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Abstract— This paper presents a fuzzy-logic application 

based on the Mamdani inference method to get the range of road 

traffic conditions. It was tested with real data extracted from the 

Padua-Venice motorway in Italy, which contains a dense 

network of monitoring that provide continuous measurements 

of flow, occupancy, and speed. The empirical results show that 

the proposed study functions well in qualitative classification. 

The experiment can provide another perspective on motorway 

traffic control.  
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I. INTRODUCTION 

Estimating traffic congestion has become one of the major 
problems in transportation engineering. In the related 
literature, there are many congestion detection techniques that 
are based on statistical and data-driven approaches. However, 
describing the level of traffic is complicated because of the 
inherent random components in the phenomenon and the high 
instability observed when approaching or exceeding critical 
conditions. So, it is difficult to find a quantitative deterministic 
model that satisfactorily fits them. However, it has been 
argued that a fuzzy qualitative definition may be an 
appropriate approach to solve traffic and transportation 
problems with more than forty years of experience [1-4]. 

 Among the recent papers, Hamad and Kikuchi [5] 
proposed fuzzy inference approaches to evaluate congestion 
levels by considering speed as the input variable. They used 
travel speed, free-flow speed, and the proportion of very low 
speed in the total travel time as input variables to compute the 
congestion. In [6], Kikuchi and Chakroborty studied a fuzzy 
approach to handle the uncertainty embedded in the definition 
of the level of service (LOS). They criticized the current HCM 
procedure arguing that it does not accurately represent the 
notion of LOS as a user-perceived measure and questioned 
whether one measure (e.g., density) can capture all the factors 
that affect LOS. Thus, they provided a framework that handles 
uncertainty under the different paradigms: deterministic, 
probabilistic, or possibilistic. Huang et al. [7] proposed a 
fuzzy C-Means clustering method to classify traffic data of 
flow, speed, and occupancy into four traffic states and 
exemplified this method through a small example on an urban 
road equipped with two detectors. With the trust of those 
experiences, a Mamdani-based fuzzy method has been applied 
to classify traffic state in this study. The idea of detecting 
traffic congestion with the Mamdani approach is already 
studied and proven to be effective in previous reference 
works. Amini et al. [8] developed a fuzzy inference model 
aimed at predicting the level of congestion in road networks 

where the paucity of accurate and real-time data can cause 
problems in using conventional quantitative techniques and 
took as inputs parameters length, number of lanes, and flow 
inputs to get the level of congestion output. However, the 
experiment was based on only a one-week period of data. 
Kalinic and Krips presented a model containing two inputs 
(flow and density), as in most classical studies on traffic study 
[9]. However, the congestion levels provided as outputs 
depend on a combination of the inputs as independent 
variables and do not catch the non-linear relationship between 
the two traffic flow variables. Toan and Wong [10] applied a 
fuzzy-based methodology for the quantification of congestion 
level using density and speed and argued that a method based 
on two variables tends to neutralize in between and scale up 
in a more stable manner with the levels of service compared 
to measurements based entirely on density like in the 
classification of the Highway Capacity Manual. 

The present paper is founded on the belief that the fuzzy 
approach is the most suitable to catch the inherent uncertainty 
under the drivers’ perception of traffic congestion and that the 
simultaneous observation of the three fundamental quantities 
of traffic can improve the identification of critical or 
hypercritical conditions that are characterized by high and 
rapid variability. Thus, this article presents a Mamdani-based 
fuzzy model that uses flow, density, and speed values to 
identify the messages on traffic congestion to provide drivers 
with information. The proposed model is trained on a large set 
of traffic data collected from a network of 3 motorways in 
Northern Italy over more than 8 months.  

The present paper is structured as follows. After this 
Introduction, the Second Section discusses the traffic flow 
characteristics and defines the traffic state classification. The 
Third Section introduces the methodology for classification, 
composed of the variable definition, variable fuzzification, 
and formation of rules. The Fourth Section describes the case 
study and discusses the results. The Conclusion resumes the 
main assumptions of the methodology implemented and the 
outcomes produced by the method. 

II. TRAFFIC STATE CLASSIFICATION 

A. Traffic Flow Characteristics  

In the traffic theory, three parameters are usually used to 
describe the traffic flow characteristics; these are the flow (or 
volume) (q = vehicle/h), speed (v = km/h), and traffic density 
(k = vehicle/km). The relationship among the three parameters 
at the stationary state is expressed formally with Equation 1: 

 q = v·k () 
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 While a traffic state is defined as a given tuple of values of 
the fundamental variables, the road congestion definition is a 
vague concept, so it is not easy for a traveler information 
system to provide clear advice to users. Until now there is still 
no unified regulation [7]. Nevertheless, a huge mass of traffic 
observations exists, and the traffic phenomenon is very well 
known. The following example is presented with the only aim 
to provide an illustrative explanation of the concepts 
underlying the fuzzy approach introduced in the paper. As 
well-known, in the flow-density plane direct traffic 
measurements illustrate two different trends (Fig.1a): in the 
range of small values of density, the flow is almost linear with 
density and presents limited deviations from the average 
speed; however, the flow exhibits a very noisy and sparse 
pattern in the range of higher values of density with an average 
decreasing trend as the density increases. It is well known that 
the high-density regime is characterized by unstable flow 
conditions determined by the microscopic mechanism 
underlying the traffic stream, consisting of even slightly 
irregular driving maneuvers that lead to a stop-and-go regime.  

 

Fig. 1(a). Flow-Density measures 

 

Fig. 1(b). Speed-Density measures 

Such an unstable regime produces highly noisy flow-
density patterns that change rapidly in a dynamic context. To 
explain the empirical spatiotemporal features of traffic 
breakdown and the resulting traffic congestion, 
multidimensional models were introduced. Kerner and 
Rehborn [11] proposed a three-phase traffic theory based on 
the observation of a synchronized traffic phase on multilane 
motorways. Persaud and Hall proposed a three-variable model 
based on the catastrophe theory to explain the transitions to 
and from congested operations upstream of incidents [12]. 

In a two-dimensional plane, the observation of speed-
density measures highlights in a clear way the decreasing 
trend of speed with density (Fig.1b) and explains the decrease 
of flow in a high-density regime by virtue of equation (1).  

B. Traffic State Division  

Many studies faced the problem of congestion 
identification under different approaches and for different 
purposes. While applications devoted to planning like the US 
Highway Capacity Manual [13], and management like the EU 
DATEX [14], consider five traffic states corresponding to 
many levels of services, incident detection algorithms focus 
on the simplest distinction between congestion flow and non-
congestion. Theoretical studies considered different traffic 
classes ranging from two [15], three [16], four [17], to five 
[18].  

In our view, as we evaluate the states according to the EU 
DATEX standard, we divided the range of traffic conditions 
into five features as given in Table I.  

According to the recent observations that showed that 
three-dimensional models are more appropriate to 
characterize congested traffic states, a fuzzy model based on 
speed, flow, and density observations for congestion 
identification is introduced in the following. Traffic 
conditions are divided into different states that describe the 
change from free flow to congested conditions, with particular 
attention to the critical point where the curve inverts its trend, 
and the flow reaches its capacity. Table I summarizes 
qualitative parameter definitions with respect to possible 
traffic states. 

TABLE I. TRAFFIC STATE CLASSIFICATION SUMMARY 

State q k v Traffic condition 
index 

 [0-1] 

Smooth Very 
low 

Very low Very High Very low 

(0.00-0.15) 

Intense Low Medium High Low 

(0.15-0.35) 

Slow Medium Medium-
High 

Low Medium 

(0.35-0.65) 

Queuing High High Low High 

(0.65-0.9) 

Stationary Low Very high Very low Very high 

(0.9-1.00) 

 

III. METHODOLOGY 

A. Variable Definition 

In this Mamdani method, we define three input variables 
(flow, density, and speed) and one output parameter (traffic 
condition) (Fig. 2).  

 

Fig. 2. The fuzzy inference system 
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The input variable flow is assigned with the following 

linguistic variables: Free Flow (FF), Reasonably Free Flow 

(RFF), Average Flow (AF), Congested Flow (CF), and Very 

Congested Flow (VCF). The input variable density is 

clustered as: Very Low Density (VLD), Low Density (LD), 

Medium Density (MD), High Density (HD), Very High 

Density (VHD). The input variable speed is defined as: Very 

Slow (VS), Slow (S), Average (A), Fast (F), and Very Fast 

(VF). The output variable Traffic state (calculated separately 

for each road section) is also classified with five linguistic 

variables: Stationary (S), Queuing (Q), Slow (SL), Intense (I), 

Smooth (SM). 

B. Variable Fuzzification 

After input and output definitions, all variables have been 
fuzzified by transferring the crisp numerical values of the 
selected input variables, through membership functions into 
membership degrees of the fuzzy set. Membership degrees 
quantify the belongingness of the variable value to the fuzzy 
set. Even though there are various membership functions 
commonly used, in this paper triangular membership 
functions as given in Equation 2 are used since they capture 
the characteristics of the case study’s fuzzy set and it’s one of 
the most used examples. 

µ(𝑥) =

{
 

 
 0, 𝑥 < 𝛼𝑚𝑖𝑛 𝑜𝑟 𝑥 > 𝛼𝑚𝑎𝑥

 
 𝑥−𝛼𝑚𝑖𝑛

𝛽−𝛼𝑚𝑖𝑛
,   𝑥 ∈ ( 𝛼𝑚𝑖𝑛, 𝛽)

 
 𝛼𝑚𝑎𝑥−𝑥

 𝛼𝑚𝑎𝑥−𝛽
, 𝑥 ∈ (𝛽, 𝛼𝑚𝑎𝑥)

                              (2) 

 

 

Fig. 3(a). µ of flow in the range between [0-4000] 

 

Fig. 3(b). µ of density in the range between [0-40] 

 

Fig. 3(c). µ of speed in the range between [0-180] 

Fig. (3a, 3b, 3c) show the membership function plots of flow, 
density, and speed input variables respectively. In each plot, 
the horizontal plane shows the value range of the related 
variables, while the vertical plane gives the membership 
function value of it in the range [0-1]. The range intervals of 
the related variables are set after a close investigation 
accordingly to the data. It is to note that the terms are 
imprecisely defined following the fuzzy logic concept, and 
there are no clear cuts between the fuzzy congestion levels. 
Membership grade represents the possibility of occurrence 
that is primarily governed by a subjective degree of belief. So, 
the overlaps between the fuzzy sets are designed such that the 
sum of membership grades for adjacent fuzzy sets at any point 
in the overlapping sections equals one. It follows that the 
membership grade of a particular fuzzy set approaches zero as 
that of the adjacent fuzzy set approaches one.  

C. Formation of Rules 

As the core of the method, the input-output relationship 
should be modeled to build the inference and a nonlinear 
surface model with specific rules, it indicates how to project 
input variables onto output space. In this study, all stable and 
unstable feasible solutions which create traffic states are 
modeled with different weights using IF-THEN rules (some 
of them in Table II). The rules are weighted according to the 
frequency of occurrence; a bigger weight is assigned to rules 
that occur in dense areas and a smaller weight to the rules that 
occur infrequently. For this section, seventeen rules have been 
defined. Usually, the inputs of the fuzzy model are defined 
with more than one fuzzy set, to combine these membership 
values and obtain unique results, linguistic information (such 
as free flow and medium density, and slow speed) relates to 
the AND operator meaning that a minimum condition must be 
met for conditional if statement to be fulfilled. The AND 
operator is one of the most used operators in Fuzzy modeling. 

TABLE II. IF-THEN RULES MODELLED 

IF THEN 

If Flow is FF Traffic is Smooth 

If Density is VHD Traffic is Stationary 

If Flow is CF and Density is 
HD 

Traffic is Queuing 

If Flow is AF and Density is 
MD 

Traffic is Slow 

If Flow is CF and Density is 
VHD and Speed is AS 

Traffic is Queuing 

If Flow is FF and Density is 
LD and Speed is FS 

Traffic is Intense 

 

 The consequent part of the ‘IF–THEN’ rule is another 
fuzzy linguistic set defined by the corresponding membership 
function, the output of each IF–THEN rule is a fuzzy set. To 
elaborate, aggregation is the process where fuzzy sets that 
represent the outputs of each rule are combined into a single 
fuzzy set, this can be done with an operator. The MAX 
operator is one of the most used operators for this process. 
After the aggregation process, generated fuzzy sets for each 
output variable should be de-fuzzy. Among several existing 
methods centroid method (it finds the centroid of a two-
dimensional function) proposed by [9] and [19] is the most 
applied. Table III gives the average traffic states of each 
section as the results of the first application in the peak hour 
in the morning all over the observation period.  
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TABLE III. IDENTIFIED CONDITIONS 

Section 
number 

Road 
section  

 Average of 
the 

Observed 
Intervals of 

 Traffic 
State 

id id Flow 
(pc/lane/hour) 

Density 
(pc/lane/km) 

Speed 
(km/hour) 

 

41-1 741467 1454 16 97 Slow 

42-2 740855 1409 14 107 Intense 

42-1 741527 1400 14 108 Intense 

43-1 741555 1369 15 93 Slow 

44-2 740700 1145 14 106 Intense 

44-1 741682 993 12 103 Intense 

45-1 741708 1359 14 100 Intense 

46-1 741741 930 10 98 Intense 

 

IV. CASE STUDY 

In this paper, the proposed model is applied to classify 
traffic conditions of the motorway between Padua and Venice 
in Italy using flow, density, and speed fundamental variables 
on the Mamdani-based fuzzy logic application. In the 
literature, this approach was applied with only density and 
flow traffic flow characteristics [8, 9] and the level of 
congestion was related to the variable density. Differently 
from those studies, we believe that including speed values can 
improve the effectiveness of the method because it can better 
characterize unstable conditions when fundamental variables 
are affected by rapid changes that violate the relationships that 
hold in stationary conditions. 

The Padua-Venice motorway network comprises 4 
branches of 3-lane roads with separate carriageways. It has a 
total length of about 74 km and includes 16 intersections. Real 
traffic data collected from the 31st of December 2018 to the 

30th of August 2019 contain the following information: local 
unit code, code section counting, day type, road (section) id, 
date, flow, occupancy, and harmonic speed, collected every 1 
minute and aggregated every 15 minutes. Six days for each 
month were selected at random for this analysis. Density 
values were estimated by applying the state equation (1). 

While Fig.4 shows the identification codes of the sections 
Fig.5 demonstrates monitoring sections of the related 
segments for the study network. The whole dataset was 
examined statistically section-by-section; on the other hand, it 
is important to acknowledge that due to temporary failures of 
some detectors, some parts of the data are missing. In this 
study, we studied the congestion for the time interval between 
6:30 am and 9 am. The application is run on MATLAB fuzzy 
logic toolbox R2020b.  

The scope of the proposed model is to simulate the general 
state of congestion of the road and derive a relationship 
between the three fundamental variables by applying the fuzzy 
Mamdani inference approach regardless of their values [9]. 
Since each section could have a different general state, they 
have been modeled and run separately. The network generally 
composes two main branches in the North (Highway) and 
South (Tangential). In this paper, we focus on the only 
Northern branch. As a given example, Table III presents the 
average situation of several road segments in the observed 8-

month of period from Monday to Saturday between 6:30-9:00 
am (in the peak hour in the morning) with the average of the 
observed data of variables. 

The road is in the transition between the slow-intense situation 
in general (Fig. 6) with a smooth shifting into slow traffic on 
sections 43, and the opposite way at sections 42 and 44. 

In order to see the effect of the selected membership function 
of the proposed fuzzy model a sensitivity analysis has been 
done in terms of traffic condition range index between [0-1]. 
For this analysis, five cases with triangular, trapezoidal and 
Gauss, gbell, and Gauss2 function shapes have been carried 
out. Results are given in Table IV. 

 

 

Fig. 4. Identification codes of the sections 

 

 

Fig. 5. Traffic monitoring sections 

 

Fig 6. Average traffic situation on the highway 
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TABLE IV. IDENTIFIED CONDITIONS AND TRAFFIC STATES 

 

 

The proposed model has close condition range indexes with 
all membership functions. The reason for this is that we kept 
fixed the numerical ranges of both input and output variables. 
It is noteworthy that there are no clear cuts between the fuzzy 
traffic condition ranges. Membership grade represents the 
possibility of occurrence that is primarily governed by a 
subjective degree of belief. In this regard, to determine the 
effect of membership function type we need a benchmark.  

For that reason, we compared our results to LOS in HCM [13] 
and DATEX II standards [14]. In [10, 13], when density is 
between 7-11 pc/lane/km and speed is lower than 120 km/h, 
the road has a B level of service. Similarly in our interpretation 
(Table I), in a condition of low-density but high-speed level, 
traffic starts to be getting in an intense state, but drivers can 
drive freely. According to this, Section 46-1 has been 
identified as in an intense state and all membership functions 
can get it with close condition indexes for this state. However, 
when density goes up to the level of 11-16 pc/lane/km, which 
is the dominant situation for the rest of the network, the level 
of service gets down at the C level. 

The problem with this level is having significant overlaps in 
the relationship between the condition index and the LOSs 
[10], and it makes it confusing to classify the situation. In this 
regard, to be clearer in the separation of intense-slow states, 
we took the speed variable as a guide as in [14]. According to 
this, if the average speed is between 25%-75% of its free-flow 
level (which is 130 km/h in this study), then the traffic moves 
in a slow state. Under this logic, for Section 45-1, Gauss2 
shape function has over calculated the index value and it 
considered the road as in a slow state, while it should be put in 
the intense class as given by all other functions. Last but not 
least, the states of sections 41-1 and 43-1 have been identified 
as slow (as in Table III) with 97 km/h and 93 km/h speed levels 
respectively. While all functions could catch it for Section 41-
1, only the triangular membership function is good to be able 
to reflect it for Section 43-1.  

V. CONCLUSION 

In this paper, we handled the traffic state identification 
problem and proposed a fuzzy logic-based application. In the 
application, we aimed to give another implementation into the 
related literature by using more input variables and a much 

bigger real dataset. We know that traffic state identification 
with a limited variables such as only density or the detected 
speed value may be inadequate. Also, each traffic condition 
has a level of similarity, which makes traffic state 
classification fuzzy. That's why we use a qualitative approach 
-fuzziness-. We believe that the fuzzy methodology seems to 
be more appropriate to provide qualitative information to 
drivers than a simple deterministic threshold-based method. In 
the future works, apart from the analysis of the Tangential part 
of the network, we will consider other aspects as road quality 
or weather conditions.  
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