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Abstract: Optimal risk assessment for primary prevention remains highly challenging. Recent
registries have highlighted major discrepancies between guidelines and daily practice. Although
guidelines have improved over time and provide updated risk scores, they still fail to identify a
significant proportion of at-risk individuals, who then miss out on effective prevention measures
until their initial ischemic events. Cardiovascular imaging is progressively assuming an increasingly
pivotal role, playing a crucial part in enhancing the meticulous categorization of individuals according
to their risk profiles, thus enabling the customization of precise therapeutic strategies for patients with
increased cardiovascular risks. For the most part, the current approach to patients with atherosclerotic
cardiovascular disease (ASCVD) is homogeneous. However, data from registries (e.g., REACH,
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CORONOR) and randomized clinical trials (e.g., COMPASS, FOURIER, and ODYSSEY outcomes)
highlight heterogeneity in the risks of recurrent ischemic events, which are especially higher in
patients with poly-vascular disease and/or multivessel coronary disease. This indicates the need for
a more individualized strategy and further research to improve definitions of individual residual risk,
with a view of intensifying treatments in the subgroups with very high residual risk. In this narrative
review, we discuss advances in cardiovascular imaging, its current place in the guidelines, the gaps
in evidence, and perspectives for primary and secondary prevention to improve risk assessment and
therapeutic strategies using cardiovascular imaging.

Keywords: cardiovascular imaging; risk assessment; prevention; cardiovascular risk

1. Introduction

Despite major progress in recent decades, cardiovascular diseases (CVDs) still repre-
sent the leading cause of mortality and morbidity worldwide [1]. Indeed, after an initial
dramatic fall in cardiovascular (CV) deaths in the early phase of acute coronary syndromes
(ACSs), the decline in mortality is slowing, while CVD morbidity is rising due to the
increasing prevalence of risk factors [2]. These findings indicate that better identification of
individuals with high risk for primary prevention is necessary to facilitate earlier action and
reduce the burden of major adverse cardiovascular events (MACE). The leading modifiable
risk factors are smoking, type 2 diabetes, dyslipidemia, and high blood pressure, which
are often associated with poor lifestyle in terms of diet and exercise, culminating in a high
prevalence of metabolic syndrome and obesity worldwide [3].

Screening for CV disease is crucial since atherosclerosis is a long, progressive, and
silent process that occurs prior to the index acute event in most individuals. Since the first
clinical manifestation of CVD is acute myocardial infarction (AMI) or sudden cardiac death
in 50% of individuals, early identification of high-risk individuals is a major issue in the
implementation of effective prevention strategies in the community [4].

The European Society of Cardiology (ESC) guidelines have recently been updated, and
they recommend the use of the SCORE2 and SCORE2-OP risk assessment tools [5,6]. The
American College of Cardiology (ACC) guidelines have updated the atherosclerotic car-
diovascular disease (ASCVD) risk assessment score [7] with the common goal of enabling
enhanced risk assessment of the European and US populations. As mentioned, SCORE2 is a
new algorithm that was derived, calibrated, and validated for the prediction of the 10-year
risk of first-onset CVD in European populations. SCORE2-OP (older populations) was
developed in a similar manner, with the aim of predicting the 10-year risk of a CVD event
in people over 65 years of age. However, as risk factor scores are based on probabilistic
calculations derived from population-based studies, these improved risk scores do not
apply to all individuals. Furthermore, these risk assessment tools have some weaknesses,
which may explain why recent data show that they fail to identify some high-risk indi-
viduals [8]. These scores represent an undisputed step forward in risk evaluation but
remain suboptimal since they fail to yield accurate evaluations in several subgroups of
patients, including those with a family history of premature CAD, individuals with chronic
inflammatory diseases, and users of recreational drugs. Additionally, evaluation of the
duration of exposure to risk factors is also suboptimal.

Concerning non-modifiable risk factors, scores tend to underestimate risk in younger
individuals and women. Emerging non-traditional risk factors and/or markers have been
mentioned, but strategies for detection, risk evaluation, and management are not well
defined, underscoring the need for further research in this field. These markers include
apolipoprotein A (ApoA), apolipoprotein B (ApoB), high-sensitivity C-reactive protein
(hs-CRP), brain natriuretic peptides (BNP), troponin I homocysteine, interleukins 1 and
6 (IL1, IL6), lipoprotein (a) [Lp(a)], cholesterol remnants, size and number of low-density
lipoprotein (LDL) particles, tissue/tumor necrosis factor-α (TNF- α), and uric acid [9].
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All these factors and markers are associated with an increased risk of MACE, but their
precise place in the risk assessment and the optimal strategy for addressing them requires
better definition.

Since the ASCVD substrates are plaque characteristics and progression, monitoring
the progression of atheroma using CV imaging techniques seems to be a promising and
logical approach to ensure patients are treated adequately. Progress in the development of
cardiovascular imaging supports its growing role as a modern strategy for improving risk
classification and optimizing therapeutic strategies for high-risk patients. However, the
role of CV imaging in risk assessment for primary and secondary prevention is not well
established in the current guidelines.

In this narrative review, we propose a critical discussion and overview of risk assess-
ment for primary and secondary prevention using CV imaging. Specifically, we highlight
the advances in cardiovascular imaging to improve risk assessment, the current place of
imaging in the guidelines, the gaps in evidence, as well as future directions.

2. Cardiovascular Imaging for Primary Prevention

For years, CVD prevention has been the focus of the medical community. Primary
prevention plays a key role in reducing the incidence of CVDs in the population. Due to
continuous progress and better access, CV imaging should play a key role in identifying in-
dividuals with high risks of CVDs beyond the traditional approach based on risk scores [10].
Both European and American scientific associations have published recommendations on
cardiovascular imaging for primary prevention [7,11,12]. The guidelines recommend that
non-invasive imaging techniques, such as contrast computed tomography (CT) coronary
angiography, coronary artery calcium (CAC) score, and carotid ultrasound (US), should
be considered during risk assessment for primary prevention. Technology advancements
have helped reduce the amount of radiation exposure, and all of these techniques ensure
the highest level of safety [13]. Current guidelines emphasize the importance of using
cardiovascular imaging alongside traditional risk factor assessment, not in place of it.
Furthermore, the guidelines caution that imaging should be tailored to individual patient
characteristics [12]. CV risk can be assessed using non-invasive imaging strategies, in-
cluding echocardiography, CAC scores, CT scans, magnetic resonance imaging (MRI), and
nuclear imaging. It is possible to detect subclinical disease, monitor disease progression,
or rule out coronary artery disease (CAD) using these techniques, but guidelines do not
provide specific guidance on the management of individuals for primary prevention.

2.1. Coronary Computed Tomography Angiography (CCTA)

Coronary computed tomography angiography (CCTA) is a non-invasive imaging
test widely used in daily practice. Its validity and feasibility in the diagnosis and risk
stratification of CAD are well established (Figure 1). CCTA has replaced coronary angiog-
raphy as a diagnostic tool for confirming CAD. Indeed, CCTA is useful for ruling out
CAD with an intermediate or low pre-test probability due to its high negative predictive
value (NPV) [14]. Numerous randomized controlled trials (RCTs) have confirmed the
effectiveness and potency of CCTA in this field [15–17].

2.2. Coronary Artery Calcium Score (CAC Score)

Currently, one of the most validated tools for managing primary prevention in asymp-
tomatic patients is the CAC score derived from CT scans [18]. The CAC score is an estimate
of the amount of calcium within the walls of the coronary arteries as determined using a
non-invasive imaging procedure (CCTA). CAC reliably indicates CAD and cardiovascular
events in asymptomatic individuals [19,20]. Indeed, coronary calcification and CVDs are
strongly correlated, and both ESC and ACC/AHA guidelines currently approve the use of
CAC scoring. The CAC score is commonly used to assess risk stratification, and a CAC = 0
is a strong marker of low risk [7,12]. Numerous studies have evaluated the use of CAC
scores for primary prevention:
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In the Prospective Army Coronary Calcium Project conducted in 2005, CAC showed
an incremental predictive value for premature CVD outcomes in a cohort of healthy men
and women [21].
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Figure 1. A patient with a strong family history of CAD, with cardiac CT positive for non-obstructive
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short (panel D) axis views.

The Multi-Ethnic Study of Atherosclerosis (MESA) confirmed the efficacy of the CAC
score as a strong predictor of coronary heart disease, irrespective of ethnicity [22].

The validity of the CAC score was also evaluated in the Framingham population,
where it appeared to be associated with CVD, independent of Framingham risk factors [23].

Additional evidence was reported in a statement from the CAC Consortium, where
the CAC score was shown to be the most reliable predictor of long-term mortality [24].

Based on the 2021 ESC guidelines, CAC scoring may be considered to improve risk
classification (class IIb) [11]. If CAC scoring is not available, it can be replaced by carotid
ultrasound, even though CAC better predicts cardiovascular events [25].

The 2019 ESC guidelines on chronic coronary syndromes recommend the use of CAC
in patients with intermediate-risk factors for CAD who have doubtful or inconclusive stress
testing or who have symptoms suggestive of CAD but normal stress testing results [26]. The
guidelines suggest that a CAC score = 0 can effectively exclude the presence of significant
CAD, whereas a CAC score > 400 indicates a high probability of significant CAD. The
ACC/AHA also recommends the use of the CAC score as a diagnostic tool for assess-
ing the presence and severity of CAD. In line with the ESC guidelines, the ACC/AHA
recommendations suggest the use of CAC in patients with intermediate-risk factors for
CAD [7]. Nevertheless, there are some differences between the two sets of guidelines. The
ESC guidelines recommend using CAC scoring as an additional tool for risk assessment
in asymptomatic individuals with intermediate cardiovascular risk [12]. The ACC/AHA
guidelines also recommend CAC scoring, but only in individuals with intermediate risk
who are undecided about statin therapy after clinician–patient risk discussion [7]. In addi-
tion, the ESC guidelines use a CAC score of 100 Agatston units or more as the threshold for
identifying individuals who may benefit from statin therapy. In contrast, the ACC/AHA
guidelines use a threshold of the 75th percentile or greater for age, sex, and ethnicity as the
threshold for considering statin therapy. The ACC/AHA guidelines provide specific CAC
scoring thresholds for African American, Hispanic/Latino, and South Asian individuals,
while the ESC guidelines do not differentiate by ethnicity [7,12]. The ESC guidelines advise
against using CAC scoring in low-risk individuals, while the ACC/AHA guidelines do
not recommend routine CAC scoring in low-risk individuals but acknowledge that some
individuals may choose to have the test performed for personal reasons [7,12].

Overall, both the ESC and ACC/AHA guidelines support the use of CAC scoring as
a risk assessment tool for primary prevention. Clinicians should consider the guidelines
in conjunction with their clinical judgment and individual patient factors when deciding
whether to use CAC scoring as part of primary prevention efforts. It has also been shown
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that CAC scoring can be useful in patients with familial hypercholesterolemia (FH), a
genetic disorder characterized by high LDL cholesterol levels. A study published in 2019
found that CAC scoring was effective at identifying FH patients at high risk of cardiovascu-
lar events and could guide treatment decisions in this population [27]. Nevertheless, while
some studies have suggested that CAC scoring can be useful in certain patient populations,
the ESC guidelines do not currently recommend the routine use of CAC scoring in patients
with FH [12]. Thus, additional research is needed to determine the most effective ways of
using CAC scoring to assess cardiovascular risk in different patient populations.

Despite its feasibility and cost-effectiveness, CAC has some limitations that need
to be addressed in future studies. Indeed, the use of CAC is still debated in younger
adults, particularly those under the age of 40, in whom coronary artery calcification is less
common [28]. This means that CAC scoring may not be as useful for risk assessment in
these individuals. Additionally, it is important to consider the harmful effects of ionizing
radiation exposure in younger individuals who are more sensitive to these effects [29].
Another crucial aspect to consider is that CAC scoring is not widely available in all health-
care settings and may not be covered by all insurance plans [30]. Undoubtedly, there is
a pressing need for a novel CAC score encompassing a comprehensive range of factors,
including age-specific percentiles, tissue density, surface area, anatomical locations, vessel
count, and extra-coronary calcifications. Currently, the majority of CAC scoring systems
are rooted in the Agatston score, which solely assesses the quantity of calcium present
in the coronary arteries. The integration of these proposed items introduces complexities
in terms of data acquisition, processing, and interpretation. Furthermore, variabilities
in imaging techniques, patient characteristics, and data sources require a rigorous and
concerted effort to standardize methodologies and establish robust correlations with clinical
outcomes. Nevertheless, we consider this strategy of implementing the currently available
scores pivotal.

2.3. Other Imaging Techniques

Other imaging techniques are considered in ESC guidelines for primary prevention of
CV to improve risk stratification. Atherosclerosis is a progressive disease that can involve
multiple vessels and areas of the body and includes peripheral artery disease (PAD). PAD
can affect the extremities, abdominal aorta, and carotid arteries; this latter localization
may lead to stroke. To stage CV disease, imaging techniques such as US imaging can help
assess the presence and extent of atherosclerotic plaques at the carotid, abdominal, and
peripheral levels. Regarding carotid artery imaging, measurements of carotid plaques have
demonstrated the best prognostic value. Through the utilization of imaging to identify
and monitor the progression of CVDs, it is possible to individualize risk assessment
for each patient at an early stage. Furthermore, through ultrasound (US) imaging, it is
possible to document atherosclerosis in terms of the composition of the plaque (fat or
calcium predominance), the plaque burden, and the potential hemodynamic influence.
Moreover, imaging enables earlier detection of CVD in younger patients whose risk is often
underestimated by scores. Carotid ultrasound is recommended (class IIb) as a risk modifier
when a CAC score is not applicable [31]. The measurement of carotid artery intima-media
thickness (IMT) is not recommended as a risk modifier in the guidelines due to the lack
of a standardized measurement and cut-off and represents more arterial remodeling than
atherosclerosis. There are some lines of evidence suggesting that carotid IMT is correlated
with CV events [32]. Therefore, carotid ultrasound is the preferred method for predicting
atherosclerosis progression [33].

The ankle–brachial index (ABI) is a simple, non-invasive, and cheap test that measures
the ratio of systolic blood pressure in the ankle to that in the arm. The ABI is a useful
tool for risk assessment in individuals at intermediate or high risk of cardiovascular
disease. The guidelines recommend measuring the ABI in individuals with suspected
or established PAD, as well as in those with symptoms of claudication (leg pain when
walking) or atypical leg symptoms. In a study involving 5003 older adults, it was shown
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that participants with no history of ASCVD had a greater risk of CHD and stroke when
the ABI was ≤0.9 [34]. However, the ABI is not recommended as a routine screening tool
in asymptomatic individuals as there is limited evidence of its effectiveness in primary
prevention [11].

Echocardiography is also not recommended as a routine screening tool for primary
prevention of cardiovascular disease in asymptomatic individuals [11]. However, it may be
considered part of a comprehensive CV risk assessment in individuals with suspected or
established cardiovascular disease.

In specific cohorts, such as athletes or individuals at elevated risk of sudden cardiac
death, echocardiography assumes a paramount role in primary cardiovascular prevention,
facilitating targeted assessment and early detection of potential cardiac issues, ultimately
contributing to informed decision-making and personalized care [35,36].

Another imaging technique that may play a prominent role in the future is cardiac
magnetic resonance imaging (CMR). Indeed, CMR imaging has become an essential tool
in diagnosing and managing cardiovascular diseases. It provides precise information on
the structure and function of the heart, including the size and thickness of the heart walls,
stroke volume, as well as any abnormalities in the heart muscle [37]. Thus, CMR can be used
to detect early signs of myocardial damage or fibrosis, which may indicate an increased risk
of heart failure or sudden cardiac death [38] (Figure 2). Consequently, CMR can be used
to guide the implantation of an Implantable Cardioverter Defibrillator (ICD) for primary
prevention [39]. Additionally, CMR can be used to assess valve function and identify
structural abnormalities associated with a higher risk of cardiovascular events [40]. Overall,
CMR has the potential to play an important role in primary prevention by providing more
accurate risk stratification and guiding personalized management strategies for individuals
at increased risk of cardiovascular disease. However, there is a lack of evidence on this topic,
and the use of CMR to guide ICD implantation for primary prevention needs to be tested
in RCTs. Notably, the ‘Cardiac Magnetic Resonance Guidance of Implantable Cardioverter
Defibrillator Implantation in Non-ischemic Dilated Cardiomyopathy (CMR-ICD)’ trial is
slated to complete recruitment by November 2023. This study is poised to shed light on the
potential benefits of CMR for primary prevention to guide the implantation of ICD. The
rationale is that CMR allows a meticulous assessment of cardiac functionality, morphology,
and tissue characteristics [41]. The prospect of leveraging CMR, including the evaluation
of late gadolinium enhancement (LGE), holds promising implications for enhancing risk
stratification and decision-making in this cohort. The feasibility and cost-effectiveness of
CMR compared with other imaging modalities also require evaluation.
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3. Risk Assessment Using Cardiovascular Imaging for Secondary Prevention

CV risk assessment in patients with ASCVD is needed to estimate the risk of further
CV events. For secondary prevention, this is termed “residual” risk, and patients are
at high risk of recurrent events. Reducing the global CV disease burden and risk of
new events requires personalized and intensified treatment [11]. Specifically, residual
risk in these patients is calculated using risk stratification tools to define the 10-year risk
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of recurrent CV disease. Currently, the SMART (Secondary Manifestations of Arterial
Disease) risk score is recommended for estimating risk for secondary prevention. This
score is calculated in patients with CAD, PAD, abdominal aortic aneurysm (AAA), or
cerebrovascular disease [42]. The variables needed to calculate the 10-year risk are age,
sex, smoking status, diabetes mellitus, systolic blood pressure, total and high-density
lipoprotein cholesterol, creatinine, high-sensitivity C-reactive protein, years since the first
CV event, and form of the disease (CAD, PAD, AAA, or cerebrovascular disease).

The European guidelines for cardiovascular prevention consider patients with ASCVD
to be at high or very high risk [11]. Residual CV risk assessment is not based on information
and parameters from CV imaging; this is a notable gap in risk assessment. CV imaging can
stratify patients for secondary prevention, rather than considering them all as constituting
a single category. Furthermore, careful stratification should also be conducted for poly-
vascular patients. Generally, poly-vascular status is associated with excess MACE despite
medical treatment, and, in these cases especially, imaging could add further relevant
prognostic stratification. For example, CAD plus 50% carotid stenosis is associated with a
100% increase in MACE, as suggested by the REACH registry [43,44].

CV imaging, such as echocardiography, coronary CT, and CMR, could be key exams
for stratifying patients after CV events, ultimately improving therapeutic strategies and
preventing further events.

Transthoracic echocardiography is recommended 1–3 months after the index acute
event, and periodically in subjects with chronic coronary syndrome, to assess left ventricular
function, valvular disease, and hemodynamic status [26]. Emerging data show the role of
advanced echocardiography in stratifying these patients beyond the ejection fraction. The
left ventricle global longitudinal strain (GLS) is the most widely studied parameter, and its
prognostic significance has been evaluated, particularly in patients with CAD. Indeed, peak
systolic GLS in patients after ST-elevation MI is an independent predictor of MACE. The
cut-off associated with MACE development is <−13% (hazard ratio (HR) between 1.1 and
2.34) [45] (Figure 3). However, other studies have also reported lower GLS values associated
with poor prognosis and strong predictors of adverse events (up to > −9.55%) [46,47].
Iwahashi et al. documented the additional role of left ventricular myocardial dispersion in
this group of patients for the prediction of MACE with a value > 56.7 ms (HR 1.991, 95%
CI 1.033–3.613, p = 0.03) [48]. Furthermore, Olsen et al. highlighted a linear association
between GLS and MACE and a three-fold increased risk with values > −13.6% in patients
after coronary artery bypass grafting [49] (Figure 4). Finally, in patients with chronic
coronary syndrome, Espersen et al. showed significant MACE prediction with a low mean
GLS value of −14% (HR 1.20, 95% CI 1.00–1.43, p = 0.049) [50].

Several issues should be considered when performing an echocardiographic exami-
nation. Similar to US exams, this imaging technique is strictly “operator-dependent” and
subject to interpretive error. Classical analysis during the echocardiographic examination is
the evaluation of regional left ventricle function through the observation of wall thickening
and endocardial motion of the single segments, which are assessed based on observer expe-
rience and subjective and qualitative considerations. Poor image quality, reduced patient
cooperation, artifacts, improperly oriented views, under- or over-estimation of chamber
size, and ventricular function are other limitations to consider. Indeed, LVEF could be
misleading in the presence of coexisting conditions such as moderate to severe mitral regur-
gitation, which can lead to an overestimation of left ventricular function [51,52]. Several
issues are also involved when using advanced parameters such as Global Longitudinal
Strain. This technique can be altered by pitfalls such as low-quality images, left ventricle
foreshortening, loading conditions, and software and vendor equipment variability.

Coronary CT is a well-known non-invasive technique for evaluating patients with
CAD. In the context of secondary prevention, this approach provides the initial valuable
data required for effectively stratifying these patients (Figure 5). Phenotypic characteri-
zation of the plaque aims to define whether a plaque is at high risk. Positive remodeling,
spotty calcification, low attenuation plaque, and the Napkin-ring sign are indicators of a
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high-risk plaque. Furthermore, lesion volume progression is an independent predictor of
MACE in subjects with unrevascularized non-culprit intermediate stenosis (50–69%) [53].
In patients with ACS, the characterization of non-culprit plaques is central to risk assess-
ment and management over time. Non-culprit plaques with >50% luminal narrowing or
with a high plaque burden are associated with a significant risk of MACE [54]. In addition,
coronary CT-derived fractional flow reserve adds prognostic information on non-culprit
plaques in patients with ACS. Indeed, a CT-derived FFR value ≤ 0.80 is a predictor of future
MACE (HR 1.56, 95% CI 1.01–2.83, p = 0.048) [55]. Furthermore, plaque burden progression
is associated with a high incidence of MACE in individuals with stable angina [56]. Data are
also emerging on the useful role of coronary CT in the risk assessment of individuals with
stroke. CAD detection in these patients is independently associated with MACE [57,58],
adding prognostic value over the CAC score [59]. Finally, van’t Klooster et al. reported
interesting data on the incremental value of CAC, thoracic aortic calcium, and heart valve
calcium scores in patients with established CVDs such as coronary heart disease, cere-
brovascular disease, and/or PAD [60]. The CAC score improves the performance of risk
prediction models and adds prognostic value to the prediction of future MACE in patients
with stable CV disease (HR 1.35, 95% CI 1.15–1.58).
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CCTA raises concerns, particularly in relation to radiation exposure and the use of
iodine contrast agents, that can give rise to significant risks such as hypersensitivity re-
actions, thyroid dysfunction, and contrast-induced nephropathy [61]. Notably, radiation
exposure is associated with potential cancer development [62]. In recent decades, advance-
ments in technology (e.g., step-and-shoot protocols) have enabled a noteworthy decrease
in radiation exposure. Moreover, in specific cases, the implementation of high-pitch spiral
protocols on modern dual-source machines can lead to a further reduction in ionizing
radiation [63,64]. Regarding renal function and contrast agent exposure, recent studies
indicate that the contrast media might not directly raise creatinine levels or increase the
risk of Acute Kidney Disease (AKI), irrespective of comorbidities that may predispose to
nephrotoxicity [65]. This is true both for coronary angiography and CCTA, which work by
using iodine contrast agents. Some studies show that CKD alone might not be the problem
when performing imaging using iodine contrast, but it might be when there are associated
conditions and comorbidities such as hypovolemia. Giving the patients sodium chloride
infusions or sodium bicarbonate after performing blood gas analysis might be a solution
for preventing contrast-induced AKI. After these considerations, CCTA may be appropriate
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for subjects with chest pains or anginal equivalent and established coronary artery dis-
ease, or for studying the patency of coronary artery bypass grafts or previously implanted
coronary stents (preferably for stent diameters ≥ 3.0 mm) [66]. In-stent restenosis (ISR) is
a phenomenon in which a previously stented coronary lesion narrows the walls due to
myointimal hyperplasia. The frequency of this event has reduced since the introduction of
drug-eluting stents over bare metal stents, with the latter being more prone to narrowing.
Indeed, the mean time from PCI to ISR is 12 months with drug-eluting stents and 6 months
with bare metal stents. This means that, even if reduced, ISR is still an issue, especially
in diabetic patients who have the highest risk of ISR. Using CCTA, it is possible to make
an early diagnosis of ISR. Some studies show that in almost two-thirds of symptomatic
patients with previous coronary stent implantation, ISR can be ruled out using CCTA [66].
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Figure 5. A patient with previous percutaneous revascularization of the right coronary artery, with
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view (panels C–E). In panel (D), a clear hypodensity is evident inside the stent lumen compared with
panels (C,E).

CMR shows more consistent findings compared with the other techniques in the
risk assessment of patients for secondary prevention. CMR combines heart function and
morphology assessment to evaluate ischemic heart disease. This is achieved by analyzing
myocardial wall motion and function, as well as evaluating the presence, extent, and
characteristics of myocardial edema, ischemia, and scar tissue, similar to echocardiography,
but with better reproducibility and less inter-operator variability. CMR can also be used
to obtain stress and rest perfusion images whose principles are similar to Myocardial
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Scintigraphy, but with the benefits of (1) being a first-pass imaging study, hence it is
performed using an abbreviated adenosine protocol, and (2) higher spatial resolution
(>20×) than radionuclide technique and can detect a perfusion defect that is limited
to the subendocardial layer [67]. The third aspect is represented by edema imaging to
differentiate between acute and chronic myocardial injuries. Myocardial edema is the result
of the activation of the inflammatory cascade, associated with acute ischemic damage,
that leads to cell death and activation of the inflammatory response, with accumulation
of water and waste products in the injury-related area. These features can be studied
with some MRI sequences such as T2-weighted short-tau inversion recovery (STIR), which
is a highly T2-weighted sequence that allows enhancement of the presence of fluids at
the tissue level without using contrast agents. The fourth feature that CMR can study is
represented by infarct imaging in the form of Delayed enhancement (DE) imaging. This
phenomenon is associated with the alteration of the cell membranes of the cardiomyocytes
in ischemic heart disease, which leads to the accumulation of Gadolinium in infarct-related
areas. The diseased myocardium has delayed Gadolinium washout compared with the
healthy myocardium, leading to the phenomenon of late gadolinium enhancement (LGE).
The extension of gadolinium accumulation is associated with the amount of necrotic
tissue. The main issues with CMR are its costs and availability. Even if the availability
of CMR in Europe is improving, the cost of MRI is still high for public health, and better
training of physicians, especially fellow cardiologists, is needed to improve the radiologist—
cardiologist interactions.

Several studies have revealed the prognostic value of GLS in patients after ST-segment
elevation myocardial infarction (STEMI). A value ≥ −11% is associated with a high MACE
rate (HR 1.21, 95% CI 1.11–1.32, p < 0.001) [68]. GLS has a higher prognostic value than
left ventricular ejection fraction [69]. Moreover, in patients with CAD, the presence of
late gadolinium enhancement (LGE) is a strong predictor of MACE, and increasing size is
associated with a 4% increase in HR [70] (Figure 6). In STEMI patients, anterior myocardial
infarction and a larger extent of damage as assessed by LGE increase the risk of MACE
(HR 1.03, 95% CI 1.01–1.06, p = 0.01) [71]. In addition, microvascular obstruction (MVO)
also predicts MACE in these patients in the long term [72], and late MVO extent > 0.385 g
is a strong independent predictor [73]. Another useful parameter for risk stratification in
patients with reperfused STEMI is the presence of intramyocardial hemorrhage (IMH) as
assessed using T2 imaging. Indeed, IMH is associated with an increased risk of MACE
regardless of the left ventricular ejection fraction [74,75]. During the acute phase, infarct
and global extracellular volume (ECV) predict MACE with hazard ratios of 4.04 and 5.10,
respectively [76]. Finally, prognostic data on the study of non-infarct-related coronary artery
territory are also emerging in patients with STEMI. Indeed, T1 > 1250 ms in non-infarcted
myocardium correlates with an increased risk of MACE (HR 2.534, 95% CI 1.033–6.219;
p = 0.042) [77]. The presence of MVO in these territories is also associated with worse
cardiovascular outcomes [78].
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4. New Perspectives for Secondary Prevention

Residual risk assessments of patients for secondary prevention are based on clin-
ical and laboratory variables. Currently, further stratification of these patients using
cardiovascular imaging through risk calculators is lacking. Patients with ASCVD or poly-
vascular disease are not in a single category with the same risk. Indeed, individualized
risk assessment is needed to guide therapy and intensify treatment in patients with high
residual risk.

Studies of risk prediction models suggest that prognostic imaging parameters are
necessary. Risk calculators for residual risk assessment should include clinical, laboratory,
and imaging parameters. Currently, the SMART risk score is used for assessing the risk of
recurrent events for secondary prevention. Future research should investigate the potential
of adding cardiovascular imaging parameters to this score. Finally, the current literature on
cardiovascular imaging for secondary prevention is mostly based on individuals who have
suffered from AMI. New data are needed for patients who have suffered a stroke, aortic
aneurysm, or PAD. In addition, there is a paucity of data on subjects with poly-vascular
atherosclerotic disease, and, for this population that is at very high risk, an accurate
assessment is necessary to stratify risk.

The possibility of assessing effective cardiovascular risk in patients with poly-vascular
atherosclerotic disease status using imaging techniques may be improved by correlating
imaging data with metabolic targets or with different medical therapies to verify their
effectiveness in preventing the progression of CVDs.

RCTs of patients with different metabolic targets of serum LDL cholesterol and Hb1Ac
levels, as well as different anti-diabetic therapies in terms of CAC scores, would be useful
for comparing the benefits of medical therapies, ideal targets for specific patients, and the
progression of CVDs in differently stratified patients.

5. Gaps in Evidence and Future Implications
5.1. Calcium Scoring and Beyond for Primary Prevention

Calcium scoring was developed in the 1980s by Agatston but has only recently gained
popularity in the primary prevention guidelines, particularly the use of statins [18]. New
automated image segmentation techniques are now used routinely to quantify coronary cal-
cium with high precision and reproducibility. New CAC-based strategies for restratifying
individual risks reclassify as many as 20% of patients compared with prior guidelines [79].
Calcified plaque is a direct sign of CAD, whereas previous guidelines employed a proba-
bilistic approach based on risk factors for CAD. A CAC score = 0 and CAC > 1000 have also
been established as low-risk and high-risk entities, respectively, but the intermediate values
remain debatable, especially in populations of younger individuals, women, and patients
with diabetes. New methods for measuring CAC-based risk have been proposed, including
refinement of the total calcium Agatston method. In particular, it is important to account
for the number of plaques (diffusivity index), the volume of plaques, localization with
up-risking of proximal plaque, and calcium density profiles, as the combination of some, if
not all, of these elements has been reported to improve risk assessment in asymptomatic
individuals [80,81]. Furthermore, non-calcified atherosclerosis as seen on CCTA may partly
explain the residual risk seen in patients with low CAC scores, as the calcified component
represents only one-fifth of the total plaque burden.

5.2. Advances in CAD Assessment Using CCTA

Coronary plaque detection and stenosis quantification are now well-developed. The
use of coronary CT has recently been standardized to the CAD–RADS score [82]. However,
non-invasive characterization of plaque vulnerability remains a challenge in all modal-
ities. Coronary angiography-based approaches using intravascular ultrasound (IVUS)
or optical coherence tomography (OCT) have been proposed but are inherently limited
by invasiveness and cost. Recently, the new CCTA guidelines have included new CAD
prognosis-related parameters, including disease extension (P parameter) and plaque vul-
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nerability (V parameter) criteria such as the presence of positive arterial wall remodeling,
hypodense lipid core, microcalcifications, and the presence of hyperdense peripheral nap-
kin ring, which is a more meaningful sign of plaque complication. While the guidelines are
commendable for extending the CCTA information from diagnosis to prognostic param-
eters, we should note that the aforementioned parameters are still visually assessed and
are thus susceptible to reader subjectivity. Current CCTA is hampered in this regard by
its spatial resolution of 0.5–0.6 mm, but a new technology based on photon counting now
achieves 0.2 mm isotropic spatial resolution, which significantly enhances the ability to
image atherosclerotic plaque components. Importantly, this is achievable with even lower
doses of contrast agents and radiation. New AI-based algorithms and post-processing
methods will greatly benefit from increased image quality and enable robust automated
plaque quantification.

Interest in the use of artificial intelligence in medicine, especially imaging exams, has
grown over the last few years. The main applications of AI in cardiovascular imaging
include CCTA detection of stenosis, post-processing of the obtained images using CMR,
and automatized segmentation of the heart chambers during LGE.

In CCTA, AI can be a useful tool for efficient and rapid evaluation of atherosclerotic
plaques. Recent studies have shown that AI evaluation of the plaques, to ground truth
of consensus of the readers, has a high level of accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) in detecting coronary steno-
sis [83]. Furthermore, another potential application of AI in CCTA is the study of the
functional features of stenosis using the fractional flow reserve Computed Tomography
(FFRct) tool. FFR derived from CCTA has an excellent correlation with invasive FFR and re-
mains diagnostically robust in the presence of reduced signal-to-noise ratio (SNR), coronary
calcification, and motion artifacts [84].

In MRI, AI applications mostly involve post-processing data such as segmentation and
tissue characterization. The main characteristic of automatic segmentation is represented
by the possibility of obtaining results, such as manual segmentation, in a short time,
allowing faster evaluation of the obtained images, which otherwise would require long
post-processing using manual or semi-automated software [85]. Furthermore, the latest
CCTA developments enable native spectral imaging, which can combine iodine imaging
for high contrast resolution angiography and greater soft tissue and calcium resolution
from multiple energy spectra to better assess plaque components. Taken together, these
technological advances in both hardware and software will hopefully yield an enhanced
assessment of plaque vulnerability features.

Going beyond coronary wall analysis, the assessment of peri-coronary fat using CCTA
is possible and has been validated using a transcriptomic approach to define a fat attenua-
tion index (FAI) associated with coronary inflammation and a new risk biomarker [86]. A
simpler and more global approach that measures total epicardial fat in 3D using CCTA (or
non-contrast CCT) has also linked volume and mean densities of epicardial adipose tissue
with atherosclerotic burden and risk [87]. Automated AI-based segmentation methods for
total and peri-coronary epicardial adipose tissue have also been validated and will help in
the clinical application of this approach after population-specific relevance and position
have been defined relative to other tests [88].

The main perspective in individual risk assessment remains the definition of multipara-
metric risk scores, including several imaging modalities as well as clinical and biological
data. As an illustration, we showed that total and epicardial adipose tissue, measured using
CCTA in combination with blood IL6 levels, are the best predictors of short-term mortality
in patients with diabetes and COVID-19, opening an avenue to target patients for preventive
corticosteroid therapy that avoids a cytokine storm and subsequent complications [89,90].

5.3. Advances in MRI for Risk Assessment

One of the most striking advances in MRI is the ability to characterize myocardial
fibrosis non-invasively, hence detecting arrhythmogenic and/or heart failure without the
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need for endomyocardial biopsy. This will help in restratifying individual risks, for exam-
ple in hypertrophic cardiomyopathy (HCM), where the presence of delayed enhancement
>15% of LV mass has been associated with adverse outcomes [91]. The advent of quanti-
tative measurements of scar tissue and diffuse fibrosis via extracellular volume (ECV) is
promising for a better definition of individual prognosis of several conditions, e.g., dilated
cardiomyopathy, sarcoidosis, amyloidosis, and myocarditis [92]. New biomarkers such as
the intracellular and extracellular mass components of LV mass measured using CMR T1
mapping have been proposed for monitoring the effect of hormones such as aldosterone
or cortisol on the myocardium in vivo [93,94]. Such biomarkers may be promising new
therapeutic targets.

Another innovative application of MRI is the measurement of cardiovascular age by
assessing the ascending aortic distensibility (AAD). This imaging biomarker is the earliest
and most specific marker of cardiovascular aging in humans. It has been associated with
MACE and mortality independently of all established risk factors in a large general popula-
tion [95,96]. We have shown that AAD is associated with premature CAD (before the age of
45 years) and with increased stiffness, a marker of accelerated aging in diabetes, hyperten-
sion, obesity, and Marfan syndrome or bicuspid aortopathy. Importantly, AAD may prove
to be an important new index of aortic aneurysm severity and vulnerability in ongoing
studies. Currently, half of aortic dissections occur below the recommended threshold for
prophylactic surgery. This new functional index of aortic wall properties combined with
flow-derived indices from 4D-flow may prove beneficial for better assessment of aortic risk
and guide surgical decisions.

6. Conclusions

The role of cardiovascular imaging is underrated in primary as well as secondary
prevention, even though it can improve the recognition of cardiovascular risk in patients.
Future trials should determine the role of CV imaging, its therapeutic implications for
primary prevention, and how the identification of poly-vascular diseases may involve
the intensification of medical strategies for determining different metabolic targets in this
high-risk population.
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