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Chapter 1

Propagation of chaos for a stochastic particle

system modelling epidemics

Alessandro Ciallella, Mario Pulvirenti and Sergio Simonella

Abstract We consider a simple stochastic N -particle system, already studied by the
same authors in Ciallella et al (2021b), representing different populations of agents.
Each agent has a label describing his state of health. We show rigorously that, in
the limit N → ∞, propagation of chaos holds, leading to a set of kinetic equations
which are a spatially inhomogeneous version of the classical SIR model. We improve
a similar result obtained in Ciallella et al (2021b) by using here a different coupling
technique, which makes the analysis simpler, more natural and transparent.
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1.1 Introduction

We consider a stochastic particle system representing agents moving independently
according to a random flight. Each agent may be susceptible, infected, or recovered
at the initial time. When an infected particle and a susceptible particle are sufficiently
close, they may interact and become both infected. Each infected agent can recover
independently of the others in a random time of fixed rate. As in the classical SIR
model by Kermack and McKendrick (1927), recovered agents can no longer become
susceptible or infected. However, at variance with the SIR model, we intend to allow
spatially inhomogeneousdistributions of the populations. A simple proposal for such
a model has been given in Ciallella et al (2021b), which we reconsider in the present
paper. Our purpose is not to provide realistic modelling of spatial patterns (even
though this can be important in applications), but rather follow a natural approach,
inspired by the kinetic theory of rarefied gases; see for instance Bellomo et al (2020);
Albi et al (2021) and references therein. There is therefore no focus on identifying
realistic interactions between agents. In particular, we shall neglect possible individ-
ual strategies, and assume a binary interaction. In spite of its simplicity, the kinetic
model still provides a good description of the qualitative behaviour of SIR-like equa-
tions, because the essential aspects of the evolution are weakly dependent on the
microscopic details (Pulvirenti and Simonella (2020); Ciallella et al (2021a,b)).

In this paper we show that, in the limit N → ∞, the N -particle model introduced
in Ciallella et al (2021b) reduces to kinetic equations ((1.9) below) for the one-
particle marginals of the probability measure describing the statistical behaviour of
the system. In particular as a crucial step, we prove propagation of chaos, namely the
asymptotic statistical independence of the agents. We use a coupling method, which
improves the result obtained in Ciallella et al (2021b) (obtained via the hierarchy
method) providing a simpler and more effective proof. More precisely we introduce
a second random process, accounting for the kinetic equations formally associated
with the limit N → ∞, and construct a realization of both processes on the same
probability space. This coupling is then used to estimate the distance between the
processes and verify that the two models are asymptotically equivalent.

The plan of the paper is the following. In Sections 1.2 and 1.3 we present the
model and the limiting kinetic equation, respectively. In Section 1.4 we discuss
the convergence of the particle model in the kinetic limit following the coupling
argument. Finally, Section 1.5 is devoted to concluding remarks.

1.2 Model

We now define the system we are going to study. We refer also to Ciallella et al
(2021b) for the description of the model and the derivation of the formal kinetic
limit. Consider N particles, representing the agents of the system, moving a square
in the plane R

2 with periodic boundary conditions, i.e., the torus Λ = [0, D] ×
[0, D], where D > 0 is a fixed parameter. The particles are assumed to move
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with velocities of modulus 1 so that the velocities belong to the unit circle S1.
Each particle has a label ai ∈ {S, I, R} =: L, i = 1, 2, . . . , N , representing the
class of the agent (susceptible, infected, recovered). We introduce the notations
ZN = (z1, z2, . . . , zN), where zi = (xi, vi) ∈ Λ×S1, and AN = (a1, a2, . . . , aN ).
At any time, the state of the system is described by the (4N)–tuple of coordinates
(ZN ;AN ) belonging to the phase space (Γ × L)N , where Γ := Λ× S1.

The system evolves in time according to the following generator:

L = L0 + L1 + Ld + L
N
int, (1.1)

where we have generators for which we omit the dependence on N since they are
acting independently on single particles (L0, L1 and Ld), and a binary interaction
term between particles LN

int.
More precisely, L0 + L1 is the generator of N independent copies of a random

walk:

L0 =

N
∑

i=1

vi · ∇xi
(1.2)

is the generator of free motion (particles are moving of linear motion with velocities
vi, i = 1, . . . , N ), and jumps happen as described by

L1Φ(ZN ) =

N
∑

i=1

1

2π

∫

S1

dw[Φ(z1, . . . , xi, w, . . . , zN)− Φ(ZN )].

In particular, when we select the test function Φ of the form of a function of a single
particle state only, for instance of the first one Φ(ZN ) = φ(z1), we get

L1Φ(ZN ) =
1

2π

∫

S1

dw[φ(x1, w) − φ(x1, v1)]. (1.3)

Note that labels are not involved in the random flight process, so here we have left
out the dependency on them to shorten the notations.

The other contributions in the generator are instead acting on the labels of the
particles only. The term Ld describes the decay of infected agents I into recovered
R. It takes the form

LdΦ(ZN ;AN ) = γ

N
∑

i=1

[Φ(ZN ; a1, . . . , ãi, . . . , aN)− Φ(ZN ;AN )], (1.4)

γ > 0 being a constant parameter representing the rate of decay, and where the
transition of an ai label into a ãi is defined by

ãi = R if ai = I; ãi = ai otherwise. (1.5)

Finally, the binary interaction term describing the infection process has generator
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LN
intΦ(ZN ;AN ) =

λ

N

N
∑

i,j=1
j>i

[

Φ(ZN ; a1, . . . , a
′
i, . . . , a

′
j , . . . , aN )

− Φ(ZN ; a1, . . . , aN )
]

.

Here, λ > 0 is the constant representing the rate of the process and for the involved
particles the transition from (ai, aj) into (a′i, a

′
j) is defined by

{

if χi,j = 1 and ai = I, aj = S or aj = I, ai = S then a′i = a′j = I ;

otherwise a′i = ai, a
′
j = aj .

(1.6)
The characteristic function χi,j is introduced to allow two particles to interact only
when they are sufficiently close: fixing R0 > 0 we define

χi,j := 1{xi,xj | |xi−xj|<R0} .

Thus, the evolution due to the defined generator (1.1) is describing the following
behaviour. Each agent is moving in the space Λ performing a random flight, where
the velocity jumps happen with rate 1. Each particle has a label describing its state:
susceptible (S), infected (I), or recovered (R). According to a Poisson process with
overall rate (N−1)λ

2 , a pair of agents is selected uniformly. Whenever the chosen
agents are at a distance smaller than R0, the infection process takes place only for
pairs made by an infected and a susceptible agent, which are changed in a couple
of infected agents. Finally, each infected agent becomes recovered according to a
different Poisson process with rate γ.

A statistical description is in order for dealing with such a system with a large
number of agents N . The initial configuration of the system at time zero is given by
the probability density WN

0 , symmetric in the exchange of particles, such that

WN
0 : (Γ × L)N → R

+,
∑

AN

∫

ΓN

dZNWN
0 (ZN ;AN ) = 1.

The time evolved measure WN
t (ZN ;AN ), t > 0 is given by

∑

AN

∫

dZNWN
t (ZN ;AN )Φ(ZN ;AN ) =

∑

AN

∫

dZNWN
0 (ZN ;AN )E[Φ(ZN (t);AN (t))] ,

where Φ is a test function, (ZN ;AN ) → (ZN (t);AN (t)) is the process and E =
E(ZN ,AN ) is the expectation conditioned to the initial value (ZN ;AN ). Integrating
with respect to the lastN−j particle positions, velocities and labels, j = 1, . . . , N−
1, we build the j-particle marginal fN

j , that gives the probability density of finding
j particles with labels Aj in the configuration Zj:
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fN
j (Zj ;Aj ; t) =

∑

ĀN−j∈LN−j

∫

dZ̄N−jW
N
t (Zj , Z̄N−j;Aj , ĀN−j) .

We consider particles distributed independently at time zero. Given the one-
particle density distribution f0, with normalization

∑

a∈L

∫

dzf0(z; a) = 1 , (1.7)

the initial state is

WN
0 (ZN ;AN ) =

N
∏

i=1

f0(xi, vi; ai) := (f0)
⊗N (ZN ;AN ). (1.8)

It is crucial to keep in mind that, even when at time zero the particles are indepen-
dent, they do not remain independent at positive times. In fact, the dynamics creates
correlations between particles so that the measure is no longer factorized at positive
times. However, we will prove that the so–called ‘propagation of chaos’holds. This
means that this independence is recovered asymptotically in the limit N → ∞.

1.3 Kinetic limit

We aim at proving that the system we introduced in the previous section is asymptoti-
cally equivalent to the system one formally obtains in the limitN → ∞ assuming the
propagation of chaos. We refer to Ciallella et al (2021b) for such formal derivation,
and for a proof of the rigorous result through the hierarchy of equations satisfied by
the marginals fN

j (Zj ;Aj ; t). In the following section, we shall proceed in a simpler
and more natural way.

According to the formal limit, the triple of single-particle densities

(f(z;S; t), f(z; I; t), f(z;R; t))

satisfies the following system of kinetic equations (z = (x, v)):



















(∂t + v · ∇x) f(z;S) = L1f(z;S)− λf(z;S)
∫

f(z1; I)χ(|x− x1| < R0)dz1

(∂t + v · ∇x) f(z; I) = L1f(z; I)− γf(z; I)

+ λf(z;S)
∫

f(z1; I)χ(|x − x1| < R0)dz1

(∂t + v · ∇x) f(z;R) = L1f(z;R) + γf(z; I)

.

(1.9)
Note that the sum

f(z, t) :=
∑

a∈L

f(z; a; t)

satisfies the simple random flight equation
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(∂t + v · ∇x) f(z, t) = L1f(z, t) .

Moreover, the system of kinetic equations (1.9) provides a more detailed description
of the classical SIR model when dealing with spatially inhomogeneous data (see
Ciallella et al (2021b)).

We now introduce as second model the process associated with the kinetic equa-
tions (1.9) that we will eventually couple with the one introduced in Section 1.2. The
single-particle generator is

L̃ = L̃0 + L̃1 + L̃d + L̃i

where L̃0, L̃1 and L̃d are the operators defined in Section 1.2, namely L0, L1 and
Ld respectively, in the case N = 1; while the infection generator is given by the
non–linear (f -dependent) term

L̃iφ(z; b) = λNf (z){φ(z; b
′)− φ(z; b)}, (1.10)

where Nf (depending on time through f ) is defined as

Nf (z) = (f(I; t) ∗ χR0
)(z) :=

∫

f(z1; I; t)χ(|x− x1| < R0)dz1 ,

χ(A) is the indicator function of A, and (z; b) ∈ Γ × L. We are keeping the same
notation associated with the prime sign as in Section 1.2, i.e., b′ = I if b = S, while
in the other cases b′ = b.

We now consider the N–particle process defined by N independent copies of the
one–particle nonlinear process introduced above. The N–particle generator is

L̃N = L0 + L1 + Ld + L̃N
i

where L0, L1, Ld are given by (1.2)-(1.4) and, for (ZN ;BN) ∈ (Γ × L)N ,

L̃
N
i Φ(ZN ;BN ) = λ

N
∑

i=1

Nf (zi)
{

Φ(ZN ;Bi
N )− Φ(ZN ;BN )

}

with
{

Bi
N =(b1, . . . , bi−1, I, bi+1, . . . , bN ) if BN =(b1, . . . , bi−1, S, bi+1, . . . , bN)

Bi
N = BN otherwise

.

(1.11)
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1.4 Particle approximation

We are now ready to prove the validity of the kinetic equations (1.9) for the model
introduced in Section 1.2, in the limit N → ∞. We are assuming (1.7) and (1.8)
at time zero, i.e., the initial datum is factorized. On the other hand the dynamics of
labels creates correlations as

fN
2 (z1, z2; a1, a2; t) 6= fN

1 (z1; a1; t)f
N
1 (z2; a2; t) .

To show that these correlations are vanishing as N → ∞, we now introduce a
coupling between the process described by the generator (1.1) and the process
associated to the kinetic equations (1.9).

We start by considering a different equivalent form for the generator

LN
intΦ(ZN ;AN )

=
λ

2N

N
∑

i=1

N
∑

j=1
j 6=i

δaj ,I{Φ(ZN ; a1, . . . , a
′
i, . . . , a

′
j, . . . , aN )− Φ(ZN ;AN )}

=
λ

N

N
∑

i=1

N
∑

j=1
j 6=i

δaj ,Iχi,j{Φ(ZN ;Ai
N )− Φ(ZN ;AN )}

= λ

N
∑

i=1

Jiemp{Φ(ZN ;Ai
N )− Φ(ZN ;AN )} ,

where we use the prime superscript with the meaning of (1.6), i.e

{

a′i = I if aj = I, ai = S and χi,j = 1,

a′i = ai, aj = a′j otherwise
,

and the i superscript (as in (1.11)) when we prefer to make explicit the role of both
δaj ,I and χi,j , i.e.

{

Ai
N =(a1, . . . , ai−1, I, ai+1, . . . , aN ) if AN =(a1, . . . , ai−1, S, ai+1, . . . , aN )

Ai
N = AN otherwise

(1.12)
having introduced

Jiemp = Jiemp(ZN ;AN ) =
1

N

N
∑

j=1
j 6=i

δaj ,Iχi,j .

In words, we are interpreting the behaviour in the following equivalent way. The
N agents are still moving in Λ via a random flight, with velocity jumps in S1 taking
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place with rate 1 per agent and each infected agent becomes recovered according to
a Poisson process of rate γ. In the infection process we choose with rate N an agent
i uniformly and then, with a rate λ, we evaluate the interaction with an uniformly
picked agent. So that, if this latter is an infected agent and the i-th is a susceptible
one and if their distance is smaller than R0, then ai becomes I , otherwise nothing
happens.

We want to compare the behaviour of this process with that of the one–particle
non–linear process associated to the kinetic equation (1.9), described by the generator
(1.10). The idea is now to couple the two processes. We remark that the positions
and velocities are the same, so that the difference is only in the distributions of the
labels. Let us call Ei the following difference

Ei := Nf (zi)− Jiemp(ZN ;BN ).

We expect that, by the law of large numbers, Ei gives a vanishing contribution as
N → ∞ and hence, for sufficiently large N , generates a small perturbation in the
evolution of distributions of labels.

We consider as coupling the process t → (ZN (t);AN (t), BN (t)) with generator

QN = L0 + L1 +QN
d +QN

i ,

where the decay term is defined as

QN
d Φ(ZN ;AN , BN ) = γ

N
∑

i=1

[Φ(ZN ; Ãi
N , B̃i

N )− Φ(ZN ;AN , BN )], (1.13)

denoting by Ãi
N = (a1, . . . , ãi, . . . , aN ) the transition on the i–th agent as defined

in (1.5), and analogous definition for B̃i
N . The interaction term is

QN
i Φ(ZN ;AN , BN ) = λ

N
∑

i=1

Ji{Φ(ZN ;Ai
N , Bi

N )− Φ(ZN , AN , BN )}

+λ

N
∑

i=1

Ji1{Φ(ZN ;Ai
N , BN )− Φ(ZN ;AN , BN )}

+λ

N
∑

i=1

Ji2{Φ(ZN ;AN , Bi
N )− Φ(ZN ;AN , BN )}

+λ

N
∑

i=1

E
i{Φ(ZN ;AN , Bi

N)− Φ(ZN ;AN , BN)},

(1.14)

whereAi
N , Bi

N follows the transition rule (1.12), and the label jump associated to Ji1
only affects the transition for AN , while the terms corresponding to Ji2 and Ei only
affect the transition for BN . Instead, the jumps described by the first term in (1.14)
and in (1.13) are simultaneous for particles labelled by both AN and BN (which is
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optimal for what concerns the propagation of chaos). We set

Ji =
1

N

N
∑

j=1
j 6=i

δaj ,Iδbj ,Iχi,j ,

Ji1 =
1

N

N
∑

j=1
j 6=i

δaj ,I(1− δbj ,I)χi,j ,

J
i
2 =

1

N

N
∑

j=1
j 6=i

(1− δaj ,I)δbj ,Iχi,j

(being δaj ,I the Dirac delta taking value 1 if and only if aj = I and 0 otherwise, and
analogously for the other deltas). Note that thanks to this choice, one has that

J
i + J

i
1 = J

i
emp(ZN ;AN ), J

i + J
i
2 + E

i = J
i
emp(ZN ;BN ) + E

i = Nf (zi)

so that QN is actually generating a coupling of the two previously described pro-
cesses, i.e., we recover as the two marginals the two processes we are considering,
obtained by integrating over BN and AN , respectively.

Let RN(t) be the law at time t for the coupled process, and we consider as the
initial distribution at time 0 the factorized distribution with the same distribution
of labels for both a and b–labelled particles, i.e. RN (0) = f⊗N

0 (ZN ;AN )δAN ,BN
.

We define DN(t) as the average fraction of particles having different labels ai,

bi, i.e. we choose the test function Φ(ZN ;AN , BN ) = 1
N

∑N
i=1 d(ai, bi), where

d(a, b) = 1− δa,b: thanks to the symmetry

DN(t) =

∫

dRN (t)
1

N

N
∑

i=1

d(ai, bi) =

∫

dRN (t)d(a1, b1).

We notice that DN (0) = 0 and that DN(t) is positive. Our aim is to prove that
DN (t) can be estimated by an arbitrarily small quantity for finite time, provided that
N is sufficiently large.

Theorem 1. For any t > 0, the fraction of particles with different labels satisfies

DN (t) ≤
tλ

N
e2λt .

for sufficiently large N .

Remark. The above estimate says that, for any positive time, for the time evolved
joint measure associated to theN–particle systems of the process whose generator is
(1.1), and of the one whose generator is (1.10), the fraction of particles with different
labels is arbitrarily small, provided that N is sufficiently large.
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Proof. We evaluate

d

dt

∫

dRN (t)d(a1, b1) =

∫

dRN(t)(L0 + L1 +QN
d +QN

1 )d(a1, b1) , (1.15)

where the contribution due to the terms L0 and L1 is vanishing since d(a1, b1) does
not depend on x and v.

The contribution due to the decay term (1.13) is

γ

∫

dRN (t)(d(ã1, b̃1)− d(a1, b1)) = −γ

∫

dRN (t)(δã1,b̃1
− δa1,b1).

It is easy to verify that this contribution is non–positive. Indeed, in the case where
a1 and b1 are equal, also ã1 and b̃1 remain equal, and the contribution is vanishing.
In the case when a1 and b1 are different, after the transformation ã1 and b̃1 can
either remain different, or (if at the beginning there were an I and an R–labelled
agent) both become R. This last case is the only one in which the contribution is not
vanishing, but negative.

The same argument applies to the first term in the right hand side of the interaction
(1.14). This term can be written as

−λ

∫

dRN(t)J1(δa′

1
,b′

1
− δa1,b1),

and, in the same way as previously, a1 = b1 implies that after the transformation
a′1 = b′1, so that the only non–zero contribution is negative, and it happens when an
S and an I–labelled particle are transformed into two I–particles.

Now, let us evaluate the second term in the right hand side of the interaction
(1.14). It can be written as

(II) =λ

∫

dRN(t)J11(ZN ;AN , BN )(d(a′1, b1)− d(a1, b1))

=− λ

∫

dRN (t)J11(ZN ;AN , BN )(δa′

1
,b1 − δa1,b1).

Here, the difference of the deltas can take the values -1,0, or 1. Then

|(II)| ≤ λ

∫

dRN (t)
1

N

N
∑

j=2

δaj ,I(1− δbj ,I)χ1,j

≤ λ

∫

dRN (t)
1

N

N
∑

j=2

d(aj , bj) ≤ λDN (t).

(1.16)

The third term in (1.14) can be estimated in exactly the same way.
Finally,
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∫

dRN (t)E1 =

∫

dRN (t)Nf (z1)−

∫

dRN (t)J1emp(ZN ;BN )

=
∑

a

∫

dz dz1f(z; a; t)χ(|x− x1| < R0)f(z1; I; t)

−

∫

dRN (t)
1

N

N
∑

j=2

δbj ,Iχ(|xj − x1| < R0) .

The last term, thanks to the symmetry, can be written as

−
N − 1

N

∑

a

∫

dz dz1f(z; a; t)χ(|x− x1| < R0)f(z1; I; t),

so that
∣

∣

∣

∣

∫

dRN (t)E1

∣

∣

∣

∣

≤
1

N

∑

a

∫

dz dz1f(z; a; t)χ(|x− x1| < R0)f(z1; I; t) ≤
1

N
.

In conclusion, recalling that DN (0) = 0, we find that

d

dt
DN (t) ≤ 2λDN (t) +

λ

N
(1.17)

and the Theorem is proven by Grönwall’s Lemma. ⊓⊔

We conclude this section with some comments.
Theorem 1 implies the convergence of the one-particle marginal fN

1 (z; a; t) to
the solution f(z; a; t) of the kinetic equations (1.9). To see this one can use the
Wasserstein distance W, which we recall. Given two measures µ and ν on a metric
space X with the discrete metric d̄,

W(µ, ν) := inf
R∈C(µ,ν)

∫

dR(z, z′)d̄(z, z′)

where C(µ, ν) is the set of the joint representations of µ and ν, i.e. measures on
X ⊗X with marginals µ and ν respectively. This metric is equivalent to the Total
Variation and hence to theL1–norm, whenever such measures have suitable densities
(Villani (2003)).

Arguing now on the phase space Γ × L endowed with the discrete metric

d̄(z1, z2) + d(a1, a2),

we construct a joint representation ofdfN
1 (z; a; t) anddf(z; a; t), denoted bydRN(t),

along the coupled process. Since the trajectories (on Γ ) of the two processes are the
same, the configurational contribution vanishes and

W
(

dfN
1 (t), df(t)

)

≤
tλ

N
e2λt .
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This also controls ‖fN
1 (t)− f(t)‖L1 and, along similar lines, on can also show that

‖fN
j (t)− f(t)⊗j‖L1 ≤ Cj

tλ

N
e2λt

for some geometrical positive constant C.
The obtained estimates slightly improve the quantitative results obtained via the

hierarchy as sketched in Ciallella et al (2021b).

1.5 Concluding remarks

In this paper we performed a mathematical analysis, based on a coupling method, of
a toy model for epidemic spread in a system of N individual agents as proposed in
Ciallella et al (2021b).

The study of epidemiological models has been obviously very fertile over re-
cent times (see Pulvirenti and Simonella (2020); Flandoli et al (2020); Ciallella et al
(2021a); Bertaglia et al (2021); Boscheri et al (2021); Ciallella et al (2021b); Loy and Tosin
(2021); V. Vuong et al (2021) for a very non-exhaustive list of recent mathematical
works oriented toward kinetic theory). Even in this context, the use of coupling meth-
ods is not new. We can mention classical work as Whittle (1955) on the comparisonof
birth-death processes with the SIR model, and several other contributions over more
recent times as for instance Ball and Donnelly (1995); Häggström and Pemantle
(1998). Of course coupling arguments have been a powerful tool for studying the
behaviour of stochastic processes for several years now. In particular such argu-
ments have been used to approximate kinetic equations of Boltzmann type (and
justify related numerical schemes) with particle systems in the spirit of Kac; see
e.g. Graham and Méléard (1997); Cortez and Fontbona (2016).

Multi-agent systems are important in a wide range of fields. As an example in
the theory of epidemic spread, the most common models divide the population in
several classes, going from the classical susceptible-infected-recovered quoted above,
to recent generalizations with several additional species (as the SUIHTER model
with susceptible uninfected individuals, undetected infected, isolated, hospitalized,
threatened, extinct, and recovered, proposed in Parolini et al (2021)). The models
aim at describing the evolution of average fractions for the different species, as in the
predator-prey system of Lotka-Volterra type (see Diz-Pita and Otero-Espinar (2021)
for a recent review). We would like to mention here, as another example, the case
of mathematical models describing the behaviour of bones, which include cellular
automata models (for instance Czarnecki et al (2014); Van Scoy et al (2017)) or
empirical models based on variational formulation; see Giorgio et al (2019, 2021);
Lekszycki and Dell’Isola (2012) among others.
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