS.2007.07.023.

Papadimitriou, Christos H. and John N. Tsitsiklis (1987). “The Complexity of Markov
Decision Processes”. In: Mathematics of Operations Research 12.3, pp. 441–450.

Pineau, Joelle, Geoffrey J. Gordon, and Sebastian Thrun (2003). “Point-Based Value
Iteration: An Anytime Algorithm for POMDPs”. In: Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, IJCAI-03. Ed. by Georg
Gottlob and Toby Walsh. Morgan Kaufmann, pp. 1025–1032.

Pohlen, Tobias, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, et al. (2018).
“Observe and Look Further: Achieving Consistent Performance on Atari”. In:
CoRR abs/1805.11593. arXiv: 1805.11593.

Precup, Doina and Richard S. Sutton (1997). “Multi-Time Models for Temporally
Abstract Planning”. In: Advances in Neural Information Processing Systems 10,
NIPS 1997. The MIT Press, pp. 1050–1056.

https://doi.org/10.1016/J.TCS.2007.07.023
https://arxiv.org/abs/1805.11593

Bibliography 191

Puterman, Martin L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley Series in Probability and Statistics. Wiley. isbn: 978-0-471-
61977-2.

Rabin, Michael O. and Dana S. Scott (1959). “Finite Automata and Their Decision
Problems”. In: IBM J. Res. Dev. 3.2, pp. 114–125.

Rashidinejad, Paria, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell (2021).
“Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of
Pessimism”. In: Advances in Neural Information Processing Systems 34, NeurIPS
2021, pp. 11702–11716.

Ravindran, Balaraman and Andrew G Barto (2004). “Approximate Homomorphisms:
A Framework for Non-Exact Minimization in Markov Decision Processes”. In:
p. 10.

— (2002). “Model Minimization in Hierarchical Reinforcement Learning”. In: Ab-
straction, Reformulation and Approximation, 5th International Symposium, SARA
2002. Vol. 2371. Lecture Notes in Computer Science. Springer, pp. 196–211.

— (2003). “Relativized Options: Choosing the Right Transformation”. In: Machine
Learning, Proceedings of the Twentieth International Conference (ICML 2003).
AAAI Press, pp. 608–615.

Ren, Tongzheng, Jialian Li, Bo Dai, Simon S. Du, and Sujay Sanghavi (2021).
“Nearly Horizon-Free Offline Reinforcement Learning”. In: Advances in Neural
Information Processing Systems 34, NeurIPS 2021, pp. 15621–15634.

Rissanen, Jorma (1983). “A Universal Data Compression System”. In: IEEE Trans.
Inf. Theory 29.5, pp. 656–663. doi: 10.1109/TIT.1983.1056741.

Ron, Dana, Yoram Singer, and Naftali Tishby (1996). “The Power of Amnesia:
Learning Probabilistic Automata with Variable Memory Length”. In: Machine
Learning 25.2-3, pp. 117–149. doi: 10.1023/A:1026490906255.

— (1998). “On the Learnability and Usage of Acyclic Probabilistic Finite Automata”.
In: Journal of Computer and System Sciences 56.2, pp. 133–152. doi: 10.1006/
JCSS.1997.1555.

Ronca, Alessandro and Giuseppe De Giacomo (2021). “Efficient PAC Reinforce-
ment Learning in Regular Decision Processes”. In: Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021. ijcai.org,
pp. 2026–2032.

Ronca, Alessandro, Gabriel Paludo Licks, and Giuseppe De Giacomo (2022). “Markov
Abstractions for PAC Reinforcement Learning in Non-Markov Decision Processes”.
In: Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI 2022. ijcai.org, pp. 3408–3415.

https://doi.org/10.1109/TIT.1983.1056741
https://doi.org/10.1023/A:1026490906255
https://doi.org/10.1006/JCSS.1997.1555
https://doi.org/10.1006/JCSS.1997.1555

192 Bibliography

Ross, Keith Wimberly (1985). Constrained Markov Decision Processes with Queueing
Applications. University of Michigan.

Russell, Stuart and Peter Norvig (2009). Artificial Intelligence: A Modern Approach.
3rd. Prentice Hall Press. isbn: 0-13-604259-7.

Schubert, Ingmar, Ozgur S. Oguz, and Marc Toussaint (2021). “Plan-Based Relaxed
Reward Shaping for Goal-Directed Tasks”. In: 9th International Conference on
Learning Representations, ICLR 2021. OpenReview.net.

Schulman, John, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp
Moritz (2015). “Trust Region Policy Optimization”. In: Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015. Vol. 37. JMLR
Workshop and Conference Proceedings. JMLR.org, pp. 1889–1897.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov
(2017). “Proximal Policy Optimization Algorithms”. In: CoRR abs/1707.06347.

Silver, David and Joel Veness (2010). “Monte-Carlo Planning in Large POMDPs”. In:
Advances in Neural Information Processing Systems 23: 24th Annual Conference
on Neural Information Processing Systems 2010. Proceedings of a Meeting Held
6-9 December 2010, Vancouver, British Columbia, Canada. Curran Associates,
Inc., pp. 2164–2172.

Simsek, Özgür and Andrew G. Barto (2004). “Using Relative Novelty to Identify
Useful Temporal Abstractions in Reinforcement Learning”. In: Machine Learning,
Proceedings of the Twenty-First International Conference (ICML 2004). Vol. 69.
ACM International Conference Proceeding Series. ACM.

Singh, Satinder P., Michael L. Littman, Nicholas K. Jong, David Pardoe, and Peter
Stone (2003). “Learning Predictive State Representations”. In: Machine Learning,
Proceedings of the Twentieth International Conference, ICML 2003. AAAI Press,
pp. 712–719.

Smallwood, Richard D. and Edward J. Sondik (1973). “The Optimal Control of
Partially Observable Markov Processes over a Finite Horizon”. In: Operations
Research 21.5, pp. 1071–1088. doi: 10.1287/opre.21.5.1071.

Sondik, Edward J. (1978). “The Optimal Control of Partially Observable Markov
Processes over the Infinite Horizon: Discounted Costs”. In: Operations Research
26.2, pp. 282–304. issn: 0030364X, 15265463. JSTOR: 169635.

Steccanella, Lorenzo (2023). “Representation Learning for Hierarchical Reinforcement
Learning”. Universitat Pompeu Fabra. 147 pp.

Steccanella, Lorenzo, Simone Totaro, and Anders Jonsson (2021). “Hierarchical Rep-
resentation Learning for Markov Decision Processes”. In: CoRR abs/2106.01655.

Strehl, Alexander L., Lihong Li, Eric Wiewiora, John Langford, and Michael L.
Littman (2006). “PAC Model-Free Reinforcement Learning”. In: Proceedings of

https://doi.org/10.1287/opre.21.5.1071
http://www.jstor.org/stable/169635

Bibliography 193

the 23rd International Conference on Machine Learning - ICML ’06. The 23rd
International Conference. ACM Press, pp. 881–888. isbn: 978-1-59593-383-6.

Subramanian, Jayakumar, Amit Sinha, Raihan Seraj, and Aditya Mahajan (2022).
“Approximate Information State for Approximate Planning and Reinforcement
Learning in Partially Observed Systems”. In: Journal of Machine Learning
Research 23, 12:1–12:83.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An
Introduction. Second edition. Adaptive Computation and Machine Learning
Series. The MIT Press. 526 pp. isbn: 978-0-262-03924-6.

Sutton, Richard S., Doina Precup, and Satinder Singh (1999). “Between MDPs and
Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning”.
In: Artificial Intelligence 112.1-2, pp. 181–211.

Sutton, Richard S., Doina Precup, and Satinder P. Singh (1998). “Intra-Option
Learning about Temporally Abstract Actions”. In: Proceedings of the Fifteenth
International Conference on Machine Learning, ICML 1998. Morgan Kaufmann,
pp. 556–564.

Szörényi, Balázs (2009). “Characterizing Statistical Query Learning: Simplified
Notions and Proofs”. In: Algorithmic Learning Theory, 20th International Con-
ference, ALT 2009. Vol. 5809. Lecture Notes in Computer Science. Springer,
pp. 186–200. doi: 10.1007/978-3-642-04414-4_18.

Tenenbaum, Joshua B., Charles Kemp, Thomas L. Griffiths, and Noah D. Goodman
(2011). “How to Grow a Mind: Statistics, Structure, and Abstraction”. In: Science
(New York, N.Y.) 331.6022, pp. 1279–1285.

Thomas, Philip S. and Emma Brunskill (2016). “Data-Efficient off-Policy Policy
Evaluation for Reinforcement Learning”. In: Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016. Vol. 48. JMLR Workshop and
Conference Proceedings. JMLR.org, pp. 2139–2148.

Tiapkin, Daniil and Alexander V. Gasnikov (2022). “Primal-Dual Stochastic Mirror
Descent for MDPs”. In: International Conference on Artificial Intelligence and
Statistics, AISTATS 2022. Vol. 151. Proceedings of Machine Learning Research.
PMLR, pp. 9723–9740.

Uehara, Masatoshi, Chengchun Shi, and Nathan Kallus (2022). “A Review of Off-
Policy Evaluation in Reinforcement Learning”. In: CoRR abs/2212.06355. doi:
10.48550/ARXIV.2212.06355. arXiv: 2212.06355.

Uehara, Masatoshi and Wen Sun (2022). “Pessimistic Model-Based Offline Reinforce-
ment Learning under Partial Coverage”. In: The Tenth International Conference
on Learning Representations, ICLR 2022. OpenReview.net.

https://doi.org/10.1007/978-3-642-04414-4_18
https://doi.org/10.48550/ARXIV.2212.06355
https://arxiv.org/abs/2212.06355

194 Bibliography

Uehara, Masatoshi, Xuezhou Zhang, and Wen Sun (2022). “Representation Learning
for Online and Offline RL in Low-Rank MDPs”. In: The Tenth International
Conference on Learning Representations, ICLR 2022. OpenReview.net.

Van Hasselt, Hado, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver
(2016). “Learning Values across Many Orders of Magnitude”. In: NIPS, pp. 4287–
4295.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, et al. (2017). “At-
tention Is All You Need”. In: Advances in Neural Information Processing Systems.
Vol. 30. Curran Associates, Inc.

Veness, Joel, Kee Siong Ng, Marcus Hutter, William T. B. Uther, and David
Silver (2011). “A Monte-Carlo AIXI Approximation”. In: Journal of Artificial
Intelligence Research 40, pp. 95–142. doi: 10.1613/JAIR.3125.

Verdú, Sergio (2014). “Total Variation Distance and the Distribution of Relative
Information”. In: 2014 Information Theory and Applications Workshop, ITA
2014. IEEE, pp. 1–3. doi: 10.1109/ITA.2014.6804281.

Wang, Ziyu, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Frcitas (2016). “Dueling Network Architectures for Deep Reinforcement
Learning”. In: 33rd International Conference on Machine Learning, ICML 2016
4.9, pp. 2939–2947.

Watkins, Christopher J. C. H. and Peter Dayan (1992). “Technical Note Q-learning”.
In: Machine Learning 8, pp. 279–292.

Wen, Zheng, Doina Precup, Morteza Ibrahimi, André Barreto, Benjamin Van Roy,
and Satinder Singh (2020). “On Efficiency in Hierarchical Reinforcement Learn-
ing”. In: Advances in Neural Information Processing Systems 33, NeurIPS 2020.

Wierstra, Daan, Alexander Förster, Jan Peters, and Jürgen Schmidhuber (2007).
“Solving Deep Memory POMDPs with Recurrent Policy Gradients”. In: Artificial
Neural Networks, ICANN 2007. Vol. 4668. Lecture Notes in Computer Science.
Springer, pp. 697–706. doi: 10.1007/978-3-540-74690-4_71.

Wiewiora, E. (2003). “Potential-Based Shaping and Q-Value Initialization Are
Equivalent”. In: Journal of Artificial Intelligence Research 19, pp. 205–208. issn:
1076-9757.

Wiewiora, Eric, Garrison W. Cottrell, and Charles Elkan (2003). “Principled Methods
for Advising Reinforcement Learning Agents”. In: Machine Learning, Proceedings
of the Twentieth International Conference (ICML 2003). AAAI Press, pp. 792–
799.

Xie, Tengyang, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai (2021). “Policy
Finetuning: Bridging Sample-Efficient Offline and Online Reinforcement Learn-

https://doi.org/10.1613/JAIR.3125
https://doi.org/10.1109/ITA.2014.6804281
https://doi.org/10.1007/978-3-540-74690-4_71

Bibliography 195

ing”. In: Advances in Neural Information Processing Systems 34, NeurIPS 2021,
pp. 27395–27407.

Xu, Zhe, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, et al. (2020). “Joint
Inference of Reward Machines and Policies for Reinforcement Learning”. In: Pro-
ceedings of the International Conference on Automated Planning and Scheduling.
Vol. 30, pp. 590–598.

Yang, Lin and Mengdi Wang (2019). “Sample-Optimal Parametric Q-learning Using
Linearly Additive Features”. In: Proceedings of the 36th International Conference
on Machine Learning, ICML 2019. Vol. 97. Proceedings of Machine Learning
Research. PMLR, pp. 6995–7004.

Ye, Yinyu (2011). “The Simplex and Policy-Iteration Methods Are Strongly Poly-
nomial for the Markov Decision Problem with a Fixed Discount Rate”. In:
Mathematics of Operations Research 36.4, pp. 593–603.

Yin, Ming and Yu-Xiang Wang (2021). “Towards Instance-Optimal Offline Reinforce-
ment Learning with Pessimism”. In: Advances in Neural Information Processing
Systems 34, NeurIPS 2021, pp. 4065–4078.

Yu, Huizhen and Dimitri P. Bertsekas (2008). “On near Optimality of the Set of Finite-
State Controllers for Average Cost POMDP”. In: Mathematics of Operations
Research 33.1, pp. 1–11. doi: 10.1287/moor.1070.0279.

Zhan, Wenhao, Baihe Huang, Audrey Huang, Nan Jiang, and Jason D. Lee (2022).
“Offline Reinforcement Learning with Realizability and Single-Policy Concentra-
bility”. In: Conference on Learning Theory. Vol. 178. Proceedings of Machine
Learning Research. PMLR, pp. 2730–2775.

Zhan, Wenhao, Masatoshi Uehara, Wen Sun, and Jason D. Lee (2023). “PAC Re-
inforcement Learning for Predictive State Representations”. In: The Eleventh
International Conference on Learning Representations, ICLR 2023. OpenRe-
view.net.

Zhang, Nevin Lianwen, Stephen S. Lee, and Weihong Zhang (1999). “A Method
for Speeding up Value Iteration in Partially Observable Markov Decision Pro-
cesses”. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, UAI ’99. Morgan Kaufmann, pp. 696–703.

Zhang, Yiming, Quan Vuong, and Keith W. Ross (2020). “First Order Constrained
Optimization in Policy Space”. In: Advances in Neural Information Processing
Systems 33, NeurIPS 2020.

Zhang, Zongzhang, Michael L. Littman, and Xiaoping Chen (2012). “Covering
Number as a Complexity Measure for POMDP Planning and Learning”. In:
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2012. Ed. by Jörg Hoffmann and Bart Selman. AAAI Press.

https://doi.org/10.1287/moor.1070.0279

197

Nomenclature

AI Artificial Intelligence, page 3

DFA Deterministic Finite Automaton, page 17

HRL Hierarchical Reinforcement Learning, page 27

k-MDP k-Markov Decision Process, page 18

LP Linear Programming, page 74

MDP Markov Decision Process, page 18

ML Machine Learning, page 4

NMDP Non-Markov Decision Process, page 18

NN Neural Networks, page 24

PAC Probably Approximately Correct, page 16

PDFA Probabilistic Deterministic Finite Automaton, page 131

PI Policy Iteration, page 21

POMDP Partially Observable Markov Decision Process, page 19

PSR Predictive State Representation, page 133

RDP Regular Decision Process, page 19

RL Reinforcement Learning, page 15

RM Reward Machine, page 101

RNN Recurrent Neural Network, page 134

RS Reward Shaping, page 37

SDM Sequential Decision-Making, page 3

VI Value Iteration, page 21

	Abstract
	Contents
	I Preliminaries
	Introduction
	Outline and Contributions

	Background
	Decision Processes
	Classes of Decision Processes
	Planning in MDPs
	Finite Horizon
	Infinite Horizon

	Learning in MDPs

	II Learning With MDP Abstractions
	Introduction to part II
	Exploiting MDP Abstractions
	Introduction
	Hierarchical Reinforcement Learning
	Preliminaries and Formulation
	Exploiting Abstractions With Reward Shaping
	Reward Shaping for Episodic RL
	The Algorithm

	Abstraction Quality
	Validation
	Return-Invariant Shaping
	Robustness to Modelling Errors
	Interaction Task

	Discussion
	Proofs

	Realizing MDP decompositions
	Introduction
	Preliminaries
	Realizable Abstractions
	Properties
	Abstracting and Realizing
	Discussion
	Proofs

	III Learning in Non-Markov Decision Processes
	Introduction to part III
	The Expressive Power of RDPs
	Introduction
	Contributions
	Related Work

	Preliminaries
	The Expressive Power of RDPs
	Strict Relations
	Belief Covers
	POMDP Approximations
	Learning With Partial Observations via RDPs

	Discussion
	Proofs

	Offline Reinforcement Learning in RDPs
	Introduction
	Contributions
	Related Work

	Preliminaries
	Offline RL in RDPs
	RegORL: Learning an Episodic RDP
	Theoretical Guarantees
	Sample Complexity Lower Bound
	Discussion
	Proofs
	Preliminaries
	RDP Properties
	Sample Complexity of AdaCT-H
	Sample Complexity of AdaCT-H-A
	Distinguishability Parameters
	RegORL With Subsampled VI-LCB
	Sample Complexity Lower Bound

	Conclusion
	Bibliography
	Nomenclature

