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Positive dynamical systems: New applications, old problems
Luca Benvenuti � and Lorenzo Farina* �

Abstract: This review paper presents four relevant and very recent real-world application problems demanding
developments of long–standing theoretical open problems in the field of positive systems research. Notably, the
selected applications belong to very different fields of science and technology, ranging from biology and medicine
to civil and electronic engineering. This clearly shows how pervasive positive systems are in mainstream research.
Additionally, the theoretical issues stemming from these applications are the living proofs of how the apparently
simple positivity constraint on the variables of interest makes the theory behind practical problems far from trivial,
even for the linear case.

Keywords: external positivity, minimal positive realization, positive system, structural positive controllability.

1. INTRODUCTION

A positive system is a dynamical system in which the
state variables are always positive (or at least nonnegative)
in value. A formal definition for a single-input/single-
output linear time-invariant finite-dimensional dynamical
system is the following:

ẋ(t) = Ax(t)+bu(t) x(k+1) = Ax(k)+bu(k)
y(t) = cx(t)+du(t) y(k) = cx(k)+du(k)

for the continuous-time case and the discrete-time case.
The vectors x(t),x(k) ∈ Rn collect the state variables,
while u(t),u(k) ∈ R and y(t),y(k) ∈ R are the input and
output variables, respectively. Such systems are said to be
positive if the state and output variables are nonnegative
for all times for each nonnegative initial condition x(0)
and each nonnegative input. Necessary and sufficient con-
ditions require the matrix A to be a Metzler matrix (non-
negative matrix) for the continuous (discrete) case. More-
over, matrices b, c and d must be nonnegative matrices.

Surprisingly, it is quite easy to obtain the information on
state variables positivity in the face of the huge impact that
this property has on the system’s dynamics. This feeling of
surprise is well expressed by Professor Luenberger in his
book on dynamic systems:

The theory of positive systems is deep and elegant – and
yet pleasantly consistent with intuition. [...] It is for pos-
itive systems, therefore, that dynamic systems theory as-
sumes one of its most potent forms. [...] Indeed, just the
knowledge that the system is positive allows one to make
some fairly strong statements about its behaviour: these

statements being true no matter what value the parame-
ters may happen to take. [1]

As a matter of fact, there are many real-world applica-
tions of positive systems theory in diverse areas of science
and technology. The reason is that positivity is virtually
always directly related to the nature of the phenomenon
at hand. It suffices to observe that any sort of resource
is measured by a positive quantity (money, goods, time,
queues, buffers size, data packets, human, animal, and
plant populations, the concentration of any substance such
as mRNAs, proteins, molecules, electric charge, light in-
tensity levels...). Obviously, also stochastic models, such
as the Hidden Markov Model (HMM), are positive sys-
tems.

Basic results on the theory of positive systems can be
found in [2]. Many advanced issues regarding positive
system analysis and control have been studied by a large
number of authors from the ‘70s. Just to cite a few: con-
trollability [3–6], stabilization [7,8], behavioural approach
[9,10], optimal control [11], identification [12], realization
[5, 13–18] and switched systems [19].

In this review paper, four selected promising real-world
applications of positive systems theory are discussed.
These applications, although related to the seemingly sim-
ple case of linear, time–invariant positive dynamical sys-
tems, demand developments of long–standing theoretical
open problems in the field of positive systems research.

Notably, the selected applications belong to very differ-
ent fields of science and technology, ranging from biol-
ogy and medicine to civil and electronic engineering. This
clearly shows how pervasive positive systems are in main-

Manuscript received January 10, 2015; revised March 10, 2015; accepted May 10, 2015. Recommended by Associate Editor Soon-Shin Lee
under the direction of Editor Milton John. This journal was supported by the Korean Federation of Science and Technology Societies Grant.

Luca Benvenuti and Lorenzo Farina are with the Department of Computer, Control and Management Engineering, Sapienza University of
Rome, Via Ariosto 25, 00185 Roma, Italy (e-mails: {luca.benvenuti, lorenzo.farina}@uniroma1.it) .
* Corresponding author.

c©ICROS, KIEE and Springer 2020

http://www.springer.com/12555
https://orcid.org/0000-0001-7424-6853
https://orcid.org/0000-0001-8314-6029


2 Luca Benvenuti and Lorenzo Farina

stream research. Additionally, the theoretical issues stem-
ming from these applications are the living proofs of how
the apparently simple positivity constraint on the variables
of interest makes the theory behind practical problems far
from trivial, even for the linear case. This short review
aims to provide a bird’s-eye presentation of the applica-
tions and a sketch of the corresponding theoretical issues,
referring the interested reader to the relevant literature on
the topics reported in the bibliography.

The paper is organized as follows. Problems related to
the analysis of complex biological networks are illustrated
in Section 2. A key issue in these problems, and espe-
cially in the field of molecular biology, is the constraint
due to the positivity of state variables that are the concen-
tration of some molecular species, e.g., a protein, a tran-
script, or a metabolite. Precisely, it has been shown that
the study of reachability properties of complex networks
may open a new framework for the study of biological
processes at the molecular scale. Section 3 illustrates two
different problems related to the determination of mini-
mal positive state-space description of positive systems.
The first one concerns drug kinetics and the determination
of internal structures of a compartmental model when its
impulse response is measured through an input-output ex-
periment (e.g., a bolus in the bloodstream). An immediate
application in clinical medicine of this theoretical prob-
lem is the determination of the (minimum) number of or-
gans involved by the drug response of the body. In this
case, the state variables of the model represent drug con-
centrations and, as such, are bounded to be nonnegative
over time. The second problem considered is the design
of digital filters using two different technologies: optical
fibers and charge-coupled devices. In these devices, the
state variables of the filter are bounded to be nonnegative
given that they represent intensity levels of light signals
and sizes of the charge packets, respectively. The intelli-
gent vehicle–highway system is briefly described in Sec-
tion 4 to introduce the problem of collision avoidance be-
tween vehicles in a platoon without communication. This
problem is nothing but the design of a vehicle controller
achieving externally positive closed–loop dynamics and,
interestingly, there is still no general design procedure for
that purpose. Moreover, the question of when such a con-
troller exists has not been clarified yet even thougt this
problem has been raised half a century ago. Concluding
remarks are given in Section 5.

2. POSITIVITY IN BIOLOGICAL NETWORKS

Complex networks science is the study of networks
with a focus on emergent properties. The fundamental
tenet is that relationships (links) among elements (nodes)
are much more relevant than the nature and properties of
the elements themselves. A prototypical example is the
field of social sciences where the study of networks has a

long history of theoretical developments and applications.
Usually, nodes are individuals and links are relationships
among them (such as friendship or the like): the emer-
gent property of interest is the result of collective behavior
produced by blind, and possibly independent, individual
choices leading to an organized complexity, where macro-
scopic laws emerge from microscopic chaos. The underly-
ing hypothesis just described resembles that of thermody-
namics, where the emergent property of temperature does
not belong to any single particle of matter but to the sys-
tem as a whole. This powerful metaphor forms now the
rational basis for many other fields of research besides so-
cial sciences. Recently, the development of technologies
able to measure quantitatively at the molecular level the
state of a cell and produce a huge quantity of data, has
revitalized this metaphor and, as a consequence, network
properties of interest for the social sciences has been di-
rectly exported to the relatively new science of molecular
biology. The so-called omics data are produced at an ever-
increasing rate. Starting with the sequencing of the human
genome in the year 2003, the biological and medical com-
munity has witnessed an impressive quantity of new infor-
mation and discoveries about life and disease. More im-
portantly, this rapid growth of biological quantitative data
has gone hand in hand with the awareness that life and
disease are not related to an organized top-down control
structure, but rather to an intricate network of many inter-
acting players. The study of emergent properties of bio-
logical networks has therefore become the new frontier for
research in the study of life and disease. For example, the
concept of a silver bullet targeting a single specific protein
(typically a receptor protein) responsible for a disease, is
definitely behind us, as shown in Figure 1.

Fig. 1. Targeting proteins in the omics era. The perfect
drug paradigm to cure a disease by targeting a sin-
gle protein has been replaced by the concept of per-
turbing a module of disease proteins through a path
on the protein-protein interaction network from a
target to a disease protein.

2.1. New application: Network medicine
We are now living in the era of network medicine [20],

that is the era in which disease is not simply considered
as the malfunctioning of a single gene (or tissue or or-
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gan) in isolation, but it is considered as the result of a
myriad of small changes or perturbations in a dense net-
work of relationships among a wide variety of molecular
players, including proteins, messenger RNAs [21], non-
coding RNAs, transcription factors, epigenetic modifica-
tions of chromatin, bacteria in the gut, and many others.
The huge amounts of biomedical big data and its inte-
gration by means of computational tools provided by the
so-called data science, provide the opportunity to push
the boundaries of medicine far beyond the current situa-
tion. Bioinformatic technologies have paved the way for
the creation of large databases of previously unheard di-
mensions in clinical research. We are close to a scenario
where the available data are of unprecedented amount and
quality: the challenge is to make biological sense of such
data.

2.2. Old problem: Reachability
A recent promising development in network medicine

is the study of complex networks embedded in a dynam-
ical system. Nodes are then state variables and the un-
derlying network defines the structure of a multivariable
dynamical system. For example, in a cell, the state vari-
ables may represent the amount of gene products (proteins
and RNAs) and, therefore, the fate of a cell (e.g., tissue
type) corresponds to a specific region of the state space.
It is therefore of paramount importance to study if and
how the inputs (e.g., cellular micro-environmental factors)
determine the cell’s state. From a mathematical point of
view, this corresponds to the reachability problem for a
dynamical system, i.e. that of determining whether a de-
sired final state can be reached starting from a given initial
state using an appropriate input function. This mathemat-
ical problem can be solved in general by considering the
so-called reachable set, that is the set of all states reach-
able from the initial state. A fundamental problem is to
determine conditions for the reachable set to be the en-
tire state space for a given network topology. Such con-
ditions have been presented by Liu and coworkers [22]
by identifying a minimal set of independent inputs (driver
nodes) for arbitrary network topologies and sizes able to
fully control the dynamics. The underlying idea is to con-
sider only the non-zero entries of the dynamic matrix (i.e.,
the links of the network) and then look for the nodes to
be used as inputs (drivers) able to ensure reachability of
the entire state space. This approach has been success-
fully applied to the gene regulatory network of type-2
diabetes to reveal a novel transcription factor that regu-
lates key disease-related genes [23], to a directed human
interaction network for the determination of novel puta-
tive disease genes and drug targets [24] and to multiple
biological networks to highlight new potential therapeu-
tic targets in osteosarcoma [25]. The authors developed a
maximum multiplicity theory to define network control-
lability by means of the minimum number of controllers

and independent driver nodes. Furthermore, Li et al. [26]
used a general framework to prove that temporal networks
can reach controllability faster, with less control energy,
and more compact control trajectories, compared to their
static counterparts. Results on the dual property of observ-
ability of complex networks are presented in [27].

As discussed above, the main application of reachabil-
ity analysis is in the field of biological dynamic networks,
and it is particularly useful for the very large networks
obtained from multi-omics data, such as the protein inter-
action network, the metabolic network, or the gene regu-
latory network. It goes without saying, that a key issue in
complex biological networks analysis is the positivity con-
straint on state variables, which are always positive being
the amount or concentration of some molecular species
(e.g., protein, transcript, or metabolite). It is worth not-
ing that the results just described do not take into consid-
eration the positivity of the variables and therefore more
appropriate approaches can be envisaged since many re-
sults are already available for positive systems. In partic-
ular, necessary and sufficient conditions for the reachable
set of discrete-time positive systems to be the entire pos-
itive orthant are presented in [3]: the positive orthant is
reachable (in a finite or infinite number of steps) if and
only if the matrix defined by the aggregation of vectors
Akb for k = 1,2, · · · , contains a monomial submatrix. A
network-theoretic version of the same result has been pre-
sented in [28]. The authors proved that the reachable set
of a positive discrete-time linear system is the positive or-
thant iff the associated network contains a deterministic
path starting from a vertex and reaching any other vertex
[29]. When the reachable set is not the entire positive or-
thant, in general, it is a cone therein contained. The shape
of such a cone, in the discrete-time case, has been studied
in [30]. It is there shown that this set may be very difficult
to compute in practice since, even if polyhedral, the cone
may have an infinite number of edges.

3. POSITIVITY IN MODEL STRUCTURES

3.1. New application: Compartmental model struc-
tures identification

Pharmacokinetics is defined as the study of the time
course of drug and metabolite levels in an organism and
of the mathematical techniques required to develop for-
mal models able to provide biological insight to data.
Compartmental modeling of drug kinetics is commonly
used to elucidate drug concentration changes in the blood-
stream over time by considering a finite number of inter-
connected subsystems, called compartments, interacting
one each other by exchanging material (e.g., drugs), as
shown in Figure 2. A single compartment generally cor-
responds to an organ or tissue type in which drug distri-
bution is assumed perfectly well mixed and uniform. For
example, drug concentration into adipose tissue may well
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Fig. 2. Compartmental model. The dynamics of a drug
in the body tissues can be very complex, as sev-
eral processes such as absorption, distribution, and
elimination, work to alter drug concentrations.
Compartmental models are then used to predict
a drug’s behavior in the body and determine the
amount of the dose to be administered.

differ from that of renal tissue in most cases and, conse-
quently, these tissues are usually separated and modeled
by different compartments. Highly perfused organs (like
the heart, liver, and kidneys) often have similar drug con-
centration patterns, so these areas may be considered as
one compartment. Obviously, there are no general rule for
determining the right number of compartments and the
ultimate choice is more an art than a science. The state
variables of the model represent the concentration of the
drug in each compartment and, as such, are bounded to be
positive (nonnegative) over time. In this context, one of
the most important open problems is the determination of
internal structures - specifically the number of compart-
ments – when the impulse response (e.g., the plasmatic
level of a drug) is measured through an input-output ex-
periment [31], which usually consists of the injection of
a drug bolus into the bloodstream. In other words, only
the compartmental nature of the model is assumed, whilst
the number of compartments may not be known a priori
and should be therefore determined from the measured
data. An immediate application of this problem in clini-
cal medicine is the identification of the number of organs
involved by the drug response of the body. In terms of
positive systems theory, the problem is then that of deter-
mining a positive state-space description of minimal di-
mension that explains the measured data.

3.2. New application: Digital filter design
Digital signal processing consists of the representation

of signals using sequences of numbers for data processing
tasks. Such tasks can be, for instance, compression and
transmission of signals, filtering for smoothing, or noise
reduction. In the linear case, filters may be represented

by their transfer functions that represent, in an appropri-
ate domain, the relation between the input and output se-
quences. The physical implementation of a filter calls for
specific devices for delays, products, and sums. These de-
vices may be of very different nature, depending on the
considered technology. If the latter forces the utilization
of devices requiring only positive values for products, the
filter design is nothing but a positive state-space realiza-
tion of the filter transfer function. Minimality of such a
realization allows then to reduce space occupation and
power consumption of the filter. This situation occurs in
the case of two technologies such as optical fibers and
charge-coupled devices.

Optical fibers are characterized by low-loss (fractional
decibels/kilometer) and large bandwidth-length product
(on the order of 100GHz km for single-mode fibers). In
particular, optical filters are often used for high-speed sig-
nals processing in a waveguide format. This allows avoid-
ing costly electro-optic and optoelectronic conversions
and possible electronic bottlenecks. As shown in [32], if
the coherence time is small enough, the input signal of an
optical filter may be modulated as light intensity ampli-
tude. In this case, the state variables of the filter represent
the intensity levels of light signals and consequently are
bounded to be positive (nonnegative) over time.

Charge routing networks (CRNs) were developed at the
Bell Labs [33] to achieve discrete-time signal processing
on a MOS integrated circuit chip. The advantage of this
technology is lighter weight, smaller size, lower power
consumption, and improved reliability (with respect to an
equivalent standard implementation). CRNs move quanti-
ties of electrical charge in a controlled way across a semi-
conductor substrate under the application of a sequence
of clock pulses. Precisely, these devices consist of a set
of storage cells, locations where a packet of charge can
be stored and maintained isolated from the others, and
of a specific periodically repeating routing procedure that
splits and transfers these charge packets among the cells.
The state variables of the filter represent then the size of
the charge packets in the cells and are bounded to be pos-
itive (nonnegative) over time.

3.3. Old problem: Minimal realizations
The problem of determining a positive state-space de-

scription of a given transfer function or impulse response
is inherently different and challenging from that of ordi-
nary systems [14]. In fact, the matrices of the realization
must have a specific sign pattern and, consequently, a pos-
itive realization may not exist at all. Precisely, when con-
sidering generic linear systems, a minimal state-space re-
alization is always both controllable and observable and
its dimension corresponds to the rank of the Hankel ma-
trix and the order of the system transfer function. This fact
may not hold true for positive realizations. In fact, a min-
imal positive realization is - in general - not controllable
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nor observable so that its dimension may be larger than
the order of the transfer function of the system [34]. In-
terestingly, the nonnegative rank of the Hankel matrix is
only a lower bound for the dimension of a minimal pos-
itive realization [35]. Although necessary and sufficient
conditions for the existence of a positive state-space real-
ization of a positive system have been given in [13, 15],
minimality whilst retaining positivity is still an unsolved
theoretical problem. Conditions for a positive realization
to be minimal have been given only for special classes
of positive systems such as the tree compartmental sys-
tems considered in [31] and the positive reachable sys-
tems in [36]. Further results are given in [37–39]. The case
of third-order transfer functions with real poles having a
third-order (minimal) positive realization is considered in
[40, 41]. To date, only lower and upper bounds for the di-
mension of a minimal positive realization have been given,
see [37, 42–45]. In more detail, an upper bound for trans-
fer functions with only real and simple poles and a lower
bound for generic transfer functions are provided in [44].
The result on the upper bound is then improved in [37]
and extended to the case of simple complex poles in [43].
Moreover, a refinement of the lower bound is provided
in [42] exploiting some properties of the dominant eigen-
values of nonnegative matrices. In [45], a lower bound is
given for a very special class of transfer functions, i.e.,
those for which there exists a time instant at which the
nonnegative impulse response value is zero and is strictly
positive from that instant onwards.

4. POSITIVITY IN MULTI-AGENT MODELS

Highway traffic congestion has increased dramatically
in the last decades in any part of the world, independently
of its development level, and there is no clue that it will
stop to get worse. The reason is that the existing road-
ways cannot bear the increasing number of automobiles.
The apparent effect is a progressive reduction in traffic flu-
idity, resulting in larger journey times, fuel consumption,
and environmental pollution, as compared with an uninter-
rupted traffic flow. Moreover, the last 50 years have proved
that the broadening of the highway network to cope with
congestion does not solve traffic problems in the long
term. The only possibility to effectively tackle conges-
tion is to manage traffic. This can be accomplished using
a wide variety of techniques, including avoiding bottle-
necks, prioritizing multi-occupancy vehicles, and discour-
aging users to use the car at rush hours. However, the best
opportunity in the years to come may arise from the evo-
lution of automotive technology towards fully automated
vehicles embedded onto roadways. The key tenet is that of
managing traffic in tightly spaced platoons, that is groups
of automated vehicles following each other at a small dis-
tance and constant and uniform high velocity, as shown
in Figure 3. Such traffic management alone could dramat-

Fig. 3. The platooning concept. The inter-platoon distance
is such that the lead vehicle in the rear platoon has
enough time to slow down and avoid an accident.
Hence, safety can be examined by evaluating only
the possibility of collisions within a platoon.

ically increase highways capacity [46] and, at the same
time, reduce fuel need, and pollution, due to exploitation
of slipstream.

4.1. New application: Collision avoidance

A big issue to be urgently addressed is obviously pla-
toon safety. Precisely, it is needed to ensure collision
avoidance within the platoon and this can be achieved only
with automated vehicles since a human driver is not able
to react in real-time to disturbances, due to the high pla-
toon velocity and the small distance between vehicles. In
general, collision avoidance can be obtained using two dif-
ferent control architectures: centralized or distributed. The
first one requires a control unit for each vehicle, a cen-
tralized coordinating unit for each platoon, and a commu-
nication system between all the vehicles of the platoon.
The second one is much easier to implement since it re-
quires locally measurable quantities and a control unit for
each vehicle. Such control must adapt the speed and keep
a safe distance to the vehicle in front by simply monitor-
ing the distance and its speed. The fundamental question
is about which properties the controlled vehicles should
have to avoid collisions in the platoon [47]. This ques-
tion has been tackled by using the notion of string stabil-
ity [48], which is a requirement on the platoon that avoids
the disturbances amplifications along the vehicle string.
A sufficient condition on string stability [49] requires a
bounded error transfer function and was experimentally
evaluated with a few vehicles [50]. However, it has been
shown [47] that string stability is not an appropriate con-
trol aim when designing the local controllers for the ve-
hicles. In fact, string stability is only a necessary, but not
a sufficient condition for collision avoidance and any de-
centralized controller cannot achieve string stability [51].
Lunze [47, 52] proved that the controlled vehicles have to
be externally positive systems with respect to their input
(the speed of the preceding vehicle) and their outputs (ve-
hicle speed and distance from the preceding vehicle). This
condition on the dynamics of the controlled vehicles is
the necessary and sufficient condition for simultaneously
guaranteeing time-headway spacing and collision avoid-
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ance in platoons. Vehicles with these properties can then
be combined into platoons of arbitrary length.

4.2. Old problem: External positivity conditions
A linear system is said to be externally positive if its

output is nonnegative for any nonnegative input [2]. This
is the case if and only if the impulse response of the system
is always nonnegative or, equivalently, the step-response
has no overshoot, and in general, it stems directly from the
specific problem at hand. Properties of such systems (not
necessarily positive) are reviewed in [53]. It is plain that,
for example, a positive system - that is a system in which
all the inputs, outputs, and state variables are always non-
negative - is certainly an externally positive system. How-
ever, a systematic procedure to check external positivity,
given the transfer function, is not available so far. A ro-
bust regulator for systems with nonnegative impulse re-
sponse is proposed in [54], thus recognizing the relevance
of the problem for process industries when flows, levels,
concentrations, and temperatures are the variables of in-
terest. However, conditions on the pole-zero pattern are
not provided. Interestingly, a few years earlier, a sufficient
condition for an in-line pole-zero pattern (i.e., alternate
complex conjugate pole-zero positions along the same real
line) was presented in [55]. The problem of designing
controllers for discrete-time linear plants that render the
closed-loop impulse response nonnegative is studied in
[56]. It is there proved that the necessary and sufficient
condition on the plant for the existence of a compensator
that makes the closed-loop impulse response sign invari-
ant is that there be no real, positive, nonminimum phase
plant zeros. In [57,58] sufficient conditions to avoid over-
shoot in the step response of a linear system with stable
real zeros and poles are given. This condition is directly
related to the pole-zero configuration of the correspond-
ing transfer function and is based on the result presented
in [59] which provides an upper bound for the number of
extrema of the step-response based on the location of the
zeros of a system. Recently, conditions for external posi-
tivity were given in [60]. These conditions are in the time
domain and use the properties of the weak majorization of
vectors. Finally, a characterization of external positivity,
based on the Post formula for Laplace inversion, is given
in [61]. In general, however, the design of control laws
that achieve externally positive closed-loop dynamics is
still an open problem [62].

5. CONCLUSIONS

In this paper, four very recent application problems
in the field of positive systems research have been pre-
sented and the corresponding theoretical issues discussed.
In closing, note that extensive research activities have
been devoted to classes of systems that are extensions of
the class of positive systems here considered. In particular,

several properties of 2D linear positive systems [63–65]
and positive linear systems with delays [66,67] have been
investigated. Finally, even if an extension to the nonlin-
ear case is far from trivial, several results are available
for specific classes of nonlinear systems such as the coop-
erative and monotone systems [68–70]. Space constraints
does not allow a detail discussion on these topics. All these
arguments witness how this field of research is still alive
and kicking.
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