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Abstract. The passive control of elasto-acoustic wave propagation is a very active field of re-
search, currently fuelled by the theoretical advancements in multiscale design, accompanied by
the technological development of additive manufacturing techniques. In this work, we present
a mechanical metamaterial, characterized by a biphasic (fluid and solid) periodic cell, that
exhibits acoustic as well as elastic bandgaps in the dispersion spectrum, which – in princi-
ple – could provide insulation from both sound and vibration in prescribed frequency ranges.
Bandgaps arise when voids and channels open in the repetitive cell. We aim at studying the
geometric parameters that influence the metamaterial performance. Through a tuning of the
mechanical properties of the metamaterial, waves of given nature and frequency can be remark-
ably attenuated simultaneously in the two different domains, the fluid domain where acoustic
waves propagate and the solid domain where elastic waves propagate. A finite element model is
used to determine the dispersion curves and investigate the frequency band structure, which is
found to be governable through the selection of the geometric parameters of the repetitive cell.

Key words: Phononic Crystals, Periodic Materials, Bulk and Guided Waves, Finite Element
Method, Mechanical Metafilters

1 INTRODUCTION

In the field of acoustics and elastodynamics, phononic media and metamaterials present a
wide range of opportunities for supporting and directing a multitude of wave types. The ability
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to design these materials for a variety of wave filtering, focusing and directivity applications is
greatly advantageous. Predicting how the microstructure affects the macroscopic response at
the static and dynamic level is pivotal for the design and control of the materials’ response.

Tuned metamaterials can be realized by active (external) and passive (internal) approaches.
The internal control is achieved by the design of the repetitive cell. The underlying idea is that,
within certain physically admissible ranges, the cell’s geometric and mechanical parameters
are freely tunable variables that enable the customization of the acoustic and elastic dispersion
properties of the material. For example, Li et.al [1] investigated the tunability of bandgaps of the
structures by changing the properties of inclusions in soft porous periodic structures. Elmadih
et.al [2] presented a primitive-type porous metamaterial which provides simultaneous bandgaps
of acoustic and elastic waves. Bacigalupo et.al and Vadalà et.al [3, 4] defined a tetrachiral
periodic metamaterial and optimized the bandgaps by machine learning techniques. By way of
example, the active approach to bandgap tuning can be achieved by actively regulating the state
of prestress which adjusts the geometrical stiffness of the structure [5]. It is in fact well known
that the prestress modifies the way in which waves propagate in structures [6]. Other approaches
to external control may include acting on the repetitive cell with magnetic or electric stimuli.

The objective of this paper is to investigate how the bandgap amplitude of a biphasic mechan-
ical metamaterial including solid and fluid (air) phase is influenced by the geometric parameters
of the repetitive cell (Section 2). As biphasic periodic compound, this metamaterial can be clas-
sified as phononic crystal. The analysis is pursued by an extension of the semi-analytical finite
element method to a classical continuum (Section 3). This approach enables efficient determi-
nation of the associated dispersion curves by enforcing periodicity conditions on the boundary
of the repetitive cell. It should be mentioned that other approaches to the modelling of such
periodic materials, making use of multifield continua, were presented in the literature [7]. In
Section 4, parametric analyses in the space of geometric parameters are carried out, showing
how the bandgap amplitude varies in the biphasic model. It is shown that the geometric prop-
erties of the cell can be tuned in view of the width maximization of the acoustic and elastic
bandgaps.

2 BIPHASIC PHONONIC MATERIAL

The bi-dimensional periodic material under investigation is realized by the infinite repetitions
(according to the periodicity vectors a1 and a2) of centrosymmetric plane square cells of side L
including a solid phase and voids filled with a fluid phase (air) (Fig.1).

2.1 PARAMETRIC DESCRIPTION OF THE TOPOLOGY OF THE CELL

Both cases of isolated voids and voids connecting adjacent cells are considered. The isolated
voids are taken as both circular of radius r and gear-shaped. The gear contour is defined by the
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Figure 1: Cellular metamaterial: (a) pattern and periodicity vectors a1 and a2 (b) periodic cell and canonical base
vectors e1 and e2

parametric curves described by equations:

x(t) = (r + h tanh(d− cos(nt)

b
)) cos(t)

y(t) = (r + h tanh(d− cos(nt)

b
)) sin(t).

(1)

with t ∈ [0, 2π].
The geometric parameters of the gear shape are defined in the first line of Table 1. This

parametrization enables the description of a wide range of geometries. Some of these are shown
in Fig.2, illustrating the effect of the variation of each of the parameters involved, whose values
correspond to the columns of Table 1.

3 WAVE PROPAGATION

3.1 FIELD EQUATIONS OF MOTION

The solid phase is made of a linear elastic, homogeneous, non-dissipative and isotropic ma-
terial. By considering a plane state of strain, u = (u1, u2)

T represents a displacement vector
field which is a function of the position vector x = (x1, x2)

T spanning the plane defined by the
two orthonormal vectors e1-e2 (Fig. 1). The field equations can be written as:

µ∆u+ (λ+ µ)∇divu = ρü. (2)

Table 1: Geometric parameters of a gear shape

Mean radius (r/L) Smoothness (b) Teeth height (h/L) Gear duty (d) Number of teeth (n)
0.2 0.05 0 -1 4
0.5 0.1 0.1 0 8
0.8 0.15 0.3 1 12
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Figure 2: Gear shapes obtainable with the parametric profile, corresponding to the values of Table.1

where ρ is the density, λ and µ are the Lamé constants, ∇ = (∂/∂x1, ∂/∂x2)
T , ∆ = ∇ ·∇, and

the double dots¨represent the second derivative with respect to time t.
The field equations for the fluid phase are:

c2F∇(divu) = ü, (3)

where cF is the velocity of sound in air.

3.2 SEMI-ANALYTICAL FINITE ELEMENT METHOD

We need to obtain the dispersion relationship ω(k), where k is the wavevector. To do so, we
search for solutions of the simple exponential-type propagating in the plane of the cell with a
plane wavefront whose normal is parallel to the wavenumber vector k = (k1, k2)

T :

u = U(x)ei(k·x−ωt) (4)

with a technique which can be considered an extension of the classical Semi-Analytical Finite
Element Method for the determination of the dispersion relationship in guided waves. The
vector field U(x1, x2) is the periodic waveform within the cell. This technique enables the
direct enforcing of periodic conditions along all the boundaries of the repetitive cell both in
terms of displacements and stress, without the need to call for Floquet boundary conditions.

On substituting the solution (4) into (2) and (3), we obtain an eigenvalue problem where the
sought eigenvalue is the frequency ω for the reduced wavevector c spanning the closed boundary
of the triangular Irreducible Brillouin Zone (IBZ), which is shown in Fig.3.

4 DISPERSION SPECTRA

4.1 NUMERICAL RESULTS

A sample of the numerical dispersion curves showing the opening of a bandgap when a gear-
shaped void is included in the cell is shown in Fig.4. The width of unit cell is L=3 cm, while
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Figure 3: First Brillouin zone B, irreducible Brillouin zone C and reduced wave vector c ∈ [0, 2 +
√
2]π/L

the geometric and mechanical parameters are listed in Table 2 and Table 3, respectively.
We focus on the first elastic bandgap, which opens between the first three branches of the dis-

persion curves and the fourth and higher, located in the frequency range 76940 - 89619 rad/s.
Although in the literature these branches of the dispersion curves are often referred to as acous-
tic and optic, depending on their frequency at k = 0, here the term acoustic is reserved to
pressure waves in air [8]. This is highlighted by an orange band in Fig.4a. For comparison,
Fig.4b reports the dispersion curves of a solid cell where the void is removed, where the red and
orange curves represent the dispersion curves of pressure and shear waves, respectively. The
curves besides those which superpose to the colored ones do not represent physical solutions
and are solely due to the way in which the problem was numerically solved [8].

To check whether the inclusion of the fluid brings changes to the solid modes, we built two
models with isolated circular inclusions (r/L = 0.8), one with just the solid phase and another
biphasic, with the void filled with air. The dispersion curves are reported in Fig.5a and b, re-
spectively. In Fig.5b, the horizontal straight lines correspond to fluid modes, further, it can be
seen that the solid modes remain unchanged. The results of parametric analyses that investi-
gate the effects of the change of the geometric parameters on the bandgap width are reported
synthetically in the next two sections. First, the case of isolated pores is considered, where the
model ignores the fluid region as this does not affect the wave modes of the solid phase. Then,
the case of interconnected pores is studied, where the biphasic material is modelled.

Table 2: Parameters of the cell used in Fig.4

Mean radius (r/L) Smoothness Teeth height (h/L) Gear duty Number of teeth
0.85 0.1 0.1 0.9 4

Table 3: Material parameters of the solid phase (Nylon) and fluid phase (air)

ρ λ µ cF
1000 kg/m3 1.277 GPa 0.658 GPa 343 m/s
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Figure 4: Dispersion diagrams of unit cell (a) with gear shape void and (b) without void

4.2 PARAMETRIC ANALYSIS OF ISOLATED VOIDS

A large number of parameter combinations are considered, but only few of them have a major
influence on the bandgap width. Therefore we limit the analysis to the effect of the parameters
r and h. Since we obtained that a large radius of the hole gives larger bandgaps, we investigate
the response in the range 0.6 < r/L < 0.9. Further, we set 0 < h/L < 0.4 with the geometric
constraint r + h < L. This gives rise to a polygonal convex region of the parameter space
(Fig.6), where each point corresponds to a different geometry. The appearence of the cell is
reported for the limit parameters values of the vertices. The green line in the polygon region
of the parameter space indicates the optimal combination of parameters for each column. It
shows that when mean radius increases, the teeth height has to be decreased linearly to widen
the bandgap width. This result applies to cases when the radius of voids is limited by constraints
on the stiffness of the structure.

4.3 PARAMETRIC STUDY OF CONNECTED VOIDS

Fig.7 a and b compare the dispersion curves of a biphasic material with isolated pores and
with open channels of width w connecting cells, respectively. The resulting topology resembles
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Figure 5: Dispersion diagrams of unit cell (a) with void and (b) with void filled with fluid phase
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Figure 6: Investigation region in the parameter space, with parametric combinations

that optimized by D’Alessandro et al.[9], but with an inversion of the fluid and solid phases.
The geometry of the related repetitive cells cells is also reported, for given r/L =0.8. In Fig.7,
the red curve represents the dispersion curve of a pressure wave in a fluid cell. Moreover, the
inlet in Fig.7b shows the elastic dispersion curves at low frequency. It is clear that the opening
of connections beween voids of adjacent cells dramatically modifies the dispersion relationship.
In fact, a wide frequency band where no acoustic or elastic waves can propagate opens between
5000 and 60000 rad/s.

Fig.8 a, b, c compare the effect of the channel with different widths. The Figure shows that
by reducing the channel width, the bandgap becomes narrower. The limit is obviously that of
isolated voids, where, as we have seen in the previous section, solid and fluid dispersion curves
intersect. Fig.8 d shows that the effects of the channel width on the solid dispersion curves are
limited.
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Figure 7: Dispersion diagrams of unit cell (a) solid cell with fluid void and (b) with channels
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Figure 8: Dispersion diagrams of biphase unit cell when channel width w are (a) L/5 (b) L/3 (c) L/2 and (d) 3
cases in lower frequency range, yellow: L/5; red: L/3; blue: L/2

5 SUMMARY

In this study, a biphasic solid/air metamaterial is developed to investigate the possibility to
open elastic and acoustic bandgaps simultaneously. The dispersion relationships are obtained
by solving the eigenvalue problem derived by enforcing a plane wave solution in the related
partial differential equations, using the finite element method. This approach represents an
extension of the semi-analytical finite element method and enables to rely only on the enforcing
of periodic boundary conditions in the solid and fluid phase.

The cases of isolated circular or gear-shaped voids as well as that of fluid-connected cells
were considered. In the first case, it was shown that the inclusion of the fluid phase does not
modify the dispersion curves of the solid phase. The opening of elastic bandgaps is achievable,
but the dispersion curves of the solid and fluid phase intersect, and no bandgap for both elastic
and acoustic waves was observed. The parameters of the gear which influence most the elastic
bandgap width are the mean radius and the teeth height. The bandgaps of largest amplitude
were determined for a selected range of gear parameters. This can lead to applications when
there are prescriptions on the overall mechanical properties of the structure.

Differently from that, the fluid-connected cells enable the simultaneous opening of acoustic
and elastic bandgaps, with a limited dependance on the channel width. This geometry appears
promising and needs further investigations that might lead to artificial materials capable of
attenuation of both sound and vibration.
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