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Abstract

In Large Eddy Simulations (LES) of combustion, the accuracy of predic-
tions might be heavily affected by deficiencies in traditional/simplified clo-
sure models, especially when employed to simulate non-conventional fuels
and combustion regimes. The increasing availability of data from experi-
ments and higher-fidelity numerical simulations offers attractive opportuni-
ties for improving combustion models with data-driven techniques. In this
work, we focus on sub-grid turbulence-chemistry interactions with the Par-
tially Stirred Reactor (PaSR) model and its associated cell reacting fraction
sub-model. We combine machine learning and sparsity-promoting techniques
to improve the predictive capabilities of PaSR by discovering new functional
forms of the cell reacting fraction sub-model from data. The obtained mod-
els are parsimonious models that balance accuracy with model complexity
to avoid over-fitting. We employ the proposed model identification approach
on data from a Direct Numerical Simulation (DNS) of a three-dimensional
non-premixed n-heptane/air jet flame. As a result, we single out the most
plausible model form of the cell reacting fraction, expressed as a function of
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the local Damköhler number. Then, the capability of the model to generalize
properly to new, previously unseen data is tested. The results demonstrate
the ability of the machine learning approaches to infer robust corrections for
turbulence-chemistry reactor-based combustion models.

Keywords: Machine learning, Sparse regression, Turbulent combustion
modeling, Direct Numerical Simulation (DNS), Partially Stirred Reactor
(PaSR)

1. Introduction

Computer models of practical combustion systems must combine the ca-
pability to predict the relevant flow features with the ability to solve the
chemistry involved in combustion processes, as well as any other important
physical phenomena [1]. The Reynolds-averaged Navier-Stokes (RANS) ap-
proach is still the workhorse for industrial flow modeling, given the large do-
main sizes and the relatively low computational effort, which enables outer-
loop applications such as optimization. On the other hand, Large Eddy
Simulation (LES) is gaining momentum thanks to the increasing availabil-
ity of computational resources and the improved turbulence representation
that allows the study of unsteady phenomena such as local extinction and
re-ignition [2, 3]. Predictive inaccuracies are present in both RANS and LES
due to deficiencies in the closure models. This is the case of subgrid-scale
(SGS) turbulence-chemistry interactions (TCI) closures for LES, wherein the
filtered reaction rates cannot be directly computed from the filtered thermo-
physical quantities, due to non-linearity [4, 5].

Following the vast development of LES in the last decade, reactor-based
models [6, 7] have attracted interest as TCI closures since they can deal
with finite-rate chemistry at an affordable computational expense [8, 9, 10].
In such models, the computational cell is partitioned into two distinct re-
gions: a reacting zone called fine structures, where all the chemical reactions
take place, and a non-reacting zone defined as surroundings, solely driven
by turbulent mixing. Under this assumption, the chemical source terms are
calculated from a mass balance between the two regions. Such model for-
mulation needs to be closed by determining the fraction of the cell occupied
by the fine structures. Chomiak [7] proposed the Partially Stirred Reactor
(PaSR) model, in which the cell reacting fraction is computed as a func-
tion of the local mixing and chemical characteristic timescales. The PaSR
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model has been tested for various types of flames [11, 12, 13, 14], sprays [15],
and non-conventional combustion regimes [16, 17, 18, 19]. Alternative for-
mulations of the PaSR model have been investigated in RANS and LES
simulations [20, 21, 22], and the effect of the mixing and chemical timescales
estimation on the reacting fraction has been assessed in [18].

The construction of turbulent combustion closures might lead to model
deficiencies. This can be related to incorrect parameter estimation, impacted
by strong fluctuations of the thermo-physical properties and indirect mea-
surements, or they can result from employing simplified physics or chemistry
(model errors) [23, 24, 25]. One method for the development and valida-
tion of combustion models involves an a priori assessment, where the SGS
modeled quantities of interest are compared with the corresponding filtered
DNS [26]. Minamoto and Swaminathan [27] performed an a priori analy-
sis on a three-dimensional dataset to develop and validate a representative
canonical reactor to model the filtered reaction rates in Moderate and In-
tense Low-oxygen Dilution (MILD) combustion. Recently, Péquin et al. [12]
performed an a priori assessment of the PaSR combustion model in LES and
pointed out potential limitations of the model associated with the definition
of the cell reacting fraction.

An approach for developing and improving the predictive ability of SGS
closures in turbulent reacting flows is via data-driven approaches [28]. The
use of data from experiments and simulations to improve the understand-
ing and modeling capabilities of reacting flows has become a new challenge
and research opportunity [29, 30, 31]. Several works have focused on the
construction of predictive data-driven machine learning (ML) models able to
return accurate predictions at a low cost [32, 33, 34, 35]. Furthermore, data-
driven machine learning has been demonstrated to be a reliable tool to build
constitutive relations of material properties [36, 37]. Also, ML models can be
used to characterize the error inherent to the use of low-fidelity physics-based
models. More specifically, neural network architectures can be constructed
to characterize the discrepancy term due to the use of limited physics and be
embedded in the computational model [38], allowing improved predictions
and uncertainty quantification of low-fidelity models [23, 39].

Further, the advances of ML models for fluid dynamics were reviewed by
Brunton et al. [40]. They highlight the capabilities of physics-aware machine
learning to improve the simulation of fluids. Nakazawa et al. [41] explored
the possibility and limitation of a machine learning-based approach for turbu-
lent combustion modeling by applying physics-guided deep neural networks
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(DNNs) for the prediction of the mean reaction rates for chemical species.
The capability of DNNs to predict joint filtered density functions of mixture
fraction and progress variable from DNS of non-conventional combustion
regime were shown in an a priori study by Chen et al. [42], in which the re-
sults from the ML tool outperformed algebraic models at larger filter widths.
Jigjid et al. [43] proposed a machine learning aided model derived from a
PaSR approach to close the filtered reaction rate. A combination of neural
networks, with a local combustion mode prediction, was used to predict the
fraction of the reactive structure for both premixed and non-premixed condi-
tions. Convolutional neural networks (CNNs) were also applied for modeling
closures for turbulence combustion [44, 45] since convolutional architectures
enable learning underlying physics from spatial data. Going further, physics-
guided generative adversarial networks (GANs) were shown to perform typ-
ically better when compared with traditional CNNs for sub-filter modeling
in turbulent reactive flows [46]. Despite the deep learning tools have been
widely used in turbulence modeling, these methods might suffer from a lack
of interpretability, which limits the understanding of the underlying physics
of the resulting models and also hampers physical insights to derive new
modeling ideas. In the current context, interpretability means the ability to
correctly and efficiently understand the ML model and present the underly-
ing basis behind predictions and decision-making in a way that is physically
explainable.

Recently, machine learning and sparse-promoting techniques have been
combined to discover parsimonious models that balance accuracy with model
complexity [47]. In this context, Schmelzer et al. [48] introduced a novel
sparse symbolic regression approach to discover algebraic stress models for
the closures of RANS. Also, a general framework that combines symbolic
regression with graph neural networks (GNNs) capable of providing plausi-
ble analytical expressions was introduced [49], being able to be used as a
practical tool to discover analytical equations for fluid properties [50, 51].
More recently, Chung et al. [52] employed a random forest regressor with
sparse symbolic regression to enable the discovery of analytical models for
SGS terms of a turbulent transcritical flame.

The present work aims at improving the prediction capabilities of the
reactor-based TCI models by leveraging sparse symbolic regression. More
specifically, the present study has the following objectives: (i) to discover
novel model forms of the cell reacting fraction using sparse-promoting tech-
niques; (ii) to utilize the interpretable machine learning models to get physi-
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cal insights and develop novel turbulence-chemistry interactions approaches;
(iii) to compare different cell reacting fraction formulations and quantify their
impact on the reactor-based combustion model predictions.

The remainder of this paper is organized as follows. The reactor-based
combustion models and data-driven models employed in the present work are
described in Sec. 2. Details regarding the DNS configuration are presented
in Sec. 3. In Section 4, results of an a priori assessment are presented.
The concluding section includes a summary of our main findings and future
remarks.

2. TCI closures and data-driven model

2.1. The Partially Stirred Reactor (PaSR) model
In the Partially Stirred Reactor model, each computational cell is parti-

tioned into two locally uniform regions: a non-reacting zone, solely driven
by turbulent mixing and referred to as the surroundings, and a reacting part
called the fine structures [7, 12]. The mean cell value is then defined as a
weighted sum from the two regions,

Ȳi = γY ∗
i + (1− γ)Y 0

i , (1)

where γ (or κ in other works [7, 12]) represents the cell volume fraction
available for chemical processes, Y ∗

i and Y 0
i are the i-th species mass fractions

in the fine structures and in the surroundings, respectively [7]. Combustion
takes place in the fine structures where the fuel and oxidizer are assumed
perfectly mixed. The total time associated with this sequential process is
estimated as the sum of the mixing timescale τm and the chemical timescale
τc. The fraction of the cell occupied by the fine structures γ is modeled as the
timescale ratio between the chemical reaction time and the total combustion
time [7],

γ =
τc

τc + τm
. (2)

One can define the local Damköhler number Da = τm/τc as the ratio between
the mixing and the chemical timescales and rewrite Eq. (2),

γ =
1

1 +Da

. (3)
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From Eq. (1), the filtered chemical reaction rates for the i-th species can
be defined as: ¯̇ωi = γω̇∗

i + (1 − γ)ω̇0
i , where ω̇∗

i and ω̇0
i are the chemical

source terms from the fine structures and the surroundings, respectively.
Assuming that the contribution of the surroundings to the chemical processes
is negligible [53], i.e., ω̇0

i ≈ 0, the filtered source terms, to be employed in
the filtered species transport equations, are expressed as,

¯̇ωi = γω̇∗
i = γ

ρ̄(Y ∗
i − Ỹi)

τ ∗
, (4)

where ρ̄ is the Reynolds-averaged density, τ ∗ represents the residence time in
the fine structures. In the original model [15], the residence time in the PaSR
model was estimated using the mixing timescale only, but other works [20, 18,
12, 22] demonstrated improved model prediction capabilities when τ ∗ equals
the minimum between the mixing and the chemical timescales. Therefore,
the present work follows the latter definition of the reactor residence time,
defined as: τ ∗ = min(τm, τc).

The estimate of Y ∗
i results from the time integration of the fine structures

that are treated as ideal reactors. Both Perfectly Stirred Reactor (PSR)
and Plug-Flow Reactor (PFR) formulations have been investigated for this
task [15, 10]. The PFR allows for alleviated computational costs without
loss of accuracy to simulate the fine structures and is often preferred over the
PSR [54, 55]. In the present work, we use a PFR evolving from Y 0

i , which
can be approximated by the filtered mass fraction Ỹi [15], over τ ∗. This leads
to the following set of mass fraction equations,

dY ∗
i

dt
=

ω̇i

ρ̄
(5)

where the term ω̇i is the instantaneous reaction rate of the i-th species. The
integration of Eq. (5) over the residence time τ ∗ results in the estimation of
the final state1 of the sub-grid quantity Y ∗

i , used in Eq. (4). As far as the
mixing timescale is concerned, the scalar mixing timescale, which has demon-
strated its effectiveness among other formulations [56, 18], is computed as

1Note that, between each simulation time-step, the temporal evolution of the fine struc-
tures towards local chemical equilibrium is modelled through the time integration of ideal
reactors at a rate given by chemical reactions following Arrhenius laws. It is to be noted
that the model part that deals with the evolution of the chemical state remains unaltered
in this study, which instead focuses on the definition of the reacting portion of the cell.
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the ratio of the mixture fraction variance to the mixture fraction dissipa-
tion rate τm = Z̃”2/χ̃. For the chemical timescale, Chomiak [7] proposed
an estimation based on the formation rates of the species acting as fuel and
oxidizer,

1

τCh.
c

= max

(
−ω̇F

YF

,
−ω̇O

YO

)
/ρ, (6)

where ω̇ is the global conversion rate, Y is the species mass fraction, and
the subscripts F and O stand for fuel and oxidizer respectively. Chomiak’s
formulation extracts the scales associated with the limiting reactant, i.e., the
chemical species which is consumed first.

2.2. Quasi-Laminar Finite Rate model (QLFR)
Acting as a simplified PaSR model, the Quasi-Laminar Finite Rate model [12]

enforces the assumption that the fine structures occupy the total volume of
each computation cell, i.e., γ = 1. This corresponds to a mixing timescale
which is much faster than the chemical timescale, and to a cell that can be
entirely treated as an ideal reactor, see Eq. (5), of residence time τ ∗ = τm
in the present case. The QLFR filtered source term is then rewritten from
Eq. (4) as follows:

¯̇ωi =
ρ̄(Y ∗

i − Ỹi)

τ ∗
. (7)

The QLFR approach is to be used in restricted conditions [12], for rela-
tively fine LES grids before losing accuracy at coarser grids, and generally
is prone to overestimating chemical reaction rates. Employing the QLFR
model allows for quantifying the importance of modeling the cell reacting
fraction in reactor-based subgrid-scale models. In addition, both the QLFR
and PaSR models allow for contrasting the potential improvements obtained
from the data-driven combustion models.

2.3. Sparse regression for TCI model identification
Sparse symbolic regression, which will be indicated as SpaR hereafter, ex-
ploits the fact that in most physics-based models, only a few nonlinear terms
are needed to characterize the system, resulting in sparse models in a high-
dimensional nonlinear feature space [47]. The main advantage of the sparse
identification lies in the fact that the model form is parsimonious, i.e., the
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model intrinsically balances complexity with accuracy, thus avoiding data
overfitting [57]. In particular, the complexity is measured by the number of
terms in the model to accurately represent the data. Moreover, since it is
assumed that the underlying structure of the models has only a few impor-
tant terms, so avoiding the discovery of overfitted models [58]. Finally, this
method involves the choice of predetermined symbolic candidate functions,
among which the most plausible in describing the data will be identified,
resulting in interpretable models.

To identify a model M : R → R; x 7−→ M(x) given a dataset of n obser-
vations {xi, yi}ni=1, we consider that a model that relates input-output data
generically can be expressed as a linear combination of p regressor variables
X ∈ Rn×p

Y = M(X) + ϵ = Xβ + ϵ (8)

where β ∈ Rp is the vector of regression coefficients, X is the matrix of the
column vectors Xj ∈ Rn, j = 1, . . . p, and ϵ ∈ Rn is the discrepancy between
the model predicted quantities and the observations Y ∈ Rn.

From a sub-grid models perspective, the closure models are built upon
the combination of nonlinear functions of the independent quantities x. That
allows replacing the regressors Xj with candidate non-linear functions Θ(Xj)
of the original variables, where each column of Θ(X) represents a candidate
function of the model:

M = Θ(X)β. (9)

Here, there is no restriction in the choice of the candidate non-linear functions
since only a few of the non-linear functions will be deemed important to
characterize the model form. For instance, the non-linear functions may
consist of constant, d-order polynomial, and predefined functions:

Θ(X) =

 | | | | | |
1 X X2 · · · Xd erf(X) logb(X) · · ·
| | | | | |

 . (10)

However, the choice of the candidate functions can be problem dependent
and has the potential to embed prior knowledge. Indeed, Θ(X) can be con-
structed using physics-based analyses, aiming at providing a mathematical
ansatz with the underlying physics of the system before identification.
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Since we expect the model to be sparse in the high-dimensional nonlinear
feature space, we will regress the sparse vector of model coefficients β by
setting up a sparse regression problem, such as the least absolute shrinkage
and selection operator (lasso) method [59], which is an l1-regularized regres-
sion that encourages sparsity. Therefore, the aim of the lasso regression is
to solve

β̂ = argmin
β

∥M−Θ(X)β∥22 + λ∥β∥1, (11)

where λ is a regularization parameter that prescribes the amount of shrinkage
(or sparsity constraint) in the model coefficients, which will result in a small
number of non-zero predictors in the final regressed model. Hence, the lasso
approach helps in reducing the model complexity and the multi-colinearity.

In this work, the model to be regressed is the cell reacting fraction sub-
model γ, as a non-linear function of the local filtered thermo-physical quan-
tities. Figure 1 shows an overview of the SpaR approach for model discovery
of the cell reacting fraction γ for the PaSR model. The main goal of SpaR is
to combine functions from a predefined library of candidates to provide an
ensemble of identified models for the cell volume fraction, i.e., M = γ. The
main steps consist in:

1. building a library of candidate functions Θ(X), for which the indepen-
dent variables are the filtered thermo-physical quantities, X = Φ̄;

2. identifying the model using lasso regression, where the coefficients β
are regressed by minimizing the discrepancy between the filtered DNS
source terms ¯̇ωDNS and the PaSR modeled source terms ω̇PaSR(Θ(Φ)β);

3. learning the model coefficients β̂.

Furthermore, the model identification approach is not expensive in terms of
computational cost, allowing model identification at a moderate price even for
high-dimensional problems. Such an approach has the advantage to be able
to use efficient optimization algorithms developed for parameter estimation
in machine learning, which rapidly converge to the sparse solution with a
small number of iterations [48].

2.3.1. Choosing plausible candidate functions for γ

The sparse symbolic regression methodology requires the specification of
the candidate functions whose - preferably sparse - linear combination iden-
tifies the parsimonious model. Hence, constructing a library of functions is
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Figure 1: Overview of the sparse symbolic regression (SpaR) approach for TCI model
identification.

an essential element of the entire framework, and must accommodate rele-
vant candidates that facilitate a physical explanation of the data. However,
in many complex scenarios, embedding prior knowledge may be challenging,
and the library of candidate functions can be overparameterized. This can
be mitigated by using key features that explain the data from which a model
is identified through a linear combination of the candidates. The extraction
of the key features describing the data can be achieved by correlation or
sensitivity analysis to reduce the search space dimensionality [60].

The approach pursued in the present work relies on the PaSR model and
we aim to find models for γ in Eq. (4) given the local Damköhler number
Da = τm/τc as an independent variable, following the genesis of Eq. (3).
Indeed, we are inspired by the work proposed by Magnussen [61]. Specifi-
cally, it is assumed that the fine structures are vortex-sheet or vortex tubes
of random extension folded in the flow and that chemical reactions take place
where the species are mixed at the molecular scale in the fine structure re-
gions. In order to improve the treatment of the chemical reactions within
these regions, Magnussen proposed modifications to the cell reacting fraction
by introducing different positive exponents, i.e., γn, based on the assump-
tions that the exchange between the fine structures and the surroundings is
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a surface or volumetric process. In the present work, we propose a set of
candidate functions by introducing different exponents to the cell reacting
fraction of the PaSR model. The resulting library is therefore

γ(Da) :=



1

(1 +Da)n

1

1 +Dan

1

Da

n =
1

5
,
1

4
,
1

3
,
1

2
,
2

3
, 1,

3

2
, 2, 3, 4, 5. (12)

In case of infinitely fast chemistry, i.e., τc << τm, the model form 1/Da is
a fair approximation of 1/(1 +Da). This hypothesis justifies the presence of
the 1/Da function within the candidates at high Damköhler numbers. It is
to be noted that such functions will greatly differ from the original formula-
tions at small Damköhler numbers by exhibiting a hyperbolic behavior, not
ensuring the natural upper bound of unity. In the approach being pursued
here, n is assumed to be a positive rational exponent.

Figure 2: Graphical representation of sparse candidate functions for the PaSR cell reacting
fraction as a function of the Damköhler number.

A selection of functions is presented in Fig. 2. While the first four func-
tions preserve the original bounds γ ∈ [0, 1], the last form, i.e., 1/x-like
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function, diverges at small Damköhler numbers. In addition, the formula-
tion 1/(1 + Dan) yields 0.5 at the condition τc = τmix, as the original γ
formulation, and so for any n. For the specific case of the functional forms
1/(1 + Da)n, the condition τc = τmix may yield to γ values below or above
the reference value 0.5 depending on n. As shown in Fig. 2, an above-unity
exponent yields crossing values below 0.5. Conversely, higher than 0.5 values
are obtained when considering n < 1. In addition, we add as candidates the
nonlinear functions 1−σ(Da) where σ is the sigmoid function, and the com-
plementary error function (erfc = 1− erf(Da)) [62]. This partially reduces
the bias that we induced by tailoring the functional search space using prior
knowledge. Furthermore, this allows us to show the robustness of the pro-
posed approach to correctly identify the functional form of the cell reacting
fraction with an overparameterized library of candidate functions.

3. Direct Numerical Simulation data

The generality of machine learning algorithms is a key feature for the
development of reliable combustion models [63]. In this regard, miscellaneous
reacting flow conditions should be considered to strengthen the prediction
capabilities of new data-driven models. We consider three-dimensional Direct
Numerical Simulation datasets of a non-premixed n-heptane/air jet flame [64,
65, 66] for model training and validation, along with a turbulent methane-
air-jet flame [67, 68] for extrapolation and transfer learning purposes. Details
about the datasets are reported hereafter.

3.1. 3D DNS of a non-premixed n-heptane/air jet flame
Attili et al. [64, 65, 66] performed 3D DNS of a turbulent non-premixed

sooting flame. The fuel stream consists of n-heptane diluted with 85% (by
volume) nitrogen at a temperature of 400 K. The oxidizer stream consists of
air at 800 K. The pressure was set at the atmospheric value, and the stoi-
chiometric mixture fraction is Zst was evaluated at 0.147. The jet centerline
initial velocity was imposed at 8.74 m/s, while the reverse coflow velocity was
-8.74 m/s yielding a jet Reynolds number of Re =15000. Combustion was
modeled using a reduced mechanism for the oxidation of n-heptane compris-
ing NS = 47 species and NR = 290 reactions. The domain dimensions in the
periodic directions are Lx = 94 mm (6.3 times the initial jet width H = 15
mm) and Lz = 47 mm (Lz/H = 3.1). The crosswise coordinate spans the
range [−Ly/2, Ly/2], where Ly = 105 mm (Lz/H = 7). The domain was
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discretized with 1024× 1024× 512 ≈ 500 million points. The mesh was ho-
mogeneous in all directions, with grid resolution δ = 91 µm. The minimum
Kolmogorov scale η was 110 µm so that δ/η = 0.82 in this case. Moreover,
a minimum of 10 grid points were included in the OH layer, i.e., δOH = 10δ.
More details on the DNS can be found in Ref. [64]. In this study, the dataset
represents three 2D planes extracted from the 3D domain at 15 ms. More
specifically, the 2D planes are obtained from the 3D flame at locations Lz/2,
Lz/4, and 3Lz/4, and hereafter called Planes A, B, and C, respectively. The
DNS temperature field T , mixture fraction Z, and scatter plot of the Z-T
for the three planes are presented in Fig. 3.

(a) Plane A

(b) Plane B

(c) Plane C

Figure 3: DNS temperature field, mixture fraction, and scatter plot of the Z-T of the non-
premixed turbulent sooting flame [64]. The training data points are marked with white
points at Plane A.
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3.1.1. 3D turbulent premixed methane-air flame DNS data
3D DNS of premixed turbulent jet flames with varying Reynolds numbers

were performed by Luca et al. [67]. In particular, the case with moderate
Reynolds number Re = 5600, referred to as the R2 slot jet flame in Luca et
al. [69, 67, 68] was selected in the present work, see Fig. 4a.

(a) (b)

Figure 4: (a) 2D visualisation of the full flame and (b) 3D subset temperature field of
the Direct Numerical Simulation of a three-dimensional premixed turbulent methane-air
flame [67, 68]. The progress variable CO2

= 0.73 is marked as a white isosurface on the
3D plot.

The configuration is a turbulent lean methane-air slot jet flame of equiv-
alence ratio Φ = 0.7 surrounded by a coflow of burnt gases [67, 68]. The
bulk velocity of the jet is U = 100m.s−1 yielding to a Reynolds number
Re = UH/ν = 5600 where H = 1.2mm is the slot width and ν is the kine-
matic viscosity of the reactants. The whole 3D domain [67], of size 24H ×
16H × 4.3H in the streamwise x, the crosswise y, and the spanwise z direc-
tion, is discretized with 1440× 962× 256 ≈ 354 million points. The domain
is periodic in z, open boundary conditions are prescribed at the outlet in
x and no-slip conditions are imposed at the boundaries in y. The mesh is
uniform in all three directions with a resolution δ = 20µm. Only a 20 mil-
lion point subset was considered in the present work of size 8.5H × 16H ×
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0.65H, i.e., 512× 962× 40. The 3D subset is displayed in Fig. 4b along with
the isosurface of an O2 based progress variable CO2 = 0.73 (flame surface of
peak methane consumption in a one-dimensional unstretched laminar flame)
[67, 68]. The flame lies in the thin reaction zone regime with a characteristic
thermal thickness δth = 110µm. The simulation features finite rate chem-
istry, described by a skeletal methane mechanism with 16 species and 72
reactions [69]. Additional information about the DNS dataset can be found
in Refs. [67, 68].

3.2. Extraction of LES filtered quantities
In the present study, the LES quantities of interest are obtained from the

DNS by applying Gaussian filtering, denoted by the operator (.), and Favre
averaging operations [70, 18, 12]. Any thermo-chemical state variable is then
written as ϕ̃ = ρϕ/ρ. The function associated to the Gaussian filter G(r) is
defined as

G(r) =

(
6

π∆̄2

)1/2

exp

(
−6r2

∆̄2

)
, (13)

in accordance with Pope [71] and Leonard [72], where ∆̄ = ∆δDNS is the
LES filter width and δDNS the DNS grid resolution. Different values of the
normalised filter width ∆ are investigated. For the non-premixed case, the
filter widths ∆ = 2 and 5 are considered to match fine and moderate LES
grids, following a similar criteria adopted by [12].

The premixed data, instead, is used to test the extrapolation capabilities
of the model. More specifically, the purpose of the extrapolation test is to
investigate the ability of the identified model to generalize to a complex flame
configuration that is different from the training data. To achieve this goal,
we follow the approach proposed by Nista et al. [73] that identifies the key
flow characteristics that should be preserved for a GAN model to perform
well on a very different flame configuration. In particular, they show that
a generalization criterion is to conserve the ratio between the filter size and
the Kolmogorov scale ∆̄/η. Given the Kolmogorov scale of the premixed jet
flame, we apply a LES filter of size ∆ = 3 to match the ∆̄/η ratio of the
non-premixed case calculated at ∆ = 2. Table 1 sums up the similar and
different flow variables between the employed LES filter widths for the DNS
datasets.
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Table 1: DNS characteristic scales and LES filter widths.

DNS dataset Re δDNS [µm] η [µm] ∆

3D non-premixed [64] 15000 91 110 2 - 5

3D premixed [67] 5600 20 23 3

4. Results and Discussions

In this section, we present a sub-grid machine learning modeling strategy,
based on the sparse symbolic regression approach, to discover new functional
forms of the cell reacting fraction and improve the predictivity of the reactor-
based TCI models. We assume that, in each computational cell, a single value
of γ closes the set of Eqs. (4) for all reacting species, as it is commonly done
in literature for ensuring mass conservation2. First, we train the model in
Eq.(9), where Θ(X) are plausible candidate functions for γ given by Eq. (12),
using observations from a 2-dimensional plane (Plane A) extracted from the
3D dataset. We embed prior knowledge in the model by introducing plausible
candidate functions that satisfy underlying physical constraints. Afterward,
we test the discovered model on previously unseen data, i.e., other planes
(Planes B and C) from the 3D dataset. Finally, we explore the ability of the
discovered model to generalize to a flame configuration that is substantially
different from the training one.

4.1. Training strategy
For the learning process, 100000 data points of the chemical source terms

are randomly selected from the filtered DNS field. The non-reacting region is
excluded by the random selection, to avoid dataset imbalances toward non-
informing observations. More specifically, the learning data is conditioned to
T > 800 K. Figure 3 (a) shows the DNS temperature field with the randomly
selected points.

To avoid overfitting the resulting models, we use k-fold cross-validation [57],
where the dataset is randomly partitioned into k equally-sized subsets. The

2The use of species-dependent values γi of the cell reacting fraction, for groups of
species or individual species, can introduce mass imbalance unless a constraint is imposed
as

∑
i γiω̇

∗
i = 0 [12].
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model is trained using k − 1 folds as the training data, and the remaining
left-out fold is used as the validation set. Here, we split the initial dataset
into k = 5 folds, which is equivalent to an 80% - 20% partitioning for training
and validation datasets, respectively, in each optimization run. Finally, we
employ Planes B and C as testing datasets for the performance evaluation
of the models. The lasso regression objective function is not differentiable,
however, a wide variety of techniques from convex analysis and optimization
theory have been developed to compute the solution of lasso regression. In
the present work, we employ the gradient descend optimizer L-BFGS-B [74]
to minimize the cost function:

L(β) = 1

Nc ×Ns

Nc∑
c

Ns∑
i

∆hf
i,c ×

(
¯̇ωDNS
i,c − ¯̇ωM

i,c (β)
)2

+ λ∥β∥1, (14)

where the residual sum of squares between the chemical source terms from
filtered DNS ¯̇ωDNS

i , and the chemical source terms modeled by the reactor-
based model ¯̇ωM

i is weighted with the enthalpy of formation ∆hf
i of the ith

chemical species for the data points c. This provides physics-guided informa-
tion for the learning process, giving priority to ameliorating the predictions
of the species which have major contributions to the heat release rate Q̇.

The L-BFGS-B algorithm uses curvature information and is computation-
ally efficient to estimate the inverse Hessian matrix to drive the search space.
The inverse Hessian matrix is updated in each iteration based on the change
in gradients. Wolfe line search is used to ensure that the curvature condi-
tion is satisfied and the algorithm update is stable [75]. The optimization
algorithm is implemented via the SciPy package for Python [76].

The training procedure comprises a least-squares minimization problem
successively solved for β, in which after each iteration, the vector of param-
eters is updated, and least-squares is reapplied until a tolerance is attained
or a limiting number of iterations of the gradient descent solver is achieved.
The tolerance for the optimization is ϵ ≤ 1 × 10−6 and the maximum num-
ber of iterations is set to 1000. The regularization parameter λ shapes the
final mathematical ansatz of the model. For larger values of λ, most of
the model coefficients are reduced to zeros, while for smaller λ values the
amount of non-zero coefficients increases. The specification of the regular-
ization parameter is critical since the choice controls the balance between
model accuracy and model complexity. Thus, we specify a set of λ values,
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for which the minimization of Eq. (14) is solved:

λ = [0.05, 0.06, 0.07, 0.08, 0.09, 1.0, 1.5, 2.0]T , (15)

which allows us to cover a substantial range of values of the regularization
parameter. A different model is identified, with different coefficients βλi

, for
each value λi. The computational cost associated with the model identifica-
tion and calibration is of the order of minutes.

4.2. Training results
Figure 5 shows the ensemble of identified models at the filter width ∆ = 5,

for increasing values of the regularization parameter λ. Each row represents
one candidate model term. The red colour intensity is proportional to the
value of the fitted model coefficient of that candidate function, averaged over
the 5-folds, corresponding to one λ value (x-axis). If a candidate function is
not selected, i.e., it was fitted by a zero coefficient, the corresponding field
is coloured in gray. The final model structure depends on the regularization
parameter λ. The smaller the regularization parameter, the higher the num-
ber of non-zero coefficients, the more complex is the overall model, which
comprises more terms, as expected. However, when favouring the sparsity
with larger λ values, the learning process reveals a stable pattern, in which
the model given by the single term 1/(1+Da)1/3 is mostly supported by the
data, across different regularization parameters and k-fold randomness. A
similar trend is found for the smaller filter width ∆ = 2.

The performances of the models M in the 5-folds cross-validation are
measured with the Root Mean Squared Error (RMSE) with respect to the
filtered DNS, computed on the left-out test data according to

ε( ¯̇QM) =

√√√√ 1

Nt

Nt∑
i=1

(
¯̇QDNS
i − ¯̇QM

i

)2

, (16)

where Nt is the number of test points in the left-out fold. The RMSE values
for the two considered filter widths are displayed in Fig. 6 normalized with
the RMSE of the baseline PaSR model. The RMSE computed with the 5 test
data folds are shown for all the regularization parameter values λ. A value of
1 indicates that the sparse regression model exhibits comparable predictive
performances to the baseline PaSR. We note that the regressed models M
improve the accuracy of the baseline model, as all ε( ¯̇QM)/ε( ¯̇QPaSR) ratios are
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Figure 5: Fitted model coefficients of the selected model forms, for increasing values of
the regularization parameter λ, averaged over the 5-folds, at filter width ∆ = 5.

below unity, for all the values of λ and in all the 5-folds. While a moderate
improvement is observed at filter width ∆ = 2, a significant amelioration is
obtained at filter width ∆ = 5, where the error on Q̇ is ∼ 25% of the original
formulation. In addition, smaller errors are exhibited for higher values of λ
with a lower scattering level across the folds, hence supporting the quest for
sparsity in the regressed models.

Table 2: Best predictive models for the fraction of cell occupied by fine structures for 3D
DNS data at different filter widths. The normalized RMSE is obtained by the testing set.

∆ λ C∆ ε( ¯̇QSpaR)/ε( ¯̇QPaSR)

2 1.0 0.5687 0.4942

5 1.0 0.2967 0.1995

Given the cross-validation assessment, we select model forms based on
the lowest normalized RMSE per filter width, and the lowest number of
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(a) ∆ = 2 (b) ∆ = 5

Figure 6: The root mean squared error in the heat release rate normalised by the root
mean squared error of the baseline PaSR model.

candidate functions employed, thus leveraging the inherent advantage that
a simple model form has in reducing overfitting issues [77]. So, the SpaR
identified model form is given by

γSpaR = C∆ × 1

(1 +Da)1/3
, (17)

where the model coefficient C∆ is the respective component of the vector of
model coefficients βλ multiplying the best candidate function. Table 2 shows
the value of the fitted coefficient for the two differently filtered DNS datasets,
i.e., ∆ = 2 and ∆ = 5. Here, the model coefficient C∆ may be interpreted as
a numerical correction of the filtered thermo-physical quantities obtained at
fine and moderate LES grids. We observe that, as the filter width increases,
the model coefficient decreases. That might be possibly explained by the
fact that the cell reacting fraction γ represents the sub-grid fraction of the
fine structures in the computational cell, and when larger filters are applied,
a smaller fraction of the fine structures are expected in the cell volume, as
shown in Fig. 7(a). Also, Figure 8 shows the Damköhler number at different
filter widths. It shows how the filter operator affects the estimation of the
thermo-physical quantities: an overestimation of the Damköhler number is
observed at larger filter widths compared to the fine filter width. This directly
influences the model formulation through the model coefficient C∆. Thus,
we conclude that enforcing the assumption γ = 1 at a very small Damköhler
number, as done in the PaSR model, can be not true when larger filter widths
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are applied.

(a) (b)

Figure 7: Cell reacting fractions γ with the Damköhler number. (a) SpaR cell reacting
fractions at different filter widths ∆ and (b) Different model forms of the cell reacting
fraction.

Moreover, we show in Fig 7(b) a comparison of the cell reacting fractions
as a function of the Damköhler number (Da) for different model forms: the
QLFR (in blue), the original PaSR (black) and the presently learned SpaR,
net of the coefficient C∆ (red). The QLFR model enforces γ = 1 for the
whole range of the Da number. Péquin et al. [12] used the concept of simi-
larity function and showed that at fine filter widths the QLFR assumption is
validated if the functions similar to the cell reacting fraction provide values
close to unity. However, that assumption might not be valid when larger
filters are applied, since larger proportions of the mixing layer thickness are
unresolved. In the PaSR formulation, the cell reacting fraction has an abrupt
decay in the range Da ∈ [10−1, 101]. In the case of a perfectly mixed cell
(τm << τc), the reacting fraction occupies the entire cell volume, γ = 1, and
if the chemical timescale is much faster than the mixing timescale (τc << τm)
the reacting fraction is infinitely thin, γ = 0. Finally, the SpaR model (with
C∆ = 1) has a similar behavior to the PaSR formulation for the perfectly
mixed scenario but has a smoother decay from Da ≈ 10−1 until it reaches
the infinitely fast chemistry assumption.

Lastly, we discuss regression diagnostics to assess if the model adequately
represents the structure of the data. Our regression model is defined as
M = Θ(X)β+ ϵ, where ϵ is a statistical model for the discrepancy with the
data. As commonly done in linear regression, we assume that discrepancies
are additive, normal, independently distributed with zero mean and constant
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Figure 8: Damköhler number at different filter widths ∆. From top to bottom are pre-
sented the fine and moderate filter widths at Plane A.

variance [78], i.e., i.i.d.. However, this implies that such discrepancies are
only due to uncorrelated noise/fluctuations in the data, i.e., not to structural
deficiencies of the model. Figure 9 shows the probability density function of
the discrepancies of the heat release rate and the n-heptane source term,
computed as ϵc = ¯̇ωDNS

c − ¯̇ωSpaR
c in all grid points c. The slight asymmetries

in the shown PDFs are symptoms of violations of the i.i.d. hypothesis of
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the data fluctuations around the model. This may introduce biases on the
estimation of the regression coefficients. A more advanced learning strategy
would encompass the modeling of the model discrepancy, which should not
be intended as a statistical quantity, but rather as a systematic augmenting
term, as done in [79]. This will be pursued in a follow-up work. In this
work, we adhere to the classic linear regression framework, but we interpret
non-i.i.d. residuals as indications of model structural deficiency.

(a) (b)

Figure 9: Probability distribution of the residuals of the (a) heat release rate (Q̇) and (b)
N-C7H16 net production rate, at filter width ∆ = 5.

4.3. Testing the model on unseen data
In this section, we test the performance of the SpaR model on unseen

data. The test dataset corresponds to planes B and C extracted from the
3D domain, which are used to obtain an unbiased evaluation of the model
fit. Although such planes are extracted from the same domain, the flame
structure differs locally from plane A, used in the training process.

The performance of the SpaR model is assessed with the mean absolute
error (MAE) between the chemical source terms computed from filtered DNS
and the quantities modeled by the reactor-based models, for the i-th chemical
species,

MAEtrain/test
i =

1

Ntrain/test

Nc∑
c=1

| ¯̇ωDNS
i,c − ¯̇ωM

i,c | (18)

evaluated point-wise on all grid points Ntrain of the training dataset and Ntest

of the test dataset. The comparison between error metrics evaluated on the
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train and test datasets is useful to assess the quality of fitting: if the training
error is lower than the test error, the model has overfitted the data and it is
not able to generalize on unseen data. Figure 10 shows in red the test error
MAEtest

i for select species, namely OH, O2, CO, C2H2, A2, and N-C7H16, at
both filter widths. The training error MAEtrain

i is overlapped with a striped
background. The test error is slightly higher than the training error: this is
evidence of the absence of overfitting. Then, we compare the SpaR error met-
rics against the same metrics obtained with the QLFR and PaSR models (in
blue and black, respectively). The errors show that all the models have struc-
tural deficiencies that prevent a perfect agreement with the filtered chemical
source terms extracted from DNS, especially for n-heptane. We observe that
at fine filter width (∆ = 2) no substantial improvements are promoted by
the SpaR formulation over the QLFR and PaSR ones. This corroborates
the results of Péquin et al. [12], where at fine filter width the cell fraction
occupied by the fine structures tends to 1, and the assumption of γ = 1,
as enforced in the QLFR model, returns satisfying predictions of the filtered
thermo-physical quantities. In such cases, improvements should be sought
through alternative model forms, which relax the assumption of linearity in
the term representing the mass exchange between the fine structures and the
surroundings in Eq. (4), which is beyond the scope of the present work.

Nonetheless, Figure 10(b) shows that the SpaR model is indeed able to
reduce the discrepancies with the filtered DNS chemical source terms for the
larger filter width ∆ = 5. This result demonstrates that new model forms of
the cell reacting fraction are a viable route to improve reactor-based models.
Such evidence is further confirmed by comparing the DNS conditional mean
profiles with reactor-based modeled profiles, evaluated on the test dataset, as
shown in Fig. 11. Conditional mean profiles provide a higher-level approach
to compare DNS and LES [80], than comparing simply the mean profiles of
the chemical source terms.

The mean of the n-heptane (N-C7H16) source term conditioned to the
mixture fraction Z at filter width ∆ = 5 is shown in Fig. 11(a). The profile
computed with the SpaR model agrees well with the DNS profile at lean and
stoichiometric conditions. However, for very rich conditions (Z > 0.4), the
SpaR model underestimates the fuel consumption. This might be explained
by the fact that the SpaR model assumes a global numerical correction of
the cell reacting fraction, given by the model coefficient C∆. A possible
solution would be to enforce a local numerical correction in which C∆ is
built as a function of the local quantities. Deep learning models can provide
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(a) ∆ = 2 (b) ∆ = 5

Figure 10: Mean absolute errors (MAE) between the filtered DNS chemical source terms
with those modeled by the reactor-based models for the Planes at different filter widths
∆. The species MAE have been rescaled for visual representation: A2 (×102).

highly accurate and flexible approaches to ameliorate the correction term
using physics-guided information. The construction of such a term is be-
yond the scope of this paper but represents a proper direction to further
improve the predictivity of the reactor-based models. Moreover, the QLFR
and PaSR models present a considerable overprediction of the consumption
of fuel, especially in the rich region with mixture fractions ranging from the
stoichiometric mixture fraction (Zst = 0.147) to Z = 0.5, and an underesti-
mation of the consumption beyond Z = 0.5.

Figures 11(b) and (c) show conditional means of acetylene (C2H2) and
naphthalene (A2), respectively. These species play a major role in the for-
mation and evolution of soot [64]. Thus, the statistics of such species are im-
portant to understand soot formation, growth, and consumption. The C2H2

conditional mean profile predicted by the SpaR model recovers the DNS data
fairly well, while in the case of A2 the SpaR model underestimates the A2
production at very rich conditions, mainly in the mixture fractions ranging
from Z = 0.3 to Z = 0.5. Note that, the baseline reactor-based models fail
to capture the conditional means, overestimating both the consumption and
the production of A2, specifically from Zst = 0.147 to Z = 0.5. Attili et
al. [64] showed that naphthalene is significantly affected by the small-scale
variations of the turbulent field compared to other species controlled by oxi-
dation chemistry. This might explain the worse predictions of reactor-based
models which, due to the naphthalene sensitivity to turbulent mixing, suffer
the stronger intermittencies of the field [66].
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The conditional means of the heat release rate Q̇ for the DNS and the
reactor-based models at filter width ∆ = 5 are shown in Fig. 11(d). We
observe that the SpaR model recovers the DNS profile satisfactorily well.
Instead, similarly to the major species presented in Fig. 11(a), (b) and (c),
the QLFR and PaSR return an overestimation of the heat release rate profiles
from the stoichiometric mixture fraction to the rich side.

(a) (b)

(c) (d)

Figure 11: Comparisons of conditional mean profiles provided by DNS and computed from
reactor-based models for (a) N-C7H16, (b) A2, (c) C2H2 and (d) heat release rate (Q̇) at
filter width ∆ = 5.

4.4. Extrapolating the model to a different flame configuration
We assess the performance of the identified SpaR model in an extrap-

olation test on a substantially different flame configuration, to verify the
methodology’s robustness and the generalization capabilities of the model.
Therefore, in addition to the turbulent non-premixed sooting flame, we con-
sider DNS data from a turbulent premixed jet flame. As discussed in Sec-
tion 3.2, the approach proposed by Nista et al. [73] is followed to preserve
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the key flow characteristics across DNS datasets. A filter of size ∆ = 3 on
the premixed DNS data approximates well the ∆̄/η ratio calculated on the
non-premixed case at ∆ = 2. Therefore, the value of the model coefficient
C∆ = 0.5687 is selected for the extrapolation test.

(a) (b)

(c) (d)

Figure 12: Comparisons of conditional mean profiles provided by DNS and computed from
reactor-based models for (a) CH4, (b) OH, (c) CO and (d) heat release rate (Q̇) at filter
width ∆ = 3.

The means for species source terms and heat release rate Q̇ conditioned
to the progress variable C for the DNS and the reactor-based models at filter
width ∆ = 3 are shown in Fig. 12. Note that, the SpaR model recovers
the DNS data fairly well, while the baseline reactor-based model (PaSR)
overestimates both the consumption of the fuel and the production of the
species. This is further confirmed when the performance of the SpaR model
is assessed through the MAE metric for selected species, namely H2, H, O,
O2, OH, H2O, CH4, CO, and CO2. Figure 13 compares the SpaR error
metrics against the same metrics obtained with the PaSR model. The errors
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show that both models have deficiencies that prevent a perfect agreement
with the filtered chemical source terms extracted from DNS. However, the
identified SpaR model is able to reduce the discrepancies with the filtered
DNS chemical source terms.

Figure 13: Mean absolute errors (MAE) between the filtered DNS chemical source terms
with those modeled by the reactor-based models. The species MAE have been rescaled
for visual representation: H2 and H (×102), and O, OH and CH4 (×101).

Going further, we observe that the heat release rate predicted by the
SpaR model recovers the DNS fairly well but slightly underestimates it near
the peak methane consumption (CO2 = 0.73), as shown in Fig. 12(d). In-
stead, the PaSR model returns an overestimation of the heat release rate. To
quantitatively evaluate both reactor-based models in the heat release rate
prediction accuracy, the quadratic error [81] is computed between the pre-
dicted heat release rates and the filtered DNS. The identified SpaR model
deviates from the DNS by 7.7%, while the baseline PaSR model deviates
by 10.5%. Hence, we conclude that the SpaR model gives overall better
predictions than the PaSR model in considerably different test conditions,
confirming the generalization capabilities of the identified model.
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5. Conclusions and Future Remarks

In this work, we contribute to the emerging area of physics-guided ma-
chine learning models in combustion. More specifically, a data-driven, reactor-
based turbulence-chemistry interaction modeling framework is proposed. The
study is based on sparse-promoting techniques to discover novel model forms
for the cell reacting fraction employed in the Partially Stirred Reactor clo-
sure. We employed this framework to improve the predictivity of reactor-
based models in the context of LES. We used data from a three-dimensional
DNS dataset of a non-premixed n-heptane/air jet flame. We built a library of
plausible candidate functions and we performed a sparse symbolic regression
(SpaR) in order to retain the physical interpretability of the cell reacting
fraction model. The results showed that data mostly supported the model
form γSpaR = 1/(1 + Da)1/3, independently of the filter width employed for
generating the synthetic LES data from the DNS. However, a dependence on
the filter width was observed in the fitted model coefficient, which may be
interpreted as a correction term for the filter size. The data-driven model re-
turned more accurate conditional means profiles compared with the baseline
PaSR model on unseen data, at larger filter widths.

Future work will be dedicated to ameliorating the correction term using
physics-guided machine learning models, providing a local correction to the
cell reacting fraction. Also, further research efforts will be focused on build-
ing alternative model forms, which relax the assumption of linearity in the
term representing the mass exchange between the fine structures and sur-
roundings, and on the a-posteriori assessment of such modeling approach on
CFD calculations.
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