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Abstract

In this thesis, the profound intersection of deep learning and audio processing is
explored, highlighting the transformative potential of these techniques in deciphering
and manipulating audio signals. From the intricacies of marine ecosystems to the
nuances of music, the application of deep learning has shown considerable promise
in reshaping our understanding of sound. We commence by delving into deep
extractors for audio source separation, showcasing their potency in tasks ranging from
isolating marine sounds to identifying singing voices in music tracks. This journey
emphasizes the role of neural networks in extracting and interpreting sounds from a
complex mixture of signals, taking us to the world of autoregressive models, where
we investigate their principles and applications in source separation, emphasizing
unsupervised methods. Much of the research dwells on the innovative Bayesian
approach with autoregressive models for signal source separation, demonstrating
its efficiency across auditory and visual domains and the intriguing application of
diffusion models for music generation and separation, accentuating their versatility
in audio tasks. While the technical profundities form the core of the research, its
broader implications shed light on the transformative potential of deep learning
in myriad domains. From music production and music information retrieval to
environmental surveillance, the adaptability of deep learning techniques promises a
future replete with sophisticated audio processing tools. Conclusively, this thesis
stands as a testament to the power of deep learning in enhancing, understanding,
and enriching the world of sound, paving the way for further advancements in this
captivating realm.
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Chapter 1

Introduction

Since the dawn of civilization, sound and music have been a fundamental com-
ponent of the human condition, contributing significantly to the definition of our
species and society’s shaping. The ability to perceive and interpret sounds has
played a crucial role in survival and has provided humans with a unique means of
expression, communication, and building the social fabric.
The primordial importance of sound lies primarily in its function as a means of
perceiving the world around us. In a natural, ancestral context, the ability to
interpret the sounds of one’s surroundings could determine the difference between
life and death: the rustling of leaves caused by an approaching predator, the gurgling
of water from a nearby stream, or the alarm cry of a conspecific were all vital pieces
of information conveyed through audio.
However, audio also took on a profoundly emotional and social dimension in addition
to its pragmatic function. With its infinite nuances and tones, the human voice
became the main instrument of communication between individuals, enabling the
exchange of information and the transmission of emotions, intentions, and desires.
Parallel to this, music emerged as one of the earliest and most profound forms of
human cultural expression. Although the precise origins of music are shrouded in
mystery, ancient musical instruments and archaeological findings indicate that the
production of melodies and rhythms has accompanied humankind for thousands
of years. With its ability to evoke emotions, tell stories, and build communities,
music has permeated every culture and civilization, testifying to its universality and
fundamental relevance.
Music has always occupied a special place in the realm of human experience, serving
not only as a means of artistic expression but also as a means of connecting with
the divine and the unknowable. Throughout the millennia, music has functioned
as a bridge between the physical and spiritual worlds, a means to achieve elevated
states of consciousness and to bring the individual closer to the sacred.
Music is recognized as a vehicle for enlightenment and a means to approach the
divine in many cultures and spiritual traditions. Mantras in Buddhism and Hin-
duism, sacred chants in Christian and Islamic traditions, and ceremonial rhythms in
indigenous cultures are manifestations of the profound interaction between music
and spirituality.
One of the most remarkable qualities of music is its universality. While words
can divide and create barriers due to language differences, music transcends these
limitations. It speaks directly to the soul, evoking emotions and states of mind
that are fundamentally human. This universality has made music a powerful tool
for mystical experiences, as it can connect individuals from different cultures and
traditions in spiritual communion.
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In many traditions, music is seen as a representation of the cosmos: ’musica mun-
dana’ or ’music of the spheres’ suggests that the entire universe is ordered according
to harmonic principles, with each planet and star emitting its own ’melody’ in a
grand cosmic concert. This view recognizes music as a manifestation of the divine, a
reflection of the inherent order and beauty in the cosmos. Music, similar to language,
manifests our need to find order in chaos, to give meaning and structure to the
sound world around us. Moreover, the role of music as a catalyst for collective
identities cannot be denied. From the ritual dances of tribal societies to the great
mass concerts of the 21st century, music could always unite people under a single
melody, creating a sense of belonging and community.
Music, in its many forms and functions, is an essential component of our biology and
survival and a profound manifestation of our need for connection, expression, and
understanding. It sheds light on the richness and complexity of the human condition,
offering a window into the past, present, and perhaps even the future of humanity.

1.1 The Analog and Digital Representation of the Sound

Sound, a phenomenon that has captivated and intrigued humans for millennia, is
a change or fluctuation in air pressure over time. Delving deeper into its properties,
sound frequencies audible to the human ear typically lie within 20 Hz to 20 kHz. This
range is quite remarkable, given the vast spectrum of frequencies in the natural world,
and our ears have evolved to capture those particular sounds that are most pertinent
for our survival and communication. However, to harness and manipulate this
auditory medium, technology had to develop ways to capture, store, and reproduce
these air pressure variations. At the heart of many traditional recording devices is a
fascinating mechanism that can transform the kinetic energy of sound waves (pressure
changes) into electrical energy. One such mechanism involves using an induction coil
positioned within a magnetic field. As sound waves interact with a diaphragm, the
induction coil moves within the magnetic field, producing a corresponding electrical
signal. Conversely, the process is reversed when the goal is to reproduce the captured
sound. Loudspeakers, a common endpoint in our audio reproduction chain, convert
electrical signals back into air pressure fluctuations, thus re-creating the sound
that was initially captured. These speakers rely on electrical currents to move a
diaphragm, which creates pressure waves in the surrounding air – the sound we
hear. Sound is often represented mathematically as a function y(t). Here, t denotes
time, which provides a reference frame for these pressure variations. Meanwhile,
y could represent many measurable quantities, such as pressure or the electrical
tension produced in the abovementioned conversion process in recording devices.
Computers have revolutionized how we process and interact with sound in today’s
digitized era. Unlike analog systems, which continuously represent sound waves,
computers rely on discrete data points. This means that the continuous function
y(t) has to be converted, or ’digitized,’ into a series of distinct values. These values
can be stored using various encoding mechanisms. Some prevalent encodings in the
audio industry are the 32-bit IEEE 754 floating-point representation and the 16-bit
linear coding, especially notable in the widespread WAV file format. An essential
concept for digitizing sound is the Nyquist-Shannon sampling theorem, a pivotal
piece of understanding proposed by Claude Shannon in 1949 [158]. According to this
theorem, to reproduce a sound faithfully without losing any of its frequency content,
one needs to sample it at a rate at least twice its highest frequency. Given the
human auditory range, a sampling rate of 40 kHz would technically suffice. However,
to allow a margin for error and to accommodate filters, the industry settled on a
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slightly higher rate of 44.1 kHz. This rate has become the standard for audio CDs
and other digital audio platforms. Sound, in all its magnificent intricacy, serves as a
bridge between our physical reality and our perception. From its physical properties
to the myriad ways we have developed to capture, analyze, and reproduce it, sound
remains a testament to nature’s complexity and human ingenuity.

1.2 Signal Processing
As we have seen, in its very essence, the audio signal captures variations in air

pressure over time. Analyzing such signals has always been a fascinating realm
in signal processing, and several transformation techniques have been developed
over the years to study these signals in both time and frequency domains. One
of the cornerstones in this domain is the Discrete Fourier Transform (DFT). The
DFT provides a mechanism to analyze finite segments or "small chunks" of an audio
signal, allowing for a representation in the frequency domain [165]. Digital audio
signals are inherently discrete, representing amplitude values at regular intervals of
time. These values are sampled from continuous audio signals. The DFT transforms
this time-domain representation (waveform) into a frequency-domain representation
(spectrum). For a discrete sequence x[n], where n = 0, 1, ..., N − 1 is the time index
and N is the number of samples, the DFT is defined as:

X[k] =
N−1∑
n=0

x[n] · e−j(2π/N)·k·n

where X[k] is the DFT result at frequency index k and k ranges from 0 to N − 1,
representing the frequency bins. DFT provides insights into the frequency compo-
nents of audio signals, allowing for various applications like filtering, compression,
and feature extraction. When these segments overlap, a more comprehensive repre-
sentation emerges, known as the Short-Time Fourier Transform (STFT).
The STFT is pivotal as it captures how frequency components evolve over time.
This is particularly significant because most real-world signals, including audio, are
non-stationary, implying that their frequency pattern changes as time progresses
[2]. The primary motivation behind the STFT is to obtain a time-frequency repre-
sentation of a signal. This means we can view both how the frequencies in a signal
change over time and which frequencies are dominant at a given time.

X(t, ω) =
∫ ∞

−∞
x(τ)w(t− τ)e−jωτdτ (1.1)

Where X(t, ω) is the STFT of x(t), w(t−τ) is a window function which is nonzero for
only a short period of time. ω is the angular frequency (in rad/s). For reconstruction
purposes, the Inverse Short-Time Fourier Transform (ISTFT) can be employed,
allowing the audio signal to be reconstructed from its time-frequency representation.
While the STFT offers a robust method for time-frequency analysis, other transforms
have been developed. The wavelet transform emerged as an alternative, introducing
a novel approach that provides varying time resolutions depending on the frequency.
This method is particularly beneficial for capturing rapid changes at higher frequen-
cies and slower variations at lower frequencies [107]. Building on the principles of
the wavelet transform, the scattering transform was introduced to address some of
the challenges that traditional transforms could not effectively handle [4].
In the realm of speech recognition, accuracy and precision are crucial. The mel-
spectrogram, a specialized form of the STFT, focuses on the perceptual properties
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of human hearing. Warping the frequency scale emphasizes the regions most critical
to human auditory perception [113, 20]. Inverting this representation back to the
audio domain is inherently complex. However, advancements in deep learning have
offered methodologies to achieve this inversion with considerable accuracy [160, 133].
Rainbowgrams, a relatively recent addition to the array of time-frequency represen-
tations, present a dual depiction of magnitude and phase information, offering a
richer insight into the audio signal’s characteristics [37].
Underpinning the development and adoption of the STFT is a foundational belief:
audio signals, particularly musical ones, are fundamentally composed of stationary,
periodic functions. However, the world of sound is vast, and not all audio can be
perfectly encapsulated by periodic functions. Stochastic textures in sound, like
the white noise, defy this assumption. Addressing these textures requires more
sophisticated systems, leading researchers to explore and develop more intricate
signal processing mechanisms [183].

1.3 Contributions
In Chapter 2, we present the paradigm of deep extractors in the realm of audio

signal processing. Section 2.1 dives into the application of audio source separa-
tion in marine biodiversity assessment. The significance of monitoring underwater
ecosystems and the challenges therein are addressed. We delve into the potential of
Passive Acoustics Monitoring (PAM) as a reliable tool for such tasks. The outcomes
reveal the efficacy of this methodology and its potential implications for a more
profound understanding of aquatic ecosystems. Section 2.2 focuses on a specific
sub-discipline within music information retrieval: Singing Voice Detection (SVD).
The narrative introduces a ground-breaking system that harnesses the prowess of
Demucs, a cutting-edge music source separator, alongside two sophisticated neural
architectures – LRCN and Transformer network. These combinations shed light on
the underlying potential of deep learning to enhance SVD tasks.

In Chapter 3, we will delve deep into the principles and applications of au-
toregressive models in the domain of source separation. Firstly, in Section 3.1, the
challenges of audio source separation in an unsupervised setting will be addressed. By
relying on deep Bayesian priors, our proposed method will be demonstrated to offer
competitive performance when juxtaposed against supervised techniques while being
more resource-efficient compared to other unsupervised counterparts. Subsequently,
Section 3.2 will explore the Latent Autoregressive Source Separation (LASS) concept.
This innovative approach, rooted in the principles of vector quantization, seeks to
offer a solution to the complexities of adapting pre-trained models for novel tasks.
LASS emphasizes a Bayesian model with autoregressive priors to execute source
separation efficiently. The effectiveness of this method will be evaluated across both
auditory and visual domains, highlighting its adaptability and efficiency.

In Chapter 4, we delved into the intricate relationship between diffusion models
and deep learning and their influence on music. We explored the essence of diffusion
models that operate on the deteriorating and restoring data principle, leveraging
denoising concepts. The versatility of diffusion models in deep learning applications
was showcased across disciplines ranging from computer vision and natural language
processing to bioinformatics. A particular focus was cast on the pioneering application
of multi-source diffusion models in simultaneous music generation and separation.
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This novel approach stands out for its dual capacity: music generation and separation.
We introduced innovative inference strategies highlighting the model’s generative
prowess and ability to isolate sources.
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Chapter 2

Deep Extractors for Audio
Sources

In this chapter, we will discuss the use of particular neural networks called deep
extractors, particularly in two tasks: the isolation of sounds produced by fish from
the marine background and the identification of the singing voice in an audio signal,
particularly in music tracks. The works we will discuss use networks created to
isolate and extract sounds from a mixture of signals.

Music source separation, a sub-discipline within the broader field of audio
processing, focuses on separating the individual components or sources within a
mixed musical signal. This separation is crucial for various applications, from
remixing songs to enhancing the clarity of individual instruments. To achieve this,
the separation methods primarily focus on the time-frequency representations of
music, wherein both the temporal and frequency components of the audio signals
are considered.

The core idea behind these methods is to predict a power spectrogram for each
source, representing the intensity of frequencies over time. Once these predictions
are made, the phase from the original or input mixture is reused to reconstruct the
separated sources. The phase carries the essential information about the temporal
structure of the signal, which, when combined with the predicted power spectrogram,
provides a holistic view of the separated source.

Among traditional methods for the separation of music sources, the non-negative
matrix factorization (NMF) method was among the earliest and most influential
techniques. Introduced by [164], NMF breaks down the spectrogram of the input
mixture into a set of base spectra and their corresponding activations, thereby
facilitating separation. Following closely was the independent component analysis
(ICA) by [63], a statistical method designed to transform the observed mixed signals
into a set of statistically independent components. Then, there is the HMM-based
prediction over power spectrograms presented by Roweis et al. [147]. This technique
applies Hidden Markov Models to predict the progression of the sources over time-
based on the power spectrograms. Last in this lineage of traditional methods are the
segmentation techniques introduced by Bach and Jordan et al. [5]. These focus on
segmenting the audio into distinct chunks, each dominated by a particular source.

However, the landscape of music source separation underwent a seismic shift
with the advent of deep learning. Initially, the supervised methods were heavily
influenced by their applications in speech source separation, as evidenced by the
work of Grais [47]. However, soon after, the focus shifted towards music, leading
to the development of various architectures. For instance, [185], pioneered the use
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of simple neural networks for this task. They later extended their work in 2017
[187] to incorporate Long Short-Term Memory networks (LSTMs), which are adept
at handling sequences, making them especially relevant for time series data like
audio. Furthermore, multi-scale networks became a topic of interest, with significant
contributions from [96] and [180].

An exciting development in this deep learning era was using Wiener filtering as a
post-processing step. Introduced by [120], this method helps refine the deep learning
models’ output, enhancing the separated sources’ clarity and fidelity. In 2018, the
MMDenseLSTM model by Takahashi et al. in 2018 [178], set new performance
records. Stöter et al. [173] also introduced a baseline model named Open Unmix,
which has been instrumental in standardizing evaluations in this domain.

While deep learning brought forth many new models, it is imperative to note
that not all showed superior performance. For instance, models operating directly
in the waveform domain, such as Wave-U-Net [67] and a model inspired by Wavenet
[142], had performance metrics that were less than ideal when compared to other
approaches.

In monophonic speech source separation, spectrogram masking methods have
shown remarkable efficacy, as highlighted by the works of Kolbæk et al. in 2017 [79]
and Isik et al. in 2016 [66]. Nevertheless, the landscape evolved further when Luo
and Mesgarani [104] made significant strides in improving waveform domain methods:
ConvTasnet emerged as a dominant force among the newer models, albeit with some
artefacts. However, the Demucs architecture [34] has been then introduced trying to
address the artefact issue, setting the stage for the next wave of advancements in
the field.

In the following sections, we will also speak about Demucs and Conv-Tasnet,
two top-tier models for source separation that showed incredible performance in the
domain of speech and music source separation, and we will see how these models
can be applied to other domains or be useful for different tasks.

2.1 Towards the evaluation of marine acoustic biodiver-
sity through data-driven audio source separation

The marine ecosystem faces alarming changes, including biodiversity loss and
the migration of tropical species to temperate regions. Monitoring underwater
environments and their inhabitants is crucial, but challenging in vast and uncon-
trolled areas like oceans. Passive acoustics monitoring (PAM) has emerged as an
effective method, using hydrophones to capture underwater sound. Soundscapes
with rich sound spectra indicate high biodiversity, soniferous fish vocalizations can
be detected to identify specific species. Our focus is on sound separation within
underwater soundscapes, isolating fish vocalizations from background noise for accu-
rate biodiversity assessment. To address the lack of suitable datasets, we collected
fish vocalizations from online repositories and captured sea soundscapes at various
locations. We propose an online generation of synthetic soundscapes to train two
popular sound separation networks. Our study includes comprehensive evaluations
on a synthetic test set, showing that these separation models can be effectively
applied in our settings, yielding encouraging results. Qualitative results on real data
showcase the model’s generalization ability. Utilizing sound separation networks
enables automatic extraction of fish vocalizations from PAM recordings, enhancing
biodiversity monitoring and capturing animal sounds in their natural habitats.
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Figure 2.1. We consider the problem of separating the sound produced by fishes from the
background sound of the sea.

Figure 2.2. Frames from the video captured at Marsa Alam showing the presence of
soniferous fish.

2.1.1 Introduction

The oceans cover 71% of the Earth’s surface and represent the natural habitat
of numerous marine species. The biodiversity present in these environments is
impressive, and tracking the activity and quantity of all existing species is essential
for monitoring the whole marine ecosystem. In fact, today more than ever, the
environmental issue is of crucial importance, and the oceans, like the whole planet
Earth, are facing drastic and dramatic changes due to human activity, among
which overfishing and ocean warming [39]. These changes, in addition to damaging
the marine ecosystem, mainly affect the species that inhabit the sea: monitoring
biodiversity is of vital importance, to understand the trend of the abundance of marine
fauna, identify the most vulnerable areas, and take action to safeguard endangered
species [122]. However, monitoring marine animals is challenging because many of
the methods used on the Earth’s surface for tracking, such as photos and videos, are
often ineffective in the marine environment, due to the limited accessibility to many
areas and poor light and visibility conditions. Furthermore, a significant amount of
data that can be collected on physical quantities, such as temperature, salinity and
pressure, may not reflect the biodiversity in a specific location. Therefore, there is
a need for tools capable of overcoming these challenges and providing an accurate
assessment of the marine habitat biodiversity. Underwater, instead of relying on
optical signals, sound can be used to monitor biodiversity [6]. Indeed, the acoustic
environment faithfully reflects the traits of the fauna present in a specific location
and its behavior [106][117]. One of the most popular and effective methods for
monitoring marine biodiversity is passive acoustics monitoring (PAM), which employs
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hydrophones to capture underwater sound. Many aquatic organisms produce species-
specific sounds, and modern technologies are becoming more and more convenient
and precise, allowing for very accurate and careful data acquisition. Acoustic indices
were initially used to assess biodiversity from PAM recordings [176][117]. These
indices are used to estimate richness, amplitude, heterogeneity and evenness of an
acoustic environment. Some of them are: the acoustic entropy index (H ), which
indicates how much the amplitude of a signal is uniform in time and frequency; the
acoustic complexity index (ACI ) which takes into account the variation of a signal
in different frequency bins over time and then averages over the entire frequency
range [127]. While easy to apply, a drawback of acoustic indices is that they are
not learned from data, and they are not, therefore, discriminative for animal sounds
with respect to sounds with similar patterns, but of a different origin. Therefore, in
order for these techniques to be applied, only the soundscape produced by natural
sources should be considered. When the objective is to detect fish vocalizations,
the PAM audio signal is usually visualized as a spectrogram and visually examined
by an expert. This approach exploits the fact that fish vocalize within a relatively
narrow range of low frequencies and often produce repetitive sounds. In this chapter,
our aim is to present a solution for distinguishing the sound produced by fish from
the background noise, with the goal of automating fish sound detection process and
facilitating the use of soundscape analysis for biodiversity assessment. We employ
recent advances in sound separation for human speech and music to the problem
of separating fish vocalizations in PAM recordings. Machine learning techniques,
and deep learning, in particular, require a large amount of data. In supervised
learning, data must be annotated to provide ground truth information for training
neural networks. Data annotation typically involves the manual identification of the
attributes one wants to automatically recover. Obtaining annotated data for the
task of sound separation, given a mixed signal, is clearly challenging. A preferable
strategy is to generate training data by combining individual audio sources. This
approach has been largely exploited for speech, music and anthropic sound. But
while for human speech and music there is an abundance of data, this is not the
case for fish vocalizations. At present, to the best of our knowledge, no datasets
exist that include many examples of fish vocalization examples. Nonetheless, it
is widely recognized that this is required for future progress [125]. Therefore, we
collected a dataset of fish vocalizations from the internet. It is worth noting that
the website https://fishsounds.net/ did not exist when we started this project.
In most cases, we obtained a single sound example for each species. This limits the
possibility of applying AI techniques to automatically classify the fish species from
sound, as several recordings for each species would be necessary. In addition, with
about 35000 known species of fish, the number of known soniferous species is quite
limited, and while some sources have been identified, the majority of fish sounds
remain unidentified [125]. Nevertheless, vocalizations from different fish species share
similarities and posses distinctive characteristics that enable training a network that
can separate fish-produced sounds from the background noise, typically consisting
from the sound of waves and snapping shrimps (members of the Alpheidae family).
We created a sound separation dataset by randomly overlapping fish vocalizations
with sea backgrounds recorded at various locations on the Greek island of Nisyros.
We use this dataset creation process to train two recent and popular architectures
for sound separation: Conv-TasNet [104] (which we will call TasNet) and Demucs
(version 2) [34]. We quantitatively evaluate the performance of these networks on
two synthetic test sets, one obtained with backgrounds recorded in Nisyros, and
one generated with backgrounds recorded in Favignana (Italy). We qualitatively
show performance on a few examples of recordings performed in Marsa Alam, Egypt

https://fishsounds.net/
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(Fig. 2.2). Our quantitative evaluation shows that the sound emitted from fishes
can be successfully recovered from recordings with noisy background. The network
performance visually slightly decreases in the in-the-wild setting, but still it is
possible to recover the predominant fish sounds even if the networks have been
trained with data captured with different devices in different locations. To our
knowledge, this is the first work that applies modern sound separation techniques to
PAM.

2.1.2 Related Works
The assessment of marine biodiversity through acoustic techniques is evolving

rapidly and although several methods are used, at the moment none of these is
considered the ideal tool for investigating the marine environment and its diversity.
Some existing methods are discussed below.

Classical approaches

Spectrograms are valuable tools to analyze the temporal variation of an audio
signal amplitude at different frequencies. They represent, through the Fourier
transform, the 1D audio signal with a 2D image, with time and frequency as axes
and pixel intensity as amplitude. By analyzing spectrograms, it is possible to identify
the presence of some marine species through the identification of image patterns that
are indicators of audio features in the species-specific vocalizations. For example,
it is possible to observe whether the sound emitted is rhythmic or more smooth
and harmonious. These patterns can be associated to known soniferous species
or unidentified fish sources. While the examination of spectrograms as images
enables the approximate detection of spectral patterns, it is insufficient for precise
identification of the intricate modulation characteristics of underwater animal sounds.
Automatic systems based on pattern recognition in images are often not sufficient
for detecting fish vocalizations, and spectrograms needs to be inspected manually.
However, studies focused on comprehending the drivers of marine biodiversity changes
typically rely on prolonged audio recordings, spanning months or years. Conducting
a manual analysis of such data is impractical. Unsupervised modeling techniques
have been used to analyze spectrograms, with clustering being among the most
widely adopted [194]. Assuming that the data has underlying patterns, clustering
allows grouping elements with similar characteristics. Hence, large amounts of audio
data can be modeled as a few audio clusters and these can be exploited to assess
biodiversity by measuring per-cluster acoustic metrics. Unfortunately, this type
of analysis can easily fail when non-biological sources contaminate the collected
data [94]. In addition, it is still necessary to individually analyze the sources that
are part of each cluster to understand the key elements that contribute to marine
biodiversity.

Data-driven approaches

Several studies [65, 93, 44, 217, 204, 71, 103, 174, 92, 17] have been carried
out to trace, recognize, and isolate the biological sound sources present in nature.
The use of machine learning has been fundamental to obtaining significant results.
In particular, in [103, 174], the authors propose using deep learning to detect
odontocete echolocation and bird sounds, respectively. In [17], Clink et al. introduce
a workflow for the automated detection and classification of female gibbon calls,
testing supervised and unsupervised approaches. In [92], Li et al. propose to use
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generative adversarial networks (GANs) to generate training data for learning to
extract of toothed whales’ whistles from time-frequency spectrograms. Recently, Sun
et al. [177] have introduced a toolbox for soundscape information retrieval based on
non-negative matrix factorization.

Source separation

The work that has led to significant progress in this field is mainly in music and
speech. In these contexts, the separation task is particularly challenging due to the
inherent complexity of overlapping harmonics, temporal and spectral variability, and
unpredictable background noise. Deep learning has brought significant advances to
source separation by leveraging the ability of neural networks to model complex, non-
linear relationships and learn high-level abstract features from data. This paradigm
has provided a robust, data-driven approach to the source separation problem,
outperforming traditional signal processing methods. One of the seminal works in
speech separation is [104], where they propose an end-to-end, fully-convolutional
time-domain audio separation network that significantly outperformed traditional
frequency-domain methods. While, for music source separation, in [34], a model is
proposed that relies on depthwise separable convolutions and bidirectional LSTMs
(Long Short-Time Memory), leading to improved performance over previous state-
of-the-art methods. Further advances for music source separation have been made
in [130], where a novel Bayesian method for unsupervised source separation is
introduced.

2.1.3 Method
The problem of separating audio sources consists of breaking down a mixture of

signals y(t) ∈ RT into its n components c1(t), . . . , cn(t) ∈ RT , where,

y(t) =
n∑
i=1

ci(t). (2.1)

The mixture is represented as a vector in the waveform domain. In our case, we
consider n = 2 sources: fish and background. In order to perform sound separation,
we employ the two aforementioned networks, TasNet and Demucs. These two types
of networks are trained in a supervised manner, and while both have an encoder-
decoder structure and act directly on the audio waveform, they are fundamentally
different: TasNet learns a mask to be applied to the mixture to filter the desired
source signal, whereas Demucs learns to directly synthesize the required signals
without using any filtering. We train both network with supervised training, on the
same dataset. Critical for the success of the separation networks is the availability
of a large training dataset with overlapped and separated sources. The availability
of such dataset for the specific case of fish vocalizations poses several challenges.
Here, we contribute with a novel synthetic dataset that we define as follows. We
collected a large set of recorded vocalizations from online sources, these will be the
basis of the foreground fish source. At the same time, we recorded a set of diverse
sea recordings that constitute the data to represent background sound. Details on
the collected data are reported in the Experiments section. During training, at
each epoch we create random combinations, with randomized amplitude, of fish and
background audio data. In this way, despite the limited number of sound sources,
in particular for the fish data, we prevent the networks from overfitting on a fixed
training dataset. Audio data is loaded from the network as a set of audio chunks of
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length 44160, obtained by splitting the audio data with an overlap fraction of 0.25.
The foreground fish vocalization dataset is also loaded as a set of samples with 0.25
overlap, where each sample is a chunk of size 44160. The synthetic data for training
is created as follows. At each epoch, for each foreground sample i, we define the two
audio sources s0 (foreground) and s1 (background) as follows:

s0 = kfαfxf
s1 = (1 + kb)xb,

where xf is the sample with index i, and xb is a random background chunk; kf
and kb are two random coefficients sampled from a uniform distribution, while αf is
a fixed attenuation factor for the fish audio, required to model relative amplitude in
real conditions. In this way, at each epoch, every fish sample is combined differently
with a random background. We set αf = 0.1.

Figure 2.3. (A): TasNet block diagram. A piece of the input signal is projected into
a multidimensional hidden space through the encoder. Then, a separation module
calculates an estimated mask for each individual source. Ultimately, a decoder converts
these masked encoded features back into waveform domain signals. (B): System flowchart.
The encoder consists of a 1D convolutional module that maps the mixture into the
features space. A temporal convolutional network (TCN) calculates the mask vectors,
and the decoder reconstructs the separated signals by a 1D transposed convolution
operation. In the separation module, different dilation factors in each 1D Conv block
are highlighted with different colors. This figure is taken from [104].

TasNet

TasNet is a convolutional audio separation model in the time domain, composed
by an encoder, a separation module and a decoder, as shown in figure 2.3 (A).
The encoder transforms small overlapping fragments of the mixture into feature
vectors in an intermediate latent space. Using this representation, the separation
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module calculates a mask for each source. Each mask, multiplied by the respective
intermediate representation of the mixture, generates the latent features of the
relative source. Finally, the decoder converts each latent representation into a
time-domain waveform, thus obtaining the desired separated signals. In figure 2.3
(B) we report the entire system flowchart from [104].

Encoder Initially, the input mixture is divided into N overlapping parts xi ∈ RL,
where i = 1, . . . , N , each of length L. Each xi is transformed by the encoder into
the corresponding vector in the latent domain zi ∈ RM through a 1D convolution
operation (formally expressed by a matrix multiplication) followed by a ReLU
activation function G(·):

zi = G(xiS) , (2.2)
where S is a L×M matrix of convolution coefficients.

Separation module The actual separation of each fragment of the mixture occurs
in the separation module, in which n mask vectors mi ∈ RM are estimated, where
i = 1, . . . , n and n is the number of signals to be separated. Each of these vectors,
being masks, must necessarily be mi ∈ [0, 1]. The vector representation in the latent
space bi ∈ RM of each signal is calculated by multiplying the relative mask mi by
the mixture zi,

bi = zi ⊙mi (2.3)
where ⊙ denotes element-wise multiplication. This module is a temporal convolu-
tional network (TCN) [86], which is fully convolutional and consists of stacked 1D
dilated convolutional blocks with increasing dilation factors. These factors make it
possible to gradually capture increasingly broad contexts, thus exploiting long-range
dependencies within the signal. Here, with respect to the architecture described in
[104], we do not make use of the skip connections in the 1D convolutional blocks.

Decoder The reconstruction of each source is computed by the decoder. The
latter takes as input zi and returns a vector x̂i in the waveform domain by applying
a 1D transposed convolution operation,

x̂i = ziT (2.4)

where x̂i ∈ RL is the reconstruction of xi and T is a M × L matrix of convolution
weights.

Demucs

Demucs is an autoencoder model made of a convolutional encoder and a con-
volutional decoder linked with skip U-Net connections and a 2-layers bidirectional
LSTM. The size of the latent space is CB = 6.

Encoder As illustrated in figure 2.4, the encoder consists of B = 6 stacked
convolutional layers, and the number of output channels Ci in each layer equals the
number of input channels Ci+1 in the next layer. From the second layer onwards,
the output channels are twice the number of input channels. All these stacked
layers have the task of compressing the information in order to obtain a compact
representation of the training data. The input channels in the first layer are C0 = 2
and the output channels are C0 = 100. The output channels in the last layer are
CB = 3200, which is the hidden size of the LSTM.
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Figure 2.4. (A): Demucs model with the input mixture and the two output sources, all
in the waveform domain. (B): Encoder/decoder block architecture. In each encoder
block, there is a convolution with kernel size K = 8 (to have dependencies with adjacent
time steps) and stride S = 4 followed by a ReLU activation function. The result is
given as input to another convolution with kernel size K = 1 and stride S = 1, in order
to increase the expressivity of the network with little additional computation. In the
end, a gated linear unit (GLU) activation function [19] is applied. The decoder block is
constructed in reverse order with respect to the encoder, and it consists of a convolution
with kernel size K = 3 and stride S = 1, followed by a GLU and then a transposed
convolution with kernel size K = 8 and stride S = 4, followed by a ReLU. This figure is
taken from [34].

Decoder Since LSTM outputs a tensor with 2CB channels, a linear layer is needed
to reduce the number of channels to CB. The decoder is built essentially like the
encoder, but with the convolutional layers put in reverse order and transposed
convolutions instead of the regular convolutions. The decoder has the task of
expanding the dimensions of the compressed vectors in the latent space to regain
vectors with sizes equal to those of the input space. The last layer returns tensors
with N · C0 channels, synthesizing the N sources present, initially, in the input
mixture.

U-network In this architecture, the encoder layers are connected to the decoder
layers with the same index through skip connections, as happens in the Wave-U-Net
[67]. The objective of these connections is to connect the various decoder layers
with those of the encoders to transfer information directly from ones to the others
in such a way as to facilitate reconstruction. Compared to Wave-U-Net, Demucs
skip connections use transposed convolutions instead of linear interpolations, since
they require less memory and computational time.
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Figure 2.5. Fish vocalization before (top) and after (bottom) noise removal and normaliza-
tion. Time in seconds.

2.1.4 Experiments
Fish Vocalization Data

We collected 191 audio files corresponding to the vocalization of 143 different
species. Most of the recordings were downloaded from FishBase1. The collected
data often exhibit unnatural noise, since in many cases the recordings are performed
in fish tanks. In order to create a dataset that can be used to synthesize realistic
audio data, we preprocessed for noise removal, and normalized for a peak amplitude
of −1 dB. For this purpose, we used the open source software Audacity. Figure 2.5
illustrates examples before and after preprocessing. We employ the fish vocalizations
for the online creation of training samples by combining them with recorded sea
backgrounds ad described previously, and for creating a synthetic testset with
ground-truth separated signals.

Sea Recordings

We performed sea recordings at the Greek island of Nisyros and at the Italian
island of Favignana. Greek recordings were performed in October 2019, April 2021,
August 2021, and October 2021 at different sites around the island, both near the
coast and in the open sea; whether the Italian ones in June 2023. Data were captured
with an Aquarian Scientific AS-1 hydrophone (linear range 1Hz to 100kHz ±2dB,
operating depth 200 mt). Sea recordings in Nisyros are used as backgrounds for
training and test. In addition, we collected a sound video dataset at Marsa Alam
(Egypt) using an action camera Sony HDR-AS50 Full HD. The audio channel from
this data is used for a qualitative evaluation.

Networks Training

During training, we considered different 11 sea recordings for creating back-
grounds, captured in different locations and different times, and of various duration.
The first 5 files were captured with sample rate of 192K and were converted to
44K. Recordings with length greater than 3 minutes were divided in multiple files
of smaller duration (1− 2 minutes) and constitute a dataset of background chunks.
We have a total of 133 files for background. A couple of recordings that we use for
representing backgrounds were manually filtered for removing fish sounds. This was
not necessary for most of the recordings, where fish sounds were harder to find.

We use the 80% of the fish vocalization data for training. We fed both the
networks with samples of size 44160 and trained both the networks with a learning
rate of 0.0001 and a number of epochs equal to 200. TasNet employs an autoencoder

1www.fishbase.org

www.fishbase.org
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Ground truth fish:

Network input:

Estimated fish (TasNet result):

Estimated background (TasNet result):

Estimated fish (Demucs result):

Estimated background (Demucs result):

Figure 2.6. Synthetic testset example. From top: fish vocalization (Prionotus) (4 seconds);
overlap with sea background; TasNet fish and background separation; Demucs fish and
background separation. Vertical axis is frequency, horizontal axis is time.
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with 512 filters (N), each of length 256 (L). The bottleneck has 256 channels (B),
and the convolutional blocks contain 512 channels (H). For convolutional operations,
we use a kernel size of 3 (P) across 8 blocks (X) that are repeated 4 times (R). The
network is designed to separate inputs into 2 distinct "speakers" (C).

Evaluation

For the quantitative evaluation, we generated a set of synthetic inputs using
the 20% fish vocalizations that were not used for training, combining these sounds
at random with background chunks also not used for training. For the qualitative
evaluation of the data recorded in Egypt, we trained the network using the whole
vocalization dataset. We apply the trained TasNet and Demucs networks to the
synthetic testset and quantify the sound separation performance, computing an
SDR (Source to Distortion Ratio) score [197], is considered an excellent metric to
assess sound quality, between recovered and ground truth fish and background audio
sources. In order to compute the SDR score, the reconstruction ŝi of a source starget
is assumed of consisting of four components:

ŝi = starget + einterf + eartif + enoise

where einterf , eartif and enoise are respectively error terms for interference,
artifacts and noise [197]. Using these terms, the SDR is expressed as:

SDR := 10 log10

(
∥starget∥2

∥einterf + eartif + enoise∥2

)
.

Table 2.1 reports our results (the higher, the better).

Table 2.1. Quantitative evaluation on the synthetic testset using Nisyros backgrounds.

Metric TasNet
Channel Value

SDR Fish 10.60 ± 9.00
SDR Background 17.60 ± 7.04

Metric Demucs
Channel Value

SDR Fish −3.71± 2.03
SDR Background 2.65± 4.05

We note from Table 2.1 that the Tasnet network performs significantly better
than Demucs. The former reaches an SDR score equal to 10.59 on the separation of
the sound of the fish and 17.60 on the background, while the latter obtains just 2.65
of SDR on the background and even a negative score on fish, equal to −5.96 of SDR.
Figure 2.6 and 2.7 show two randomly selected examples of separation. Although
the separations produced by Demucs appear to be perceptibly better, it can be
seen how they show artifacts; in particular, vertical lines are introduced that are
repeated periodically, while in Tasnet, this behavior is not present. Furthermore, it
is possible to notice how, on the synthetic data, in correspondence with the sounds
of the fish, Demucs generates fictitious frequencies that are not present in the TasNet
separations. This is probably due to the fact that Demucs is a network that does
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Ground truth fish:

Network input:

Estimated fish (TasNet result):

Estimated background (TasNet result):

Estimated fish (Demucs result):

Estimated background (Demucs result):

Figure 2.7. Synthetic testset example. From top: fish vocalization (Epinephelus guttatus) (2
seconds); overlap with sea background; TasNet fish and background separation; Demucs
fish and background separation. Vertical axis is frequency, horizontal axis is time.
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Network input:

Estimated fish (TasNet result):

Estimated background (TasNet result):

Estimated fish (Demucs result):

Estimated background (Demucs result):

Figure 2.8. In-the-wild experiment at Marsa Alam (20 seconds). From top: sea recording;
TasNet fish and background separation; Demucs fish and background separation. Vertical
axis is frequency, horizontal axis is time.

Table 2.2. Quantitative evaluation on the synthetic testset using Favignana backgrounds.

Metric TasNet
Channel Value

SDR Fish 8.11 ± 15.48
SDR Background 6.27 ± 5.14

Metric Demucs
Channel Value

SDR Fish −5.27± 7.92
SDR Background −2.81± 2.14
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Network input:

Estimated fish (TasNet result):

Estimated background (TasNet result):

Estimated fish (Demucs result):

Estimated background (Demucs result):

Figure 2.9. In-the-wild experiment at Marsa Alam (60 seconds). From top: sea recording;
TasNet fish and background separation; Demucs fish and background separation. Vertical
axis is frequency, horizontal axis is time.
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not separate the signal by filtering it, but by directly synthesizing the requested
source, not performing well with the data of our dataset. Instead, Tasnet, a more
classical network that filters the desired signal from the mixture, appears to be more
robust and performs better with the data in our possession. Results in Table 2.2,
obtained with a set of backgrounds captured at different locations in relation to
the data used for training, further confirm the above discussion. Figure 2.8 and
2.9 show two examples of separation applied to the data recorded in Marsa Alam.
Note that the performance of the networks are here qualitatively lower than on
the synthetic dataset, and this can be due in particular to the distribution shift
between the background data: while in the Aegean Sea we noticed a consistent
presence of clicks sounds emitted by shrimps, these are not present in the Marsa
Alam dataset. Moreover, the latter data includes a significant sensor noise. Despite
these differences, both networks are able to identify sounds that we can attribute to
the fish species observed in the video channel of the captured data.

2.1.5 Conclusion
With this study, we demonstrate the effective application of deep learning

techniques for source separation of marine data. We achieve this by applying the most
effective source separation architectures to the problem of isolating fish vocalizations
from sea background, obtaining competitive signal-to-distortion ratio (SDR) scores
on a synthetic test set generated composing real animal and background sources.
Notably, as observed by experts, our trained networks also perform qualitatively
well on in-the-wild data, captured with a different device in a different environment.
We attribute this generalization ability to our online training strategy, where a new
synthetic training set is generated at each epoch. We hope these results will pave
the way for new methods of studying the marine environment and contribute to
developing new automatic PAM techniques for monitoring marine biodiversity and,
possibly, accurately tracking fauna in the oceans.
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2.2 Exploiting music source separation for singing voice
detection

Singing voice detection (SVD) is essential in many music information retrieval
(MIR) applications. Deep learning methods have shown promising results for SVD,
but further performance improvements are desirable since it underlies many other
tasks. This work proposes a novel SVD system combining a state-of-the-art music
source separator (Demucs) with two downstream models: a Long-term Recurrent
Convolutional Network (LRCN) and a Transformer network. Our work highlights
two main aspects: the impact of a music source separation model, such as Demucs,
its zero-shot capabilities for the SVD task, and the potential for deep learning to
improve the system’s performance further. We evaluate our approach on three
datasets (Jamendo Corpus, MedleyDB, and MIR-1K) and compare the performance
of the two models to a baseline root mean square (RMS) algorithm and the current
state-of-the-art for the Jamendo Corpus dataset.

2.2.1 Introduction
Singing voice detection (SVD) is a classification task determining whether a

singing voice exists in a given audio segment. It is crucial in many Music Information
Retrieval (MIR) applications, such as lyrics alignment [43], singer identification
[214, 215], and lyrics transcription [112]. Traditional approaches to SVD focused on
analyzing the audio mixture directly, extracting features from the raw waveform,
and employing various machine-learning techniques to classify the singing voice.

In recent years, there has been a shift in the SVD research landscape due to
the growing interest in utilizing music source separation (MSS) techniques. Two
years ago, [215] proposed a state-of-the-art (SOTA) SVD method that leverages
MSS to preprocess the input audio signal and subsequently classify the singing voice.
This approach has significantly improved SVD performance, indicating the potential
benefits of incorporating MSS techniques in SVD systems.

In this chapter, we follow this research direction and build upon the SOTA MSS
method, Demucs, by integrating it with two downstream models: LRCN and a
Transformer network. Our study aims to assess the effectiveness of MSS methods on
SVD tasks and determine whether the two downstream models can further enhance
performance.

2.2.2 Related Works
In recent years, there has been a growing interest in using deep learning techniques,

particularly convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), such as long short-term memory (LSTM) networks, for solving the task of
singing voice detection. Lee et al. [89] proposed end-to-end approaches using CNNs
and LSTMs, respectively, to process the audio mixture and classify the singing voice
directly.

In addition to the choice of neural network architecture, researchers have also
explored different feature extraction techniques to represent the audio mixture. In
2015, Schlüter et al. [154], Lehner et al. [91], and Leglaive et al. [90] proposed
three different methods based on CNNs, LSTM-RNNs, and bidirectional LSTM
(Bi-LSTM) networks, respectively. These methods extract high-level audio features
such as spectrograms, mel-spectrograms, MFCCs, and singing voice and percussive
components from the harmonic-percussive source separation (HPSS) algorithm.
Schlüter et al. [154] investigated the effectiveness of data augmentation methods
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on spectrograms and mel-spectrograms, while Lehner et al. [91] used 30 MFCCs
and Leglaive et al. [90] combined the singing voice and percussive components from
the HPSS algorithm. The best model achieved an accuracy of 0.923 [154], while the
best f1-score was 0.910 [90].

In 2016 and 2017, Choi et al. [13, 14] studied the effectiveness of using pre-trained
convnet features for singing voice detection and achieved similar results compared
to previous works.

Recently, Zhang et al. [216] proposed a new approach based on a CNN combined
with an LSTM network called the long-term recurrent convolutional network (LRCN).
Unlike previous methods, the LRCN approach used the singing voice-separated signal
as input rather than the audio mixture. This approach achieved an accuracy of
0.924 and an f1-score of 0.927, outperforming previous methods. In addition to the
differences in network architecture and feature extraction techniques, the LRCN
approach differs from previous end-to-end approaches in using a pre-trained vocal
separation algorithm to extract the singing voice signal. This approach could improve
the classification quality and reduce interference from other audio sources, but it is
sensitive to the separation quality.

2.2.3 Method
In 2021, a new open-source SOTA music source separator was proposed in [21]. It

was developed by Facebook AI Research 2 and introduced a number of architectural
changes to the previous Demucs architecture [34], considerably improving the quality
of source separation for music. We used this state-of-the-art (SOTA) pre-trained
model to address SVD, stacking Demucs to a downstream system, as proposed in
[216]. To verify the importance of a music source separation model, we trained two
networks: an LRCN and a Transformer, directly on the mixtures and the separated
vocal tracks produced by Demucs on Jamendo Corpus. In addition, to assess the
zero-shot capabilities of Demucs, we stack a classical signal processing root mean
square (RMS) algorithm after it. Moreover, we tested the combination of Demucs
and a neural network (the LRCN and the Transformer) on other datasets, such
as MIR1k and MedleyDB, to assess the potential for deep learning to improve
performance further.

To the best of our knowledge, we are the first to use the Transformer network for
the task of SVD, motivated by the successes of this architecture in other classification
tasks [32, 124].

The subsequent sections will explain these three systems in the following sequence:
RMS, LRCN, and Transformer.

Voice Activity Detection through RMS

The root mean square (RMS) of an audio signal is defined as the square root
of the mean of the squared values of the signal samples. To compute the RMS,
the audio signal is first squared at each sample point, then the squared values are
averaged over the entire signal, and finally, the square root of the average is taken.
Mathematically, this can be expressed as:

RMS =

√√√√ 1
N

N∑
n=1

(x[n])2 (2.5)

2https://github.com/facebookresearch/demucs
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Figure 2.10. Panel (a) shows the general pipeline, consisting of Demucs followed by a
generic Classifier. Panels (b) and (c) detail the two neural Classifiers we tested that
follow Demucs.

where x[n] is the audio sample at time n, and N is the total number of samples
in the signal.

The RMS metric is a reliable method for measuring the overall amplitude of an
audio signal, as it captures both the strength and the duration of the signal. This
metric is well-suited for identifying sections of an audio signal in which a person
is singing, even in the presence of residual noise and artifacts. Applying the RMS
metric to the isolated vocal source obtained from a music source separation system
makes it possible to obtain a time-varying measure of the vocal amplitude throughout
the song. We used the default parameters of the librosa RMS algorithm, while the
threshold used to discriminate between vocals and non-vocals was determined by
a grid search in the validation set of the Jamendo Corpus dataset and was set to
0.015. This method can identify the sections in which the singer is present.

LRCN Network

The Long-term Recurrent Convolutional Network (LRCN) architecture, first
proposed in [161], is a powerful deep learning model designed for a wide range of
applications, including video classification, image captioning, image classification,
activity recognition, image labeling, video captioning, and singing voice detection
[216]. The network has two main components: a spatial Convolutional Neural
Network (CNN) and a temporal Long Short-Term Memory (LSTM) network. The
CNN component of the LRCN network is responsible for extracting spatial features
from the raw waveform signal. Specifically, the CNN applies a sliding window
approach to convolve over the waveform, generating feature maps that capture
different aspects of the signal’s spatial structure. The LSTM component then
processes these feature maps. It is responsible for capturing the temporal dynamics
of the audio signal. It processes the feature maps the CNN component generates
sequentially over time, using a set of memory cells to capture long-term dependencies
between different time steps. The output of the LSTM component is a sequence
of high-level features that encode the temporal dynamics of the audio signal. By
combining the spatial and temporal features extracted by the CNN and LSTM
components, the LRCN network can learn a rich representation of the input audio
signal that is well-suited for a wide range of audio processing tasks.
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Transformer Network

The Transformer network architecture is a highly effective deep-learning model
for processing sequences data [196]. The Transformer is a type of neural network
that uses self-attention mechanisms to capture the long-term dependencies in the
input sequence. Specifically, the Transformer is designed to model the relationships
between different feature maps by considering all pairs of feature maps simultaneously
and then computing a weighted sum of the feature maps based on their relative
importance. As in the previous architecture, a Convolutional Neural Network (CNN)
precedes the Transformer and extracts spatial features from the raw waveform
input. The resulting feature maps are then passed to the Transformer component,
responsible for processing the sequence of feature maps over time to classify the
singing and instrumental sections. By combining the spatial features extracted by
the CNN with the self-attention mechanisms of the Transformer, the resulting model
is able to learn a highly effective representation of the input audio signal that is
well-suited for classification tasks.
These two approaches (LRCN and Transformer) enable the model to automatically
learn to recognize singing and instrumental sections directly from the raw waveform
input without needing hand-crafted feature engineering, as done in [13, 14].

2.2.4 Experiments
The experiments were designed to investigate two aspects: (i) the impact of a

music source separation model, such as Demucs, and its zero-shot capabilities for
the SVD task; (ii) the potential for deep learning to improve performance further.

To address the first aspect, we train the LRCN and the Transformer directly
on mixtures on the Jamendo Corpus dataset [139] (without separating them with
Demucs). Later, we kept the weights of Demucs frozen and trained the LRCN and
Transformer networks on the Jamendo Corpus dataset, feeding these two models with
the separated singing voice signal. Furthermore, to verify the zero-shot capabilities
of Demucs, we also measure the performance of a standard signal processing metric
(RMS) directly on the separated singing voice signal by Demucs, as described
previously.

To address the second aspect, we further investigate the performance of the
deep learning models and verify whether training on a specific dataset would enable
them to outperform the RMS metric consistently. We expanded our experiments
by training the LRCN and Transformer networks (keeping the weights of Demucs
frozen) on the separated vocal tracks of two additional datasets: MedleyDB and
MIR-1K.

Also inspired by [154], we noticed that our three augmentation techniques
improved the neural networks’ performance. Augmentations were applied to the
separate vocal tracks. The first technique is pitch shifting, which shifts sounds up or
down in the frequency spectrum without changing the tempo. The second technique
is a gain adjustment, which involves multiplying the audio by a random amplitude
factor to reduce or increase the volume, helping the model invariant to the input
audio’s overall gain. The third technique involves the addition of background noise,
while the last approach is polarity inversion, which reverses the audio waveform,
effectively inverting the signal phase. All these techniques aim to increase the
diversity of the training data and assist the models in learning invariant features for
the given task.

In the following subsection, we will describe in detail the three datasets we used
to perform the experiments.
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Datasets

The Jamendo Corpus includes 93 songs with Creative Commons licenses from
Jamendo’s free music-sharing website, constituting approximately 7 hours of music
in total. Each file is a stereo track with a sampling rate of 44.1 kHz and is manually
annotated with singing and no-singing parts by the same person to provide ground
truth data. The Jamendo Corpus is publicly available 3. The official split provides
61 songs for training, 16 for validation, and 16 for testing; the total singing and
no-singing frames are about 50% of the whole set for each label, so the dataset is
well-balanced.

The MIR1k dataset comprises 1000 singing voice tracks with a musical back-
ground. Clips vary in duration between 4s and 13s, their sampling rate is 16kHz,
and the dataset has a cumulative duration of 133 minutes. The selected snippets
come from 110 karaoke tracks, and they are chosen from a pool of 5,000 Chinese pop
songs and performed by MIR lab researchers (consisting of 8 women and 11 men).
Annotations of pitch contours in semitone, indices, and types for unvoiced frames,
lyrics, and vocal/non-vocal segments were made manually. The MIR1k dataset is
publicly available 4.

The MedleyDB dataset comprises 61 audio tracks in WAV format (44.1 kHz,
16-bit) featuring vocal signals accompanied by melody annotations. Each track
includes melody annotations and instrument activation data for assessing automatic
instrument identification. Labels for vocal and non-vocal segments are determined
by pitch values, with nonzero pitch categorized as vocal and zero as non-vocal. A
semi-automated process employing monophonic pitch tracking was used for melody
annotation. The dataset showcases various music genres, such as Singer/Songwriter,
Classical, Rock, World/Folk, Fusion, Jazz, Pop, Musical Theatre, and Rap. The
MedleyDB dataset is publicly available 5.

Implementation Details

After the separation step, all datasets are downsampled to 16kHz and transformed
into mono samples. Furthermore, we split the MIR1k and the MedleyDB dataset
into nonoverlapping training, testing, and validation sets using an 8:1:1 ratio (since
the Jamendo Corpus is already split).

In order to perform augmentation, we used the open-source PyTorch-augmentations
library 6. All the training experiments were conducted on the AWS Sagemaker
platform 7, with an ml.g4dn.xlarge machine equipped with 1 GPU Nvidia T4. It
took around 5 hours to train a model on the original Jamendo training set for 300
epochs. We save network parameters only when the F1-score validation metric
exceeds the previous score.

Metrics

To provide a comprehensive view of the results, as proposed in [114], model
predictions were compared with the ground truth to obtain the number of false
negative (FN), true negative (TN), false positive (FP), and true positive (TP). The
frame-wise recall, accuracy, precision, and f1-score were computed to summarize the
results.

3https://zenodo.org/record/2585988#.YoTKaZNBxhE
4https://zenodo.org/record/3532216#.ZFpj8y9Bxf0
5https://zenodo.org/record/1715175#.XAzIzxNKjyw
6https://pytorch.org/audio/main/tutorials/audio_data_augmentation_tutorial
7https://aws.amazon.com/pm/sagemaker
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Input Audio Dataset Model Accuracy Precision Recall F1-score

Mixture Jamendo
RMS .563 .531 .999 .679

LRCN .868 .856 .893 .864
Transformer .848 .804 .910 .845

Vocals Jamendo
RMS .949 .937 .964 .949

LRCN .960 .945 .974 .958
Transformer .959 .953 .968 .960

Vocals MedleyDB
RMS .777 .688 .957 .793

LRCN .854 .795 .916 .849
Transformer .833 .757 .936 .833

Vocals MIR-1K
RMS .908 .935 .949 .941

LRCN .921 .946 .955 .949
Transformer .926 .945 .960 .952

Table 2.3. Results of the proposed singing voice detection systems trained and tested on
the same datasets.

Author Input Audio Accuracy Precision Recall F1-score
Schlüter et al. [154] Mixture .923 - .903 -
Lehner et al. [91] Mixture .894 .895 .906 .902
Leglaive et al. [90] Mixture .915 .895 .926 .910

Ours [LRCN] Mixture .868 .856 .893 .864
Zhang et al. [216] Vocals .924 .926 .924 .927

Ours [LRCN] Vocals .960 .945 .974 .958
Ours [Transformer] Vocals .959 .953 .968 .960

Table 2.4. Results of the proposed singing voice detection system compared with existing
methods on the Jamendo Corpus test set.

Results and Discussion

The effects of music source separation and the Demucs zero-shot capabili-
ties in singing voice detection Regarding the effects of music source separation,
our experiments provided strong evidence for incorporating music source separation,
such as Demucs, in the singing voice detection task. As shown in Table 2.3, when
the LRCN and Transformer models were provided with the audio mixture as input,
their performance was notably inferior compared to when given the separated vocal
signals as input. For example, on the Jamendo dataset, the LRCN model’s accuracy
increased from 0.868 when using the mixture to 0.960 when using the separated
vocals, while the Transformer model’s accuracy improved from 0.848 to 0.959 under
the same conditions.

These significant performance improvements demonstrate that music source
separation is a crucial preprocessing step for enhancing singing voice detection, as
asserted by [215]. The models can concentrate on the relevant vocal information by
employing Demucs to separate the vocal signals from the audio mixture, while the
influence of other audio components, such as background instruments, is minimized.
This enables the LRCN and Transformer models to identify and classify the singing
voice more accurately and effectively, leading to state-of-the-art results.

Moreover, our investigation of zero-shot capabilities provided valuable insights
into the versatility of the Demucs model in the context of singing voice detection.
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When used in conjunction with a standard signal processing algorithm, Demucs
demonstrated competitive performance in the SVD task, as evidenced by the results
presented in Table 2.3. For instance, on the Jamendo dataset, the combination of
Demucs and the RMS yielded an accuracy of 0.949, close to the performance of the
LRCN (0.960) and Transformer (0.959) models.

These promising results underscore the potential of leveraging pre-trained models,
such as Demucs, for tasks beyond their original scope, such as singing voice detection.
The ability of Demucs to perform well in the SVD task without any specific training
or fine-tuning suggests that its inherent capacity to separate vocals from complex
audio mixtures can be effectively utilized across different tasks and applications.

This finding opens up new avenues for future research. It highlights the possibility
of harnessing the power of pre-trained models to achieve high-quality performance
in various tasks with minimal additional training. Furthermore, it encourages the
exploration of transfer learning and multi-task learning techniques to enhance further
the adaptability and efficiency of models like Demucs in various audio processing
tasks, including singing voice detection.

The potential for deep learning to further improve performance The
results presented in Table 2.3 showcase the potential of deep learning models, such
as LRCN and Transformer, to significantly improve performance in the singing voice
detection task when compared to the baseline RMS.

In our study, we observed that the performance of our models on Jamendo and
MIR1k is significantly different from the performance on MedleyDB, even if all three
datasets present songs belonging to the same musical genre. This can be attributed
to the fact that these datasets have been annotated differently, with the Jamendo
and MIR-1K datasets having been annotated manually while MedleyDB has been
annotated automatically. This discrepancy in annotation methods may have led to
inconsistencies in the data, which could have, in turn, affected the overall learning
process of the models. Moreover, when comparing our deep learning models with
existing methods on the Jamendo Corpus test set, it becomes evident that the
LRCN and Transformer models offer substantial improvements over the current
state-of-the-art, as shown in Table 2.4. Specifically, when provided with separated
vocal signals as input, our LRCN model achieves an accuracy of 0.960, while the
Transformer model reaches 0.959. These results significantly overcome the previous
best performance reported by Zhang et al. [216], who achieved an accuracy of 0.924.
These performance improvements highlight the effectiveness of Demucs and our deep
learning models in the singing voice detection task and their potential applicability
to a wide range of music genres and recording conditions. In conclusion, given the
results we obtained, we note that the performance of the Transformer is in line with
that of the LRCN, so we believe that the Transformer has the potential to perform
very well in this task and, therefore, there is a need for a more in-depth study, also
supported by testing on other data.

2.2.5 Conclusion
In this chapter, we presented a comprehensive study on singing voice detection,

focusing on the impact of music source separation and the potential of deep learning
models for improving performance in this task. Our experiments were designed to
investigate two main aspects: (i) the impact of a music source separation model,
such as Demucs, and its zero-shot capabilities for the SVD task; (ii) the potential
for deep learning to improve performance further. Our results demonstrated that
incorporating music source separation with Demucs significantly improved the
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performance of the LRCN and Transformer models compared to using the audio
mixture directly. This finding established the importance of music source separation
as a crucial preprocessing step for enhancing singing voice detection. Moreover, our
investigation of Demucs’ zero-shot capabilities revealed its potential for leveraging pre-
trained models in tasks beyond their original scope, such as singing voice detection.
Lastly, our deep learning models, LRCN and Transformer, outperformed the baseline
RMS and the state-of-the-art methods on the Jamendo Corpus. Based on these
findings, future research efforts should address the challenges of diverse dataset
annotations, refine data preprocessing techniques, and explore alternative annotation
methods to improve further the models’ ability to generalize across various musical
contexts. Further investigation into the potential of zero-shot and transfer learning
for singing voice detection could lead to more accurate and robust models.

2.3 Chapter Conclusions
This chapter delved deep into deep learning, focusing on its applications in audio

processing, especially the separation of sound sources. Starting from the history of
traditional methods in music source separation, we journeyed through the evolution
brought about by introducing deep learning techniques. Key architectures such as
Demucs and Conv-Tasnet were explored in detail, highlighting their remarkable
potential in audio source separation tasks.
Our first study provided a novel approach to separating fish vocalizations from
underwater soundscapes using synthetic soundscapes and two aforementioned sound
separation networks. The positive results suggest the practicality of applying deep
learning models for enhancing passive acoustic monitoring, thus augmenting the
efforts towards effective biodiversity monitoring in vast marine environments. This
has significant implications for conservationists, marine biologists, and environmen-
talists aiming to understand better and protect marine ecosystems.
Our subsequent venture into singing voice detection (SVD) demonstrated the synergy
of combining deep learning models to achieve improved performance in this task.
By integrating a music source separator, Demucs, with downstream models such
as LRCN and Transformer networks, we showcased the power and flexibility of
deep learning in tackling complex MIR tasks. The comparative results on multiple
datasets reaffirmed the promise of our proposed approach in comparison with tradi-
tional methods and current state-of-the-art models. To wrap up, the contributions
of this chapter underscore the transformative capabilities of deep learning in audio
tasks. As we progress, it will be intriguing to witness how further advancements in
deep learning can shape the future of audio processing and analysis.
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Chapter 3

Autoregressive Models for
Source Separation

Autoregressive models have emerged as a potent mechanism for sequence pre-
diction in various fields, particularly in natural language processing and time series
forecasting. These models predict a given output sequence based on its preceding
values, incorporating a sequential dependency that leverages historical information
to make more accurate forecasts [7]. One of the significant advancements in autore-
gressive modelling within deep learning is the advent of the Transformer architecture
[195].
The Transformer model, proposed by Vaswani et al. (2017) [195] in the seminal paper
Attention is All You Need, departs from the recurrent and convolutional architectures
traditionally used in sequence modelling and introduces a novel self-attention mech-
anism. The self-attention mechanism enables the model to weigh the importance of
different parts of the input sequence when making a prediction, allowing long-range
dependencies within the data to be captured more effectively. The Transformer
architecture has since become a cornerstone for many state-of-the-art models in
natural language processing tasks such as language translation, summarization, and
text generation [159, 36, 213].
The architecture is comprised of two primary components: the encoder and the
decoder. Each component consists of multiple layers of self-attention and feed-
forward neural networks. The encoder processes the input sequence and creates
a high-dimensional representation, which the decoder then uses to generate the
output sequence autoregressively. This mechanism allows the Transformer to handle
sequences of varying lengths and types, making it a flexible and powerful tool for
many sequence modelling tasks.
The Transformer’s scalability and ability to model long-range dependencies have led
to its adoption and extension in various domains. Notable variants and extensions of
the Transformer architecture include the BERT [75], GPT-3 [9], and T5 [134], which
have pushed the boundaries of what exists possible in natural language processing and
other fields. The Transformer’s influence extends beyond text, finding applications
in image and video processing, where models like Vision Transformer [31] and Video
Transformer [101] have showcased their versatility. Furthermore, the Transformer
architecture has facilitated research into parallel processing of sequences, significantly
reducing training times and enabling the training of larger models on larger datasets.
Its modular design has also encouraged a vibrant research community to explore
various modifications and improvements, continually expanding the boundaries of
what autoregressive models can achieve in deep learning.
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The autoregressive nature of the Transformer, where each element of the output
sequence is generated one at a time conditioned on both the input sequence and
the previously generated elements, has proven to be a powerful paradigm. It effec-
tively captures sequential dependencies, which is crucial in many real-world tasks.
Through this, the Transformer architecture has significantly advanced the field of
deep learning, offering a robust and efficient framework for sequence modelling and
prediction.
Initially developed for text-based tasks, the Transformer architecture has exhibited
remarkable adaptability, finding utility in various domains, including audio pro-
cessing. One notable application of Transformers in the audio domain is OpenAI’s
Jukebox, a generative model capable of creating music, including melody, rhythm,
and even vocals [25]. Jukebox utilizes a hierarchy of Transformers to generate audio
in a coarse-to-fine manner. At the highest level, a Transformer model outlines the
macro-structure of a piece, deciding the general style and thematic elements. Subse-
quent, finer-grained Transformers fill in the details, adding layers of complexity to
the audio. This hierarchical approach allows Jukebox to handle the high-dimensional
audio data space efficiently and generate novel and coherent musical pieces spanning
minutes. The autoregressive nature of the Transformer, which inherently operates
sequentially, aligns well with the temporal structure of audio data. Each sample in
the generated audio sequence is conditioned on the preceding samples, allowing the
model to capture the temporal dependencies crucial for producing coherent musical
or spoken sequences. Furthermore, the Transformer’s self-attention mechanism is
particularly useful in audio generation tasks, as it enables the model to weigh the
relevance of different parts of the audio sequence when generating each new sample.
This ability to account for long-range dependencies is crucial for modelling the
structure and coherence of musical pieces.
Autoregressive models, particularly the Transformers, have substantially contributed
to the advancements in deep learning and, with their novel self-attention mechanism
and scalable design, have not only achieved state-of-the-art performance across a
variety of tasks but also fostered a rich vein of research exploring further innovations
in autoregressive modeling.

In the following two sections, we shall delve into two endeavors focused on signal
separation, explicitly about audio and imagery. These works employ autoregressive
models, notably the Transformer architecture, to navigate this task adeptly.

3.1 Unsupervised source separation via bayesian infer-
ence in the latent domain

State-of-the-art audio source separation models rely on supervised data-driven
approaches, which can be expensive in terms of labeling resources. On the other hand,
approaches for training these models without any direct supervision are typically
high-demanding in terms of memory and time requirements, and remain impractical
to be used at inference time. We aim to tackle these limitations by proposing a
simple yet effective unsupervised separation algorithm, which operates directly on a
latent representation of time-domain signals. Our algorithm relies on deep Bayesian
priors in the form of pre-trained autoregressive networks to model the probability
distributions of each source. We leverage the low cardinality of the discrete latent
space, trained with a novel loss term imposing a precise arithmetic structure on it,
to perform exact Bayesian inference without relying on an approximation strategy.
We validate our approach on the Slakh dataset [110], demonstrating results in line
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with state of the art supervised approaches while requiring fewer resources with
respect to other unsupervised methods.

3.1.1 Introduction
Generative models have reached promising results in a wide range of domains,

including audio, and can be used to solve different tasks in unsupervised learning. A
relevant problem in the musical domain is the task of source separation of different
instruments. Given the sequential nature of music and the high variability of rhythm,
timbre and melody, autoregressive models [85] represent a popular and effective
choice to process data on such domain, showcasing high multi-modality in the
modeled probability distributions. The widely adopted WaveNet autoregressive
architecture [189] works in the temporal domain. Given that audio signals are
typically sampled at high frequencies (e.g. 44 kHz) for music, the choice of modeling
the data distribution directly in the time domain leads to short contexts being
captured by neural computations and quick saturation of memory. Nevertheless,
existing unsupervised approaches for source separation operate in the time domain
[69]. In order to capture longer contexts and to reduce memory burden, different
quantization schemes have been introduced for autoregressive models [192, 140],
where chunks in time are mapped to sequences of latent tokens belonging to a
small vocabulary. OpenAI’s Jukebox [26] follows this approach and excels as an
architecture that can capture very long contexts, generating highly consistent tracks.
Leveraging the useful properties of this architecture, we propose a novel approach
to unsupervised source separation that works directly on quantized latent domains.

Our contributions can be summarized as follows:

1. We perform source separation applying exact Bayesian inference directly in
the latent domain, exploiting the relative small size of the latent dictionary.
We do not rely on any approximation strategy, such as variational inference or
Langevin dynamics.

2. We introduce LQ-VAE: a quantized autoencoder trained with a novel loss that
imposes an algebraic structure on the discrete latent space. This allows us to
alleviate noisy and distorted samples which arise from a vanilla quantization
approach.

3.1.2 Related Works
The problem of source separation has been classically tackled in an unsupervised

fashion [18], where the sources to be separated from a mixture signal are unknown
[163]. With the advent of deep learning, most source separation tasks applied to
musical data started relying on supervised learning, training models on data with
known correspondence between sources. Recently, following the success of deep
generative models, there has been a renewed interest in unsupervised methods.

Supervised source separation

Supervised source separation aims to map high dimensional observations of audio
mixtures to a smaller dimensional space and apply, explicitly or implicitly, a mask to
filter out the sources from the latent representation of the mixtures in a supervised
way. Most of these works can be divided into frequency-domain or waveform-domain
approaches. The former [148] operate on the spectral representation of the input
mixtures. This line of works has highly benefited from the incoming of deep learning
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techniques from simple fully connected networks [186], LSTM [188], and CNN
coupled with recurrent approaches [97, 3]. Recent approaches such as [15] and [181]
hold the state of the art in music source separation over the dataset MUSDB18 [135],
by respectively extending the conditional U-net architecture of [115] to multi-source
separation, and by exploiting multi-dilated convolution that applies different dilation
factors in each layer to model different resolutions simultaneously. In contrast,
waveform domain approaches process the mixtures directly in the time domain to
overcome phase estimation, which is necessary when converting the signal from the
frequency domain. The method of [34] performs in line with the state of the art by
extending a WaveNet-like architecture, coupled with an LSTM in the latent space.

The main limitation of these state-of-the-art methods for audio source separation
is that they require large amounts of fully separated, labeled data to perform the
training.

Unsupervised source separation

Recent approaches in unsupervised source separation leverage self-supervised
learning. A prominent baseline is MixIt [201], which trains a model by trying to
separate sources from a mixture of mixtures. Although promising, such model suffers
from the over-separation problem, where at test time a number of sources that is
greater than those present in the mixture are estimated. As such, stems can be split
across different output tracks. Generative approaches instead overcome this problem
by imposing that a model should output an individual stem.

Closer to our work, [118] proposes to leverage generative priors in the form of
GANs trained on individual sources. They use projected gradient descent opti-
mization to search in the source-specific latent spaces and effectively recover the
constituent sources in the time domain. Although promising, GANs suffer from
modal collapse, so their performance is limited in the musical domain, where variabil-
ity is abundant. [69] proposes to use Langevin dynamics on the global log-likelihood
of the audio sequences to parallelize the sampling procedure of autoregressive models
used as Bayesian priors. This approach produces good results but with a high
computational cost due to the need of training distinct models for each noise level,
and due to the costly optimization procedure in the time domain.

Differently, our inference procedure has much lower computational and memory
requirements, allowing us to efficiently run the model on a single GPU. In addition,
we can perform exact Bayesian inference without relying on an approximation scheme
of the posterior (e.g., its score).

3.1.3 Method
In this section we briefly introduce the background concepts necessary to un-

derstand our architecture, which builds upon [26]. The overall architecture can be
split into two parts: (i) a quantization module mapping the input sequences to a
discrete latent space, and (ii) an autoregressive prior (one per source) which models
the distribution of a given source in the discrete latent space. We point the reader
to [26] for a deeper understanding.

Quantization module

Let us consider an input sequence x = x1, . . . , xT ∈ [−1, 1]T of length T , which
represents a normalized waveform in the time domain. In order to be representative
of an expressive portion of the audio sequence, T should be large. However, due to
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the complexity of modern neural architectures, choosing a large enough value of T is
not always feasible. To reduce the dimensionality of the space one can leverage the
VQ-VAE architecture [192] to map large continuous sequences in the time domain
to smaller sequences in a discrete latent domain. A VQ-VAE is composed of three
blocks:

• A convolutional encoder E : [−1, 1]T → RS×D, with S ≪ T , where S is the
length of the latent sequence and D denotes the number of channels;

• A bottleneck block B = BI ◦BQ where BQ : RS×D → CS ⊆ RS×D is a vector
quantizer, mapping the sequence of latent vectors h = h1, . . . ,hS = E(x) into
the sequence of nearest neighbors contained in a codebook C = {ek}Kk=1 of
learned latent codes, and BI : CS → [K]S is an indexer mapping the codes
ek1 , . . . , ekS

into the associated codebook indices z1 = k1, . . . , zS = kS . Note
that since BI is bijective, the codes ek and their indices k are semantically
equivalent, but we shall use the term ‘codes’ for the vectors in C and ‘latent
indices’ for the associated integers;

• A decoder D : [K]S → [−1, 1]T mapping the discrete sequence back into the
time domain.

The VQ-VAE is trained by minimizing the composite loss:

LVQ-VAE = Lrec + Lcodebook + βLcommit , (3.1)

where:

Lrec = 1
T

∑
t

∥xt −D(zt)∥22 (3.2)

Lcodebook = 1
S

∑
s

∥sg[hs]− ezs∥22 (3.3)

Lcommit = 1
S

∑
s

∥hs − sg[ezs ]∥22 , (3.4)

where sg is the stop-gradient operator and β is the commitment loss weight. The
losses Lcodebook and Lcommit update the entries of the codebook C during the training
procedure. In addition, we introduce a novel loss term Llin, described in Section
3.1.3, which imposes a precise algebraic structure on the latent space, facilitating
the task of source separation.

Latent autoregressive priors

Once the VQ-VAE is trained, time domain data x ∼ pdata can be mapped to
latent sequences z. Autoregressive priors p(z) = p(z1)p(z2|z1) . . . p(zS |zS−1, . . . , z1)
can then be learned over the discrete domain. In this work, the autoregressive
models are based on a deep scalable Transformer architecture as in [26]. In order
to generate new time-domain examples, sequences of latent indices are sampled
from p(z) via ancestral sampling and then mapped back to the time domain via the
decoder of the VQ-VAE.

The proposed algorithm is composed of two parts. A first separation phase in the
latent domain, in which we sequentially sample from an exact posterior on discrete
indices. A following rejection sampling procedure based on a (scaled) global posterior
conditioned on the separation results, which we use to sort the proposed solutions
and select the most promising one.
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Figure 3.1. In our method, two autoregressive priors T1 and T2 are trained on different
instrument sources in the latent domain. At each step s they provide the joint prior
p(zs). The prior is combined with a σ-isotropic Gaussian likelihood p(y = mlatent,s|zs) =
N
(
mlatent,s

∣∣BQ( 1
2 ez1 + 1

2 ez2), σ2I
)

in order to compute the posterior p(zs|y = mlatent,s)
from which new samples are drawn.

Latent Bayesian source separation

Our task is to separate a mixture signal m = 1
2x1 + 1

2x2 into x1 ∼ pdata
1 and

x2 ∼ pdata
2 , where pdata

1 and pdata
2 represent the distributions of each instrument class
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Figure 3.2. Training scheme of the LQ-VAE: reconstructions x̂1, x̂2 are obtained from
input pairs x1,x2 as in the VQ-VAE, leading to the loss LVQ-VAE (Eq. (3.1)). To this
loss we add the post-quantization linearization loss Llin (Eq. (3.8)), that is computed
by matching time-domain sums with latent vector sums.

in the time domain. In a Bayesian framework, a candidate solution x = x1,x2 is
distributed according to the posterior p(x1,x2|m) ∝ pmodel

1 (x1)pmodel
2 (x2)p(m|x1,x2),

where the priors pmodel
1 , pmodel

2 are typically deep generative models and the likelihood
p(m|x1,x2) is parameterized as p(m|12x1 + 1

2x2).
In this chapter, we follow the Bayesian approach but we work in the latent domain.

After training the VQ-VAE on an arbitrary audio dataset (with samples lying also
outside pdata

1 and pdata
2 ), we learn two latent autoregressive priors p1(z1) and p2(z2)

over the two instrument classes. The priors do not require any correspondence
between the sources, being trained in a completely unsupervised setting. We assume
the two priors to be independent, i.e. p(z) = p(z1, z2) = p1(z1)p2(z2). Therefore, for
each step s ∈ [S], we can compute the posterior distribution p(z1,s, z2,s|z1:s−1,y) ∝
p1(z1,s|z1,1:s−1)p2(z2,s|z2,1:s−1)p(y|z1,s, z2,s, z1:s−1).

The random variable y = f(m) is a function of the mixture m. One can choose
to model y in multiple ways; a naive approach is to choose f as the identity and set
y = m, thus computing the likelihood function directly in the time domain. This
approach, however, requires the decoding of at least 2K possible latent indices in
order to locally compare the mixture m with the hypotheses z1,s and z2,s. Note that
this corresponds to a lower bound, given that the convolutional nature of the decoder
requires a larger past context to produce meaningful results. Differently, we propose
to define y in the latent domain, setting y = BQ(E(m)) := mlatent. This approach is
preferable since it does not require decoding the hypotheses at each step s, resulting
in lower memory usage and computation time. Our method benefits from the choice
of operating in the latent space, thanks to the relatively small size of the priors and
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the likelihood function domain (we choose K = 2048, as in [26]). In addition, by
exploiting the Transformer architecture, the prior distributions can be computed
in parallel. For these reasons, evaluating and sampling from p(z1,s, z2,s|z1:s−1,y) at
each s is computationally feasible and has O(K2) memory complexity. See Figure
3.1 for a visual description of the inference algorithm.

Latent likelihood via LQ-VAE

In this section we describe how we model the likelihood function and introduce
the LQ-VAE model. Following [68] we chose a σ-isotropic Gaussian likelihood,
setting:

p (mlatent|z1,s, z2,s, z1:s−1) =
= p (mlatent,s|z1, z2)
= N

(
mlatent,s

∣∣BQ(1
2ez1 + 1

2ez2), σ2I
)
.

(3.5)

The hyper-parameter σ balances the trade-off between the likelihood and the priors.
Lower values promote the likelihood: the separated tracks combine perfectly with
m, but may not sound like the instrument of the class they belong to. Instead,
higher values of σ give importance to the priors: the separated tracks contain only
sounds from the corresponding source distribution, but may not mix back to m (not
resembling the sources). The logarithm of the likelihood is:

− 1
2σ2

∥∥∥mlatent,s −BQ
(

1
2ez1 + 1

2ez2

)∥∥∥2

2
. (3.6)

At each step s, we compare a variable term mlatent,s with a constant matrix
BQ

(
1
2ez1 + 1

2ez2

)
representing all possible (scaled) sums over all codes in C. This

term can be precomputed once and then reused during inference, saving additional
computational resources.

We observed that performing separation with the likelihood in Eq. (3.5) using a
VQ-VAE trained with the loss in Eq. (3.1), results in disturbed and noisy outcomes.
Such behavior is expected because the standard VQ-VAE does not impose any
algebraic structure on the discrete domain; therefore, summing codes as in Eq. (3.5)
does not lead to meaningful results. This problem can be lifted by enforcing a
post-quantization linearization loss on the VQ-VAE:

L = LVQ-VAE + Llin , (3.7)

where LVQ-VAE is defined as in Eq. (3.1) and

Llin = 1
T

∑
t

∥LQt −QLt∥22 (3.8)

QLt = BQ
(

1
2BQ (E (x1,t)) + 1

2BQ (E (x2,t))
)

(3.9)

LQt = BQ
(
E
(

1
2x1,t + 1

2x2,t
))

. (3.10)

Minimizing this loss pushes the quantized latent code representing a mixture of
two arbitrary source signals (LQt term) to be equal to the sum of the quantized
latent codes, corresponding to the single sources (QLt term), therefore enforcing
the discrete codes to behave in an approximately linear way. We shall refer to
the VQ-VAE trained as above, as a Linearly Quantized Variational Autoencoder
(LQ-VAE). See Figure 3.2 for a visual illustration of the LQ-VAE training procedure.
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Method Drums Bass Drums Guitar Guitar Bass
Ours (best) 5.83 7.42 8.33 3.80 3.75 8.65
Ours (rej) 4.08 5.31 6.93 2.48 1.95 6.35
Demucs† 5.42 5.36 5.80 5.36 6.42 7.68
TasNet† 5.51 5.43 5.87 5.47 7.80 8.46
rPCA[59] 0.60 1.05 2.27 -0.42 0.52 -1.12
ICA[64] -0.99 -1.53 -0.53 -3.23 -0.73 -2.79
HPSS [41] -0.56 -0.33 0.31 -2.72 0.15 -0.38
REPET[136] 0.53 1.54 2.91 0.11 0.40 -1.09
FT2D [156] 0.59 1.31 2.63 -0.15 0.65 -1.02

Table 3.1. SDR scores evaluated on Slakh2100 test set. All methods are unsupervised
except those marked with †. The rej attribute indicates that the solutions were obtained
by the rejection sampling procedure with α = 0. The scores are computed according to
the implementation in [172]

.

Rejection α Drums Bass Drums Guitar Guitar Bass
0 4.08 5.31 6.93 2.48 1.95 6.35
0.5 3.61 4.78 6.69 2.17 1.68 6.00
1 2.94 4.03 6.44 1.95 1.15 5.35

Table 3.2. Ablation study for rejection parameter α.

Method Drums Piano
Ours 0.68 3.66
Ours (rejection α = 0) 0.08 2.75
GAN [20] -3.16 -2.26

Table 3.3. SDR table evaluated on the test set of [118].

Rejection sampling

Given the low memory requirements of our method, at inference time we can
sample in parallel multiple solutions {z(b)}Bb=1 in the same batch. Autoregressive
models tend to accumulate errors over the course of ancestral sampling, therefore
the quality of the solutions varies across the batch. In order to select a solution,
we look at the posterior prej(z|m) ∝ prej,1(z1)prej,2(z2)prej(m|z), conditioned by the
sampling event. We obtain the priors prej,1 and prej,2 by normalizing p1 and p2 over
the batch (computed by integrating over s during the inference). For numerical
stability, we scale their logits by the length of the latent sequences S. The likelihood
function prej(z|m) = N

(
m
∣∣1

2D(z1) + 1
2D(z2), σ2

rejI
)

is computed directly in the
time domain, with the decoding pass being executed only once at the end of the
sampling procedure. The hyper-parameter σrej plays a similar role to the σ used in
Eq. (3.5). We can balance the likelihood and the priors by setting:

Eb
[
log prej(z(b))

]
=− 1

2σ2
rej

Eb
[∥∥∥m− 1

2(D(z(b)
1 ) +D(z(b)

2 ))
∥∥∥2

2

]
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Figure 3.3. Mel spectrograms in log scale of a separation result (bottom row) and the
corresponding ground truth signals (top row). Left: drums source. Center: bass source.
Right: mixture.

and solving for σrej. Albeit natural, this framework does not lead to the best
selection. We performed an ablation study by weighting the contribution of the
global likelihood with a scalar α ∈ [0, 1] (using σ′2

rej = ασ2
rej) and the best empirical

results are obtained when the global likelihood is not taken into account (α = 0),
see Table 3.2. We call this selection criterion prior-based rejection sampling.

3.1.4 Experiments
We validate our approach on Slakh2100 [110]: a large musical source dataset

containing mixed tracks separated into 34 instrument categories. We select tracks
from the classes ‘drum’, ‘bass’ and ‘guitar’ coming from the training and test splits,
sub-sampled at a frequency of 22kHz. We train the convolutional LQ-VAE over
mixtures obtained by randomly mixing sources from the individual tracks of the
training set. The LQ-VAE has a downsampling factor of TS = 64 and uses a dictionary
of K = 2048 latent codes. After training the LQ-VAE, we train two autoregressive
models, one per source, on latent codes extracted from ∼ 1200 tracks each. In all
our separation experiments we fixed σ = 0.1 in Eq. (3.6).

In Table 3.1 we compare our method with two state-of-the-art supervised ap-
proaches and different non-learning based unsupervised methods. To this end, we
iterate on the test split of [110] made up of about 150 different songs, and for each
we extract 450 random chunks each of 3 seconds. In Figure 3.3 we show a qualitative
result of our algorithm.

In order to strengthen our empirical evaluation, we show in Table 3.3 results of
our model applied to a different validation data set in order to perform a comparison
with the GAN model of [118]. We evaluate both methods over the test dataset
proposed in [118], consisting of 1000 mixtures of 1 second each. Each mixture
combines a drum sample with a piano track randomly, thus independence in the test
data is assumed, resulting in a more artificial setting with respect to the one present
in Slakh2100. For [118] we use the pre-trained model given by the authors while
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for our method we use the “drums” and “piano” priors trained on Slakh2100 thus
showing the cross-dataset generalization capability of our model.

All our experiments are performed on a Nvidia RTX 3080 GPU with 16 GB of
VRAM. With this GPU our method can sample a batch of 200 candidate solutions
(100 for each instrument) simultaneously. The code to reproduce our experiments is
available at https://github.com/michelemancusi/LQVAE-separation. Interest-
ingly, even if solutions selected by the rejection sampling algorithm have slightly
lower metrics than supervised approaches, by individually selecting the best solu-
tion for each instrument we achieve performance in line with the state of the art
(especially on ‘bass‘ and ‘drum‘ stems). This testifies the quality of our separation.
Remarkably, our method employs 3 minutes on average for sampling a track of 3
seconds, compared to the more than 100 minutes of [69].

3.1.5 Conclusion
In this chapter, we introduced a simple algorithm to perform exact Bayesian

inference in the discrete latent domain. Our method allows us to achieve good
separation results while being much faster than other likelihood-based unsupervised
approaches.

The main bottleneck of our method lies in the rejection sampling strategy. Future
work will attempt to improve this aspect by investigating the design of more accurate
learning-based rejection samplers. Other benefits could come from the adoption of
multi-level VQ-VAEs [26] or by leveraging deeper autoregressive priors.

https://github.com/michelemancusi/LQVAE-separation
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3.2 Latent Autoregressive Source Separation
Autoregressive models have consistently demonstrated high-quality generation

capabilities across various fields. One significant factor that enables this is the
deployment of quantized latent spaces, like those derived from VQ-VAE autoencoders.
These spaces pave the way for reduced dimensionality and enhanced inference speeds,
making them useful in the continuous realm. However, adapting pre-existing trained
models for novel complex tasks is often challenging. It may require further fine-tuning
or intensive training processes.

This chapter presents LASS, an innovative vector-quantized Latent Autoregressive
Source Separation approach. This approach involves decomposing an input into its
fundamental sources, bypassing the need for further fine-tuning or model adjustments.
Our separation approach leans into a Bayesian model, wherein the autoregressive
models act as priors. Furthermore, frequency evaluations of latent addend token
aggregates establish a discrete likelihood function.

We tested our method extensively on both images and audio using diverse
sampling methodologies, including ancestral and beam search techniques. Our
method matches the efficacy of existing approaches in separation. It outshines them
with faster inference speeds and adaptability to more complex data dimensions.

3.2.1 Introduction

Figure 3.4. 256x256 separations obtained with LASS using pre-trained autoregressive
models. Left: class-conditional ImageNet. Right: unconditional CelebA-HQ.

Autoregressive models have made notable strides across diverse fields such as
natural language processing [9], audio [26], vision [140, 38], and multimodal interfaces
[138, 211]. When dealing with dense domains, training these models on discrete
latent configurations derived by quantizing continuous data is commonplace, often
utilizing VQ-VAE autoencoders [192]. This technique supports the generation of finer
samples and expedites inference. The latent configurations crafted in this manner
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also hold value for subsequent tasks [10]. However, for more sophisticated tasks, the
prevalent strategy involves refining the model or using prompt-based scaled training
[199, 151]. While the former is frequently adopted, it requires further optimization
or model amendments. The latter, especially outside the natural language spectrum,
is more intricate [208, 53].

This research delves into the intricate task of source separation, harnessing
pre-trained quantized autoregressive models without needing gradient-dependent
optimization or structural changes. The realm of audio, especially areas like speech
[33], music [22], and universal source separation [200, 131], has seen a surge in the
exploration of extracting multiple sources from a composite signal with the advent of
deep learning. Though image source separation has yet to garner as much attention
as its audio counterpart, it has been documented [51]. Dominant methods in the
field either rely on direct supervision for achieving commendable results [104, 34] or
tap into large-scale unsupervised regression [202].

Our proposed methodology seeks to employ generative tactics for source sep-
aration, anchored on autoregressive prior distributions developed within a latent
VQ-VAE environment. Depending on the inclusion of class information, our ap-
proach either veers towards weak supervision or fully unsupervised. A distinctive
non-parametric sparse likelihood function is crafted by monitoring the frequency of
mixed latent tokens compared to source-specific tokens. Tokens are computed by
projecting the mixture signals from the data domain and their associated components
through the VQ-VAE. This function does not alter the VQ-VAE or the autoregressive
priors since the VQ-VAE’s latent space remains constant. Combining this likelihood
function with autoregressive prior predictions, using Bayes’ theorem, results in a
posterior distribution. Discrete sampling techniques like ancestral or beam search
are deployed to achieve separations. We have labeled this innovative framework as
Latent Autoregressive Source Separation (LASS).

To encapsulate, our contributions include:

• The unveiling of LASS, a novel Bayesian framework for source separation,
capitalizing on previously trained autoregressive models in quantized latent
spaces.

• Empirical validation of LASS in image processing, revealing efficient outcomes
on platforms like MNIST and CelebA (32x32), with qualitative insights into
ImageNet (256x256) and CelebA-HQ (256x256) datasets, underscoring LASS’s
scalability to pre-trained models.

• A demonstration of LASS’s prowess in the domain of music source separa-
tion using the Slakh2100 dataset, where it showcases results rivaling top-tier
supervised techniques but with reduced computational demands.

3.2.2 Related Works
In this section, we will briefly recall the concepts seen in the introduction of the

second chapter. Traditionally, blind source separation tackled the issue of source
separation, employing unsupervised strategies without utilizing any knowledge about
the sources embedded within a mixed signal, instead leaning on mathematical
principles such as source independence [64] or recurrence [136] for carrying out the
separation. With the emergence of deep learning, contemporary strategies for source
separation have been mainly segregated into two primary categories: regression-based
and generative-based methodologies.
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Regression-Based Source Separation

This paradigm involves inputting a mixed signal into a parametric model, com-
monly a neural network, producing separated sources. The prevalent mode of
training involves a supervised methodology, wherein the separated sources produced
by the model are compared with actual sources using a regression loss, such as L1
or L2 loss [50]. Although it has seen application in image source separation [51], the
methodology has predominantly been researched within the audio domain. Here,
two main strategies are prevalent:

• Mask-Based Strategy: The model separates by applying computed masks to
mixtures, commonly in the STFT domain [148, 186, 60, 119, 97, 3].

• Waveform Strategy: The model directly produces the sources in the time
domain, mitigating the need for phase estimation in conversions from the
STFT domain to the waveform domain [99, 104, 34].

Generative Source Separation

With the advancements made by deep generative models [46, 77, 55, 170], there
is a budding interest in new techniques related to generative source separation.
Here, emphasis is laid on harnessing generative models, particularly pre-trained
ones, to execute the separation task without needing a specialized architecture. In
the initial phases, deep generative separation relied significantly on GANs [175, 80,
118]. After that, Jayaram and Thickstun [68] introduced the generative separation
technique BASIS, utilizing score-based models [168] in an image setting (BASIS-
NCSN) and a variant of flow-based models with noise annealing (BASIS-Glow).
The inference process is carried out in the image domain via Langevin dynamics
[123], showing encouraging quantitative and qualitative outcomes. Building on the
principles of Langevin dynamics for inference in autoregressive models, the authors
introduced a noise scheduling technique, the Parallel and Flexible (PnF) method [70].
While inventive, especially for tasks like inpainting, it does not utilize pre-trained
autoregressive models directly and demands fine-tuning under various noise levels.
Additionally, due to its operation directly in the data domain, it experiences extensive
inference times and struggles to scale to higher resolutions. Continuing this research
trajectory, the work presented in this chapter introduces a novel separation method
for latent autoregressive models. This method forgoes the need for re-training, offers
scalability to pre-trained models of any stage, and seamlessly aligns with traditional
discrete samplers.

3.2.3 Method
This section briefly recalls the concepts already seen 3.1.

VQ-VAE Overview

The VQ-VAE [192] offers a mechanism to transform a data sample, denoted as
x ∈ RN (where N represents the overall data sample size, such as an audio sequence’s
length or a picture’s pixel channels count), into a discrete latent space. Utilizing an
encoder Eθ : RN → RS×C , the data point x is converted to Eθ(x) = (h1, . . . ,hS).
Here, C indicates latent channels, while S signifies the latent sequence’s length. A
constraining block, denoted by B : RS×C → [K]S , translates this encoding into
a discrete sequence, z = (z1, . . . , zS). It does so by associating each hs with the
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nearest neighboring vector index, termed token, zs = B(hs) present in a learned
vector set C = {ek}Kk=1 in RC , referred to as codes. Lastly, a decoder Dψ : [K]S →
RN projects the latent sequence back to the original data space, resulting in a
reconstruction denoted as x̂ = Dψ(z). The VQ-GAN [38] is an advanced VQ-VAE
variant incorporating a discriminator and a perceptual loss into the training process,
facilitating better data reconstruction and increased compression capability. For a
comprehensive understanding of VQ-VAE and VQ-GAN, readers can consult [192]
and [38]. In subsequent sections, both models will be addressed as VQ-VAE, with
distinctions made when appropriate.

Introduction to Autoregressive Models

Autoregressive models provide a means to specify a probability distribution over
a discrete space, specifically [K]S , in the context of the VQ-VAE’s latent domain.
For any sequence z = (z1, . . . , zS), its joint probability is expressed using the chain
rule as:

pϕ(z) =
S∏
s=1

pϕ(zs|z<s),

In this formulation, pϕ(·) is a learned model, typically a neural architecture like CNNs
[190, 150] or Transformers [195]. During the inference phase, different sampling
methods can be employed. A common approach is ancestral sampling. Here, each
token zs is sampled probabilistically from the conditional distribution pϕ(zs|z<s).
Techniques like top-k [83] might enhance the diversity of the resultant data [57].
For objectives that optimize the entire sequence’s probability, heuristic methods, for
instance, beam search, are favored [141]. During the inference process, beam search
simultaneously evaluates B potential sequence hypotheses z1, . . . , zB. For every step
s, the method calculates the conditional probabilities for each beam and updates
the B hypotheses to maximize the joint probabilities pϕ(zb<s)pϕ(zs|zb<s).

Consider two sources, denoted as x = (x1,x2) ∈ R2×N , which adhere to the
distribution pdata = (p1

data, p
2
data). We define an observable combination,

y = x1 + x2

2 (3.11)

In the realm of generative source separation, our objective is to deduce the sources
x from the composite y, employing the Bayesian posterior (under the presumption
of independent sources):

p(x1,x2|y) ∝ p1
data(x1)p2

data(x2)p(y|x1,x2). (3.12)

The direct manipulation of Eq. (3.12) within the continuous data sphere poses
challenges. We initially approximate pdata via autoregressive models in a VQ-VAE’s
latent dimension to navigate this. Transitioning domains lets us newly define the
likelihood function p(y|x1,x2), eliminating the need for gradient-based refinement
or additional training. The forthcoming subsections address these concerns. We will
first delve into the latent autoregressive source separation and subsequently discuss
inference methods using LASS and a refinement strategy post-inference.
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Figure 3.5. Schematic of the LASS separation procedure. The picture shows the separation
procedure at s = 3 and is repeated until s = S. At the end of inference, we obtain x1

and x2 decoding z1 and z2 via the VQ-VAE decoder (not depicted in the picture). We
refer the reader to Algorithm 1 for more details.

Latent Autoregressive Source Separation Framework

Our study evaluates situations where pdata is approximated using a singular
autoregressive model, labeled pϕ (for every source, in an unsupervised manner1), and
cases with two separate models, pϕ = (pϕ1 , pϕ2). The emphasis will be on the latter
scenario since the former can be extrapolated by equating pϕ1 and pϕ2 . Let’s signify
the latent sources and composites as z = (z1, z2) = B(Eθ(x)) and m = B(Eθ(y)),
respectively. Applying Eq. (3.12), we can express the posterior distribution in the
latent space as:

p(zs|z<s,m≤s) ∝ pϕ(zs|z<s)p(m≤s|z≤s), (3.13)

for every s = 1, . . . , S. The initial factor symbolizes the (collective) Bayesian prior,
depicted with autoregressive distributions. The latter factor represents the likelihood
function. Given that each code in the convolutional VQ-VAE encapsulates a specific
data segment and that mixing is data-point specific, the connection between latent
codes is equally localized. Consequently, we can simplify the likelihood function in
Eq. (3.13) as:

p(m≤s|z≤s) ≈ p(ms|zs). (3.14)

Being position-independent, we can omit the positional index s:

p(ms|zs) = p(ms|z1
s, z

2
s) = p(m|z1, z2). (3.15)

The subsequent subsection will elucidate how LASS depicts the likelihood function.
1This should not be mixed up with the unsupervised blind scenario. In our version of unsupervised,

we access the sources but lack class labels.
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Discrete Likelihoods for Source Separation

Prior research in generative source separation [68, 70] has typically focused on
modeling likelihood functions within the data domain. This often involves the use
of a σ-isotropic Gaussian expression:

p(y|x) = N (y|(x1 + x2)/2, σ2I).

In the approach we have adopted, it is unfeasible to merge z1
s with z2

s (or their
associated dense codes) using the standard sum operation. VQ-VAE does not set a
clear arithmetic structure for the latent space. We leverage the likelihood function
defined in Eq. (3.15) to address this challenge. This is realized through discrete
conditionals characterized by rank-3 tensors2, denoted as P ∈ RK×K×K :

p(· |z1, z2) = Pz1,z2,:.

For acquiring P, we employ frequency counting on latent mixed tokens based on
latent source tokens. This is done by looping through a dataset X. We begin
by initializing a null integer tensor, denoted as F0 ∈ NK×K×K . As we progress
through x1,x2 ∈ X, we compute: y = (x1 + x2)/2, followed by determining the
latent sequences and so forth:

z1 = B(Eθ(x1)),
z2 = B(Eθ(x2)),
m = B(Eθ(y)).

For every element (z1
s, z

2
s,ms) within the sets z1, z2, and m at iteration t, we just

augment the prior count by a unit:

Ftz1
s ,z

2
s ,ms

= Ft−1
z1

s ,z
2
s ,ms

+ 1 ,

Ftz2
s ,z

1
s ,ms

= Ft−1
z2

s ,z
1
s ,ms

+ 1 .

To guarantee the sum’s commutative property, we interchange the order of the
addends. After these computations, P is defined as:

Pz1,z2,: = 1∑K
k=1 Fz1,z2,k

Fz1,z2,:.

At the time of inference, the likelihood function is achieved by segmenting the
tensor using m. On the surface, parameter-free conditional distributions might
appear inefficient regarding memory usage, given its O(K3) complexity. However,
the tensor P is predominantly sparse in real-world scenarios, as evidenced in Table
3.7.

Utilizing discrete likelihood functions within the VQ-VAE’s latent domain
presents several advantages: the representation remains unchanged, the learning pro-
cess is free from hyperparameters, and there is no need for retraining autoregressive
priors.

2Our tensor notation is consistent with that of Goodfellow, Bengio, and Courville [45].
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Dataset K Density (%)
MNIST 256 1.49× 100

CelebA 512 6.06× 100

CelebA-HQ 1024 3.80× 10−1

ImageNet 16384 3.90× 10−3

Slakh (Drum + Bass) 2048 7.60× 10−2

Table 3.4. Statistics on likelihood functions over different datasets. K is the number of
VQ-VAE (or VQ-GAN) latent codes. Density is the percentage of nonzero elements in
the likelihood function.

Algorithm 1 LASS inference
Input: y
Output: x1,x2

1: m← B(Eθ(y))
2: z1 ← []
3: z2 ← [] s = 1 to S
4: prior← log(pϕ1(· |z1)⊗ pϕ2(· |z2))
5: likelihood← log(P:,:,ms)
6: posterior← prior + λ likelihood
7: (z1

s, z
2
s)← Sampler(posterior)

8: z1 ← concat(z1, z1
s)

9: z2 ← concat(z2, z2
s)

10: x1 ← Dψ(z1)
11: x2 ← Dψ(z2)
12: x1, x2

Inference Technique

Consider a mixture y, the autoregressive models pϕ1 , pϕ2 , and the trained proba-
bility tensor P. This setup allows us to deduce and derive x1,x2 as elaborated in
Algorithm 1 and illustrated in Figure 3.5.

We begin by translating y into the latent space to get m = B(Eθ(y)). We then
set the initial estimates z1, z2 to empty sequences and proceed with the iterations
over s = 1, . . . , S.

During each iteration, the joint prior (a K ×K matrix) is determined (Line 5)
using the outer product of the two distributions, predicted from the autoregressive
models based on the previous context. For the sake of numerical consistency, we
employ logarithms of these distributions. Subsequently, the log-likelihood function
is determined (Line 6) by taking the logarithm of P:,:,ms . In our studies, varying
scaling factors λ can be utilized on the log-likelihood to equate it with the priors.
These two matrices are merged to establish the posterior in Line 7.

In the concluding steps (Lines 8-10), diverse strategies can be utilized to select
the optimal candidate tokens (z1

s, z
2
s) from the resulting posterior. For our studies,

we employed ancestral selection (with or without top-k filters) and beam search.
Once the deductive cycle concludes, the derived sequences are translated back into
the data domain using the VQ-VAE’s decoder (Lines 12-13), resulting in x1 and x2.

Refinement After Inference The resolution of the distinguished images is
determined by the clarity of images attained through the VQ-VAE decoding process.
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To augment these distinctions, an extra refinement process can be employed. This
involves the iterative enhancement of the VQ-VAE’s latent descriptions of the
samples:

e1
t+1 = e1

t + α∇e1
t
∥Dψ(e1

t) +Dψ(e2
t)− 2y∥2 (3.16)

e2
t+1 = e2

t + α∇e2
t
∥Dψ(e1

t) +Dψ(e2
t)− 2y∥2 (3.17)

for t = 1, . . . , T − 1 and with e1
1 = Eθ(x1), e2

1 = Eθ(x2). This step refines dense
latent vectors to ensure their decodings aptly sum up the mix, using the results from
Algorithm 1 as an initial point. This approach showed considerable improvements on
the MNIST dataset, where we gauge the distinction’s accuracy with a pixel-specific
metric (PSNR), especially as the VQ-VAE tends to generate more refined images.

3.2.4 Experiments
The effectiveness and scalability of LASS is demonstrated through qualitative

and quantitative examination across various datasets. Within the domain of imagery,
evaluations are performed on MNIST [87] and CelebA (32×32) [98], with qualitative
results shared for higher resolution databases like CelebA-HQ (256×256) [72] and
ImageNet (256×256) [24].

Slakh2100 [110], a vast music source separation dataset ideal for generative models,
serves as our testing ground for the auditory domain. All our tests were executed on
a single Nvidia RTX 3090 GPU boasting 24 GB of VRAM. Implementation details
are shown in Table 3.5 and 3.6

Image Source Separation

The Transformer framework [195] is selected as the autoregressive for all image
source separation experiments foundation. Employing MNIST and CelebA, we
initially train a VQ-VAE and subsequently train the autoregressive Transformer in
its latent realm. For MNIST, we apply K = 256 codes, and due to the increased
variability in CelebA, we utilize K = 512 codes. When it comes to CelebA-HQ
and ImageNet, pre-trained VQ-GANs [38] are combined with the already available
Transformers from the authors3 (celebahq_transformer checkpoint for CelebA-HQ
and cin_transformer for ImageNet). Given LASS ’s adaptability, it is incorporated
into the separation algorithm without alterations. For CelebA-HQ, the VQ-GAN is
designed with K = 1024 codes, while ImageNet uses K = 16384 codes. Regarding
the experiments about the images, we initially derive the P tensor based on the
methodology outlined in the "Method" section. Table 3.7 indicates that CelebA has
the least sparsity (maximum density) and ImageNet the most. In every scenario,
the density remains under 7%, ensuring the inference process remains unaffected by
memory constraints.

Quantitative Results In order to determine the quality of image separations
by LASS, we juxtapose our approach against various benchmarks on MNIST and
CelebA. For MNIST, we set LASS against results noted for generative separation
techniques like "BASIS NCSN" (score-based) and "BASIS Glow" (noise-annealed
flow-based) from [68], the GAN-oriented "S-D" strategy [80], the fully supervised
version of Neural Egg "NES", and the "Average" baseline where separations are

3github.com/CompVis/taming-transformers
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Hyperparameter MNIST SLAKH CelebA
Transformer Priors
Number of Layers 3 48 12
Hidden Size 128 1024 832
Embedding Size 128 1024 832
Vocabulary Dim (K) 256 2048 512
Attention Heads 2 1 8
Context Tokens (S) 49 8192 64
Learning Rate 2e-4 3e-4 3e-4
Adam ϵ 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999

VQ-VAE
Vocabulary Dim (K) 256 2048 512
Embedding size 128 64 64
Learning Rate 1e-4 1e-4 1e-4
Adam ϵ 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999

Table 3.5. Hyperparameters used to train transformer priors and the VQ-VAE encoder.
The architecture of the priors is based on the scalable transformer proposed by Dhariwal
et al. (2020). For the experiments on CelebA-HQ and ImageNet we used pretrained
priors from Esser, Rombach, and Ommer (2021) (celebahq_transformer checkpoint
for CelebA-HQ and cin_transformer for ImageNet). We refer the reader to their
implementations for additional details on the hyperparameters used.

Dataset Likelihood Steps λ

MNIST 30000K 1.0
SLAKH 2584K 1.0
CelebA 32554K 3.0
CelebA-HQ 32554K 2.0,3.0,4.0
ImageNet 10000K 2.0,3.0,4.0

Table 3.6. LASS Hyperparameters. The number of single entry update steps used to
construct the tensor P and the hyperparameter λ used at inference.

deduced from the compound x1 = x2 = y/2. PSNR (Peak Signal to Noise Ratio)
[58] is the chosen evaluation metric in all these instances. We emulate the testing
approach of [68] on MNIST, separating a collection of 6,000 compounds formed by
blending 12,000 test sources. To determine the optimal sampler for this dataset,
samplers from Table 3.9 are verified on 1,000 compounds formed from the test
segment. Stochastic samplers emerge as the most effective (PSNR > 20 dB), while
MAP strategies fall short. Due to MNIST’s sparse nature, we theorize that early
inference beam search can land on non-ideal solutions. Top-k sampling with k = 32
outperforms others, making it the chosen evaluation method (a visual comparison
is depicted in Figure 3.6). For each compound in the test database, we draft a
candidate batch of 512 separations, select the separation that most closely aligns
with the compound (based on the L2 distance), and conclude with the refinement
process using Eqs. (3.16), (3.17) with parameters T = 500 and α = 0.1. Results of
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Dataset K Density (%)
MNIST 256 1.49× 100

CelebA 512 6.06× 100

CelebA-HQ 1024 3.80× 10−1

ImageNet 16384 3.90× 10−3

Slakh (Drum + Bass) 2048 7.60× 10−2

Table 3.7. Statistics on likelihood functions over different datasets. K is the number of
VQ-VAE (or VQ-GAN) latent codes. Density is the percentage of nonzero elements in
the likelihood function.

Figure 3.6. Results on MNIST with top-k sampling (k = 32) over a random batch of
examples. Top-k sampling produces more defined digits, in agreement with the results
in Table 3.9.

this examination are shown in Table 3.8 and inference durations in Table 3.10. Our
technique surpasses "NMF", "S-D", and "BASIS Glow" in performance metrics and is
swifter than "BASIS NCSN" due to latent quantization. The superior PSNR by the
latter is likely because their generative models sample directly in the image domain;
in our scenario, the compression through VQ-VAE might impact metrics.

On CelebA, we contrast our approach with "BASIS NCSN", deploying the pre-
established NCSN model [168]. Here, we opt for the FID metric [54] over PSNR
since datasets with a broader range than MNIST can render source separation as an
ambiguous task [68]. The FID metric aptly determines if separations align with the
source’s distribution. We evaluate 10,000 compounds created from image pairs in the
validation section using a top-k sampler set at k = 32. The likelihood component is
amplified by a factor of λ = 3. While the literature has established that score-centric
models typically outdo autoregressive ones on FID metrics [28], our method, coupled
with an autoregressive model, exhibits promising outcomes against the score-based
"BASIS NCSN".

Qualitative Results To illustrate the adaptability of LASS in incorporating
pre-existing models without adjustments, we use pre-trained checkpoints from both
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Separation Method MNIST (PSNR) CelebA (FID)
Average 14.9 15.19
NMF 9.4 -
S-D 18.5 -
BASIS Glow 22.7 -
BASIS NCSN 29.3 7.55
LASS (Ours) 24.2 8.96

Table 3.8. Comparison with other methods on MNIST and CelebA test set. Results are
reported in PSNR (higher is better) and FID (lower is better).

Sampling Method MNIST (PSNR) Slakh (SDR)
Greedy 17.36 ± 5.90 1.23 ± 2.33
Beam Search 16.96 ± 5.78 5.01 ± 2.39
Ancestral Sampl. 24.03 ± 6.37 4.23 ± 2.29
Top-k (k = 16) 23.74 ± 6.55 3.13 ± 2.53
Top-k (k = 32) 24.23 ± 6.23 2.93 ± 2.20
Top-k (k = 64) 23.85 ± 6.13 3.24 ± 3.29

Table 3.9. Performance of LASS with different sampling methods. On MNIST, the
reported score is PSNR (dB) (higher is better), while on Slakh is SDR (dB) (higher is
better). When stochastic samplers are used (ancestral or top-k), the selected solution in
the batch is the one whose sum minimizes the L2 distance to the input mixture.

CelebA-HQ and ImageNet. Here, only the likelihood tensor P undergoes learning.
We present a selection of results in Figure 3.4, with an in-depth collection accessible
on our supplementary website. As per our research, this is the pioneering approach
to achieve resolutions of 256×256, and it allows integration with more robust latent
autoregressive models without the need for retraining (a process that’s challenging
for huge models). Consequently, users can execute generative separation without
the necessity for vast computational training resources.

Music Source Separation

Our experiments for separating music sources utilize the Slakh2100 dataset [110].
This dataset comprises 2100 songs, each with distinct sources spanning 34 instrument
classifications and 145 hours of mixed tracks. We emphasize the "Drums" and "Bass"
classifications, with tracks at a 22kHz sampling rate. The public checkpoint from [26]
for the VQ-VAE model is employed, capitalizing on its capacity to model audio over a
quantized domain. Since this model trains at 44kHz, we linearly upsample the input
and later reduce the output’s sample rate to 22kHz. We introduce two Transformer
models for autoregressive priors, one dedicated to "Drums" and the other to "Bass,"
and derive the likelihood function for the VQ-VAE (details found in Table 3.7).
We position LASS alongside unsupervised blind source separation techniques like
"rPCA" [59], "ICA" [64], "HPSS" [136], "FT2D" [156], and supervised benchmarks
Demucs [34] and Conv-Tasnet [104]. The SDR (dB) metric, calculated via the
museval tool [172], serves as our evaluation criterion. To assess the methodologies,
900 music fragments, each 3 seconds long, are chosen from the test portions of the
"Drums" and "Bass" categories and are merged to create 450 composite tracks. The
validation set follows a similar structure but uses distinct music segments. Our
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Method Time

MNIST LASS (Ours) 4.49 s ± 0.27 s
BASIS NCSN 53.34 s ± 0.51 s

Slakh LASS (Ours) 1.33 min ± 0.87 s
PnF 42.29 min ± 1.08 s

Table 3.10. Inference speed comparisons for computing one separation. To estimate
variance, we repeat inference 10 times on MINST and 3 times on Slakh. We consider
3-second-long mixtures on Slakh.

Separation Method Avg Drums Bass
rPCA 0.82 0.60 1.05
ICA -1.26 -0.99 -1.53
HPSS -0.45 -0.56 -0.33
REPET 1.04 0.53 1.54
FT2D 0.95 0.59 1.31
LASS (Ours) 4.86 4.73 4.98
Demucs 5.39 5.42 5.36
Conv-Tasnet 5.47 5.51 5.43

Table 3.11. Comparison with other source separation methods on Slakh (“Drums” and
“Bass” classes). Results are reported in SDR (dB) (higher is better). Lower part of the
table shows supervised methods. With “Avg" we refer to the mean between the results
over the two classes.

chosen sampling methodology is beam search, as it demonstrated superior outcomes
in a validation involving 50 mixtures (refer to Table 3.9), deploying B = 100 beams.
The evaluation outcomes are in Table 3.11, where LASS visibly outperforms all
unsupervised benchmarks and aligns closely with supervised methods. Moreover,
we juxtapose the time efficiency of LASS with the generative source separation
approach "PnF" [70] by gauging the duration needed to separate a 3-second, 22kHz
sample (piano vs. voice for "PnF"). The data in Table 3.10 reveals that LASS
operates notably swifter, making it apt for more practical inference environments.

Limitations

In this study, our focus centers on separating two distinct sources. This configu-
ration, prevalent mainly in the realm of image separation [70, 51], could be expanded
to accommodate more sources as a prospective avenue for research. Operationalizing
this within our proposed framework would necessitate the enlargement of the dimen-
sions related to the discrete distributions, encompassing both the prior knowledge
and the likelihood measure. To circumvent the challenges associated with this
enlargement, one might consider utilizing methods akin to recursive separation [182].
A further constraint of the method we have delineated is the localized assumption
manifested in Eq. (3.14). Alternative undertakings like enhancing resolution or color
enhancement demand an expansive conditioning environment. Moreover, introduc-
ing cutting-edge quantization strategies is imperative to consolidate latent code in
broader contexts, notably by leveraging self-attention mechanisms within both the
encoder and decoder phases of the VQ-VAE [210]. An ideal recourse might be the
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integration of a VQ-VAE, quantified relative to latent channels [206], amalgamated
with a parametric likelihood measure. This would address the abovementioned
constraint and simultaneously uphold the flexible separation between VQ-VAE,
established priors, and likelihoods, as elucidated in this study.

3.2.5 Conclusion
In this chapter, we introduced LASS as a technique for source separation in

latent autoregressive models without altering the underlying prior structures. Our
approach has been evaluated across various datasets, demonstrating performance
on par with contemporary leading techniques yet offering enhanced scalability
and swifter inference capabilities. Our methodology further distinguishes itself
by producing superior-resolution qualitative outcomes compared to rival methods.
The advancement in autoregressive models will further enhance the efficacy of our
approach, refining both the objective benchmarks and the perceptual outcomes.

3.3 Chapter Conclusions
The exploration in this chapter has elucidated the compelling potential and

adaptability of autoregressive models, particularly the Transformer architecture,
in handling complex sequential data. Through a meticulous journey from the
model’s theoretical underpinnings to its pragmatic applications, we have spotlighted
its prowess in sequence prediction and its cascading benefits to natural language
processing, time series forecasting, and audio processing. The innovative application
of the unsupervised separation algorithm outlined in the first section not only
showcases a promising avenue to alleviate the taxing demands of supervised data-
driven approaches but also underscores the potency of deep Bayesian priors in
harnessing the latent representations of time-domain signals. Through a novel loss
term, the proposed mechanism has exhibited a significant stride towards exact
Bayesian inference, which is instrumental in economizing computational resources
while ensuring a robust separation performance. The validation of the Slakh dataset
has further cemented the algorithm’s merit in juxtaposition with state-of-the-art
supervised methodologies, heralding a promising direction towards more resource-
efficient and practical unsupervised separation approaches. In the subsequent section,
the advent of LASS (Latent Autoregressive Source Separation) is a testament to the
transformative potential of autoregressive models in seamlessly adapting to novel
complex tasks without the necessity of exhaustive fine-tuning or model modifications.
Introducing vector-quantized latent spaces has unveiled a pathway towards reduced
dimensionality and expedited inference, essential in the real-time processing of
high-dimensional data such as images and audio. The performance of LASS in our
extensive evaluations, its superior inference speeds, and its adaptability echo the
substantial advancements that autoregressive models encapsulate. Furthermore, the
insights gleaned from the frequency evaluations of latent addend token aggregates
have enriched our understanding of the discrete likelihood function, paving the way
for more nuanced and effective separation methodologies in the future. Through
a prism of rigorous experiments and evaluations, this chapter has underscored the
transformative potential of autoregressive models and kindled a vista of exploration
that could further stretch the boundaries of what’s achievable in sequence modeling
and source separation domains. The symbiotic relationship between autoregressive
models and the burgeoning realm of deep learning is poised to continue blossoming,
fostering a fertile ground for novel research endeavors and real-world applications.
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Chapter 4

Diffusion Models for Music
Sources

The infusion of diffusion paradigm within deep learning augments the compre-
hension and application of both fields, creating a fertile ground for innovation. The
intersection of diffusion processes and deep learning techniques has engendered a
novel paradigm instrumental in solving myriad problems, particularly in data-driven
domains. This introduction elucidates the theoretical underpinnings, methodologies,
and applications of diffusion models in deep learning, drawing from a wealth of
scholarly contributions.

The conceptual scaffolding of diffusion models traces back to the early 20th
century, with the foundational work of Fick (1855) [40] on diffusion processes, which
was later enriched by the contributions of Einstein (1905) [35]. The mathematical
characterization of diffusion processes has evolved over the years, culminating in a
robust theoretical framework that underlies modern diffusion models. The synergy
between diffusion processes and deep learning is rooted in the stochastic nature of
diffusion, which integrates with the probabilistic frameworks often employed in deep
learning.

The confluence of diffusion models and deep learning has given rise to innovative
algorithms that excel in capturing complex data distributions and dependencies.
Diffusion models operate by deteriorating and restoring the input data. In [166], Sohl-
Dickstein et al. show how to revert a diffusion process creating new samples through
the mechanics of denoising, deriving this idea from the principles of non-equilibrium
thermodynamics.

These models are a subset of Markov random fields (MRFs). In this context, a
sequence of diffusion steps incrementally introduces noise to the original data. The
goal of the model then becomes to invert this diffusion, producing new and unique
data samples from the altered data. In [168], they explored score-based generative
modeling, which disrupts data using varying noise intensities, similar to diffusion
models. In [171], Song argued that score-based generative and diffusion probabilistic
models can be interpreted as "approximations to stochastic differential equations
steered by score functions." The applications of diffusion models in deep learning are
manifold, spanning across various disciplines, including but not limited to computer
vision, natural language processing, and bioinformatics. In computer vision, diffusion
models have been crucial in image generation, reconstruction, and denoising [205].
In natural language processing, diffusion models have shown promise in natural
language generation, sentiment analysis, topic modeling, and machine translation
[219]. Furthermore, bioinformatics has employed diffusion models for protein design
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and generation, drug and small molecule design, and protein-ligand interaction [48]
The deployment of diffusion models in deep learning has indubitably broadened the
horizons of what can be achieved in artificial intelligence. The cross-fertilization of
ideas between these fields continues to propel the frontiers of knowledge forward,
with the promise of addressing some of the most pressing challenges in data analytics
and artificial intelligence.

In the following section, we will delve into a novel application of diffusion models,
venturing into a domain that, while recently explored, remains burgeoning and rich
with potential: the realm of audio and music.

4.1 Multi-Source Diffusion Models for Simultaneous
Music Generation and Separation

In this chapter, we present a generative paradigm rooted in diffusion principles
tailored for both the synthesis of music and the disentanglement of its sources,
achieved by comprehending the shared contextual score of the probability density
of these sources. Beyond the conventional inference operations, such as producing
a combined output or isolating individual sources, we also explore the nuanced
task of source imputation. In this task, given a set of musical sources, we produce
complementary sources, for instance, synthesizing a piano sequence that harmoniously
accompanies a drum track. We further unveil an innovative inference strategy for
the source disentanglement problem, employing the Dirac likelihood functions.
Leveraging the widely acknowledged Slakh2100 dataset, geared towards musical
source disentanglement, we offer insights into the generative capabilities of our
model and present competitive metrics on the source isolation front. This approach
pioneers the unification of generative and separative capabilities within a singular
audio modeling framework, pushing the frontier of holistic audio models.

4.1.1 Introduction
Recent advancements in generative models have showcased their potential across

multiple domains, including NLP [121, 184], image creation [137, 143], and protein
engineering [162]. The arena of audio has not remained untouched by these develop-
ments [1, 95]. An intrinsic characteristic of the audio domain is the perception of an
audio instance y as an aggregate of several discrete sources x1, . . . ,xN , leading to
the resultant mixture:

y =
N∑
n=1

xn.

In contrast to some audio sub-domains, notably speech, musical elements (stems)
inherently possess a shared context due to their intertwined nature. Consider, for
instance, how a song’s bass sequence aligns with the drumbeat and resonates with
the guitar tune. From a mathematical perspective, this implies the joint distribution
of sources p(x1, . . . ,xN ) does not decompose into the multiplication of individual
source distributions {pn(xn)}n=1,...,N . Grasping the joint p(x1, . . . ,xN ) leads to an
understanding of the mixture’s distribution p(y), derived from their summation.
However, the reverse process poses intricate mathematical challenges, representing
an inverse problem.

Intriguingly, humans have honed the skill to concurrently handle multiple sound
channels in synthesis (e.g., musical composition) and analysis (e.g., segregating
sources). To elaborate, musicians can conjure multiple channels x1, . . . ,xN that
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Figure 4.1. Diagram illustrating our proposed method. We leverage a forward Gaussian
process (right-to-left) to learn the score over contextual sets (indicated by large rectangles)
of instrumental sources (represented by waveforms) across different time steps t. During
inference, the process is reversed (left-to-right), enabling us to perform tasks such as
total generation, partial generation, or source separation (detailed in Figure 4.2).

coalesce into a harmonized mixture y, and simultaneously discern particulars of
the individual sources x1, . . . ,xN within a given mixture y. This dual proficiency
in composing and deconstructing sounds is pivotal for generative music modeling.
A quintessential music composition assistant model should exhibit the finesse to
discern unique channels within a mix and facilitate standalone alterations on each.
Such adeptness offers composers unparalleled autonomy in sculpting their musical
pieces. Hence, we posit that generative music creation is intrinsically linked to music
source separation. To our discernment, existing deep learning models only partially
excel in both domains. Generative models focus on discerning the distribution
p(y) of mixtures, thereby overshadowing the nuances required for separation. Such
models might excel in capturing the essence of mixtures but overlook individual
channels’ specifics. Notably, methods that condition mixture distributions on textual
datasets [155, 1] encounter similar constraints. Conversely, models tailored for source
disentanglement [23] either prioritize p(x1, . . . ,xN | y), contingent on the mixture,
or design singular models pn(xn) for each channel, referring to the mix during
application [68, 129]. In both scenarios, the holistic creation of mixtures becomes
unfeasible.

Contribution. Our work stands on three pillars. (i) We pioneer the fusion of
source separation and music synthesis by comprehending p(x1, . . . ,xN ), representing
the unified distribution of contextual channels (those from identical songs). We
employ the denoising score-matching paradigm for this objective to train a Multi-
Source Diffusion Model (MSDM). This singular model adepts source separation
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and musical creation at inference time. Explicitly, while synthesis is realized by
sampling the prior, separation is accomplished by making the prior conditioned
on the mixture, followed by sampling from the ensuing posterior distribution. (ii)
This avant-garde approach unlocks unprecedented ventures in the generative realm,
like source imputation, where complementary channels are envisioned by generating
certain sources in alignment with others (e.g., formulating a piano segment congruent
with drum beats). (iii) In our pursuit of rivaling the prowess of contemporary
discriminative models [109] on the Slakh2100 dataset [111], we introduce a refined
technique to calculate the posterior score, leveraging Dirac delta functions, to
capitalize on the intrinsic relationship between channels and their mix.

4.1.2 Related Works

Audio Generative Models

Generative models tailored for audio leverage deep learning techniques to either
directly or indirectly capture the distribution of mixtures denoted as p(y), which
might also be influenced by auxiliary information such as text. Several widely used
generative architectures like autoregressive models, GANs [30], and diffusion models
have been repurposed for applications in audio.

Autoregressive models boast a robust legacy in audio modeling [193]. The
Jukebox proposal [25] aims to represent musical compositions employing Scalable
Transformers [195] on hierarchical discrete approximations obtained via VQ-VAEs
[191]. Further enhancing its capabilities, it has a lyric-conditioning feature that
generates vocal tracks in alignment with textual input. A notable challenge faced by
Jukebox, though, was the emergence of quantization artifacts in audio outputs. By
introducing residual quantization [212], more recent latent autoregressive models
[8, 84] have managed to encompass broader contexts, leading to more refined and
authentic audio outputs. Top-tier latent autoregressive models tailored for music,
for instance, MusicLM [1], can modulate generation using textual embeddings gar-
nered from expansive contrastive pre-training [108, 61]. MusicLM also possesses
the capability to take a melody as input and adjust its style based on textual
cues. Alternatively, SingSong [29] has generated accompaniment from vocals. The
distinctiveness of our method lies in our generation mechanism at the stem level,
which is modular, unlike SingSong, which produces a singular accompaniment mix.

Initiating the foray into diffusion (score) based audio generative models with a
focus on speech synthesis were DiffWave [82] and WaveGrad [11]. This pioneering
effort paved the way for numerous models, each catering to specialized objectives, be
it speech enhancement [102, 157, 152, 149], audio upsampling [88, 209], conversion
from MIDI-to-waveform [116, 52], or the transformation from spectrogram to MIDI
[12]. The trailblazing effort in domain-specific generative outputs using diffusion
models is attributed to CRASH [145]. Proposals from [207, 126, 95] have emphasized
text-conditioned diffusion models aimed at creating diverse sounds, stepping beyond
bounded categories such as speech or melodies. Parallel to our research, Riffusion
[42] and Moûsai [155] focus on diffusion models for musical contexts. While Riffusion
refines Stable Diffusion [143], a comprehensive pre-trained text-conditioned vision
diffusion model, over STFT magnitude spectrograms, Moûsai’s generation is set in a
latent space, spanning contexts that can exceed a minute in duration. In our work,
we have borrowed inspiration from Moûsai’s U-Net design but with a twist, as we
employ the waveform data format.
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Audio Source Separation

Models specializing in audio source separation can be predominantly categorized
into two primary classes: discriminative and generative. Models of a discriminative
nature operate deterministically with parametric designs. They aim to receive audio
mixtures and consistently extract individual or collective sources, emphasizing the
likelihood of the inherent conditional distribution p(x1, . . . ,xN | y). Commonly,
these models undergo training using a regression loss function [49]. The output
signal is generally represented as a waveform [100, 104, 23], STFT [179, 16], or
occasionally both [22].

Conversely, generative source separation models primarily aim to understand a
prior model pertinent to each source, focusing on the distributions {pn(xn)}n=1,...,N .
It is noteworthy that mixtures are predominantly observable during the inference
phase. A likelihood function aligns the mix with its foundational sources during this
phase. The academic discourse has delved into various priors, including GAN-based
techniques [175, 81, 118], methodologies reliant on normalizing flows [68, 218], and
those leveraging autoregressive models [70, 129]. The NCSN-BASIS method [68],
an approach focusing on source separation in image contexts, aligns closely with
our methodological approach. This method employs Langevin Dynamics, using the
NCSN score-oriented model to disentangle mixtures. An intriguing aspect of this
method is its application of a Gaussian likelihood function during the inference phase.
Our experimental results, however, indicate that our newly introduced Dirac-based
likelihood function exhibits superior performance. Compared to other generative
source separation techniques (NCSN-BASIS included), a distinctive feature of our
approach is its ability to model the comprehensive joint distribution. Consequently,
using a singular model, our approach is equipped to separate sources and craft
mixtures or partial stems.

A deliberate effort is to model the interrelation between sources in specific studies
such as [109] and [132]. Given the foundational mixture and residual sources, the
former approach utilizes an orderless NADE estimator to predict a subset of the
sources, considering the input mixture and other remaining sources. The latter
pushes the envelope with universal source separation [74, 203], leveraging adversarial
training and a context-based discriminator to discern the interplay between sources.
These techniques are intrinsically discriminative due to their mixture-dependent
architectural design. A similar constraint is observable in discriminative strategies
for source separation that adopt diffusion-centric [153, 105] or diffusion-motivated
[128] methodologies. A distinctive trait of our approach is the architectural freedom
from a mixture conditioner, allowing us to carry out unconditional generation.

4.1.3 Method

Our model’s core principle is anchored in gauging the joint distribution of the
sources, represented by p(x1, . . . ,xN ). This model is generative, as we construct an
unconditional distribution, which we refer to as the prior. Subsequent tasks leverage
this prior during the inference phase. We adopt a diffusion-based generative paradigm
as cited in [167, 55] and train it using denoising score-matching techniques [169].
The framework and conventions we use draw from the foundational work described
in [73]. A pivotal concept behind score-matching, as referenced in [62, 78, 198],
centers on approximating the "score" function of the sought-after distribution p(x),
specifically ∇x log p(x), instead of the distribution per se. To efficaciously hone the
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Total generation

Partial generation

Source separation

Figure 4.2. Inference tasks with MSDM. Oblique lines represent the presence of noise in
the signal, decreasing from left to right, with the highest noise level at time T when we
start the sampling procedure. Top-left: We generate all stems in a mixture, obtaining a
total generation. Bottom-left: We perform partial generation (source imputation) by
fixing the sources x1 (Bass) and x3 (Piano) and generating the other two sources x̂2(0)
(Drums) and x̂4(0) (Guitar). We denote with x1(t) and x3(t), the noisy stems obtained
from x1 and x3 via the perturbation kernel in Eq. (4.1). Right: We perform source
separation by conditioning the prior with a mixture y, following Algorithm 2.

score in regions with sparse data, denoising diffusion techniques infuse the data with
controlled noise and subsequently learn its removal. Formally, the data’s distribution
undergoes a perturbation via a Gaussian kernel as expressed:

p(x(t) | x(0)) = N (x(t); x(0), σ2(t)I), , (4.1)

The variable σ(t) dictates the noise intensity infused into the data. In alignment with
[73], our choice for σ(t) is a progressive schedule, defined by σ(t) = t. Consequently,
the data point’s progressive trajectory, denoted as x(t), over time can be depicted
by a probabilistic flow as defined by the ODE in [170]:

dx(t) = −σ(t)∇x(t) log p(x(t)), dt, . (4.2)

Given a sufficiently large t = T , the data point x(T ) approximates the Gaussian
distribution N (x(t); 0, σ2(T )I), facilitating simplified sampling. The equation (4.2)
can undergo a time inversion, yielding the subsequent backward ODE that elucidates
the denoising mechanism:

dx(t) = σ(t)∇x(t) log p(x(t)),dt, . (4.3)

Sampling from the data distribution can be realized by integrating Eq. (4.3)
using a conventional ODE solver, initiating from a noisy sample sourced from
N (x(t); 0, σ2(T )I). The score function, epitomized by a neural network Sθ(x(t), σ(t)),
is honed by minimizing the ensuing score-matching loss:

Et ∼ U([0, T ])Ex(0) ∼ p(x(0))Ex(t) ∼ p(x(t) | x(0))
∥∥∥Sθ(x(t), σ(t))−∇x(t) log p (x(t) | x(0))

∥∥∥2

2
.

By extrapolating p(x(t) | x(0)) using Eq. (4.1), the score-matching loss can be
streamlined to:

Et ∼ U([0, T ])Ex(0) ∼ p(x(0))Eϵ∼N (0,σ2(t)I)

∥∥∥Dθ(x(0) + ϵ, σ(t))− x(0)
∥∥∥2

2
,

With this framework, we articulate Sθ(x(t), σ(t)) as (Dθ(x(t), σ(t))− x(t))/σ2(t).
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Multi-Source Audio Diffusion Models

In our configuration, we consider N unique source waveforms represented as
x1, . . . ,xN , with every xn belonging to RD. These sources are coherently combined
to produce the mixed waveform y =

∑N
n=1 xn. Occasionally, we represent this

collection in the concatenated form: x = (x1, . . . ,xN ) ⊂ RN×D. Several operations
can be carried out within this framework: it is possible to construct a cohesive
mixture, y, or separate the individual components, x, from a provided mixture.
Creating the mixture is termed as generation while extracting the components is
termed source separation. In generation, a specific subset of sources can be held
constant, and the remaining sources generated in a compatible manner. This is
termed as partial generation or source imputation. A salient feature of our approach
is the capability to execute all these operations concurrently by employing a singular
multi-source diffusion model (MSDM) that encapsulates the prior p(x1, . . . ,xN ).
The design of this model is depicted in Figure 4.1 and is engineered to approximate
the noisy score function:

∇x(t) log p(x(t)) = ∇(x1(t),...,xN (t)) log p(x1(t), . . . ,xN (t)) ,

leveraging a neural network framework:

Sθ(x(t), σ(t)) : RN×D × R→ RN×D, (4.4)

where x(t) = (x1(t), . . . ,xN (t)) represents the sources after being influenced by the
Gaussian kernel in Eq. (4.1). The operations, as mentioned earlier, are elucidated
(and visualized in Figure 4.2) through the prior distribution:

• Total Generation. In this operation, the aim is to generate a coherent mix-
ture, y. This is realized by drawing the sources {x1, ...,xN} from the prior
distribution and subsequently integrating them to form the mixture y.

• Partial Generation. In scenarios where only a subset of sources is available,
this operation generates a harmonious accompaniment. The given sources are
represented as xI , and the absent sources, xI , are generated by drawing from
the conditional probability distribution p(xI | xI).

• Source Separation. Upon being provided with a mixture y, this operation aims
to extract the individual contributing sources. This is realized by drawing
from the posterior distribution p(x|y).

Inference Our methodology addresses its three core tasks at inference time by
discretizing the backward Eq. (4.3). Even though every task necessitates a unique
score function, they are fundamentally derived from the initial score function provided
in Eq. (4.4). We delve deeper into the nuances of each of these score functions.

Total Generation The complete synthesis task is accomplished by drawing sam-
ples from Eq. (4.3) exploiting the score function detailed in Eq. (4.4). Subsequently,
the mixture is achieved by aggregating all the individual sources.

Partial Generation For the partial generation task, a particular subset of source
indices, denoted by I which is a subset of {1, . . . , N}, is set alongside the associated
sources represented as xI := {xn}n∈I . The objective here is to synthesize the
residual sources, represented as xI := {xn}n∈I in a harmonized manner, where
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Algorithm 2 ‘MSDM Dirac’ sampler for source separation.
Require: I number of discretization steps for the ODE, R number of corrector steps,
{σi}i∈{0,...,I} noise schedule, Schurn

1: Initialize x̂ ∼ N (0, σ2
I I)

2: α← min(Schurn/I,
√

2− 1)
3: for i← I to 1 do
4: for r ← R to 0 do
5: σ̂ ← σi · (α+ 1)
6: ϵ ∼ N (0, I)
7: x̂← x̂ +

√
σ̂2 − σ2

i ϵ

8: z← [x̂1:N−1,y−
∑N−1

n=1 x̂n]
9: for n← 1 to N − 1 do

10: gn ← Sθ
n(z, σ̂)− Sθ

N (z, σ̂)
11: end for
12: g← [g1, . . . ,gN−1]
13: x̂1:N−1 ← x̂1:N−1 + (σi−1 − σ̂)g
14: x̂← [x̂1:N−1,y−

∑N−1
n=1 x̂n]

15: if r > 0 then
16: ϵ ∼ N (0, I)
17: x̂← x̂ +

√
σ2

i − σ2
i−1ϵ

18: end if
19: end for
20: end for
21: return x̂

I = {1, . . . , N} − I. This leads us to compute the gradient of the conditional
distribution as:

∇xI(t) log p(xI(t) | xI(t)). (4.5)

This task is analogous to the process of data imputation, or, as it is prevalently
termed in the realm of image processing, inpainting. We adopt a strategy for
imputation based on the study by [170]. The gradient described in Eq. (4.5) can be
deduced as:

∇xI(t) log p([xI(t), x̂I(t)]) ,

with x̂I being a sample derived from the forward process: x̂I(t) ∼ N (xI(t); xI(0), σ(t)2I).
While estimating the score function, we elucidate:

∇xI(t) log p(xI(t) | xI(t)) ≈ SθI([xI(t), x̂I(t)], σ(t)) ,

in which SθI signifies the segments of the score network that pertain to the sources
indexed by I.

Source Separation We interpret source separation within the context of condi-
tional generation, conditioning our generation on a given mixture represented as
y = y(0). The crucial component is determining the gradient of the log posterior
distribution:

∇x(t) log p(x(t) | y(0)) . (4.6)
Conditional generation in diffusion models often incorporates either a direct compu-
tation of the posterior gradient during training, as seen in Eq. (4.6) and articulated
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by [56], or an estimation of the likelihood function p(y(0) | x(t)), subsequently using
Bayes’ theorem to obtain the posterior. Notably, the latter approach frequently
necessitates an independent model, typically a classifier, to ascertain the likelihood
function’s gradient, as depicted in Classifier Guided conditioning documented by
[27]. In diffusion-based separation, learning a likelihood model becomes redundant.
This is primarily because the connection between x(t) and y(t) is encapsulated
through a straightforward function, the summation in this case. Therefore, basing
the likelihood function on this functional relationship emerges as a logical strategy.
This methodology is embraced by [68], who employ a Gaussian likelihood function:

p(y(t) | x(t)) = N (y(t) |
N∑
n=1

xn(t), γ2(t)I), (4.7)

with γ(t) being a hyperparameter dictating the standard deviation. They emphasize
that calibrating the value of γ(t) in line with σ(t) enhances the efficacy of the
NCSN-BASIS separator. We introduce an innovative estimation for the gradient
of the posterior in Eq. (4.6), representing p(y(t) | x(t)) via a Dirac delta function
centered around

∑N
n=1 xn(t):

p(y(t) | x(t)) = 1y(t)=
∑N

n=1 xn(t) . (4.8)

The intricate derivation of this function is elaborated later, but we primarily focus
on the final construct, termed as ’MSDM Dirac.’ In this method, a particular source,
represented as xN , is restricted by the equation xN (t) = y(0)−

∑N−1
n=1 xn(t), which

then estimates:

∇xm(t) log p(x(t) | y(0)) ≈ Sθm((x1(t), . . . ,xN−1(t),y(0)−
N−1∑
n=1

xn(t)), σ(t))

− SθN ((x1(t), . . . ,xN−1(t),y(0)−
N−1∑
n=1

xn(t)), σ(t)) ,

Here, 1 ≤ m ≤ N − 1, with Sθm and SθN signifying score network entries pertaining
to the m-th and N -th sources respectively. This method captures the extreme
scenario where γ(t)→ 0 within the Gaussian likelihood function. It characterizes a
situation where the interaction between x(t) and y(t) is tightly bound, hence refining
the generation’s conditional aspect based on the provided mixture. The ’MSDM
Dirac’ source separation sampler’s pseudo-code, leveraging the Euler ODE integrator
documented by [73], is detailed in Algorithm 2. The Euler ODE discretization
methodology capitalizes on the Schurn technique by [73], complemented by optional
correction steps as mentioned by [170]. Lastly, this separation protocol can be further
applied in weakly supervised source separation scenarios, a common challenge in
generative source separation as reported by [68, 218, 129]. In these situations, while
there is knowledge about specific audio data’s affiliation to a musical instrument
category, contextual source sets are absent. To navigate this, we hypothesize a
source independence denoted as p(x1, . . . ,xN ) =

∏N
n=1 pn(xn) and train an individual

model for every source category. This different model is labeled ’Independent Source
Diffusion Model with Dirac Likelihood’ or ’ISDM Dirac.’

4.1.4 Experiments
Experiments are executed on Slakh2100 [111], which stands out as a prime

dataset for music source separation. The decision to use Slakh2100 is influenced by
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Table 4.1. Comparison between total generation capabilities of MSDM
(Slakh2100) and an equivalent architecture trained on Slakh2100 mixtures.
Both subjective (quality and coherence) and objective (FAD) evaluation is shown. Sub-
jective evaluation is performed through listening tests, where subjects are asked to
evaluate songs from 1 to 10 with respect to overall quality of the chunk and to coherence
(i.e. how the instruments sound plausible together). Results show a very small difference
between the model trained on mixtures and MSDM. This suggests that, given the same
dataset and architecture, the generative power of MSDM is the same as the model trained
on mixtures, while being able to perform separation and partial generation.

Model FAD ↑ Quality ↑ Coherence ↑
MSDM 6.55 6.44± 2.12 6.34± 2.37
Mixture Model 6.67 6.04± 2.48 5.63± 2.65

its extensive data volume (145h), surpassing other multi-source waveform datasets
like MusDB [135] that offer only 10h. The volume of data significantly impacts the
quality of a generative model, positioning Slakh2100 as an optimal selection.

Dataset

Our experimental analysis utilizes the Slakh2100 dataset [111], a benchmark
dataset for music source separation. Originating from MIDI files, the Slakh2100
encompasses synthesized multi-track waveform music data created using top-tier
virtual instruments. The dataset offers 2100 tracks, broken down into 1500 training
tracks, 375 for validation, and 225 designated for testing. Each track in the dataset
has associated stems spanning 31 different instrument categories. In line with [109]
and to maintain consistency in comparison, we restricted our analysis to the four
predominant classes: Bass, Drums, Guitar, and Piano. These instruments are evident
in a vast majority of the tracks: 94.7% (Bass), 99.3% (Drums), 100.0% (Guitar),
and 99.3% (Piano).

Architecture and Training

The design foundation of our score network is rooted in the non-latent, time-
domain variant of Moûsai [155]. For the implementation, we turned to the open-
source codebase audio-diffusion-pytorch/v0.0.4321. Central to our model is
the U-Net structure [144], which encompasses an encoder, a central bottleneck, and
a decoder, with the inclusion of skip connections bridging the encoder and decoder.
The encoder boasts six layers, with the first half housing two convolutional ResNet
segments, while multi-head attention is present only in the latter half. Sequentially,
the signal undergoes a 4-fold downsampling in each layer. The channel configuration
across encoder layers is [256, 512, 1024, 1024, 1024, 1024]. The intermediary
bottleneck holds a ResNet block and self-attention sequence, followed by another
ResNet block (each bearing 1024 channels). The decoder, in essence, mirrors the
encoder in its architecture. We employed the audio-diffusion-pytorch-trainer2

during our training phase. We adjusted the data to 22kHz and trained the score-
network with four unified mono channels for MSDM (a single channel per stem)
and one dedicated mono channel for every model in ISDM. The context length was
maintained at roughly 12 seconds. The training was executed on an NVIDIA RTX

1https://github.com/archinetai/audio-diffusion-pytorch/tree/v0.0.43
2https://github.com/archinetai/audio-diffusion-pytorch-trainer/tree/79229912

https://github.com/archinetai/audio-diffusion-pytorch/tree/v0.0.43
https://github.com/archinetai/audio-diffusion-pytorch-trainer/tree/79229912
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Table 4.2. Hyperparameter search for source separation using ‘MSDM Dirac’ (top-left),
‘ISDM Dirac’ (bottom-left), ’MSDM Gaussian’ (top-right) and ’ISDM Gaussian’ (bottom-
right) posteriors. We report the SI-SDRi values in dB (higher is better) averaged over
all instruments (Bass, Drums, Piano, Guitar).

Dirac Likelihood Gaussian Likelihood

Schurn
Constrained Source γ(t)

Bass Drums Guitar Piano 0.25σ(t) 0.5σ(t) 0.75σ(t) 1σ(t) 1.25σ(t) 1.5σ(t) 2σ(t)

M
SD

M

0 4.41 5.05 3.28 2.87 -41.54 6.37 6.05 5.67 5.729 5.13 4.33
1 7.90 8.18 7.03 7.05 -47.24 6.79 6.51 6.15 6.19 5.66 4.45
20 14.29 12.99 12.19 11.69 -47.17 11.07 10.51 9.43 10.19 9.18 7.58
40 14.28 13.02 5.51 4.78 -47.17 -36.92 12.48 11.25 11.87 10.80 9.03

IS
D

M

0 5.05 3.69 -2.50 6.93 -45.46 7.12 6.50 5.78 5.02 4.49 3.69
1 9.23 8.57 7.28 9.20 -47.54 7.57 7.20 6.32 5.35 4.82 3.83
20 15.35 15.08 13.20 15.36 -46.86 12.89 12.21 10.87 9.32 8.32 6.47
40 17.26 15.77 15.30 14.98 -46.86 -35.97 14.09 12.82 10.85 10.02 8.26
60 16.21 15.57 15.51 14.20 -46.80 -46.85 14.06 12.57 11.83 10.81 9.24

A6000 GPU with 24 GB of VRAM. The Adam optimizer [76] was adopted with a
learning rate set to 10−4, β1 = 0.9, β2 = 0.99, and a batch size of 16.

Sampling Methodology

Our sampling methodology incorporates a first-order ODE integrator that relies
on the Euler method, and we infuse stochasticity as delineated by [73]. The degree
of stochasticity is governed by the variable Schurn. As corroborated in the next
section and elaborated in [73], introducing stochastic elements substantially elevates
sample fidelity. We introduced a correction approach [170, 68] that undergoes R
iterative steps post each prediction step i, infusing more noise and re-tuning with
the score network anchored at σi. In accord with [73], our time discretization adopts
a non-linear trajectory, accentuating lower noise levels. This can be defined as:

ti = σi = σ
1
ρ
max + i

I − 1(σ
1
ρ

min − σ
1
ρ
max)ρ ,

where the range of i is 0 ≤ i < I, and I signifies the count of discretization iterations.
We designated values as σmin = 10−4, σmax = 1, andρ = 7.

Tuning Hyperparameters for Music Source Separation

To discern the impact of stochasticity on music source separation, we undertook a
hyperparameter sweep over Schurn. This assessment was conducted over a selectively
chosen subset of the Slakh2100 test set, encompassing 100 segments, each lasting 12
seconds. Ensuring a balanced comparison between Dirac (’MSDM Dirac’, ’ISDM
Dirac’) and Gaussian (’MSDM Gaussian’, ’ISDM Gaussian’) posterior metrics, we
carried out a granular search over their intrinsic hyperparameters, namely the re-
stricted source for Dirac separators and the coefficient γ(t) for the Gaussian variants.
The outcomes are encapsulated in Table 4.2. Our observations highlight that: (i)
all separators benefit from stochasticity, as highest SI-SDRi values are noted at
Schurn = 20 and Schurn = 40, (ii) Dirac likelihoods tend to offer superior SI-SDRi
values compared to Gaussian counterparts for both the MSDM and ISDM separators,
and (iii) ISDM separators outperform the context-driven MSDM separators, albeit
at the trade-off of not enabling complete and partial generation.
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Table 4.3. Quantitative results for source separation on the Slakh2100 test
set. We use the SI-SDRi as our evaluation metric (dB – higher is better). We present
both the supervised (‘MSDM Dirac’, ‘MSDM Gaussian’) and weakly-supervised (‘ISDM
Dirac’, ‘ISDM Gaussian’) separators and specify if a correction step is used. ‘All’ reports
the average over the four stems. The results show that: (i) Dirac likelihood improves
overall results, even outperforming the state of the art when applied to ISDM (ii) adding
a correction step is beneficial (iii) MSDM with Dirac likelihood and one step of correction
gives results comparable with the state of the art and superior to standard Demucs overall.
We stress again that, while the baselines are trained on the separation task alone, MSDM
is able to perform also generative tasks.

Model Bass Drums Guitar Piano All
Demucs [23, 109] 15.77 19.44 15.30 13.92 16.11
Demucs + Gibbs (512 steps) [109] 17.16 19.61 17.82 16.32 17.73
Dirac Likelihood
ISDM 18.44 20.19 13.34 13.25 16.30
ISDM (correction) 19.36 20.90 14.70 14.13 17.27
MSDM 16.21 17.47 12.71 13.29 14.92
MSDM (correction) 17.12 18.68 15.38 14.73 16.48
Gaussian Likelihood [68]
ISDM 13.48 18.09 11.93 11.17 13.67
ISDM (correction) 14.27 19.10 12.74 12.20 14.58
MSDM 12.53 16.82 12.98 9.29 12.90
MSDM (correction) 13.93 17.92 14.19 12.11 14.54

The subsequent sections present findings on Music Generation and then delve
into Source Separation outcomes.

Music Generation

MSDM’s efficacy in generative assignments is gauged by subjective and objective
metrics. The subjective assessment involves auditory tests. Two distinct forms were
developed; the former, showcased in Table 4.1, prompts participants to evaluate the
quality and instrument consistency of 30 generated segments, with half stemming
from the mixture model and the other half from MSDM. The latter form necessitates
participants to evaluate, keeping the instrument set constant, the quality, and the
richness (density) of the generated accompaniment. From an objective standpoint
for generative evaluations, we adapt the FAD protocol as described in [29] to our
total generation assignment and partial generation with multiple sources. Consider
Dreal as a dataset encompassing authentic mixture samples and I as a set denoting
conditioning sources (with ∅ signifying total generation). We then create a dataset
Dgen wherein components constitute the summation of conditioning sources (indexed
via I) and their corresponding generated sources. The sub-FAD is defined as
FAD(Dreal, Dgen). Innovatively, our technique pioneers the generation of diverse
partial source combinations, and in its absence of a direct comparative benchmark,
we introduce the sub-FAD outcomes of our approach as foundational metrics for
ensuing studies combined with auditory test outcomes. The results for total and
partial generations are summarized in Tables 4.1 and 4.4. Table 4.1 indicates that
MSDM’s generative prowess mirrors a model with analogous architecture trained
on similar dataset mixtures. Conversely, Table 4.1 underscores that the partial
generation challenge is accomplished with discernible finesse, establishing a precedent
for subsequent endeavors in universal accompaniment generation.
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Table 4.4. Quantitative and qualitative results for the partial generation task
on Slakh2100. We use the FAD as our objective evaluation metric (lower is better).
In bold (B: Bass, D: Drums, G: Guitar, P: Piano) the combinations of generated
sources. The ‘quality’ and ‘density’ columns refer to the average scores of the listening
tests, with respective variances. Namely, ‘quality’ tests how the full chunk sounds
plausible, with respect to the dataset, and ‘density’ tests how present in the chunk
are the instruments that the model has to generate. They both are given on a scale
from 1 to 10. No baseline is reported since our work is the first able to generate any
combination of accompaniments; the results thus pose a baseline for future works on
general accompaniment generation.

Slakh2100 B D G P BD BG BP DG DP GP BDG BDP BGP DGP Quality Density
MSDM 0.45 1.09 0.11 0.76 2.09 1.00 2.32 1.45 1.82 1.65 2.93 3.30 4.90 3.10 6.2± 2.6 6.1± 2.6

Source Separation

For the assessment of source separation, we employ the scale-invariant SDR
improvement metric, denoted as SI-SDRi [146]. The computation of SI-SDR for a
source xn in juxtaposition with its estimate x̂n is calculated as:

SI-SDR(xn, x̂n) = 10 log10
∥αxn∥2 + ϵ

∥αxn − x̂n∥2 + ϵ
,

with α = x⊤
n x̂n+ϵ

∥xn∥2+ϵ and ϵ = 10−8. The enhancement over the mixture baseline is
represented as SI-SDRi = SI-SDR(xn, x̂n)− SI-SDR(xn,y).

In the Slakh context, our supervised MSDM and its weakly-supervised variant
are juxtaposed against the ’Demucs’ [23] as well as the ’Demucs + Gibbs (512 steps)’
baselines from [109]. These benchmarks in supervised music source separation for
Slakh2100, are consistent with the evaluation procedure of [109]. Our evaluation
is carried out on the Slakh2100 test set, extracting 4-second segments (overlapped
by two seconds) and excluding segments that are either silent or possess only a
singular source, given the sub-optimal SI-SDRi performance for such intervals. We
then compare our Dirac score posterior against the Gaussian score posterior by [68]
involving 150 inference iterations.

The outcomes are delineated in Table 4.3. Succinctly, MSDM demonstrates a
performance that nearly aligns with the SOTA. Furthermore, in its weakly supervised
version, the introduced sampling approach occasionally surpasses the prevailing
benchmarks for certain stems.

4.1.5 Conclusion
This chapter introduced a versatile technique anchored in denoising score-

matching for source separation, total generation, and music accompaniment produc-
tion. The novelty lies in deploying a singular neural network, which undergoes a
single training phase, distinguishing tasks during the inference process. Furthermore,
we proposed an innovative sample technique specifically for source separation. Our
evaluations on source separation proved the model’s ability, showcasing performance
metrics similar to the leading regressor models. We subjected the model to quali-
tative and quantitative assessments for total and partial generation tasks. In the
holistic evaluation, the model mirrored the generative capabilities of its counterpart
trained on blends. The results confirmed the generation of credible and sophisticated
accompaniments in the segmental context. Our model stands out due to its adept
handling of holistic, segmental generation, and source separation, making it a pivotal
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advancement for holistic audio models. Such adaptability heralds the emergence
of sophisticated musical composition utilities, allowing users to interact with and
adjust individual elements in a blend seamlessly. Our model’s efficacy is tied to the
volume of contextual data it can access. A potential enhancement could involve
pre-differentiating blends and orienting the training using these differentiations, as
evidenced in [29]. It is also worth probing into adapting our technique for scenarios
where the sub-signals do not interact additively but possibly through another distinct
function. An avenue for further exploration is the model’s transition to the discrete
MIDI realm, aiming for more nuanced source imputation, especially given the rich
data environment of this domain.

4.2 Chapter Conclusions
The dawn of deep learning has indubitably been conducted in an era of monu-

mental advances in artificial intelligence as these evolutions continue to shape various
facets of computational sciences, the fusion of diffusion setting with deep learning
witnesses the innovative spirit that thrives at the intersection of apparently disparate
concepts.
This chapter delved deep into the intersection of the diffusion paradigm and deep
learning in audio, specifically music. By building upon the foundational ideas of
diffusion, a process that has been with us since the early works of Fick and later
enriched by the likes of Einstein, we introduced an innovative paradigm that tailors
these principles for music synthesis and source separation.
Our work is innovative because it shows how a single model can tackle two seemingly
unrelated tasks. Usually, models designed for source separation are not trained even
for music generation. Our proposed Multi-Source Diffusion Model (MSDM) solution
addresses this lacuna.
Our work also highlighted our model’s capability for source imputation, for instance,
presents a promising direction where models can generate complementary channels
in alignment with existing ones. Our innovative technique of leveraging the Dirac
delta functions further aids in capturing the intrinsic relationships between channels
and their mixtures.
Source imputation is the ability to conceive complementary sources based on existing
ones that mirror the very essence of artistic creation. Imagine a maestro, with
a symphony in mind, composing pieces for individual instruments, ensuring each
stands out in its melody and aligns with the collective harmony. Our model aims
to echo this idea. The theoretical strength of our approach found its practical
manifestation as we pitted MSDM against contemporary models. Employing the
Slakh2100 dataset for musical source separation and generation, our pursuit was
not merely to compete but to accentuate the latent potentials of our model. The
novel technique, harnessing Dirac delta functions, accentuated our model’s prowess,
reinforcing our conviction in its capabilities.
In retrospect, this chapter is not just a culmination of rigorous research, innovative
techniques, and empirical evaluations. It is a narrative that reinforces the belief
that when foundational principles, such as those of the diffusion framework, are
married with cutting-edge methodologies of deep learning, the results can transcend
traditional boundaries. As deep learning and audio processing evolve, we hope our
contributions serve as a cornerstone, inspiring further innovations and fostering a
deeper understanding of the intricate dance between sound sources. It is our ardent
wish that this work, while a significant stride, is but the first step in a journey where
the horizons of audio modeling are continually expanded and redefined.
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Chapter 5

Conclusions

The journey of this thesis, which began at the intersection of deep learning
and audio processing, has traversed a broad spectrum of research, innovation, and
application. This expedition into deep learning, with a keen focus on audio, has
revealed the transformative potential of these techniques, their adaptability, and
their capacity for innovation. This trip has been enriching and enlightening, showing
how deep learning can enhance our understanding and manipulation of audio signals.
The sound and music, particularly in human civilization, have been of primordial
importance. The ability to perceive, interpret, and manipulate sounds has been a
cornerstone of human evolution, playing a crucial role in communication, expression,
and social cohesion. With the advent of digital technology, sound manipulation
has evolved from a purely physical process to a complex interplay of mathematical
and computational techniques. The introduction of deep learning into this domain
has further revolutionized our ability to analyze, understand, and generate sounds,
opening up new possibilities for artistic expression, scientific exploration, and tech-
nological innovation.
The research presented in this thesis has covered a broad range of topics, from the
application of deep extractors to the use of autoregressive models for audio source
separation. Furthermore, we delved into the innovative domain of diffusion models,
leveraging them for music generation and source separation.
Throughout this journey, we have consistently demonstrated the power and versatil-
ity of deep learning techniques in handling complex audio data. Our research has
shown that these techniques can be effectively applied to a wide range of audio tasks,
from the separation of marine sounds to the detection of singing voices in music
tracks. We have dug into unsupervised learning, exploring the potential of Bayesian
inference in the latent domain for source separation. We have also investigated using
latent autoregressive models for source separation, demonstrating their ability to
adapt to complex tasks without requiring exhaustive fine-tuning. Furthermore, we
have even ventured into the world of diffusion models, showcasing their potential for
simultaneous music generation and separation.
In addition to these technical contributions, this thesis has shed light on the broader
implications of deep learning for audio processing. The ability to separate and ma-
nipulate individual sound sources has far-reaching implications for music production,
music information retrieval, and environmental monitoring. Moreover, the capacity
to generate and modify music using deep learning models opens significant strides
made in this thesis. The voyage of deep learning in audio processing still needs to
be completed, and the field is still ripe with challenges and opportunities for further
research and innovation. As deep learning techniques evolve and improve, we expect
to see even more sophisticated and powerful audio processing tools.
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In conclusion, this thesis has been a testament to the transformative potential of
deep learning in audio processing. Through a combination of theoretical exploration,
innovative algorithm development, and empirical evaluation, we have demonstrated
the power of deep learning to enhance our understanding and manipulation of sound.
As we continue to push the boundaries of what is possible in this exciting field, we
look forward to a future where deep learning is an integral part of our auditory
experience, enriching our lives with sound in ways we can only begin to imagine.
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