
Citation: Ortega-Fernandez, I.;

Liberati, F. A Review of Denial of

Service Attack and Mitigation in the

Smart Grid Using Reinforcement

Learning. Energies 2023, 16, 635.

https://doi.org/10.3390/en16020635

Academic Editors: Yanbin Qu and

Huihui Song

Received: 17 November 2022

Revised: 29 December 2022

Accepted: 2 January 2023

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

A Review of Denial of Service Attack and Mitigation in the
Smart Grid Using Reinforcement Learning
Ines Ortega-Fernandez 1,2,3 and Francesco Liberati 4,*

1 Galician Research and Development Center in Advanced Telecommunications (GRADIANT),
36310 Vigo, Spain

2 CITMAga, 15782 Santiago de Compostela, Spain
3 Escola de Enxeñaría de Telecomunicación, Universidade de Vigo, 36310 Vigo, Spain
4 Department of Computer Control and Management Engineering (DIAG) “Antonio Ruberti”,

University of Rome “La Sapienza”, Via Ariosto, 25, 00185 Rome, Italy
* Correspondence: liberati@diag.uniroma1.it

Abstract: The smart grid merges cyber-physical systems (CPS) infrastructure with information and
communication technologies (ICT) to ensure efficient power generation, smart energy distribution in
real-time, and optimisation, and it is rapidly becoming the current standard for energy generation
and distribution. However, the use of ICT has increased the attack surface against the electricity grid,
which is vulnerable to a wider range of cyberattacks. In particular, Denial-of-Service (DoS) attacks
might impact both the communication network and the cyber-physical layer. DoS attacks have become
critical threats against the smart grid due to their ability to impact the normal operation of legitimate
smart-grid devices and their ability to target different smart grid systems and applications. This paper
presents a comprehensive and methodical discussion of DoS attacks in the smart grid, analysing the
most common attack vectors and their effect on the smart grid. The paper also presents a survey
of detection and mitigation techniques against DoS attacks in the smart grid using reinforcement
learning (RL) algorithms, analysing the strengths and limitations of the current approaches and
identifying the prospects for future research.
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1. Introduction

The smart grid is the current energy management and distribution trend: it merges
cyber–physical systems (CPS) infrastructure with information and communication tech-
nologies (ICT) to ensure efficient power generation, smart energy distribution in real-time,
and optimisation [1]. It also allows for greater integration of alternative energy sources
such as solar and wind power, which are heavily reliant on weather patterns. Smart grid
applications include extraction of business value, smart charging of electric vehicles, smart
distribution, generation and storage of energy, grid optimization, grid self-healing with
fault protection technology, and many others [2] (Figure 1). However, the use of ICT intro-
duces new threats to the smart grid infrastructure and makes it vulnerable to cyber-attacks:
using legacy technologies such as conventional Supervisory Control and Data Acquisition
(SCADA) systems or running most CPS protocols over TCP/IP exposes the smart grid to
attack vectors found in traditional information systems [3].

Denial-of-Service (DoS) attacks, in particular, have become critical threats to the smart
grid because they target the availability of the grid infrastructure and services: in the
context of smart grids, this includes both “ensuring timely and reliable access to and
use of information” [4] and “ensuring access to enough power” [5]. Since the network
lacks extensive storage capacity, the generated electrical power must be consumed in
a short period of time. A DoS attack could prevent grid measurements from reaching
the control centre, so affecting the frequency equilibrium between power generation and
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consumption [6]: the control centre uses data gathered from multiple sections of the smart
grid to determine energy requirements, provide data to energy providers for billing, and
for controlling consumption and generation of electricity. Furthermore, any disruption in
the network must be addressed quickly in order to avoid major service interruptions. As
a result, advanced defence mechanisms that address the special constraints of real-time
operation and availability of the smart grid are required to protect against DoS attacks.

Figure 1. Smart Grid infrastructure and components.

Huseinovi et al. provide in [5] a taxonomy of the major power grid applications subject
to DoS attacks:

• The Advanced Metering Infrastructure provides smart meters with bidirectional
communication capabilities and data transfer with the control centre. It is a common
target of DoS attacks.

• The Distribution Management System monitors, protects, controls and optimizes the
assets of the distribution grid, and might be affected by load frequency disturbance
caused by a DoS attack.

• Wide Area Monitoring, Protection and Control Systems are also subject to DoS at-
tacks [7,8].

• Demand Side Management might be affected by DoS attacks that target the devices in
charge of maintaining the load and supply balance from the demand side.

• At last, the Energy Management System is in charge of keeping the balance between
the energy supply and the demand. A Distributed DoS (DDoS) targeting the En-
ergy Management System will prevent it from controlling the power ratio between
consumption and generation, causing problems such as voltage drop/rise.

Due to the large diversity of available cyber–physical layer protocols, the use of an
open communication network geographically distributed, and the limited computational
abilities of the smart grid devices, among others, securing the smart grid is still an open
challenge [9]. While basic security measures (such as authentication mechanisms, encrypted
communications or the use of firewalls) can be effective to address simple attacks, advanced
threats require continuous monitoring, detection and prevention systems [9], and a quick
and efficient response to incidents. In particular, Intrusion Prevention Systems (IPS) can be
employed to detect and mitigate DoS attacks by executing automated mitigation actions
when a cyberattack is detected, for example, by re-configuring firewall rules, the network
topology (in the case of Software Defined Networks (SDNs)) or by implementing different
actions in the control layer [10].

Traffic monitoring tools might be used to obtain statistical information about the
data exchanged in the ICT interface of the smart grid in order to detect cyberattacks. In
particular, the study of traffic flows might be useful to detect DoS attacks that cause packet
delays and communication network congestion, and even to detect the presence of new
devices in the network. IPSs might be classified into two big groups (Figure 2):
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1. Signature-based IPSs, which use signatures and patterns of well-known DoS attacks
to compare current network traffic with its expected pattern, raising an alarm when
the current behaviour does not match the learned signature or rule. Although these
methods are easy to implement, they fail to detect novel or unknown attacks [11].

2. Anomaly-based IPSs, which learn a pattern of the normal behaviour of a network
by means of statistical properties, and raise an alarm when the current behaviour
does not match the expected pattern, allowing the IPS to detect unknown attacks [12].
However, anomaly-based IPSs are more costly to train and tune, and it is more difficult
to obtain the exact root cause of the detected anomaly. The pattern of legitimate
behaviour may be learned with a variety of techniques: traditionally, pattern-based
intrusion detection has been performed by analysing the contents of each individual
network packet to find anomalies that deviate from the learned pattern, using a set
of techniques named Deep Packet Inspection. However, inspecting each packet is
not efficient in large networks, and is even impossible at network speeds of Gigabits
per second. The main alternative to Deep Packet Inspection is flow-based anomaly
detection, where the communication patterns (in Netflow [13] or IPFIX [14] format)
are studied, instead of the content of each individual packet [15].

Figure 2. Network Intrusion Prevention Systems types and detection methods.

This work will focus on two key topics: first, an examination of the most frequent DoS
attack vectors and their effect on the smart grid, addressing the most relevant types of DoS
attacks targeting the Smart Grid, namely [5]:

• Flooding attacks, which overwhelm the communication network with packets to
disturb legitimate communication.

• Jamming attacks, which interfere with the wireless signals at the physical layer to
deny or delay the communication between smart grid devices.

• De-synchronization attacks, which target smart grid systems which rely on exact
timing and synchronized measurements.

• Amplification attacks, which take advantage of networking protocols to overwhelm
the communication network or exhaust device resources.

• False Data Injection attacks, which alter the packet content with the aim of disrupting
smart grid services.

Second, the most promising RL-based techniques for detecting and mitigating the
aforementioned cyberattacks are discussed, identifying the gaps in the literature and
prospects for future research. The main requirement to implement IPSs in the smart grid
is to incorporate scalable, resilient and efficient algorithms that do not interrupt normal
smart grid operations and are able to handle a variety of network devices, topology and
infrastructures. RL algorithms have the ability to obtain optimal action policies, learning
how to map observations taken from the environment to actions to maximize an expected
future reward [16]. IPSs based on RL are a current trend for securing complex systems
which require autonomous agents capable of learning to make decisions. RL-based IPS
are good candidates to detect and mitigate different DoS attacks in the Smart Grid given
the flexibility provided by RL algorithms to learn the best course of action against various
situations and attacks.

The remainder of this paper is structured as follows: Section 2 describes the different
types of DoS attacks targeting the smart grid, classifying them in terms of the applications
they target, the used protocols, and the main defence mechanisms. Section 3 addresses the
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most novel defence and mitigation techniques using RL. Finally, Section 4 summarises the
main conclusions gathered from the survey, identifying the prospects for future research.

2. DoS Attacks in the Smart Grid

The smart grid is made up of various elements that form a hierarchical architecture:
in general, a set of measurement components (such as smart meters or Programmable
Logic Controllers) gather data from the environment and send it to a control centre via
communication protocols that run over TCP/IP, inheriting the DoS attack vectors from the
internet domain. Because the control centre and the physical layer are usually geographi-
cally separated, the cyber–physical infrastructure shares the networking infrastructure with
the Internet, allowing attackers and cyber-criminals to gain access to the smart grid. DoS
attacks are one of the attacks that can have a greater impact on the smart grid: a DoS attack
against the smart grid has the primary effect of disrupting or delaying power delivery; the
attack could target a single device or the various sections of the smart grid: generation,
transmission, distribution, and consumption [5].

DoS attacks against communication between smart metering equipment and control
centres, in particular, may stop signals from reaching their destinations on time, preventing
the control centre from maintaining a strong situational awareness of the grid’s condition,
and thus leading to grid instability. The attackers may employ many devices (and botnets)
to carry out what is called a Distributed DoS attack, and use spoofed IP addresses to mask
their identities. This section summarises the most relevant DoS active attack types against
the smart grid, which might cause grid instability and/or unavailability. The attacks
are classified based on the technique used, and the consequences for the smart grid are
discussed. Table 1 summarises the main attack techniques, their targets in the smart grid
infrastructure and the main mitigation and detection techniques. This study does not cover
passive attacks, where the attacker eavesdrops on communications or analyses traffic in
order to obtain information about the smart grid, but without modifying data or interacting
with the infrastructure.

Table 1. Summary of the main DoS attacks against the smart grid, relevant works and main identified
defence strategies.

Attack Target Defence Strategy Relevant Works

Flooding
ICMP
UDP
TCP

Network monitoring with NIDS
Moving Target Defence

Drop or filter traffic
Anomaly Detection

[17]
[18]
[19]
[20]
[21]
[22]

Jamming Wireless Communication Layer

Signal Strength Measurements
Monitoring of the Carrier Sensing Time
Threshold based detection on the PDR

Consistency Checks
Network monitoring with NIDS

Delayed Disconnect
Intelligent selection of wireless channels

Drop/filter traffic

[23]
[24]
[25]
[26]
[26]

De-synchronization Global Positioning System (GPS)
Network Time Protocol (NTP)

Monitor system stability
Monitor the GPS carrier-to-noise ratio

Use IEEE 1588-2008 precision time protocol
Use stable atomic clocks

[27]
[28]
[29]

Amplification UDP

Network monitoring with NIDS
Filter or drop traffic

Deep Packet Inspection
Anomaly detection

[30]

False Data Injection Unencrypted, unauthenticated communications Deep Packet Inspection
Anomaly Detection

[31]
[32]
[33]

2.1. Flooding Attacks

A flooding attack tries to overwhelm the network, resulting in delayed or interrupted
communication between legitimate devices. It might be performed by taking advantage of
multiple network protocols, such as ICMP, UDP, or TCP. The attack is simple to execute but
causes significant network disruption.
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TCP SYN Flooding [34] takes advantage of the three-way handshake mechanism of
the TCP/IP protocol, and therefore all smart grid protocols running on top of TCP/IP
(such as Modbus TCP) are vulnerable to SYN flood attacks. The attacker sends an SYN
request packet to the victim, which replies with an SYN/ACK packet and keeps a port
open waiting for an ACK packet from the attacker to establish the connection. However,
the attacker never sends the ACK packet, forcing the client to keep the port open until the
connection expires (Figure 3). The main outcome of a successful SYN flooding attack is that
the victim runs out of available ports to initiate new connections with legitimate devices.

UDP Flooding attacks are executed when an attacker generates a high amount of
packets to random destination ports of the victim. If the port is closed, the victim will
respond with an ICMP packet; if the amount of generated ICMP packets is large enough, it
might overwhelm the network preventing legitimate packets from reaching their destina-
tion: in [17], Asri et al. show how a UDP flooding attack could take down the entire grid
infrastructure. The UDP attack prevents the control centre from gathering usage data from
the grid, and as a result, the power plant stops producing electricity, causing the entire
network to fail. Likewise, Ping flooding [35] tries to overwhelm the network with ICMP
packets: the targeted device becomes overloaded with ICMP Echo Request (ping) packets.
The attacker tries to consume all the available bandwidth, preventing legitimate packets
from reaching their destination.

Figure 3. Conceptual diagram of the TCP SYN Flood attack. The attacker uses spoofed IP addresses,
so the victim never gets a response to the SYN-ACK packets, forcing it to keep open ports and
exhausting its resources.

Depending on the role of the victim in the smart grid, the attack might have different
consequences in the physical environment. Flooding attacks might increase delays on
time-critical messages, such as those exchanged between the control centre and smart
meters [19–21]. The DoS attack might not only interrupt communications but also exhaust
the victim’s resources in terms of CPU consumption, preventing it from performing legiti-
mate tasks [22]. Common defence strategies include the deployment of network monitoring
through Network Intrusion Detection Systems (NIDS) and anomaly detection [17,19,21], or
the use of advanced moving target defence mechanisms as proposed in [18].

2.2. Jamming Attacks

A recent DoS attack vector in wireless networks is initiated by jamming the signals at
the physical layer to deny or delay the communication between smart grid devices [36].
The attackers might use a variety of techniques, from the simple continual transmission of
interference signals to advanced attacks that exploit vulnerabilities on application layer
protocols [23]. In [24], Temple et al. implement a jamming attack with two different
goals: to deny the electrical service during a certain time window, and to produce physical
disturbance of power grid frequency by causing load shedding, assuming an attacker with
perfect knowledge of the infrastructure. Li et al. investigate in [25] both jamming and
anti-jamming techniques in a multichannel wireless network that connects remote sensors
and the control centre in a smart grid, modelling the interaction between the grid sensors
and the attacker as a zero-sum stochastic game.
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The detection and mitigation techniques for jamming attacks usually study parameters
associated with the stability of the signals in the network, such as the signal strength
indicator and the packet loss rate [26]. Other strategies are based on consistency checks,
delayed disconnect, or detection of media access control layer misbehaviour through
network monitoring [23], the intelligent selection of the communication channel to avoid
the use of channels that are under attack [25].

2.3. De-Synchronization Attacks

Since many smart grid applications depend on synchronous measurements, they rely
on exact timing information. Spoofing the Global Positioning System (GPS) signals is one
method of carrying out de-synchronization attacks in the smart grid. Most measuring equip-
ment employs the GPS to obtain exact timing: characteristics such as frequency and voltage
are often sampled on a regular basis thanks to the GPS timing signal, and the measurements
are aligned to a common time domain by the control centre. A de-synchronization attack
occurs when a malicious attacker alters the sampling time by forging a GPS signal, causing
the measuring device to sample the signal at the incorrect time (Figure 4). The misaligned
measurement reaches the control centre, which acquires an inaccurate grid status. Zang
et al. investigate in [27] the smart grid de-synchronization threats in three smart grid
applications: transmission line fault detection and location, voltage stability monitoring,
and event location. They demonstrate how a time de-synchronization attack might degrade
such applications’ performance, resulting in erroneous operations in the smart grid.

Figure 4. Example of a jamming attack on the GPS signal, which causes misaligned measurements to
arrive at the control centre.

A different set of de-synchronization attacks in the smart grid are performed by ex-
ploiting vulnerabilities in the Precision Time Protocol (PTP). PTP is one of the IEEE 1588
protocols that permit time synchronization between devices with varied clock resolutions,
precision, and stability with microsecond accuracy [37]. PTP is widely used in the smart
grid at the substation level to obtain sample values with 1 µs accuracy. The PTP master
is connected to the substation bus: the master receives timing from a GPS signal and
distributes accurate time reference to all connected devices via synchronization messages
under PTP [29]. However, PTP is vulnerable to different attacks, including DoS, packet
manipulation and selective packet delay [28]. The authors of [29] exploit the PTP protocol,
by introducing a variable delay in the PTP master communication path, and manipulating
the clock of the connected devices. A delay attack against PTP will manipulate the clocks
of all connected devices, affecting the functionality of merging units and potentially target-
ing all applications relying on precise timing, such as sampled values, fault localization,
differential protection, or synchrophasor measurements.

The defence and mitigation techniques against jamming attacks include the use of
cross-layer monitoring of the GPS carrier-to-noise ratio to detect time de-synchronization
attacks [38], or the use of highly stable atomic clocks or time synchronization with the pre-
cision time protocol defined by IEEE 1588-2008 [39]. Moreover, authentication mechanisms
can be used to prevent spoofing, which is the main enabler of de-synchronization attacks.
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2.4. Amplification Attacks

Amplification attacks are a kind of volumetric DoS attack which involves reflection
and amplification: the attacker spoofs an IP address (reflection), while exploiting UDP-
based protocols that provide a much larger response than the request from the attacker
(amplification) to overwhelm a network [40]. In contrast to flooding attacks, amplification
attacks consume fewer resources from the attacker side but are more difficult to implement.
Amplification attacks have four main characteristics [41]:

• Distributed: usually, multiple servers using the UDP protocol are used to launch
the attack.

• Camouflage: attackers spoof their IP addresses into the addresses of the victim. Victims
receive a lot of traffic from amplifiers (the server that is abused by the attackers).

• Reflexivity: the traffic is never received directly from the attacker, but indirectly by the
amplifier’s reflection.

• Amplification: the traffic reflected from the amplifier servers to the victims is much
larger than the traffic sent to amplifiers from the attackers.

The main three types of amplification attacks targeting the smart grid are DNS, NTP
and SNMP amplification. The Domain Name System (DNS) protocol translates domain
names into IP addresses. In the context of smart grids, any device connected to a supervi-
sory, control and data acquisition system has an IP address that is stored in the DNS server.
In a DNS amplification attack, the attacker sends UDP packets with forged IP addresses
to a DNS resolver, which acts as an amplifier server. The forged IP is the victim’s IP. Each
UDP packet requests the DNS resolver to send the largest response possible (by sending
the “ANY” argument). When the DNS resolver receives the request, it sends to the victim a
large response, overwhelming the networks and causing service interruption [42].

Likewise, a Network Time Protocol (NTP) amplification attack uses an NTP server
as an amplifier: in the smart grid, NTP servers are used to perform time synchronization
between current and voltage measurements from different devices in the grid. In the NTP
amplification case, the attacker creates a reflection attack between the master nodes (that
receive packets) and the slave nodes in the substations. The attacker sends UDP packets
with forged IP addresses to the NTP server using the “monlist” command, which forces
the server into responding with the latest 600 IP addresses that have made requests to
the NTP server. The IP in the UDP packets is, again, the victim’s IP, which receives a
large UDP packet overwhelming the network. Finally, the Simple Network Management
Protocol (SNMP) is widely used in management consoles dedicated to manage and maintain
Programmable Logic Controllers. If an attacker gains access to an SNMP server it would be
able to use it to scan the network and create a list of local devices, which will become the
amplifiers of the attack. The attacker forges UDP packets, requesting the devices to respond
with as much data as possible: the SNPM server (in this case the victim) will receive a large
volume of data from all the devices, becoming overwhelmed by the amount of petitions
and data [43].

In [30], Yang et al. propose an intrusion detection system specific for synchropha-
sor measurements, capable of detecting man-in-the-middle and amplification attacks by
combining protocol-based whitelists with behavioural anomaly detection, by performing
deep packet inspection on the network frames. The consequences (and the defence and
mitigation techniques) of amplification attacks are similar to those of flooding attacks: the
main objective of amplification attacks is to saturate the available bandwidth of a network
(or the processing capabilities of the device processing the network packets) with numerous
and large network packets, targeting the network layer of the TCP/IP protocol stack.

2.5. False Data Injection Attacks

In this type of attack, the malicious actor intercepts the communication network traffic
(for example, by sniffing unencrypted communications from the network) and extracts
the actual values of the network frame. The attacker forges false packets to force the
control centre into executing wrong actions of various types. While False Data Injection
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(FDI) attacks target the integrity of the network packets, they might also be used as a
DDoS tool [31,44] when they cause interruptions on different smart grid applications. A
common assumption is that FDI attacks require complete knowledge of the grid topology.
However, recent works show how an attacker with limited knowledge is also able to
successfully perform FDI attacks [45]. In [31], Vuković et al. consider an attacker that
manipulates the data exchanged between the control centre and the neighbouring nodes.
The attacker successfully manipulates the data to disable the distributed state estimation
system, preventing it from finding correct state estimates. They show the impact of the
attack on the IEEE 118 bus power system, where the FDI attack prevents the distributed
state estimation from converging, leading to DoS due to erroneous state and power flow
estimations, preventing the control centre from taking adequate actions.

The most critical estimations, and therefore the main targets of FDI attacks in a smart
grid, are energy demand, energy supply, grid-network states and electricity pricing estima-
tion. FDI attacks result in abnormal state estimations and might be detected by performing
Deep Packet Inspection, anomaly detection, or through system-theoretic approaches [32].
In addition, when the FDI attack targets distributed state estimation (as discussed in [31]), a
distributed detection approach is recommendable: a mitigation strategy is presented in [31],
based on fully distributed attack detection (which is able to understand which region of
the grid is impacted by the FDI attack), followed by a mitigation algorithm that isolates the
attacked region, so that the distributed state estimation can converge. In [33], Zang et al.
propose to detect FDI attacks using deep autoencoders and generative adversarial networks
to learn the unconformity between abnormal and normal measurements; they use deep
autoencoders to reduce the dimensionality of the input data, which serves as the input of
the generative adversarial network for anomaly detection.

3. Detection and Mitigation Mechanisms against Cyberattacks with RL

In recent years, RL approaches have gained popularity due to their ability to obtain
optimal action policies in different domains. RL is a branch of artificial intelligence which
focus on “what to do”, i.e., on how to map situations to actions to maximize an expected
reward. The algorithm is not told which actions to execute, but it must discover which
actions are better (yield the most reward) in each situation by interacting with the envi-
ronment. RL algorithms might be implemented with a variety of techniques (summarised
on Figure 5), from Markov decision processes to deep neural networks. In particular, the
combination of deep neural networks and RL (deep RL) provides great advantages: deep
neural networks are able to approximate the values of the optimal states and action pairs
and can handle bigger action/state spaces than traditional RL approaches.

The common use case for RL in the smart grid is to determine an optimal strategy
to manage different aspects of the cyber–physical layer. For example, implementing a
deep RL algorithm to learn the optimal strategy for real-time electric vehicle charging
scheduling [46,47], or to use of a model-free RL method for load frequency control resistant
to weather uncertainties [48]. Another studied use case is the use of RL approaches to
model the presence of an attacker in a smart grid. In this setting, the RL agent represents
the attacker, which uses RL to find the optimal attack vector against the grid [49,50].

However, there is limited work proposing RL approaches to find the best defence
strategy in a smart grid against a cyberattack. This section reviews and discusses current
approaches to DoS attack detection and/or mitigation using RL. We will focus on the
strengths and the limitations of each proposed technique (that we summarise in Table 2),
also identifying the prospects for future research.

Feng et al. model, in [51], the physical state, control inputs, and disturbances of a CPS.
The defence scheme is set up as a zero-sum game where the defender is an actor-critic deep
RL algorithm (a game-theoretical actor-critic neural network) that learns an optimal strategy
to timely defend a CPS from unknown attacks. However, their scenario only considers the
physical layer and does not evaluate the impact of the attack on the communication layer.
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Figure 5. Taxonomy of popular RL algorithms.

In [52] a deep Q network detection scheme is proposed to defend against data integrity
attacks in alternate current power grids. The objective of the attacker is to interrupt
the normal operation of the power grid, bypassing the implemented bad data detection
mechanisms. They use a deep Q network detection scheme where the state space of the
smart grid is inferred by the agent (under attack or normal operation), and the action space
includes that the system should be kept running (because the state observation did not
detect any attack), or the system should be stopped. However, they assume an attack
model where an attacker has some previous knowledge of the power grid system to be
able to generate malicious data. Their deep Q network detection scheme improves the
results of Feng et al. [51], in terms of delay-alarm error rates and detection failure rate,
in three different IEEE bus systems, in both continuous and discontinuous attack models.
However, the time complexity of the proposed approach is considerably high and grows
exponentially with the number of devices in the power system, affecting the practicability
of the prevention strategy in a real scenario.

Liu et al. implement in [53] a deep RL mitigation framework, specifically designed
for DDoS flooding attacks against SDNs. They follow the Deep Deterministic Policy
Gradient (DDPG) paradigm, where a parameterized actor function is maintained to define
the current policy, mapping states to specific actions deterministically. They monitor the
communication network load, and their action space is based on applying throttling to
reduce the impact of the DDoS attack, dropping excess traffic. The agent tries to maximize
the available bandwidth in the SDN by using a reward function on the ratio of benign
and attacker traffic reaching the central SDN server. Therefore, the three goals of the
agent are to prevent the server from crashing, allow benign traffic to reach the server, and
prevent as much malicious traffic as possible. Even though this work is not focused on the
smart grid, SDN is being used nowadays in smart grids to provide a resilient and flexible
communication architecture.

Kurt et al. [54] formulate an attack/anomaly detection problem with a partially
observable Markov decision process (POMDP), with a model-free RL algorithm that is able
to defend from cyberattacks in an online manner without previous knowledge of any attack
model. The defender learns low-magnitude attack models in order to become sensitive to
even a very slight deviation from normal measurements. In order to detect an impending
attack, the defender must first identify when an attack has begun. Because the agent cannot
know when the attacker will initiate an attack, it must consider two states: a pre-attack and
a post-attack state. The defender can take two actions after observing a measurement: stop
and declare an attack, or continue and obtain additional measurements. The goal is for the
agent to lessen its detection delay and false alarm rate by choosing actions that lead to high
rewards. If it is in a pre-attack state and takes action to stop, it will receive a reward equal
to one unit; however, if it takes action to continue obtaining measurements while already
in a post-attack state, it will be penalized by receiving a cost equal to the detection delay.
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The work of Wei et al. [55] presents a cyber-attack recovery (mitigation) strategy for
the smart grid based on DDPG to optimally reclose the transmission lines when an attack
is successful. In this case, the attackers can trip the smart grid circuit breakers in three
different ways using FDI attacks: by modifying the GOOSE; redirecting local sampled
measured values; or crafting false manufacturing message specification messages. The
attack affects the asynchronous behaviour of multiple generator rotors, and thus re-closing
the affected transmission lines at the proper time is required. However, the main limitation
of this work is that the mitigation system is evaluated in a non-realistic scenario, where the
attack is simulated through dynamic equations of the power system under cyber-attack.

Jokar and Leun [56] present a specification-based IPS for smart grid applications
which use ZigBee-based home area networks. They monitor the network behaviour of
different sensor nodes and use Q-learning to implement the prevention response. They
extract different network features to learn the pattern of normal communication using Deep
Packet Inspection techniques, and evaluate the system carrying out different cyber-attacks,
namely (a) radio jamming attacks, (b) stenography attacks, (c) replay attacks, (d) back-off
manipulation attacks, (e) DoS against data transmission and (f) DoS against Guaranteed
Time Slot requests. However, the IPS is focused on IEEE 802.15.4, and the feature extraction
mechanisms for the anomaly detection phase require Deep Packet Inspection, a technique
that is not efficient in large networks.

Parras et al. [57] recently proposed the use of Generative Adversarial Imitation
Learning, a branch of Inverse RL to mitigate cyberattacks in wireless networks based on
CSMA/CA multiple access method. Inverse RL, also known as inverse optimal control,
is a learning setting where the learning goal is focused on learning the reward that better
explains a given policy of an agent. Therefore, Inverse RL is useful to model an unknown
reward function. Parras et al. use Generative Adversarial Imitation Learning, where Deep
Neural Networks are used to approximate the agent’s reward and the policy. They achieve
high detection results and are able to mitigate the back-off attack in both offline and online
settings, improving the baseline model results. They argue that their defence mechanism
is able to adapt to different RL-based attacks, without assuming any concrete attack type.
However, they test the defence mechanisms on backoff attacks only and do not provide
results against other types of attacks such as DoS. Finally, another weakness of this general
defence mechanism is its computational complexity, especially in online settings which
require training the deep neural network multiple times.

Liu et al. propose in [58] an anti-jamming algorithm implemented with deep Q
learning with a recursive convolutional neural network to learn the recursive characteristics
of the spectrum waterfall information. Spectrum waterfall information is therefore used to
obtain observations from the environment. The spectrum waterfall contains both frequency
and time data of the network environment. The RL agent learns to select a discretized
transmission frequency from a predefined set, with a reward function defined as an SINR-
based transmission rate and cost for frequency switching.

Zhang et al. propose in [41] a simplified DNS amplification attack model, mitigating
it with a model-free RL agent which observes the traffic load received from a DNS server
and the total link load. Even though the paper is not focused on a smart grid domain,
the mitigation actions and the model could be easily transferred. The agent implements
two different actions: transmitting or discarding all the traffic received in a specified time
window. Since the goal of the agent is to eliminate the network congestion after a successful
amplification attack, the reward function is designed to avoid the total load of the link
goes above a certain threshold: when the load of the link reaches the threshold, a negative
reward value is given to the agent. Otherwise, the reward value will be the proportion of
legitimate traffic transmitted over the link. Finally, they use a Q-learning method to explore
and update the whole state-action space. However, the agent only learns to either drop or
allow all the traffic in a specific time window, which can lead to dropping legitimate traffic.

At last, Chen et al. present in [50] a Q-learning-based mitigation strategy for FDI
attacks in an automatic voltage controller, replacing the data detected as suspicious with
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their own estimation based on maximum likelihood estimation values, in order to enhance
the security of the state estimation and the optimal power flow controllers. They model the
attacker-defence system as a POMDP, where the attacker learns the optimal attack strategy,
and the defender uses a Q-learning algorithm with nearest sequence memory.

Table 2. Strengths and limitations of the discussed works on using RL to defend smart grids.

RL Algorithm Attack Type Learning Goal Strengths (+) and Limitations (−)

DQDN [52] False Data Injection
Optimize defence strategy by
quantifying the observation
space with a sliding window

(+) Improves previous approaches in several IEEE bus systems
(−) Only considers the physical layer
(−) Time complexity grows exponentially with the number of devices
(−) Non-realistic scenario, lack of advanced simulation or complex Smart Grid

DPDG [53] DDoS
Monitor the network load to drop excess

traffic to maximize the
available bandwidth in the network

(+) Efficient monitoring scheme
(−) Not focused on Smart Grid

DPDG [55] False Data Injection Find the optimal re-close
transmission time after an attack

(+) The implemented attacks affect the asynchronous behaviour of the generator rotors
(−) Only acts when the attack already happened
(−) Simulated attack scenario with dynamic equations of the power system
(−) Only considers the physical layer

Actor-critic NN [51] Multiple
Learn the optimal strategy to timely defend

a CPS by observing the state of
the CPS at the cyber and physical level

(+) Real-time operation
(+) Learns optimal defence and worst attack policies
(−) Non-realistic scenario, lack of advanced simulation or complex Smart Grid
(−) Only considers the physical layer

POMDP [54]
DoS

FDI/Jamming
topology attacks

Lessen its detection delay and
false alarm rate by choosing the optimal actions

(+) Model-free algorithm that is able to work online in real time
(−) Only considers two actions, continue operation or stop the system
(−) Fails to mitigate the attack without stopping the system
(−) Their approach does not distinguish between cyberattacks and other kinds of anomalies

Q-learning [56] Multiple
Learn the optimal actions to mitigate different

cyberattacks in ZigBee home
area networks

(+) Six different attacks evaluated
(+) Combines detection and prevention using different ML-based techniques
(−) Focused on IEEE 802.15.4
(−) Requires deep packet inspection

Inverse RL [57] Back-off attack Novel general defence mechanism based on
Generative Adversarial Imitation Learning

(+) Good performance against back-off attacks
(+) Evaluated in both offline and online settings
(+) Combines detection and prevention
(−) Evaluated only against back-off attack
(−) Potentially high computational complexity on online settings

DQN [58] Jamming
Learn the recursive characteristics

of the spectrum waterfall, optimizing the
discretized transmission frequency

(+) Considers SINR-based transmission rate and the cost for frequency switching
(+) Reduced average detection time and false alarm rate
(−) Not focused on Smart Grid

Q-learning [41] DoS amplification
Learn the optimal actions to eliminate
network congestion in a DNS server

after an amplification attack

(+) Realistic DNS amplification attack
(−) The agent only learns to either transmit or drop all the traffic in a specified time window
(−) Not focused on Smart Grid

POMDP [50] FDI Maintain optimal power flow (+) Enhancing the grid resilience with MLE
(−) Only considers the physical layer

4. Conclusions and Prospects for Future Research

This paper presented a review of the state of the art on DoS attacks, detection and
mitigation techniques in the smart grid. Due to the introduction of information and
communication technologies in the grid, the attack surface has been increased, making
the grid vulnerable to a wide range of cyberattacks. In particular, DoS attacks targeting
different protocols, applications or layers of the smart grid might have serious consequences
both on the communication network and on the physical level.

We performed a review of the most important DoS attacks against the smart grid. We
studied both the attack techniques at a general level and their particular consequences
in the smart grid, identifying the main detection and mitigation actions that might be
implemented to prevent them.

Focusing on the detection and mitigation techniques, we performed a review of the
most recent works on RL techniques to mitigate DoS attacks in the smart grid. Most of
the works on DoS cyberattack detection and mitigation with RL have focused on solving
different optimization problems in the smart grid at the control plane. However, there is
limited work which tackles the use of RL to mitigate cyberattacks in the smart grid; in
particular, there is a lack of holistic approaches which consider and try to mitigate DoS
cyberattacks at the communication network and the physical layer at the same time. In
particular, the effect of DoS attacks in the smart grid, and how to mitigate these kinds of
attacks in near real-time in a realistic simulation is barely investigated.

The main reason behind the limited work in deep RL for smart grid cybersecurity is
that deep RL algorithms take a long time to converge, and require a simulation environment
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for training and validation. For the deep RL to be applicable to real scenarios, the simulation
environment has to be realistic enough so the trained algorithm can be applied to a real
environment with confidence [59]. Therefore, most scientific work is focused on small-scale
simulations and specific attacks, where the effect of the cyberattack is introduced in the
simulation and its effects are investigated at the control plane. To be able to study the
effect of DoS attacks in the smart grid at both the communication and physical levels,
advanced co-simulation environments which simulate both environments at the same time
are required.

There is a clear need for holistic approaches which consider the detection and mitiga-
tion of cyberattacks both at the network and control plane in order to effectively mitigate
the attack in a timely and accurate manner. In particular, Intrusion Prevention Systems
which take into consideration the specific needs of the smart grid need to be studied, de-
signed and evaluated in a realistic smart grid co-simulated environment. The co-simulation
environment should have the ability to launch advanced cyberattacks that impact both
the communication network and the physical layer, in order to study the best defence
mechanisms that can mitigate advanced attacks at both levels.
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