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Abstract: Precision medicine in oncology has made significant progress in recent years by approving
drugs that target specific genetic mutations. However, many cancer driver genes remain challenging
to pharmacologically target (“undruggable”). To tackle this issue, RNA-based methods like anti-
sense oligonucleotides (ASOs) that induce targeted exon skipping (ES) could provide a promising
alternative. In this work, a comprehensive computational procedure is presented, focused on the
development of ES-based cancer treatments. The procedure aims to produce specific protein variants,
including inactive oncogenes and partially restored tumor suppressors. This novel computational
procedure encompasses target-exon selection, in silico prediction of ES products, and identification of
the best candidate ASOs for further experimental validation. The method was effectively employed
on extensively mutated cancer genes, prioritized according to their suitability for ES-based inter-
ventions. Notable genes, such as NRAS and VHL, exhibited potential for this therapeutic approach,
as specific target exons were identified and optimal ASO sequences were devised to induce their
skipping. To the best of our knowledge, this is the first computational procedure that encompasses all
necessary steps for designing ASO sequences tailored for targeted ES, contributing with a versatile
and innovative approach to addressing the challenges posed by undruggable cancer driver genes
and beyond.

Keywords: targeted exon skipping; antisense oligonucleotide; ASO; splicing; RNA therapy; cancer;
bioinformatics

1. Introduction

Cancer, the second leading cause of mortality worldwide, is expected to increase by
more than 60% in the next two decades, posing a significant public health challenge [1].
Over the past few decades, significant advancements in DNA sequencing and a more com-
prehensive understanding of the cancer genome have revolutionized the cancer treatment
landscape. The traditional paradigm, according to which chemotherapy drugs (chemical
substances predominantly targeting rapidly proliferating cells) are selected based on the
organ of origin, histology, and staging, has shifted towards the molecular profiling of the
tumor (mostly based on genomics) to guide the choice of therapeutic strategies, including
chemotherapy, immunotherapy, and molecularly targeted agents [2]. This paradigm shift
has paved the way for the emergence of personalized or precision medicine approaches,
which hold great promise as effective strategies for treating cancer. Identifying and tar-
geting cancer driver genes [3] containing driver mutations that confer a selective growth
advantage to cells is crucial to developing innovative and precision therapeutic approaches.
Specifically, these genes can be classified as oncogenes or tumor suppressors based on
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the type and location of the genetic alterations they undergo. Oncogenes exhibit “gain-of-
function” mutations, stimulating cell growth and division, while loss-of-function mutations
in tumor suppressor genes lead to the disruption of key checkpoints, such as those regulat-
ing cell proliferation, DNA repair, and cell cycle. Taking this into account, classification
processes can incorporate various criteria, such as functional studies, somatic mutations,
and copy-number alterations [4–6]. In particular, the widely used “20/20 rule” combines
gain-of-function and loss-of-function mutation occurrence to classify genes as oncogenes
or tumor suppressors, as described in the article by Pavel et al., 2016 [7] (see Materials
and Methods section for details). Overall, according to the comprehensive Catalogue
of Somatic Mutations in Cancer (COSMIC) [8], which provides extensive information
on genes with a causal impact on human cancer, there are currently 719 cancer driver
genes documented (COSMIC v. 86, August 2018) [9]. This catalog includes details about
gene contribution to disease causation, the specific types of mutations that lead to gene
dysfunction in cancer, and types of cancer in which mutations have been observed at
an increased frequency [10]. Despite the large number of cancer driver genes identified,
approved treatments are only available for approximately 40 of these genes [11,12]. Certain
genes, such as the RAS family of proteins (KRAS, NRAS, and HRAS, the most frequently
mutated oncogenes in cancer [13]), the MYC proto-oncogene (MYC, a commonly amplified
gene [14,15]), and tumor protein 53 (TP53, the most frequently altered tumor suppressor
gene in human cancer [16]), present significant challenges to pharmacological targeting and
have been categorized as “undruggable” [12]. To successfully address these limitations,
innovation and technological advancement are necessary [17].

Despite the availability of diverse, promising nucleic acid-based modalities for thera-
peutic intervention, this work is focused on exploring the potential of antisense oligonu-
cleotide (ASO)-mediated approaches to cancer treatment. This focus is motivated by the
greater versatility [18] of ASOs compared, for instance, with small interfering RNAs (siR-
NAs), which have been also extensively studied in the literature [19,20]. In fact, ASOs
not only enable the inactivation of target genes but also offer the ability to modulate pro-
tein activity. ASOs could represent a promising class of drugs for personalized medicine
approaches, particularly for targeting driver genes that were previously considered unre-
sponsive to traditional therapeutics [21]. ASOs are single-stranded analogs of nucleic acids
able to modulate gene expression by selectively binding to target regions through base
pairing. Several ASO chemistries have been developed, including 2′-O-methyl phospho-
rothioate (2′-OMePS), 2′-O-methoxyethyl phosphorothioate (2′-MOE-PS), and phosphoro-
diamidate morpholino oligomer (PMO, also known as morpholinos). These chemistries
possess distinct properties aimed at improving the stability, solubility, and cellular up-
take of ASOs [22]. They have the ability to interfere with RNA splicing, a crucial step in
gene-expression regulation that removes intronic sequences and joins exonic regions to
produce mature RNA molecules. Specifically, RNA splicing is catalyzed by the spliceo-
some, a multimegadalton ribonucleoprotein complex composed of multiple small nuclear
RNAs (snRNAs) and many associated protein factors [23]. The spliceosome is recruited
through consensus sequence elements at the 5′ and 3′ splice sites (donor and acceptor sites,
respectively) and branch-point sequences, and its action is further modulated by an ar-
ray of cis-acting exonic and intronic splicing enhancers (ESEs and ISEs), and exonic and
intronic splicing silencers (ESSs and ISSs) [24]. It is precisely by targeting these specific
splice sites or splicing regulatory elements that ASOs can induce exon skipping, thereby
modulating the splicing outcome [25]. The impact of ASOs on RNA splicing has specific
implications in the case of mature transcripts that undergo translation into proteins.
An exon-skipping (ES) event can lead to either an in-frame or an out-of-frame tran-
script, with a potentially significant impact on the protein product and its biological
activity [26]. In addition, in the case of an out-of-frame transcript, the loss of the original
reading frame may lead to the generation of a premature termination codon (PTC). If the
PTC is located at a position sensitive to Nonsense-Mediated Decay (NMD), the transcript
may be degraded through NMD, resulting in a loss of protein expression. On the other
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hand, an in-frame transcript does not affect the reading frame but generates a shorter protein
(compared with the original one), which might still retain part of its function. Therefore, the
effect of altered skipping on protein synthesis and function depends on the location and size
of the skipped exon, as well as on the specific protein and its biological role.

In the last decade, ASOs have shown promising results in the treatment of certain
genetic diseases, such as Duchenne muscular dystrophy (DMD; MIM #310200) [27,28]. The
FDA has authorized the use of four drugs based on this antisense approach to induce ES
for therapeutic purposes in DMD [29–32]. DMD is a debilitating and progressive neuro-
muscular disorder that results from mutations in a single gene, the dystrophin gene [33],
encoded by a vast locus spanning over 2 million bases on chromosome X and encompassing
79 exons [34,35]. Among the extensive number of annotated mutations (>7000) observed in
DMD patients, the majority (∼80%) are large mutations, including deletions of one or more
exons (68%) and large duplications (12%), while the remaining ones (∼20%) concern small
mutations, such as small in-dels and point mutations [34]. Over 90% of these mutations,
which tend to cluster in the region spanning exons 45–53 [36], cause the disruption of
the translational reading frame [37], ultimately leading to the complete absence of the
dystrophin protein, which plays a crucial role in proper muscle function [34,36]. A milder
form of muscular dystrophy that is also linked to mutations in the dystrophin gene is
known as Becker muscular dystrophy (BMD; MIM #300376). Of note, mutations found in
BMD patients maintain the translational reading frame and result in a shorter yet partially
functional protein [38]. In DMD, the therapeutic intervention aims to restore the dystrophin
reading frame, thereby reinstating at least partial expression of dystrophin in DMD-affected
muscles and consequently reducing disease severity, similar to what happens in BMD. This
is achieved with the design of tailored ASOs, which selectively induce exon exclusion,
resulting in the restoration of a correct reading frame [39,40]. Consequently, a shorter yet
partially functional protein is produced [40], leading to improved muscle strength and
function in affected individuals. In recent years, some attempts to use ES as a therapeutic
approach have also been made in cancer. For instance, ASOs have been designed to induce
skipping of a specific exon (i.e., exon 4) of the ETS-Related Gene (ERG), which is an onco-
gene, in prostate cancer cells. This generates an out-of-frame transcript with significant
reduction in ERG protein levels, leading in turn to reduced cell proliferation, increased cell
death, and reduced cell migration [41]. In a more recent study involving the two isoforms
of the PKM (Pyruvate Kinase M1/2) gene, ASOs were used in one case (PKM1 isoform, a
tumor suppressor) to restore its expression, and in the other (PKM2 isoform, an oncogene)
to decrease it, resulting in reduced tumor growth [42]. In another study, a gene that is often
improperly over-expressed in leukemia and solid tumors, the Wilms tumor 1 (WT1) gene,
was considered for the ES approach [43]. Specifically, the ASO-mediated skipping of exon
5 resulted in decreased cell viability and survival in leukemia cell cultures [44].

To enhance and broaden these endeavors for a wider range of applications, including
undruggable targets in cancer, it is vital to acknowledge the challenges associated with
designing ASOs. In particular, numerous design criteria must be taken into account when se-
lecting therapeutic sequences. To assist in this process, some computational tools have been
developed to evaluate essential nucleic acid properties and facilitate ASO design. These
tools include various functionalities, including estimation of self-complementarity and ten-
dency to form intra-molecular hairpins, as well as the calculation or estimation of molecular
weight, solution concentration, melting temperature, and absorbance coefficients [45]. Con-
cerning the study of RNA molecules in particular, software packages such as ViennaRNA
Package 2.0 [46] and RNAstructure [47] offer tools for predicting secondary structures and
RNA–RNA interactions. Additionally, databases such as SpliceAid 2 [48] provide informa-
tion on RNA target motifs that are bound by splicing proteins in humans. In particular,
a couple of recent web applications and databases have been developed for the design,
analysis, and visualization of siRNA and antisense oligonucleotides, PFRED (PFizer RNAi
Enumeration and Design tool) [49] and eSkip-Finder [50], offering comprehensive features
to aid researchers in their ASO design efforts.
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The computational procedure proposed in this study aims to streamline the entire
process of designing ad hoc ASOs, from in silico identification of potential target candidates
to a list of customized ASOs to induce the intended ES events. Moreover, it takes into
account cancer-relevant features, such as mutation frequency in patients, holding special
value for the design of ES-based therapeutic intervention in oncology. To this end, our
approach incorporates state-of-the-art rules to identify the most promising candidate exons
of a gene of interest, which is first classified in silico as an oncogene or a tumor suppressor.
Subsequently, specific ASOs are designed following guidelines for morpholinos [51,52],
tailored for selected ES events. These events can contribute to desired outcomes, such as
generating oncogene variants that lack activity or tumor suppressor variants that could
exhibit partially restored functionality. By combining these methodologies, our computa-
tional procedure provides researchers with valuable assistance in their efforts to develop
innovative therapeutic interventions based on targeted ES.

2. Results
2.1. Development of an Integrated Computational Procedure to Support the Design of ES-Based
Therapeutic Strategies in Cancer

We developed a computational procedure that, given a gene of interest, initially
classifies it as either an oncogene or a tumor suppressor, and once all its annotated
transcripts are collected, the pipeline proceeds to select potential target exons for ES
and return the expected protein variants as the outcome. The pipeline predicts whether
the skipping of these exons results in a shortened transcript that remains in frame or
shifts out of frame. To further investigate the shortened products, they are translated in
silico into amino acid sequences, and those labeled as out-of-frame are subjected to the
prediction of their potential degradation through NMD. The procedure then allows for
the design and evaluation of candidate ASO sequences to induce the skipping of specific
exons that are favorable for achieving the intended goals, such as producing inactive
oncogene variants or restoring at least partially functional tumor suppressor variants.
The overall procedure is illustrated in Figure 1, and an overview of each individual
sub-task is briefly presented in the next subsections.

2.1.1. Classification of a Gene of Interest as an Oncogene or Tumor Suppressor

Based on COSMIC data [10] regarding annotated mutations, the computational proce-
dure enables the in silico classification of a gene as either an oncogene or a tumor suppressor.
This classification is based on the principles of the so-called “20/20 rule” proposed by
Pavel et al., 2016 [7]. According to this rule, oncogenes tend to have more than 20% of
annotated mutations occurring as missense mutations at recurrent positions, while tumor
suppressors tend to have over 20% of inactivating mutations (for more details, refer to the
Materials and Methods section). Considering this evidence, the procedure automatically
assesses the likelihood of a gene belonging to either category, and the classifier assigns the
appropriate label, either “oncogene” or “tumor suppressor” (Figure 1A).
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Figure 1. Computational procedure flowchart. The procedure begins with a gene of interest and
proceeds as follows: (A) The gene is classified as either an oncogene or a tumor suppressor by
analyzing its mutational profile obtained from the COSMIC database. (B) All annotated transcripts of
the gene are collected from the GENCODE database. Candidate exons that could undergo skipping
are selected, and the corresponding ES events are classified as either in-frame or out-of-frame. For
out-of-frame transcripts, the potential degradation through NMD is predicted. (C) Among exons that
could undergo skipping, the procedure identifies exons that are more frequently mutated in cancer
patients based on data from the COSMIC database. (D) Candidate ASOs are designed and evaluated.
These sequences are differentiated based on whether they overlap splice junctions or bind to ESEs
within the exons. Abbreviations: ASO = antisense oligonucleotide, CDS = coding DNA sequence,
ESE = exonic splicing enhancers, NMD = Nonsense-Mediated Decay.

2.1.2. Identification of Candidate Exons to Be Targeted for Skipping

Given a gene of interest, the procedure performs a comprehensive screening of all
isoforms annotated by GENCODE [53] to identify exons amenable to be skipped (Figure 1B).
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Only protein-coding transcripts are considered for further investigation. Of all exons in
the selected transcripts, those containing the start and stop codons are excluded from
the procedure, as well as any non-coding exons that may occur before and/or after them.
This exclusion is made to prevent interference with the essential regions responsible for
initiating and terminating protein translation [51,52]. To identify candidate exons to induce
therapeutic targeted exon skipping, the procedure proceeds to determine the specific
outcome by considering the following two scenarios, which may potentially result from
ES: (1) in-frame transcript; (2) out-of-frame transcript. Each shortened transcript is then
translated into the corresponding amino acid sequence. The skipping of an exon can result
in the formation of a PTC, sometimes leading to the degradation of the resulting mRNA
through NMD [54]. Thus, the prediction of the occurrence of degradation via NMD is
performed for all the out-of-frame transcripts based on the most relevant rules associated
to NMD evasion, namely, the so-called “50–55 nt rule”, the “last-exon rule”, and the “start-
proximal rule” (see Materials and Methods section for details), which evaluate the position
of the PTC formed following ES. The above step in the procedure (Figure 1B) returns the
list of all exons deemed potential targets for ES, along with the corresponding shortened
transcript and amino acid sequences obtained as a result of their skipping and, for the
subset of out-of-frame transcripts, prediction of NMD events.

2.1.3. Analysis of the Mutational Profile

Aimed at the selection of the best candidate exonic targets for the design of ES-based
therapeutic strategies, their mutational profile in cancer is next evaluated based on COSMIC
data [10]. To this end, the implemented procedure identifies the exons marked by the
highest mutational burden, specifically those exhibiting mutations in the largest number
of cancer patients. In particular, taking into account only point mutations, the procedure
automatically and carefully maps the annotated genomic mutations to the corresponding
exon regions [55] and calculates the absolute frequency of mutations within each exon of
the gene of interest. This is performed by counting the number of patients who have at
least one mutation in a specific exon. Next, the procedure calculates the relative frequency
of mutations per exon by computing the ratio between the number of patients with at least
one mutation in the given exon and the total number of patients with at least one mutation
across the whole gene. Finally, exons are ranked by the decreasing number of absolute
mutation frequency, and the top 10 ranking exons are reported to proceed to ASO design
(Figure 1C). This step of the computational procedure aims to prioritize ASO design on
exons enriched in clinically relevant mutations, while limiting the list of candidate exons to
a manageable number.

2.1.4. Design and Evaluation of Ad Hoc ASOs to Induce Desired ES Products

This step of the computational process integrates the sequence of exons that may
undergo ES and those that are highly mutated and generates 25-nucleotide-long ASO
sequences, which is the recommended length for morpholino oligos [51,52], to induce
ES. These ASOs, whose binding is based on the principle of base complementarity, are
designed to interact with two types of splicing regulatory sites: splice junction sites (donor
and/or acceptor splice sites) and intra-exon splice sites (Figure 2). For each splice junction,
we design a set of 7 ASOs (14 for each exon) to hit the target mRNA at the overlap of the
intron–exon or exon–intron border, because this approach has been shown to maximize
the efficiency of mRNA splicing alteration using morpholinos [51]. For the ASO sequences
designed within exon regions, only those completely overlapping at least one exonic
splicing enhancer (ESE) domain are selected for further consideration. The number of
ASO sequences drawn within each exon varies depending on the exon’s length and the
number of annotated ESE regions therein. Finally, ASO sequences undergo evaluation
based on specificity and reference physicochemical parameters, including CG percentage,
G percentage, presence of tetra G, and self-complementarity. Only ASO sequences that
meet the optimal threshold values for each parameter, as documented in the relevant
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literature [52], and have a unique match in the genome are selected and included in the
output (Figure 1D) (see Materials and Methods section for details). As a point of reference
for evaluating the results of our procedure in generating candidate ASOs, we compared
them with four available FDA-approved ASO drugs for DMD treatment [29–32]. Indeed,
our procedure successfully identified ASO sequences either identical or closely matched to
all drugs, as shown in Appendix B and Table A1.

Figure 2. Schematic representation of the ASO design approaches. The procedure involves design-
ing ASO sequences for a target exon using two distinct approaches. The first approach (indicated
by an arrow pointing to the left in the figure) targets the splice-junction sites, including the donor
and/or acceptor splice sites. The second approach (indicated by an arrow pointing to the right in the
figure) focuses on the ESE regions within the exon. Figure created with Biorender.com.

2.2. Application of the Bioinformatic Pipeline to Frequently Mutated Cancer Genes

As a proof of concept to demonstrate the relevance of the entire computational proce-
dure described previously, we applied it to a clinically relevant set of genes. Specifically,
we selected the top 10% most frequently mutated genes in cancer patients based on data
stored in the COSMIC database (v. 96) [10]. A total of 72 genes were identified, as shown in
Figure 3. The following subsections provide insights into the output data and biological
knowledge gained by applying the procedural steps outlined in Figure 1 to this cancer-
relevant dataset.

2.2.1. Classifying Role in Cancer for Selected Genes

By applying the above-mentioned 20/20 rule [3,7] (see Materials and Methods section
for details), the 72 selected genes were classified according to their predicted role in cancer as
follows: 25 tumor suppressors, 23 oncogenes, and 24 genes unclassified due to inconclusive
scores (Figure 3, inset). To validate our classification, available for 48 genes, the results were
compared with two publicly available compendia of oncogenes and tumor suppressors:
(1) Futreal et al., 2004 [56], hereafter MSigDB; (2) Tokheim et al., 2016 [57], hereafter Tokheim.
Overall, 35 out of 48 were also evaluated by MSigDB, while Tokheim assessed 37 of 48, with
classification concordance rates of 86% and 97%, respectively. For detailed information,
please refer to Appendix A and Figure A1A,B.
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Figure 3. Most frequently mutated genes in cancer patients. Genes from the COSMIC cancer gene
census are ranked based on the number of cancer patients with at least one mutation (Y-axis) in the
indicated gene (X-axis). The horizontal red line indicates the threshold applied for selecting the top
10% of the most frequently mutated genes. The selected genes (inset, N = 72) are highlighted and
listed in columns, arranged in descending order of mutation frequency (from top to bottom and from
left to right). The color highlighting in the figure corresponds to computationally predicted cancer
gene roles, as indicated in the color legend and described in Section 2.2.1 of the main text.

2.2.2. Identifying Potential Exon Targets for ES in Selected Cancer Genes

The analysis of the selected cancer genes (N = 72) revealed an average of 10 protein-
coding transcripts per gene according to annotations available in the GENCODE database
(release 43). Among these transcripts, the majority (9 out of 10) harbored at least one
exon predicted to be susceptible to skipping according to the computational procedure
(Figure 1B). Overall, these cancer genes had an average number of 26 exons per gene as
possible targets. The in silico simulation of ES events demonstrated that the vast majority
of these genes (68 out of 72; 94%) could yield both in-frame and out-of-frame transcripts,
supporting the potential for designing therapeutic ES strategies for both purposes: in-
activation and functional rescue. Furthermore, our computational procedure evaluates
possible degradation via NMD for all shortened products generated through in silico ES
that are out-of-frame. Specifically, when considering the 23 genes previously classified as
oncogenes in our gene compendium, the majority of them (21/23) produced at least one
out-of-frame transcript that was expected to undergo NMD.

In summary, the set of cancer genes analyzed exhibited a diverse range of transcript
isoforms, many of which contained exons susceptible to skipping. Importantly, a significant
portion of these genes had the potential to generate both in-frame and out-of-frame tran-
scripts when subjected to in silico exon-skipping simulations. Additionally, a considerable
number of oncogenes in this dataset have the capacity to generate out-of-frame transcripts
that are predicted to undergo degradation through NMD.

2.2.3. Analyzing Exon Mutation Profile of the Selected Cancer Gene Set

In the field of precision oncology, it can be valuable to devise therapeutic strategies
targeting exons with the highest incidence of recurrent mutations. Therefore, our method-
ology involves prioritizing exons within the cancer genes selected (Figure 3), according
to this criterion. Specifically, we focused on the exons deemed potential targets for ES
(from the previous section, 26 exons on average) in each cancer gene. To identify the most
mutated exons, we considered the protein-coding exons that had at least one mutation
observed across the largest number of cancer patients. By analyzing the mutational profiles
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using data from the COSMIC database (Figure 1C), we found that these exons showed an
average of about 300 point mutations each. Subsequently, the analyzed exons were ranked
by frequency of mutations, and the 10 top-scoring exons per gene in this list were selected
as the best candidates for ASO design.

2.2.4. Design and Evaluation of the Best Candidate ASO Sequences

As outlined above, the final step in our computational procedure involves the design
of ASO sequences that hold promise for inducing desired protein variants (Figure 1D). In
particular, to manage computational burden and prioritize experimental feasibility, we
focused on designing and providing as output ASO sequences for a selected list of exons
for each gene of interest. This list included the top exons that were evaluated as potential
targets for exon skipping and were recurrently mutated in cancer patients, with a maximum
of 10 exons per gene. A total of 674 protein-coding exons were considered, regarding 72
selected cancer genes (Figure 3, inset), and two sets of customized antisense ASOs were
generated (Figure 2). The first set targeted splicing regulatory sites at the splice junctions,
and 14 junction-exon ASOs were designed per exon. The second set of ASOs focused
on regulatory sites located within the exon itself. Here, an average of approximately 306
intra-exon ASOs were designed per exon. Next, both sets of ASO sequences underwent
an evaluation process based on state-of-the-art knowledge regarding optimal values for a
series of physicochemical parameters (see Materials and Methods section for details). The
ASO design and filtering step yielded an average of 6 ASOs at the splice junctions and
150 ASOs at the ESE sites, representing the best candidate sequences.

2.3. Proof-of-Concept Case Studies
2.3.1. Detecting High-Potential Cancer Genes for Effective Targeted ES Intervention

We prioritized genes based on the availability of the exons that were the most suitable
for achieving effective targeted interventions. To accomplish this, we assessed the following
conditions for each exon in our dataset: (a) Inclusion of the exon among the ten most
frequently mutated exons for the corresponding gene. (b) Desired reading frame for the
shortened transcript resulting from ES, taking into account the predicted role of the gene in
cancer (oncogene or tumor suppressor) and the intended therapeutic objective (inactivation
or functional rescuing, respectively). (c) Presence of at least one ASO for each design
strategy (targeting splice sites within the exon or targeting splice junctions) that adheres to
the recommended physicochemical parameters for effective targeted splicing. Subsequently,
we ranked the cancer genes in our compendium based on the decreasing percentage of
their exons that met all three criteria mentioned above (Figure 4). In what follows, we
provide more detailed information on two exemplary cases, namely, the first oncogene
(NRAS) and the first tumor-suppressor (VHL) featured in this ranking.
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Figure 4. Ranking of genes based on the percentage of exons that meet all the criteria considered
favorable for effective ES-based intervention. These criteria include the following: (1) Inclusion of
the exon among the ten most frequently mutated exons for the corresponding gene. (2) Ensuring the
correct frame is obtained following ES, depending on the predicted cancer role (specifically, an out-of-
frame outcome for oncogenes and an in-frame outcome for tumor suppressors). (3) Existence of at
least one antisense oligonucleotide (ASO) available for both design strategies, which involve targeting
splice sites within the exon or at junctions, while adhering to recommended physicochemical values.

The NRAS proto-oncogene GTPase (NRAS) has one annotated protein-coding tran-
script (ENST00000369535.5) consisting of seven exons. From our computational analysis,
two exons, namely, exon 3 and exon 4, emerged as potential targets for ES. The therapeutic
objective of an ES-based approach would be to induce protein degradation in order to
suppress its gain-of-function effect. Skipping either exon would result in out-of-frame
transcripts, although our computational procedure predicts that neither of them would
undergo degradation via NMD following ES. In terms of mutational profile analysis, both
exon 3 and exon 4 rank among the top ten most mutated exons in cancer patients. Particu-
larly, one of these exons (Ensembl ID: ENSE00001751295.1, exon 3) (Figure 5) accumulates
mutations in 4052 patients, which accounts for over 60% of the total number of cancer
patients with at least one annotated mutation in NRAS. Consistent with its role as an
oncogene, the distribution of mutations along the gene sequence is concentrated at specific
positions (Figure 5B) [3,7]. Our computational procedure designed a total of 103 ASOs for
NRAS exon 3. Among these ASOs, 89 were designed to target regulatory splice sites within
the exon, while 14 ASOs were designed to target splice sites at the junctions with flanking
introns. After filtering based on physicochemical requirements, the procedure selected a
subset of 63 ASOs, which included 52 ASOs targeting internal ESEs and 6 ASOs targeting
splice sites at the junctions, with the latter being available only to target the upstream
intron–exon junction (Table 1, Figure 5).
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Figure 5. Example of a suitable candidate for designing an ES-based therapeutic approach targeting the NRAS oncogene. The figure summarizes pertinent
genomic (top panel), sequence (panel A), and mutational (panel B) information concerning the design of an ES-based therapeutic approach targeting a specific exon
(Ensembl ID: ENSE00001751295.1) of the NRAS oncogene that our computational procedure identified as a highly suitable candidate. Details are as follows: The top
panel shows the annotated NRAS transcript along with the selected exon highlighted with a grey circle. (A) Visualization of 25 nt ASO sequences (represented by
orange horizontal lines) designed to target ESE sequences (depicted by green vertical bands) or splice junctions. The objective is to induce the skipping of this
particular exon in the mature transcript. The presence of mutations, as annotated in the COSMIC database for cancer patients, is indicated by red dots along the
DNA sequence. The uppercase letters represent the exon, while the lowercase letters denote the flanking introns. (B) Mutation occurrences within the NRAS exon
sequence. This figure panel displays red dotted vertical bars, indicating the number of patients (on the y-axis, using a logarithmic scale) with mutations at the
indicated nucleotides. Abbreviations: ESE = exonic splicing enhancer, ASO = antisense oligonucleotide.
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Table 1. The best candidate ASO sequences designed at the exon 3 splice junctions of the NRAS
oncogene. The table provides the ASOs that were specifically designed at the junctions of the
selected exon of NRAS (Ensembl stable ID: ENSE00001751295.1, third exon in the NRAS transcript).
The listed ASOs, with their corresponding sequences indicated in the table, successfully passed all
physicochemical filters. The nomenclature used for the ASOs follows the conventions described by
Mann et al., 2002 [58].

Gene Exon ID ASO ID ASO Sequence

NRAS ENSE00001751295.1

H3D (13, −12) UGCUCCUAGUACCUGUAGAGGUUAA
H3D (12, −13) AUGCUCCUAGUACCUGUAGAGGUUA
H3D (11, −14) AAUGCUCCUAGUACCUGUAGAGGUU
H3D (10, −15) UAAUGCUCCUAGUACCUGUAGAGGU
H3D (9, −16) AUAAUGCUCCUAGUACCUGUAGAGG
H3D (8, −17) AAUAAUGCUCCUAGUACCUGUAGAG

The tumor suppressor gene Von Hippel–Lindau (VHL) has a total of six annotated tran-
scripts, with four of them encoding proteins. Using our computational procedure, we identi-
fied two specific exons as prime candidates for developing ES-based therapeutic approaches
aimed at partially restoring their function by selecting in-frame transcripts. Skipping either
of these two exons would result in shortened transcripts that maintain the correct reading
frame. Among these exons, one of them (Ensembl stable ID: ENSE00003504189.1, exon 2)
(Figure 6) exhibited a higher frequency of mutations in cancer patients, with 447 patients
having at least one mutation in this exon, accounting for approximately 24% of the total
mutations observed. To target the regulatory splice sites of exon 2, our computational
procedure designed a total of 113 ASOs. Among these, 99 ASOs were designed within the
exon itself, while 14 ASOs targeted the junctions with adjacent introns. After applying
the effectiveness criteria, a subset of 85 ASOs met the requirements, including 47 ASOs
targeting internal ESEs and all 14 ASOs designed at the junctions (Table 2, Figure 6).

Table 2. The best candidate ASO sequences designed at the exon 2 splice junctions of the VHL
tumor suppressor. The table provides the ASOs that were specifically designed at the junctions of
the selected exon of VHL (Ensembl stable ID: ENSE00003504189.1, second exon in the two VHL
transcripts). The listed ASOs, with their corresponding sequences indicated in the table, successfully
passed all physicochemical filters. The nomenclature used for the ASOs follows the conventions
described by Mann et al., 2002 [58].

Gene Exon ID ASO ID ASO Sequence

VHL ENSE00003504189.1

H2A (−18, 7) AGGUGACCUAUCGGGACAAGCAAAG
H2A (−17, 8) AAGGUGACCUAUCGGGACAAGCAAA
H2A (−16, 9) AAAGGUGACCUAUCGGGACAAGCAA
H2A (−15, 10) CAAAGGUGACCUAUCGGGACAAGCA
H2A (−14, 11) CCAAAGGUGACCUAUCGGGACAAGC
H2A (−13, 12) GCCAAAGGUGACCUAUCGGGACAAG
H2A (−12, 13) AGCCAAAGGUGACCUAUCGGGACAA
H2D (13, −12) AAACGUCAGUACCUGGCAGUGUGAU
H2D (12, −13) AAAACGUCAGUACCUGGCAGUGUGA
H2D (11, −14) UAAAACGUCAGUACCUGGCAGUGUG
H2D (10, −15) GUAAAACGUCAGUACCUGGCAGUGU
H2D (9, −16) AGUAAAACGUCAGUACCUGGCAGUG
H2D (8, −17) AAGUAAAACGUCAGUACCUGGCAGU
H2D (7, −18) AAAGUAAAACGUCAGUACCUGGCAG
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Figure 6. Example of a suitable candidate for designing an ES-based therapeutic approach targeting the VHL tumor suppressor. The figure summarizes
pertinent genomic (top panel), sequence (panel A), and mutational (panel B) information concerning the design of an ES-based therapeutic approach targeting a
specific exon (Ensembl ID: ENSE00003504189.1) of the VHL tumor suppressor that our computational procedure identified as a highly suitable candidate. Details are
as follows: The top panel shows the annotated VHL transcripts along with the selected exon highlighted with a grey circle. (A) Visualization of 25 nt ASO sequences
(represented by orange horizontal lines) designed to target ESE sequences (depicted by green vertical bands) or splice junctions. The objective is to induce the
skipping of this particular exon in the mature transcript. The presence of mutations, as annotated in the COSMIC database for cancer patients, is indicated by red
dots along the DNA sequence. The uppercase letters represent the exon, while the lowercase letters denote the flanking introns. (B) Mutation frequencies within the
VHL exon sequence. The figure panel displays red dotted vertical bars, indicating the number of patients (on the y-axis, using a logarithmic scale) with mutations at
the indicated nucleotides. Abbreviations: ESE = exonic splicing enhancer, ASO = antisense oligonucleotide.
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2.3.2. Harnessing the Potential of Our Pipeline on Well-Studied Cancer Genes: BRAF
and TP53

As a second set of case studies, we applied our computational pipeline to analyze one
oncogene (BRAF) and one tumor suppressor (TP53), among those most frequently mutated
in cancer (Figure 3, inset). For each of the two selected genes, the pipeline identified
exons with the potential for being targeted by ES-based therapeutic strategies. The pipeline
prioritized these exons based on their frequency of mutation in cancer patients. Table 3
displays the top ten exons that exhibit the highest mutation frequencies for each selected
gene. The table also provides the number of candidate ASOs designed for inducing ES at the
splice junctions (ASO-J) and within the target exon (ASO-E). Additionally, a flag (IN/OUT) is
included to indicate the correctness of the transcript frame following targeted ES, according
to the predicted role of the gene in cancer. In addition, Table A2 in Appendix C lists the best
candidate ASO-J sequences for both the BRAF and TP53 genes, designed using our procedure
to target the splice junctions of the indicated exons.

Table 3. Top ten mutated exons of the BRAF and TP53 genes. The table specifically focuses on
BRAF as an oncogene and TP53 as a tumor suppressor. For each chosen gene, the table includes the
top ten mutated exons and indicates whether the transcript frame following targeted exon skipping
is in-frame or out-of-frame (flagged “IN”/”OUT” in the table). The last two columns display the
number of candidate ASOs, satisfying all the physicochemical parameters threshold criteria and with
a unique match in the genome, designed to induce exon skipping. Columns ASO-J and ASO-E refer
to ASOs targeting splice junctions and ESEs within the corresponding exon, respectively. Exons that
have at least one ASO sequence available for both the ASO-J and ASO-E design strategies and result
in the desired frame in the shortened transcript are shaded in gray to indicate their significance.

Gene Classification Top 10 Mutated Exons IN/OUT Frame ASO-E ASO-J

BRAF Oncogene

ENSE00003485507.1 OUT 4 5
ENSE00003559218.1 OUT 13 4
ENSE00003569635.1 OUT 16 0
ENSE00003587655.1 IN 18 14
ENSE00001035295.1 IN 34 4
ENSE00001907699.1 OUT 3 4
ENSE00003527888.1 IN 12 7
ENSE00003521664.1 OUT 15 12
ENSE00003487759.1 IN 13 13
ENSE00003687908.1 OUT 21 0

TP53 Tumor
Suppressor

ENSE00003518480.1 OUT 59 4
ENSE00003725258.1 OUT 57 13
ENSE00003712342.1 OUT 30 6
ENSE00002048269.1 OUT 25 5
ENSE00003723991.1 OUT 56 10
ENSE00002073243.1 OUT 25 7
ENSE00003625790.1 IN 97 5
ENSE00003670707.1 IN 10 3
ENSE00003545950.1 OUT 46 5
ENSE00003786593.1 OUT 18 7

3. Discussion

The development of personalized therapeutic approaches based on molecular tumor
profiling has made significant advancements in cancer treatment. However, many cancer
driver genes, including frequently altered genes like the RAS family, MYC, and TP53,
remain challenging to target with conventional approaches, making them “undruggable”.
This poses a major hurdle to oncology drug development. This article aims to present an
integrated computational procedure that facilitates the exploration and implementation
of ES-based therapeutic strategies for cancer treatment. The developed computational
procedure leverages existing knowledge of annotated transcripts and disease-causing



Int. J. Mol. Sci. 2023, 24, 14862 15 of 26

mutations for a specific gene of interest. It guides the selection of target exons and the
design of ASOs to induce ES. The procedure also provides insights into the consequences
of exon exclusion, including the potential degradation of transcripts through NMD. This
enables the evaluation of the impact of ES on protein expression and functionality, leading to
a deeper understanding of the case of interest. The approach presented is versatile and can
support strategies aimed at producing different desired protein variants, such as variants
of inactive oncogenes or partially functional restored variants of tumor suppressors.

As a proof of concept, the study focused on the top 10% most mutated genes in cancer
and ranked them based on their suitability for ES-targeted interventions. This resulted in a
list of the most promising candidate genes for ES-based therapies that contain the highest
percentage of exons meeting the following criteria: (a) The exon, when excluded, should
result in desired protein variants that are expected to have a therapeutic effect. (b) The
ASOs designed for exon skipping should meet recommended physicochemical parameters
and have a unique match in the genome, ensuring their effectiveness in inducing exon
exclusion. (c) The target exon should rank among the top ten most mutated exons in cancer
patients, indicating its clinical relevance. Based on these criteria, NRAS, a member of the
RAS protein family, emerged as one of the most promising candidates, with all of its exons
being eligible for skipping. Similarly, other genes, such as KRAS, VHL, CALR, GRIN2A,
JAK2, FLT3, IDH1, and IDH2, also exhibited a significant percentage of their exons meeting
the criteria for optimal skipping targets. In particular, the percentage of optimal exons
ranged from over 20% for GRIN2A, JAK2, FLT3, IDH1, and IDH2 to over 60% for KRAS
(another member of the RAS family). These findings highlight the potential of these genes
as promising candidates for ES-based therapeutic interventions in cancer.

To provide more detailed examples, the study specifically investigated NRAS (an onco-
gene) and VHL (a tumor suppressor) as notable cases with clinical relevance. Oncogenic
NRAS mutations occur in several cancer types, notably melanoma, acute myeloid leukemia,
colon and thyroid cancers, and other hematologic malignancies. While attempts have been
made to action NRAS for therapeutic purposes by targeting either downstream effectors
(e.g., MEK, CDK4/6 [59]) or upstream activators (e.g., STK19 [60]), the NRAS oncogene
itself remains currently undruggable and could be theoretically targeted using ES-inducing
strategies, as proposed here. Similarly, the inactivation of the tumor suppressor VHL is a
major genetic driver of both hereditary and sporadic renal cell carcinoma [61]. Although
VHL-defective cancers can be targeted with clinical success by inhibiting its downstream
effector HIF1a or VEGF-driven angiogenesis [62], we hypothesize that VHL function could
be restored, at least in part, through ASO-mediated transcript modification. The compre-
hensive in silico approach successfully identified the highest-scoring exon for each gene
and designed corresponding ASO sequences to induce its exclusion. Expanding the scope
to include the most frequently mutated genes in cancer, the computational pipeline was
applied to the extensively studied oncogene BRAF and tumor suppressor TP53. Although
small-molecule inhibitors of oncogenic BRAF have proven highly successful for the clin-
ical treatment of several tumor types, atypical (non-V600E) BRAF mutations and BRAF-
dependent acquired resistance remain significant challenges and unmet medical needs,
which could be targeted using ES-inducing strategies [63]. On the other hand, TP53, one
of the most frequently mutated genes in cancer, remains the prototype of an undruggable
tumor suppressor, for which no successful therapeutic strategy has been devised [64]. The
computational procedure successfully predicted four potential ES events in the BRAF gene.
These ES events would result in the generation of out-of-frame transcripts by skipping
frequently mutated exons in cancer. The shortened transcripts would likely be targeted for
degradation through NMD, thereby reducing the corresponding protein expression level.
For each identified exon, the procedure designed an average of six ASO sequences at the
exon–intron junctions and nine sequences overlapping ESEs within the exon. Regarding the
TP53 gene, two exon candidates for ASO-mediated therapeutic ES events were identified.
The aim of these events would be to maintain the transcript frame after exon deletion and
potentially restore, at least partially, the biological protein function. An average of four



Int. J. Mol. Sci. 2023, 24, 14862 16 of 26

ASOs to induce skipping were designed at the exon–intron junctions, while approximately
53 ASO sequences that cover the ESE regions within the exon were designed internally.

The results obtained by applying the entire procedure to these case studies demonstrate
the effectiveness of the strategy in supporting the use of ASOs as innovative therapeutic
interventions. This approach aims to induce exon skipping in oncogenes and tumor sup-
pressors, even in cases with significant mutation burdens that are difficult to target with
conventional pharmacological methods. It is important to note that the criteria employed
in this procedure are independent of tissue and cancer type, adopting an agnostic approach.
However, the same computational method can be tailored to specific cases by utilizing mu-
tational profiles obtained from individual patient screenings. This personalized approach
has the potential to enhance targeting accuracy and minimize off-target or side effects.
While the systematic approach presented in this study allows for wide-ranging applicability
across diverse contexts, offering several advantages, there are limitations to consider. In
particular, we recognize the value of tailoring this computational method to specific cases,
developing further in-depth analysis methods. For example, the current procedure relies on
available genomic and transcriptomic data from databases like COSMIC and GENCODE,
which may have limitations in terms of coverage and accuracy. In particular, the evaluation
of whether a specific splicing-isoform target is generated and subsequently expressed could
be more effectively conducted, by its nature, by analyzing expression profile data related to
a specific tissue or tumor [65–67]. Furthermore, in this context, a more detailed examination
of the consequences of the entire spectrum of mutations that can perturb splicing regulatory
regions could be considered [68–70] (including synonymous mutations, intronic mutations,
utilizing ad hoc developed tools [71,72]). Moreover, the potential role of cryptic regulatory
sites in influencing splicing outcomes would deserve further study [73]. Finally, it should
be noted that the classification of oncogenes and tumor suppressor genes proposed, which
in turn determines the type of molecular effect sought through ES, can be debatable from
several perspectives: classification methods and available compendia might not cover all
potentially relevant genes; a small but non-negligible percentage of genes may be classified
differently using various procedures; in some cases, the same gene can function as an
oncogene or tumor suppressor, depending on the type of mutation it undergoes (loss vs.
gain of function), such as in the case of TP53 [64]. It is important to note that the current
approach, prioritizing the most frequently mutated exon in cancer patients, is flexible and
can be adapted to different scenarios and therapeutic goals. For instance, in cases where
the therapeutic strategy involves inactivating a mutated oncogene, a safer approach to
ASO design may entail targeting frame-shifting exons that are possibly not mutated and
are located upstream of the most frequently mutated one. This approach would result in
the desired outcome of an out-of-frame transcript, reducing the risk that patient-specific
mutations might decrease the affinity for the designed ASOs. On the other hand, in more
complex scenarios related to the rescuing of function of tumor suppressors, where it is
critical to safeguard the healthy allele, the existence of patient-specific mutations may be
the key to enable the selectivity needed in the design of allele-specific therapeutic strategies.
A notable example that illustrates the relevance of envisioning allele-specific therapeutic
strategies is the haploinsufficiency of the tumor suppressor PTEN, frequently mutated in
human cancer. Similar to the strategy pursued with DMD drugs, even subtle changes in its
expression levels can potentially alter tumor cell behavior [74]. Additionally, the current
ASO design approach yields a substantial number of potential candidates per exon, posing
challenges to selecting the most suitable molecule sequence for experimental validation.
Furthermore, experimental validation is crucial to confirming the actual impact of predicted
ASO-induced exon skipping on protein expression and function. For instance, it has been
reported that the inhibition of a splice site may trigger the activation of a cryptic splice site,
leading to the formation of a transcript with an unexpected architecture [52]. Moreover, the
delivery of ASOs to target tissues or cells poses unique challenges that must be overcome
as a prerequisite for their effective therapeutic application. Several efforts are currently
invested in improving the delivery of ES-based therapeutic drugs through innovative
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chemical modifications and conjugation with delivery-enhancing agents, such as fatty acids
or peptides [19,75–78]. In conclusion, the integrated computational procedure developed
in this study presents a strategy and provides valuable tools for investigating ES-based
therapeutic approaches in oncology. ASOs show promise as innovative and personalized
therapeutic interventions, particularly for targeting undruggable driver genes. Further
experimental validation, optimization, and technological advancements are necessary to
fully harness the potential of ASOs as clinically effective therapies. These efforts could
pave the way for the effective utilization of ASOs in cancer treatment, making a substantial
contribution to the field of personalized medicine in oncology.

4. Materials and Methods

The entire computational procedure described in this work was implemented using
the Python programming language.

Cancer genes and mutational annotation data. To collect the set of test-case genes, we em-
ployed mutation data obtained from the publicly available COSMIC database (v. 96) [10].
Specifically, we retrieved the “CosmicMutantExportCensus.tsv” file (from: Data → Down-
loads → All Mutations in Census Genes). From this extensive dataset, a cohort of 72 genes
was selected by identifying the top 10% most frequently mutated genes in cancer patients.

In silico classification of genes as oncogenes or tumor suppressors. Mutation annotation
data obtained from the COSMIC database were subsequently used to accurately classify
in silico the selected cancer genes (N = 72 genes) into the distinct categories of onco-
genes or tumor suppressors by applying the well-established “20/20 rule” [3]. Based
on this rule, for a gene to be classified as an oncogene, it must exhibit recurrent mis-
sense mutations that account for more than 20% of all documented mutations, indicating
gain-of-function alterations. On the other hand, to be classified as a tumor suppressor, a
minimum of 20% of annotated mutations within the gene should be inactivating. Thus,
this rule captures the two main categories of mutations, namely, gain-of-function and
loss-of-function mutations, and accounts for their respective frequencies. Specifically, gain-
of-function mutations encompass the following types: substitution_missense, deletion_in-
frame, insertion_in-frame, complex_deletion_in-frame. Conversely, loss-of-function mu-
tations include substitution_non-sense, deletion_frameshift, insertion_frameshift. To im-
plement the rule in our computational procedure, we followed the methodology outlined
by Pavel et al., 2016 [7]. This involves the calculation, for any gene of interest, of two
distinct scores based on the mutation annotation data: the oncogene (ONG) and the tumor
suppressor gene (TSG) scores. To determine these scores, we started by assessing the
total number of variants present in the gene. Subsequently, we computed the frequencies
of both gain-of-function and loss-of-function mutations, relative to the total number of
annotated variants for the given gene. In particular, the ONG score represents the frequency
of recurrent gain-of-function mutations, while the TSG score corresponds to the frequency
of loss-of-function mutations. Lastly, based on the criteria summarized in Table 4, the gene
was assigned a specific label. Specifically, if the ONG score is greater than 20% and the TSG
score is less than or equal to 5%, the gene is classified as an oncogene. Conversely, if the
ONG score exceeds 20% and the TSG score exceeds 5%, or if the ONG score is less than 20%
and the TSG score is greater than 20%, the gene is labeled as a tumor suppressor. Genes
that do not meet either of these criteria are designated as “unclassified”.

To evaluate the accuracy of our classification, we compared our results with two
publicly available lists of oncogenes and tumor suppressor genes. The first list was ob-
tained from the Molecular Signatures Database (v. 7.4 MSigDB). This database contains a
comprehensive collection of annotated gene sets for use with GSEA (Gene Set Enrichment
Analysis) software. The gene set we utilized consists of genes documented in the literature
as being mutated and implicated in cancer development (commonly referred to as “cancer
genes”). The list was last updated in 2004 [56]. The second list was extracted from the
study conducted by Tokheim et al., 2016 [57]. In their work, the classification of genes
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as oncogenes or tumor suppressors is based on the integration of results obtained with
multiple prediction methods.

Table 4. Criteria implemented for the in silico classification of genes as oncogenes or tumor
suppressors. The table presents the threshold values, corresponding to the indicated types of
mutations, employed to categorize a given gene into different groups (namely, oncogene, tumor
suppressor, or unclassified) based on available mutation annotations. These threshold values, which
are implemented in our computational procedure, are derived from Pavel et al., 2016 [7].

ONG Score
(x/total_mutations ×100)

TSG Score
(y/total_mutations × 100) Classification

>20% <=5% Oncogene
>20% >5% Tumor suppressor
<20% >20% Tumor suppressor
<20% <20% Unclassified

x = substitution_missense + deletion_in-frame + insertion_in-frame + complex_deletion_in-frame.
y = substitution_non-sense + deletion_frameshift + insertion_frameshift.

ES-target identification. To identify potential exons suitable for therapeutic ES ap-
proaches in the 72 cancer genes under investigation, the following steps were performed
for each gene. Firstly, all annotated alternative isoforms were collected using the GEN-
CODE database (release 43; 2 August 2023; GRCh38.p13). Specifically, the GFF3 file
“gencode.v43.annotation.gff3” from the Human section (Comprehensive gene annotation,
CHR Regions) was retrieved. Additionally, the corresponding sequences of each transcript
and their respective exons were downloaded from Ensembl (release 109; 8 February 2023).

Prediction of degradation via NMD. We exclusively applied NMD degradation prediction
to the shortened transcripts labeled as out-of-frame resulting from the in silico simulation
of ES events. This is because out-of-frame transcripts have the potential to generate PTCs,
which are relevant for NMD analysis. To determine whether NMD would be triggered for
these transcripts, we applied a set of well-established rules associated with NMD evasion.
These rules include two canonical ones known as the “50–55 nt rule” and “last-exon rule”,
along with a noncanonical rule called the “start-proximal rule” (as illustrated in Figure 7).
Under the “50–55 nt rule,” a PTC located less than 50–55 nucleotides upstream of the
last exon–exon junction typically does not activate NMD [79,80]. In our analysis, we
employed the more stringent threshold of 55 nucleotides, in line with previous research
findings [81–85]. The “last-exon rule” of NMD evasion states that PTCs within the last
exon are usually not recognized as premature codons because normal termination codons
are predominantly found in this exon. Our procedure, therefore, considered PTCs in
the last exon not to be subject to NMD [86,87]. Furthermore, we incorporated a notable
“noncanonical” rule discovered in cancer data, referred to as the “start-proximal rule” of
NMD evasion. According to this rule, the efficiency of NMD decreases within the 5’-most
nucleotides of the coding region of a transcript. Specifically, PTCs located approximately
150 nucleotides from the start codon typically do not trigger NMD [79,87,88]. These rules
collectively guided our assessment of the potential for NMD activation in the transcripts
under analysis.

ASO design. The implemented procedure employs two distinct approaches to gener-
ate 25-nucleotide-long ASO sequences aimed at inducing ES. The chosen length (25-mer)
is indeed the optimal length recommended for the design of morpholino-type ASOs [52].
The first approach involves designing ASOs that target splicing regulatory sites at the
splice junctions (donor and/or acceptor splice sites), while the second approach focuses
on splicing enhancer sites located within the exon, also known as ESEs. For each exon, a
fixed number of 14 ASOs (i.e., a set of 7 ASOs each for both donor and acceptor splice sites)
are designed to target splicing regulatory sites at the splice junctions, while the number
of exonic ASOs designed depends on both the exon length and number of annotated
ESEs therein. To generate the ASO sequences, a sliding window of 25 nucleotides is used.
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Specifically, for ASOs designed within exonic regions, the 25-mer window is shifted by
one nucleotide at each step, starting from the first position of the exon and ending with
the last window within the exon region. Subsequently, only the 25-mer sequences that
completely overlap with at least one annotated ESE site are retained for further evaluation
of physicochemical parameters. In the case of 25-mer ASOs designed to target the acceptor
splice site, a set of 7 ASO sequences that overlap the intron–exon border is collected. The
first ASO in this set begins at intronic position −18 (i.e., ASO sequence −18 to +7 from
the intron–exon border, where negative and positive numbers indicate intronic and ex-
onic nucleotides, respectively). Starting from there, the next ASO sequences are drawn
by sliding a 25-mer window by one nucleotide at the time until reaching the last ASO
sequence in the set, which begins at intronic position −12 (i.e., ASO sequence −12 to +13).
Similarly, in case of the set of 7 ASOs designed to target the donor site, the first 25-mer
window starts at position +12 from the exon–intron border within the exon (i.e., ASO
sequence +12 to −13), and this window is shifted by one nucleotide until reaching the be-
ginning of the last ASO in the set, which is exonic position +7 from the exon–intron border
(i.e., ASO sequence +7 to −18). Annotated ESE regions were taken from the SpliceAid
database [89]. Each binding site in the database is assigned a score ranging from 1 to
10. In our analysis, we focused only on sites annotated with positive scores (i.e., splicing
enhancers) and mapped them within target sequences. Concerning ASO nomenclature, we
followed the conventions described by Mann et al., 2002 [58].

Figure 7. Rules to predict the occurrence of Nonsense-Mediated Decay (NMD) based on the
position of a premature stop codon (PTC). This figure shows a schematic representation of an
mRNA, indicating the positions of translation initiation (START) and termination (STOP) codons that
define the main open reading frame. The figure illustrates the application of three rules associated
with NMD evasion: the “50–55 nt rule”, the “last-exon rule”, and the “start-proximal rule”. Distinct
colors are used to highlight regions where PTCs may be located and the resultant consequences.
Specifically, blue shading denotes PTC positions that are more prone to trigger NMD, while red
shading indicates positions less likely to elicit NMD. Figure adapted from Carrier et al., 2010 [81].

Candidate-ASO evaluation and selection. The designed ASOs undergo evaluation and
filtering based on reference physicochemical parameters, including CG percentage, G
percentage, presence of tetra G, self-complementarity, temperature of melting (Tm), and
specificity. The ViennaRNA Package was utilized to assess self-complementarity, which
generates a dot-bracket string notation that indicates both paired and unpaired bases
in the predicted ASO secondary structure. Only ASO sequences with a maximum of
16 contiguous base pairs of self-complementarity are selected [46]. Overall, the design of
ASOs follows the guidelines provided by Moulton et al. (2008) [52], including optimal
values for physicochemical parameters used to select the best candidate sequences. Tm,
a crucial parameter that significantly affects the specificity and effectiveness of ASOs, is
calculated using three different methods, with reference to the OligoCalc web tool [45]:

• Basic melting temperature (Tm) (°C),

Tm = 64.9 + 41(yG + zC− 16.4)/(wA + xT + yG + zC)
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• Salt-adjusted melting temperature (Tm) (°C),

Tm = 100.5 + 41(yG + zC)/(wA + xT + yG + zC)− 820
wA + xT + yG + zC

+ 16.6 log10
([

Na+
])

• Nearest-neighbor melting temperature (TmNN) (°C),

TmNN =

(
∆H − 3.4

kcal
°Kmole

)
/∆S + R ln

(
1

[primer]

)
+ 16.6 log

([
Na+

])
The thermodynamic parameters were calculated assuming standard conditions (namely,

1M NaCl, pH = 7, and temperature of 27 °C). The nearest-neighbor and thermodynamic
calculations were performed as described by Breslauer et al., 1986 [90], but using the values
published by Sugimoto et al., 1996 [91]. RNA thermodynamic properties were taken from
Xia et al., 1998 [92]. This program assumes that the sequences are not symmetric and contain
at least one G or C. The specificity was evaluated by assessing the absence of other potential
binding sites in the genome with up to 2 nucleotide mismatches. The Bowtie [93] short-read
aligner was used to map ASO sequences against the human genome (release GRCh38) with
the following parameters: -v 2 (i.e., map allowing up to 2 mismatches per read alignment);
-a (i.e., report all possible alignments). Only ASO sequences that met both the specificity
requirement (i.e., unique match in the human genome considering up to 2 mismatches) and
physicochemical requirements were reported for any gene of interest as candidates to induce
the selected ES products. Recommended thresholds for selected physicochemical parameters,
such as CG range (40%-60%), G content (up to 36% G), self-complementarity (16 contiguous
H-bonds maximum), consecutive G (maximum of 3 consecutive Gs), and oligo length, were
taken from Moulton et al., 2008 [52].

Author Contributions: Conceptualization, M.M., T.C. and L.L.P.; methodology, C.P., T.C. and L.L.P.;
software, C.P.; validation, C.P., A.R., T.C. and L.L.P.; resources, C.P.; writing—original draft prepara-
tion, C.P., T.C. and L.L.P.; writing—review and editing, C.P., A.R., M.M., T.C. and L.L.P.; supervision,
T.C. and L.L.P.; project administration, M.M., T.C. and L.L.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The newly generated data can be found in the manuscript and its
Appendices A, B and C.

Acknowledgments: We acknowledge the support of ELIXIR-IT. M.M. received support from the
European Union—NextGenerationEU—through the Italian Ministry of University and Research
(under PNRR projects PE_00000019 “HEAL ITALIA” (CUP: B33C22001030006) and PNC-E3-2022-
23683266 PNCHLS-DA “INNOVA”).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ASO Antisense oligonucleotide
BMD Becker muscular dystrophy
CDS Coding DNA sequence
DMD Duchenne muscular dystrophy
ES Exon skipping
ESE Exonic splicing enhancer
ESS Exonic splicing silencers
FDA Food and Drug Administration



Int. J. Mol. Sci. 2023, 24, 14862 21 of 26

ISE Intronic splicing enhancer
ISS Intronic splicing silencers
NMD Nonsense-Mediated Decay
ONG Oncogene
PTC Premature termination codon
snRNA Small nuclear RNA
TSG Tumor suppressor gene

Appendix A

To validate our classification, available for 48 genes, the results were compared with two
publicly available compendia of oncogenes and tumor suppressors: (1) Futreal et al., 2004 [56],
hereafter MSigDB; (2) Tokheim et al., 2016 [57], hereafter Tokheim. When comparing our gene
classification results with the MSigDB compendium (N = 410, comprising 328 oncogenes and
82 tumor suppressors), we found 35 shared genes available for the purpose of classification
comparison, while 13 (i.e., 6 tumor suppressors and 7 oncogenes) out of the 48 genes compos-
ing our classified list were not present in the MSigDB compendium. Among the shared genes
(N = 35), 30 genes were consistently classified, among which there were 14 out of 19 tumor
suppressors (74%) and all the oncogenes (16/16). However, five genes (CREBBP, NOTCH1,
NOTCH2, NPM1, RUNX1) were classified differently (i.e., MSigDB classified them as onco-
genes, while our procedure as tumor suppressors) (Figure A1A). Next, we compared our gene
classification results to the Tokheim compendium (N = 290 genes, including 79 oncogenes and
211 tumor suppressors) (Figure A1B). Eleven out of the 48 genes in our classified list were not
included in the Tokheim compendium. As for the remaining 37 genes of our classified list (i.e.,
24 tumor suppressors and 13 oncogenes) shared with the Tokheim compendium, all the tumor
suppressor genes (24/24, 100%) and most of the oncogenes (12/13, 92%) were consistently
classified. There was only one gene (JAK2) with conflicting assignments as an oncogene (our
procedure) and tumor suppressor (Tokheim).

Figure A1. Cancer gene classification comparison. Comparison of our classification of the 72 genes
selected as oncogenes (ONGs) or tumor suppressors (TSGs) with two compendia of ONGs and
TSGs. (A) In this panel, the Venn diagram shows the overlap between our results (TSG, ONG) and
the MSigDB results (ONG_MSigDB, TSG_MSigDB). (B) In this panel, the Venn diagram shows the
overlap between our results (TSG, ONG) and the Tokheim results ( ONG_Tokheim, TSG_Tokheim).
Abbreviations: ONG = oncogene; TSG = tumor suppressor gene; MSigDB = list of oncogenes and
tumor suppressors from MSigDB; Tokheim=list of oncogenes and tumor suppressors from Tokheim.

Appendix B

As of today, there are four ASO-based drugs approved by the FDA: Eteplirsen,
Golodirsen, Viltolarsen, Casimersen [29–32]. All four drugs have been developed to
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modulate the splicing of the dystrophin gene for therapeutic purposes in patients affected
by Duchenne muscular dystrophy.

Table A1. Comparison between results from ASOs designed with our pipeline and currently
approved ASO drugs. This table provides a comparison between the released sequence of the
approved drug (column 3, top line) and the best match with ASOs designed using our procedure
(column 3, bottom line) to target the corresponding exon. Blue-color highlights of nucleotides indicate
identity between the drug sequence and candidate ASO designed with our procedure.

ASO Drug Target Exon
Ensembl ID

Drug Sequence (Length)
Pipeline Matching Hit (Length)

Eteplirsen
Exon 51

(ENSE00003669071.1)
CTCCAACATCAAGGAAGATGGCATTTCT (28 nt)
CTCCAACATCAAGGAAGATGGCATTTCT (25 nt)

Golodirsen
Exon 53

(ENSE00001258577.1)
GTTGCCTCCGGTTCTGAAGGTGTTCNNN (25 nt)
GTTGCCTCCGGTTCTGAAGGTGTTCNNN (25 nt)

Viltolarsen
Exon 53

(ENSE00001258577.1)
CCTCCGGTTCTGAAGGTGTTCNNNTTGT (21 nt)
CCTCCGGTTCTGAAGGTGTTCTTGTNNN (25 nt)

Casimersen
Exon 45

(ENSE00003988228.1)
GCTGCCCAATGCCATCCTGGAGTTCCTG (22 nt)
GCTGCCCAATGCCATCCTGGAGTTCCTG (25 nt)

Appendix C

Table A2. The best candidate ASO sequences designed at the selected exon splice junctions of the
BRAF and TP53 genes. The table provides the ASOs that were specifically designed at the junctions
of the selected exons of BRAF and TP53 that lead to desired ES outcomes (out-of-frame transcripts
for the oncogene BRAF and in-frame transcripts for the tumor suppressor TP53). The listed ASOs,
with their corresponding sequences indicated in the table, successfully passed all physicochemical
filters and have a unique match in the genome. The nomenclature used for the ASOs follows the
conventions described by Mann et al., 2002 [58].

Gene Exon ID ASO ID ASO Sequence

BRAF ENSE00001907699.1

H18D (10, −15) GGACAGGAAACGCACCAUAUCCCCC
H18D (9, −16) UGGACAGGAAACGCACCAUAUCCCC
H18D (8, −17) GUGGACAGGAAACGCACCAUAUCCC
H18D (7, −18) AGUGGACAGGAAACGCACCAUAUCC

ENSE00003485507.1

H15D (11, −14) GCCUCAAUUCUUACCAUCCACAAAA
H15D (10, −15) AGCCUCAAUUCUUACCAUCCACAAA
H15D (9, −16) UAGCCUCAAUUCUUACCAUCCACAA
H15D (8, −17) AUAGCCUCAAUUCUUACCAUCCACA
H15D (7, −18) AAUAGCCUCAAUUCUUACCAUCCAC

ENSE00003521664.1

H12A (−16, 9) CCACAUCACCUAAAAGGCAAUUGUU
H12A (−15, 10) GCCACAUCACCUAAAAGGCAAUUGU
H12A (−14, 11) UGCCACAUCACCUAAAAGGCAAUUG
H12A (−13, 12) CUGCCACAUCACCUAAAAGGCAAUU
H12A (−12, 13) ACUGCCACAUCACCUAAAAGGCAAU
H12D (13, −12) ACACAAGCUCACCUGAGUACUCCUA
H12D (12, −13) CACACAAGCUCACCUGAGUACUCCU
H12D (11, −14) UCACACAAGCUCACCUGAGUACUCC
H12D (10, −15) UUCACACAAGCUCACCUGAGUACUC
H12D (9, −16) AUUCACACAAGCUCACCUGAGUACU
H12D (8, −17) AAUUCACACAAGCUCACCUGAGUAC
H12D (7, −18) UAAUUCACACAAGCUCACCUGAGUA
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Table A2. Cont.

Gene Exon ID ASO ID ASO Sequence

ENSE00003559218.1

H11D (13, −12) UUACAUACUUACCAUGCCACUUUCC
H11D (9, −16) CACAUUACAUACUUACCAUGCCACU
H11D (8, −17) CCACAUUACAUACUUACCAUGCCAC
H11D (7, −18) ACCACAUUACAUACUUACCAUGCCA

TP53 ENSE00003670707.1
H5A (−16, 9) GCAAAACAUCUUGUUGAGGGCAGGG

H5A (−15, 10) GGCAAAACAUCUUGUUGAGGGCAGG
H5A (−14, 11) UGGCAAAACAUCUUGUUGAGGGCAG

ENSE00003625790.1

H3D (13, −12) AGGGCAACUGACCGUGCAAGUCACA
H3D (12, −13) CAGGGCAACUGACCGUGCAAGUCAC
H3D (11, −14) UCAGGGCAACUGACCGUGCAAGUCA
H3D (10, −15) CUCAGGGCAACUGACCGUGCAAGUC
H3D (9, −16) CCUCAGGGCAACUGACCGUGCAAGU
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