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Abstract

Driven by the growing influence of telecommunications in contemporary society, this doctoral

thesis offers novel contributions to the modeling and solution of location problems involving

covering constraints for the telecommunications. We address two distinct network design

problems: the first pertains specifically to the telecommunications sector, while the second

has broader applicability to service and communications networks.

Specifically, the first contribution focuses on the location of the transmitters, i.e. the

facilities enabling wireless connection, to meet service coverage requirements. In the modern

context of increasing traffic, establishing suitable locations and power emissions for the

transmitters is a relevant but challenging task due to heavy radio spectrum congestion,

leading to signal interference and subsequent service degradation. Traditional network design

formulations are very ill-conditioned and suffer from numerical inaccuracies and limited

applicability to large-scale practical scenarios. Our contribution consists of speeding up the

solution of the problem under consideration by addressing its drawbacks from a modeling

point of view. We discuss the modeling of the technological constraints concerning the

quality of service, and propose valid cutting plans and constraints aggregation, along with

various presolve operations to reduce the problem size and strengthen existing formulations.

Our proposals prove effective, allowing us to achieve optimality on large-scale scenarios in

solution times aligning well with planning windows.

The second contribution concerns the introduction of mixed-integer quadratic formula-

tions of a novel problem related to the design of service and communications networks. The

problem is a location problem with a covering constraint allowing for partial coverage that

takes into consideration both the minimization of the congestion and the protection from

the uncertainty in customer demand. In particular, motivated by the contemporary society’s

growing demand for high service quality, we penalize congestion responsible for degrading

the service and account for uncertainties in a robust framework. To solve this problem,

we propose several Benders decomposition approaches and introduce a cut-strengthening

technique to efficiently deal with the degeneracy of the Benders subproblem. Our tailored

approach clearly outperforms the state-of-the-art solver Gurobi on adapted instances from

the literature.

Keywords: Mixed-integer nonlinear programming, 0-1 Linear programming, Location

problems, Covering constraints, Partial set covering location, Wireless network design,

Benders decomposition, Robust optimization, Perspective reformulation, Valid inequalities
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Chapter 1

Introduction

1.1 Research motivation

Facility location problems pose a fundamental question that captures the interest of both

academics and practitioners: “Where should facilities be optimally placed to serve a set of

customers?”. This question gives rise to numerous subclasses of problems, each catering to

different aspects, constraints, and objectives derived from real-world applications. One of

these variants encompasses location problems including a covering constraint, which seek

to identify the optimal locations for facilities or service providers in such a way that they

satisfy coverage for a targeted set of customers.

Location problems with covering objectives or constraints are commonplace in several

sectors (see e.g., [58, 67, 71, 81, 132]): in the location of service providers (such as

schools, hospitals, libraries, restaurants, retail outlets, banks) or emergency facilities and

vehicles (such as fire stations, ambulances, oil spill equipment), or base stations in the

telecommunications context. While many applications involve a relatively small number of

demand points and potential facility locations and can therefore be solved in a satisfactory

way by existing heuristics or by general-purpose solvers, there are also cases where the

number of demand points can run in the thousands or even millions. This is the case of

telecommunications systems, which is the main application of this thesis. Specifically, this

thesis addresses two network design problems, one specifically for the telecommunications

context, and the other that can be generally applied to service and communications

networks (including, e.g., telecommunication networks, healthcare networks, supply chain

networks, and many others). In the sphere of telecommunications, network design consists

of determining the optimal locations for the transmitters (sometimes we will indicate them

with the terms antennas or base stations) to guarantee that every user or device of the
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1.1. Research motivation

infrastructure gets satisfactory signal strength or data at the minimum possible cost.

The motivation behind this study can be summarized in the following quotations: from

the Preface of the book [122]

Telecommunications has had a major impact in all aspects of life in the last

century. There is little doubt that the transformation from the industrial

age to the information age has been fundamentally influenced by advances in

telecommunications. [...] Optimization problems are abundant in the telecom-

munications industry. The successful solution of these problems has played an

important role in the development of telecommunications and its widespread

use. Optimization problems arise in the design of telecommunication systems

and in their operation.[...] The spectrum of topics covered includes design of

telecommunication networks, routing, network protection, grooming, restoration,

wireless communications, network location and assignment problems, internet

protocol, world wide web, and stochastic issues in telecommunications.

from the section dedicated to optimization for telecommunications industry [90] in the

website of Gurobi, a leading general purpose mixed-integer programming (MIP) solver

As we enter into the era of 5G, the telecommunications industry is undergoing

profound and rapid change. Companies and organizations across the telecom-

munications value chain – from telecom services providers to telecom equipment

manufacturers to government regulators and other key players such as vendors

and consultants – must be able to transform their businesses to cope with the

changes, overcome the challenges, and capitalize on the opportunities created

by the emergence of 5G.

and from the Gurobi collection of challenges for telecommunications companies in 2021 [89]

Major telecom organizations across the industry – from operators and ser-

vice providers to equipment manufacturers and government regulators – use

mathematical optimization to: address a wide (and ever-expanding) array of

strategic, tactical, and operational problems; make optimal plans and deci-

sions; and achieve their business objectives. Here are five key areas where

mathematical optimization can deliver immense business benefits for telecom

companies. [Then, about the first key area, which is Network Planning we

read: ] It is essential that telecom operators plan and deploy their 5G net-

works to optimize coverage, service levels, demand, and time to market. [...]

Alice Calamita 4



1.2. Thesis overview

Leading global telecom players, like Vodafone, use mathematical optimization

to plan, configure, and operate their networks as efficiently and profitably as

possible. Mathematical optimization is extremely effective in automating and

optimizing numerous network planning processes including fiber optic network

planning, facility location planning, coverage and frequency planning, radio

planning, and demand planning.[...] Other planning tools, such as machine

learning and meta-heuristics, are simply not capable of handling the complex-

ity of telecommunications network planning problems and delivering optimal

solutions.

These quotations stress the following motivating factors for this thesis: (i) the ubiqui-

tous influence of telecommunications on modern life, (ii) the crucial role of mathematical

optimization in the design of telecommunications networks and its employment by major

organizations operating in this industry, (iii) the advent of 5G posing even more strin-

gent network quality requirements and making the study of planning problems in the

telecommunications sector still relevant, (iv) the fact that, in this constantly evolving

landscape of telecommunications, at the forefront of challenges faced by network providers

and policymakers there is still the need to ensure optimal facility location planning, coverage

and connectivity.

1.2 Thesis overview

In this doctoral thesis entitled “Location problems with covering constraints: models and

solution approaches for the telecommunications”, we address the design of telecommuni-

cations networks, essential components shaping the current and future functionality of

global connectivity. Specifically, we focus on the location of facilities enabling connection to

meet coverage requirements, using rigorous mathematical modeling and proposing efficient

algorithmic approaches to drive optimal planning.

To a greater extent, this thesis addresses two distinct network design problems: the

first pertains specifically to the telecommunications sector, while the second has broader

applicability to service and communications networks.

The first research topic addressed in this thesis concerns the optimal design of wireless

networks. In the current era of pervasive connectivity, the design of wireless networks

still plays a pivotal role in shaping modern societal infrastructure. These networks, which

enable various services, from mobile communication to internet services, have become

Alice Calamita 5



1.2. Thesis overview

the foundation of the digital age. The importance of studying wireless network design

lies in its profound implications for enhancing communication and enabling technological

advancements, and its influence on the evolving dynamics of global connectivity in daily

lives and professional interactions.

A wireless network is a telecommunications network that uses radio waves, or other

wireless communication technologies, to transmit and receive data without the need for

physical cables, allowing for the wireless connectivity of devices. From a design point of

view, the basic elements of wireless networks are transmitters and receivers. Hence, the

design of these networks consists of identifying the proper locations for the transmitters

and setting their operational parameters – like frequency and power emission – in such a

way to cover with service the receivers located in the area of interest.

Wireless networks are the basis of several services, such as television, radio, mobile

communication, and the internet. In this thesis, we will address the design of wireless

networks for 4G LTE/5G technology. Even if wireless networks rely on different technologies

and standards based on the service they are meant to provide, they all share a common

feature: the need to reach users scattered over a vast area with a radio signal that must be

strong enough to prevail against other unwanted interfering signals. The quality of service

(and hence the coverage) indeed depends on the interplay of numerous signals, wanted and

unwanted, generated from a large number of transmitting devices. The increasing traffic

and the densification of the base stations along the territory have led to an increase in

interfering signals. Consequently, establishing suitable locations and power emissions for

all the transmitters, coexisting within a heavily congested radio spectrum, has become a

challenging and relevant task.

This research was carried out under the supervision of Professor Pasquale Avella and in

collaboration with Fondazione Ugo Bordoni (FUB) [76], a higher education and research

institution in telecommunications under the supervision of Italian Ministry of Enterprises

and Made in Italy (MISE), providing innovative services for government entities. The

collaboration with the FUB was specifically intended to identify a tool, manageable by

practitioners, that does the optimal planning of LTE and 5G radio base stations for the

Municipality of Bologna in Italy.

The second research topic concerns the investigation of the optimal design of service

and communications networks with the operational objectives of safeguarding against both

network congestion and the unpredictability of service demand. Again, the goal is to locate

facilities or service providers along the territory, in order to satisfy the demand of the

Alice Calamita 6



1.3. Research approach and contributions

customers distributed throughout the territory. This time, service coverage requirements

are not expressed through signal strength and hence we do not need to deal with signal

interference. Coverage is instead defined as meeting the demand, where the type of demand

varies, depending on the application, and may represent, for example, a specific amount of

data within a telecommunications system or a specific number of product units within a

manufacturing system.

In this context, we address the cases in which (i) congestion arising at the service

providers affects the quality of the service or induces extra costs, and (ii) customer demand

cannot be precisely estimated. This not only enables planning decisions that ensure

delivery schedules and uphold rigorous quality standards, but also aligns with the modern

society’s escalating demand for high-quality service. Consider, for instance, the design of a

telecommunications network in hard scenarios like dense urban environments. Neglecting

uncertainty in demand for service in such a situation can lead to unpleasant surprises

in coverage plans: an unexpectedly higher quantity of users in a specific area means

highly congested transmitters. Due to limited capacity at the transmitter, congestion can

result in poor or even completely unavailable service. We also note that planning a new

communications service with a time horizon of several years, implies that the demand

from the customers is naturally subject to uncertainty and pretty hard to predict due to a

lack of historical data or lack of trust in data from other services. We therefore employ

robust optimization to protect network planning from demand uncertainty and pursue the

minimization of congestion to prevent facility overload.

This topic was developed in collaboration with Professor Ivana Ljubić during a visiting

period at her institute.

1.3 Research approach and contributions

For what concerns the first application, addressing wireless network design in a modern

context of increasing traffic and consequent densification of base stations, is a challenge that

requires the application of sophisticated optimization techniques. The first contributions on

the subject appeared already at the beginning of the 1980s. Several studies (see [49, 53])

suggested that employing optimization-oriented planning techniques can heavily reduce

infrastructure costs and enhance coverage quality and resource efficiency significantly.

Traditional solution methods, employing (mixed-)integer linear programs with (very) ill-

conditioned coefficient matrices, suffer from numerical inaccuracies and limited applicability

to large-scale practical scenarios. Indeed, the traditional modeling choice typically includes
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big-M coefficients to model coverage conditions, leading to very weak linear relaxations and

solutions – returned by state-of-the-art MIP solvers – typically far from the optimum [48].

Our contribution consists of speeding up the solution of the problem under consideration,

by addressing its drawbacks, from a modeling point of view. We worked on multiple fronts

to reduce memory and numerical issues so as to allow a rapid and accurate solution to

these problems, in line with the times and precision required in the planning phase.

In the second application of this thesis, we define a novel problem that integrates

features from two combinatorial problems: partial set covering location and congested

facility location. Partial set covering location is a special case of set covering location

problem, which seeks to optimally place a minimum-cost set of facilities to satisfy a partial

target demand. The introduction of partial covering provides more cost-efficient and

practical solutions. Congested facility location problem instead incorporates in facility

location the complexity of possible congestions at open facilities to express the diseconomies

of scale or penalization in the quality of service produced by the congestion.

Our modeling contribution in this context is the introduction of the congested version of

the partial set covering location problem. We also formulate its robust counterpart, taking

into consideration the case where up to a certain (given) number of customers deviate from

the nominal demand and we want to protect from the worst-case realization that meets this

hypothesis. Finally, we give a methodological contribution by presenting some approaches

relying on Benders decomposition to solve the robust problem efficiently.

1.4 Thesis structure

The thesis is structured in two parts. Part I – including chapters from 1 to 4 – introduces

the thesis project, motivation and objectives and gives the theoretical background of the

problems and solution methods that will be discussed in the second part of the thesis. Part

II – including chapters from 5 to 7 – presents our contributions to the modeling and solution

of location problems with covering constraints.

Chapter 2 presents the underlying theoretical framework and the methodological tools

necessary to interpret and understand our contributions. We introduce and formulate generic

mixed-integer programming problems. The basics of two well-known solution algorithms for

this class, namely the branch-and-bound algorithm and the Benders decomposition method,

are given. Finally, a robust framework to deal with parameter uncertainty is presented.
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In Chapter 3, the wireless network design problem is discussed in detail. We provide an

overview of the current scientific literature on the topic, along with background information

on wireless networks. A discussion on the negative sides of the formulations typically used

in the field is provided. Our contribution to the wireless network design literature is given

in Chapter 5, where we investigate the strengthening of existing formulations and propose

several presolve operations. Then, we report the computational experience testing our

proposals on realistic instances provided by the FUB.

Chapter 4 focuses on two variants of facility location problems: the congested facility

location and the partial set covering location. We introduce these two classes of problems –

which inspired the problem of congested partial set covering location – and give an overview

of the existing literature. Our contribution to the field is given in Chapter 6, which focuses

on the congested partial set covering location problem. We motivate and formulate the

deterministic problem and do the same for its robust counterpart. We discuss how to

apply Benders decomposition on the robust counterpart of the problem and report all the

implementation ingredients that have been instrumental in the success of the method. We

then show the results of our proposals on adapted instances from the existing literature.

Finally, Chapter 7 summarizes the main findings and contributions of this thesis.

1.5 Dissemination

Our contributions to the wireless network design literature were presented at the Interna-

tional Conference on Optimization and Decision Sciences held in Rome (Italy) in September

2021, the 6th AIROYoung Workshop held in Rome (Italy) in March 2022 and the 32nd

Conference of the Association of European Operational Research Societies held in Espoo

(Finland) in July 2022. The following paper on the topic has already been published

P. Avella, A. Calamita, and L. Palagi (2023). A compact formulation for the

base station deployment problem in wireless networks. Networks, 82(1), 52-67.

https://doi.org/10.1002/net.22146

and the following

P. Avella, A. Calamita, and L. Palagi. Speeding up the solution of the site and

power assignment problem in wireless networks. Under review. arXiv preprint

arXiv:2210.04022

has been recently submitted for publication to an international journal and is currently

undergoing the peer-reviewing process.
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Our contributions to the field of set covering location were exposed at the 3rd EUROY-

oung Workshop held in Cercy (France) in June 2023, and the International Conference on

Optimization and Decision Sciences held in Ischia (Italy) in September 2023. The following

paper on the topic

A. Calamita, I. Ljubić, and L. Palagi. Benders decomposition for congested

partial set covering location with uncertain demand. Under review. arXiv

preprint arXiv:2401.12625

has been recently submitted for publication to an international journal and is currently

undergoing the peer-reviewing process.
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Chapter 2

Methodological tools

This chapter is devoted to the exposure of the theoretical framework and methodological

tools necessary to understand the research contributions shown in the present thesis.

Specifically, we introduce mixed-integer programming (MIP) problems and give some basic

notions to assess the quality of formulations. Then we discuss two exact methods for

MIP problems that we will apply in Part II. Finally, we introduce a robust optimization

framework to address data uncertainty, that will be useful to understand the second half of

Part II.

2.1 Mixed-integer optimization problems and solution algo-

rithms

An optimization problem is a problem of choosing the best alternative among a set S of

distinct alternatives. For this reason, optimization lies at the heart of many decision-making

processes. The choice of the best option is made according to a quantitative criterion,

namely according to a given objective function f(·) : S → R that has to be minimized or

maximized, and that assigns a value to each alternative.

A generic optimization problem can be defined as

min{f(x) : x ∈ S}

where x is the vector of the variables to be optimized, and S is the feasible region including

all possible choices. The problem can be

• infeasible, when S = ∅ and no solution exists;

• or unbounded, when for any given value M > 0 there always exists a vector x̄ ∈ S

11



2.1. Mixed-integer optimization problems and solution algorithms

such that f(x̄) < −M ;

• or bounded below, when there exists a value M such that f(x) ≥ M for all x ∈ S but

the problem does not admit an optimal solution;

• or admits an optimal solution, when there exists a vector x⋆ ∈ S such that f(x⋆) ≤ f(x)

for all x ∈ S; in this case, x⋆ is said optimal solution and f(x⋆) optimal value.

In general, the characteristics of the set S and the objective function f determine the

class of the problem. We therefore introduce some of these classes that will be useful in the

reading of this thesis.

LP The first class mentioned is linear programming (LP) and includes problems having a

linear objective function and a feasible region that can be expressed through a finite set of

linear constraints. An LP can be modeled as follows

min cTx

Ax ≤ b

x ∈ Rn

where A is a matrix in Rm×n, b is a vector in Rm and c is a vector in Rn.

ILP We discussed problems modeled using continuous variables. Sometimes, however,

fractional solutions are not realistic. We therefore introduce discrete modeling, based on the

use of integer or binary variables. Many optimization problems of significant importance,

such as assignment problems or capital budgeting, can be formulated using integer linear

programming (ILP) models.

We define (pure) ILP the class of problems having a linear objective function and

a feasible region that can be expressed through the intersection of a finite set of linear

constraints and a set of integer points. An ILP can be modeled as follows

min cTx

Ax ≤ b

x ∈ Zn

where A is a matrix in Rm×n, b is a vector in Rm and c is a vector in Rn. We talk about
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pure binary (or 0-1 ) linear programming (0-1 LP) when we have all binary variables, i.e.

when x ∈ {0, 1}n ⊆ Zn.

MILP Several applications involve both discrete decisions and decisions that are continu-

ous in nature. Hence, we introduce the broader class of mixed-integer linear programming

(MILP) problems, characterized by a linear objective function, and a feasible region that

can be expressed through a finite set of linear constraints, some variables are discrete and

others are continuous.

MILPs can be modeled as follows

min cTx

Ax ≤ b

xC ∈ R|C|

xI ∈ Z|I|

(2.1)

where A is a matrix in Rm×n, b is a vector in Rm and c is a vector in Rn. The set I is

the index set of discrete variables and C is the index set of continuous variables, such that

I ∪ C = {1, . . . , n}. MILPs are considered NP-hard problems and therefore recognized as

hard to solve. We also observe that they include ILPs and LPs as special cases.

MINLP Mixed-integer nonlinear programming (MINLP) is one of the most general

modelling paradigms in optimization as it combines the combinatorial challenge of optimizing

over discrete variable sets with the difficulties of handling nonlinear functions. The past 30

years have seen a dramatic increase in new MINLP models in several real-world applications,

which has motivated the development of a broad range of new techniques to tackle this

challenging class of problems [18]. For comprehensive reviews on models, applications and

algorithmic advances for MINLPs see [18] and [103].

Formally, we define MINLP as the class of problems having a possibly nonlinear objective

function, and/or a feasible region that can be expressed through a finite set of possibly

nonlinear constraints, some variables are discrete and others are continuous. MINLPs can
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be modeled as follows

min f(x)

g(x) ≤ 0

x ∈ X

xC ∈ R|C|

xI ∈ Z|I|

where f : Rn → R and g : Rn → Rm are twice continuously differentiable functions, X is a

bounded polyhedral set. The set I is the index set of discrete variables and C is the index

set of continuous variables, such that I ∪ C = {1, . . . , n}. An MINLP is said convex if the

functions f and g are convex. It is said non-convex if either f or any gi (with i = 1, . . . ,m)

are non-convex functions. MINLPs include MILPs as a special case and are therefore

considered NP-hard problems.

Special cases of this class also include

• mixed-integer quadratically constrained programming (MIQCP) problems, having

a possibly quadratic objective function, and a feasible region that can be expressed

through a finite set of quadratic constraints, some variables are discrete and others

are continuous;

• mixed-integer quadratic programming (MIQP) problems, having a quadratic objective

function, and a feasible region that can be expressed through a finite set of linear

constraints, some variables are discrete and others are continuous.

In this thesis, we mainly focus on ILPs and convex MINLPs (more specifically MIQCPs).

Therefore, in this section we introduce the following exact methods to address these classes

of problems:

• methods based on branch-and-bound for ILPs/MILPs, that can be extended to convex

MINLPs;

• Benders decomposition method for MILPs and convex MINLPs that meet specific

characteristics.

Building blocks of solution methods The two main ingredients on which methods

for ILP/MILP/MINLP problems are based are relaxation and constraint enforcement (see

[18]).
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A relaxation of the problem can be obtained by enlarging the feasible set, e.g., by

ignoring some constraints of the problem. See an example of relaxation in Figure 2.1, where

integrality constraints are relaxed. Relaxations are used to provide lower bounds to the

Figure 2.1: On the left is the feasible set of a MINLP problem, given by the vertical blue lines.
On the right is the formulation we get by relaxing integrality, given by the grey region.

MIP problem. If the solution to a relaxation is feasible for the MIP, then it also solves the

MIP. In general, however, the solution is not feasible for the MIP, and we must somehow

exclude this solution from the relaxation.

Constraint enforcement is a procedure used to exclude solutions that are feasible for

the relaxation but not to the original problem. Constraint enforcement may be done by

refining or tightening the relaxation, or by branching. One way to tighten the relaxation

is by adding valid inequalities to the relaxation as in Figure 2.2. A valid inequality is an

inequality that is satisfied by all feasible solutions for the MIP. When it successfully excludes

a given infeasible solution, it is called a cut or a cutting plane. This type of separation

is used, e.g., in the cutting plane algorithm – that recursively solves a relaxation of the

problem and produces a cutting plane to exclude the infeasible relaxation solution until a

feasible relaxation solution is found – or in Benders decomposition (see Section 2.1.3).

Branching consists of dividing the feasible region into subsets such that every solution to

MIP is feasible in one of the subsets. When integrality is relaxed as in Figure 2.3, branching

on an integer variable that takes a fractional value (the black point) yields two separate

relaxations, such that all solutions of the MIP lie in one of these two. This approach is the

basis of the branch-and-bound discussed in Section 2.1.2.

In the following sections we discuss the importance of having a good formulation, and

provide two well-known algorithms used to solve MILPs and some convex MINLPs, the
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Figure 2.2: How to refine the relaxation using a valid cut discarding the black point.

Figure 2.3: The two sets we get by branching on the black point.

branch-and-bound method and the Benders decomposition method.

2.1.1 Quality of formulations

Throughout the thesis, we see how not all formulations are equal: in Chapter 5, we discuss

how to strengthen the natural formulation of an ILP problem, while in Chapter 6, we exploit

perspective reformulation to speed up the solution of a MIQP problem. It is, therefore,

important to introduce the concept of formulation and determine how to compare different

formulations to identify the best one (if possible) between them.
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In particular, consider the ILP problem

min cTx

s.t. Ax ≤ b

x ∈ Zn

with A a matrix in Rm×n, b vector in Rm, and c vector in Rn. The set of linear constraints of

the problem, given by Ax ≤ b, forms a polyhedron and is called formulation as it coincides

with the LP relaxation of the problem. The LP relaxation of the problem is obtained by

relaxing the integrality constraints on x.

To solve a problem with this structure, the methods used iteratively attempt to reduce

the difference between a lower bound (LB) and an upper bound (UB) of the problem. This

difference is called gap. The lower bound refers to a value less than or equal to the optimal

value, while the upper bound refers to a value greater than or equal to the optimal value.

For minimum problems, an upper bound is given by the value of a feasible solution, while

the optimal value of a relaxation of the problem gives a lower bound. One of the most

common techniques to identify a lower bound is the LP relaxation of the problem. The

closer the bounds are to the optimal value, the smaller the gap (and therefore the “distance”

from the optimal value), and the higher the quality of these bounds. When the gap is zero,

the feasible solution is optimal and the solution of the LP relaxation is integral.

The quality of the gap is influenced by the quality of the formulation. Very often the

same problem admits multiple formulations, and there might be a hierarchy in the quality

of these formulations. In particular, the following criteria can be stated.

Criterion 2.1.1 Given a set X ⊆ Rn and formulations P and P ′ for X, P ′ is stronger

(better) than P if and only if LB(P ′) ≤ LB(P ), regardless of the objective function of the

problem.

Criterion 2.1.2 Given a set X ⊆ Rn and formulations P and P ′ for X, P ′ is stronger

(better) than P if and only if P ′ ⊆ P and ∃x ∈ P : x /∈ P ′.

Criterion 2.1.3 Given a set X ⊆ Rn and formulation PI for X, PI is said to be ideal if

and only if it coincides with the convex hull of the integer points of X, i.e., if and only if

PI = Conv(X).

We observe that Criteria 2.1.1 and 2.1.2 are equivalent. The ideal formulation PI is therefore

contained in every other formulation of the problem, i.e., PI ⊆ P for every formulation P

of the problem; we also have that LB(PI) is the optimal value.
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If the ideal formulation is available, it will clearly be the best possible. However, often

finding the convex hull of an ILP is just as hard as solving the ILP. In Figure 2.4, there is

an example of three formulations that are comparable in terms of quality. Moreover, it is

not always possible to compare the quality of two formulations of the same problem, i.e.,

when the following criterion applies.

Criterion 2.1.4 Given a set X ⊆ Rn and formulations P and P ′ for X, P and P ′ are

incomparable if and only if ∃x ∈ P : x /∈ P ′ and ∃x ∈ P ′ : x /∈ P .

Figure 2.4: Three different formulations of the same problem. The red one is better than the blue
one. The best is the ideal formulation, which is the one in black.
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Perspective reformulation We report the results of [86] about perspective reformulation.

Consider a set of three variables in which we can find “on-off” type decisions. Specifically,

let y be a binary indicator variable that controls the continuous variable v. The set is

defined as follows

S =
{
(v, u, y) ∈ R2 × {0, 1} : u ≥ v2, by ≥ v ≥ ay, u, v ≥ 0

}
where a and b are constants in R+. We can observe that S = S0 ∪ S1 where

S0 =
{
(0, u, 0) ∈ R3 : u ≥ 0

}
and S1 =

{
(v, u, 1) ∈ R3 : u ≥ v2, b ≥ v ≥ a, u, v ≥ 0

}
.

We now define what we mean by perspective function and state one property of perspective

functions.

Definition 1 The perspective of a given function f : Rn → R is the function f̃ : Rn+1 → R

defined as follows

f̃(y, v) =



yf(v/y) if y > 0

0 if y = 0

∞ otherwise.

Proposition 2.1.5 Let f̃ be the perspective of function f . We have that f̃ is convex

provided that f is convex.

In our case, we have f = v2 and y ∈ {0, 1}, which means the perspective of function f

is given by

f̃(v, y) =


y(v2/y2) if y = 1

0 if y = 0.

where y(v2/y2) can be simplified into v2/y for y = 1.

Hence, if we replace the quadratic function of set S with its perspective, we get the

following set

Spersp =
{
(v, u, y) ∈ R2 × {0, 1} : uy ≥ v2, by ≥ v ≥ ay, u, v ≥ 0

}
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and by relaxing the integrality on y we get its continuous relaxation

Rpersp =
{
(v, u, y) ∈ R3 : uy ≥ v2, by ≥ v ≥ ay, 1 ≥ y ≥ 0, u, v ≥ 0

}
.

From [38], the following result is valid.

Lemma 2.1.6 Conv(S) = Rpersp, i.e., the continuous relaxation of set Spersp is the convex

hull of the integer points of set S.

We now give the definition of rotated second-order cones.

Definition 2 A rotated second-order cone in Rn+2 is the set

{(v, u, y) ∈ Rn+2 : uy ≥ vT v, y ≥ 0, u ≥ 0}.

We observe that the set Spersp contains rotated second-order cones. An example of a rotated

second-order cone is R3 is given in Figure 2.5.

Figure 2.5: An example of a rotated second-order cone is R3. Picture borrowed from [101].

MIQCP problems with second-order cone constraints are called mixed-integer second-

order cone programming (MISOCP) problems.

2.1.2 Branch-and-bound

In 1960, Land and Doig [99] introduced an exact method which is now the paradigm of all

state-of-the-art solvers for MIP problems: the branch-and-bound (B&B) algorithm. B&B is
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an efficient method that allows an implicit enumeration of the solution space, by avoiding

the exploration of some regions of the feasible set that are considered somehow unpromising.

Indeed, an exhaustive search of the solution space based on explicit enumeration of all the

feasible solutions of an integer program is doable in principle, however it is computationally

intractable for most of the cases.

There are two operations underlying the B&B method: branching and bounding. The

branching operation is done to derive two smaller subproblems starting from a bigger one,

and it is executed several times during a B&B procedure. The decomposition of each

problem into two subproblems is represented through a tree structure, which is referred to

as the branch-and-bound tree (or simply branching tree).

Bounding, instead, consists of evaluating the quality of each subproblem by solving its

relaxation. As bounds are estimations of the optimal value, this technique is used to avoid

the exploration of subproblems that are guaranteed not to lead to a better solution, making

a more efficient exploration of the solution space.

We now describe the procedure in detail. Given a MILP minimization problem (e.g.,

modeled as in (2.1)), we denote by P0 the initial problem and by R0 its feasible set when

we relax integrality constraints. We also denote by LB0 the optimal value of the relaxation

R0, which is a lower bound to the problem P0, given by the (possibly fractional) solution

x0 of R0. Finally, we denote by UB the best upper bound to the problem, corresponding to

the feasible solution x̄i (referred to as an incumbent). Starting from the initial problem at

node 0 (also known as root node) of the branching tree, the B&B algorithm performs a

bounding operation to determine the optimal value of the relaxation (LB0), then decides if

that region is interesting or not. If it is, it branches on the relaxation solution by imposing

branching constraints and creating two more disjoint subproblems to analyze, otherwise it

prunes the node, avoiding the chance to derive (and then analyze) subproblems from that

node. The union of the feasible regions of the two subproblems contains all the feasible

integer solutions of the problem from which the subproblems are derived. The subproblems

not yet analyzed are inserted in a list denoted as L.

Then, the B&B algorithm proceeds by solving subproblems from list L and for every

subproblem Pi (corresponding to a node of the branching tree) the algorithm relaxes

integrality constraints on discrete variables to get Ri, gets the optimal solution xi of Ri,

whose value is LBi, and decides if pruning node i or imposing branching constraints on Pi

to derive two more subproblems to be inserted in the list L.

It remains to explain how we decide that an area of the feasible region is not interesting.

Generally, a node i is pruned if one of the following conditions is met:
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• Ri is infeasible, i.e. Ri = ∅, and accordingly the corresponding mixed-integer problem

Pi is infeasible. In this case we prune by infeasibility ;

• Ri is feasible and its optimal value LBi is not less than the best upper bound found

so far. Thus, Pi cannot contain any feasible solution whose value is better than the

best upper bound and the node is pruned. In this case we prune by bound ;

• Ri is feasible, LBi is less than the best upper bound and the optimal solution xi of

Ri is feasible for the MILP. In this case, we update the best upper bound and the

best incumbent respectively to LBi and x, and the node is not further explored since

the associated MILP problem has been solved to optimality. In this case we prune by

integrality.

We observe that we say that one solution is feasible for the MILP problem when all the

components of the solution that belongs to the set I of the integer components are integral.

A scheme of how the B&B algorithm works for a minimization problem is depicted in

Figure 2.6.

As discussed in [18], the B&B algorithm can be extended to solve convex MINLP

problems at global optimality. This variant takes the name of nonlinear branch-and-bound

and was introduced in [47, 87]. Specifically, MINLPs can be solved using (nonlinear) B&B

in two manners:

• by replacing all convex nonlinear constraints with a set of linear constraints obtained

from first-order Taylor series approximation; in this way the MINLP becomes an

MILP and traditional B&B can be applied. It should be noticed that the linear

approximations undergo dynamic refinement during the process to produce an optimal

solution that meets all of the nonlinear constraints of the model;

• by using a nonlinear programming (NLP) solver, instead of a linear one, to solve each

node relaxation Ri. Indeed, if the problem is an MILP, Ri is an LP problem; if the

problem is an MINLP, Ri is an NLP problem.

We also observe that there are significant choices that we did not discuss affecting

the B&B process, such as the selection of the next branching node to be explored or the

selection of the variable we want to branch on. More details about these strategies can be

found in [3] for MILPs, and in [33] for MINLPs.

Furthermore, several variants of the B&B method have been provided after its introduc-

tion. One of the most famous is the branch-and-cut (B&C) algorithm, which is currently at
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Initialization: L = {P0},
UB:= +∞, x̄ undefined

L = ∅?
Stop: The optimal value is UB
and the optimal solution is x̄

Choose a problem Pi ∈ L
Set L = L \ {Pi}

Ri infeasible?
Prune by
infeasibility

Bound Pi by solving Ri to find
a solution xi with value LBi

LBi < UB?
Prune by

bound

xi feasible
for Pi?

Prune by
integrality

Branch on Pi to create subproblems Pk and Ph

Update L = L ∪ {Pk,Ph}

Update UB=LBi and x̄ = xi

Yes

No

Yes No

No

Yes

Yes

No

Figure 2.6: Main steps of the branch-and-bound algorithm for a minimization problem.

the basis of every state-of-art solver for MIP problems. Essentially, at each node i of the

B&B tree, before the branching step, there is a cutting plane step in which one or more

cutting planes may be dynamically generated to improve the optimal value of the relaxation

Ri by cutting off its fractional optimal solution xi. Node i is then branched only if its

relaxed optimal solution remains fractional even after a specified number of cut rounds or

if no additional cuts can be generated. The decision to introduce new cuts is often made

empirically, usually by assessing the effectiveness of previously introduced cuts. A strong

cut strategy is typically applied at the root node, involving multiple rounds of cuts, while

fewer or no cuts may be introduced at deeper levels within the branch-and-bound tree.

Cuts added at the root node remain valid throughout the entire branching tree, whereas

cuts generated within specific tree nodes are usually valid only for that particular sub-tree.

The B&C approach aims to reduce the tree size and decrease the need for branching.

The underlying rationale for the B&C method comes from the observation that tightening
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the lower bound is crucial for pruning the branching tree and, consequently, for accelerating

the optimization process. A reference to B&C for MILPs is [17], and a reference to B&C

for MINLPs is [134].

2.1.3 Benders decomposition

Benders decomposition (BD) was proposed in 1962 by Benders in [22] and can be considered

a classic paradigm of mixed-integer programming. For surveys on this method, we refer the

reader to [46, 120].

Consider the following MIP problem in the continuous variables x and the discrete

variables y

min cTx+ dT y

s.t. Ax+By ≥ b

x ∈ Rn
+

y ∈ Y ⊂ Zq

(2.2)

where b is a vector in Rm, c is a vector in Rn
+, d is a vector in Rq, A is a matrix in Rm×n,

B is a matrix in Rm×q, and Y is a finite set describing restrictions on the discrete variables

y. We assume that Problem (2.2) is feasible.

We observe that the objective function of the problem is separable in x and y and,

once we fix the discrete y variables – considered the complicating variables as they are

discrete – the problem simplifies to a linear programming problem in x. These properties

are necessary to apply the BD and can be exploited to completely get rid of the continuous

x variables, which is the idea behind the Benders reformulation (giving rise to the BD).

Indeed, the problem at hand can be reformulated as the bilevel problem

min
y∈Y

{dT y +min
x≥0

{cTx : Ax ≥ b−By}}

where the outer optimization problem is called master problem, whereas the inner optimiza-

tion problem is called Benders subproblem. We can reformulate again the master problem

by replacing the inner problem with its value function ϕ(y)

min
y∈Y

{dT y + ϕ(y)}
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where ϕ(y) is defined as follows

ϕ(y) = min
x≥0

{cTx : Ax ≥ b−By}.

Finally, by introducing the auxiliary variable w, the problem becomes

min dT y + w

s.t. w ≥ ϕ(y)

w ≥ 0

y ∈ Y.

At this point it should be clearer that, since we can express the part belonging to the x

variables as a function of the y values, and since we have a finite number of choices for y

(Y is a finite set), we can reformulate the problem eliminating the x variables.

Now, let us focus on the Benders subproblem. We assume we are in the case where the

subproblem is feasible and bounded (i.e. well-posed), in the sense that any given ȳ ∈ Y is a

feasible decision, and we derive its dual formulation

ϕ(ȳ) = max
u≥0

{(b−Bȳ)Tu : ATu ≤ c}.

We can derive the dual formulation of the subproblem as it is an LP, hence strong duality

holds. Given the extreme points of the dual polyhedron u1, . . . , uP , we have that the

optimal dual value is attained at one of these extreme points

ϕ(ȳ) = max
p=1,...,P

{(b−Bȳ)Tup} (2.3)

as depicted in Figure 2.7. We observe that the polyhedron in the dual space (ATu ≤ c)

does not depend on the choice of the y variables. This means that the solution (extreme

point) does not depend on the y variables values, but its optimality still depends on the y

variables values which appear in the dual objective.
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Figure 2.7: In a polyhedron the optimal solution is reached in (at least) one extreme point of the
polyhedron. In this case, it is reached at the red point.

Using (2.3), we can reformulate the master problem as

min dT y + w

s.t. w ≥ max
p=1,...,P

{(b−By)Tup}

w ≥ 0

y ∈ Y

and since we impose w to be greater than or equal to the maximum (optimal) dual objective

value, we also have that w is greater or equal to each dual objective value obtained at one

extreme point

min dT y + w

s.t. w ≥ (b−By)Tup p = 1, . . . , P (2.4)

w ≥ 0

y ∈ Y.

where constraints (2.4) are known as Benders optimality cuts.

If the subproblem is infeasible at a point ȳ, it means that in the dual space we are

optimizing over an unbounded cone, and there exists an extreme ray that goes to infinity

for the Farkas’ Lemma. This extreme ray ur gives the unbounded direction such that
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(b−Bȳ)Tur > 0 and hence the dual objective goes to infinity. To discard the point ȳ at

which the Benders subproblem is infeasible, we introduce the Benders feasibility cuts given

by (b−By)Tur ≤ 0 for each extreme ray ur of the recession cone of the dual feasible region

{u ≥ 0 : ATu ≤ c}.

Finally, the so-called Benders Reformulation of problem (2.2) is given by

min dT y + w

s.t. w ≥ (b−By)Tup ∀up ∈ Up (OptCut)

0 ≥ (b−By)Tur ∀ur ∈ Ur (FeasCut)

w ≥ 0

y ∈ Y.

(2.5)

where Up set of all extreme points of the dual feasible region, and Ur set of all extreme rays

of the dual feasible region. By means of this reformulation, we get rid of the x variables, but

this comes at the expense of introducing a (possibly huge) number of additional constraints,

i.e., the Benders cuts. In particular, the (OptCut) are the Benders optimality cuts, used to

underestimate the value of the objective value of the subproblem, and (FeasCut) are the

Benders feasibility cuts, eliminating master solutions that are infeasible for the (primal)

subproblem.

The scheme in Figure 2.8 summarizes the Benders reformulation. Basically, we start

from a problem in the variables x (continuous) and y (discrete), and we end up having a

reformulation of this problem in y and w (continuous). This reformulation contains the

Benders optimality and feasibility cuts generated from the solutions of the subproblem,

obtained by fixing one by one the y variables.

Original problem in (x, y)

Subproblem primal (it optimizes over x) Subproblem dual (it optimizes over u)

Benders Reformulation in (y, w)

y = ȳ up, ur

⇐⇒

Figure 2.8: A scheme of the Benders Reformulation.

Since the number of Benders cuts is exponential (one for each extreme point and one for

each extreme ray), instead of using the full Benders reformulation (2.5), it may be beneficial

to use a relaxation of this problem containing only a subset of the Benders cuts that are

separated dynamically through a cutting plane algorithm. This procedure is known as
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Benders decomposition or cutting plane Benders, see a scheme in Figure 2.9.

Given a compact model

Solve the master problem as a MIP

∃ ȳ solution
of the master problem?

Stop: The problem
does not admit

any optimal
solution

Solve the subproblem for y = ȳ as an LP

∃ a violated cut?Add the cut to the master problem

Stop: ȳ is an optimal solution

No

Yes

Yes

No

Figure 2.9: Scheme of cutting plane (or multi-tree) Benders.

Basically, this algorithm alternates between solving a relaxation of the master problem

obtained by considering only a subset of the Benders cuts, and solving the LP subproblem

for the given master solution to generate violated Benders optimality or feasibility cuts.

One drawback of this “old school” approach is that each new cut requires the solution of a

B&B tree as the relaxed master problem is an MIP, and for this reason it is also known as

multi-tree Benders.

Modern approaches of Benders, instead, require the solution of only one branching tree

as the violated Benders cuts are generated on the fly inside a branch-and-cut procedure, as

schematized in Figure 2.10. For this reason, this approach is known as branch-and-Benders-

cut or single-tree Benders.

We observe that this method can be applied both to MILPs and convex MINLPs in

which the parameterized subproblem is an LP, as in the case we will discuss in Chapter 6.

An extension of the Benders decomposition method to a broader class of MINLP problems

in which the parameterized subproblem needs no longer be an LP, was provided by Geoffrion

[82] in 1972, and it is known as Generalized Benders decomposition.
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Pick an unexplored node from the B&B tree

Solve the relaxation to get its (possibly fractional) solution ȳ

Solve the subproblem in ȳ as an LP

∃ a violated cut?Add the cut to the formulation

Heuristic

Branch or prune

Yes

No

Figure 2.10: Scheme of branch-and-Benders-cut (or single-tree) Benders.

2.2 Optimization under uncertainty

The classical paradigm in mathematical programming is to assume that all the input data

to the mathematical model, such as demands and costs, are assumed to be known precisely

and equal to some nominal values. However, this assumption does not hold for most real

world applications. In such applications, the classical deterministic optimization approach

is not useful because the solution found through such an approach is possibly sensitive to

even slight changes in the problem parameters. Indeed, deterministic optimization does not

take into account the influence of data uncertainties on the quality and feasibility of the

model: as the data take values different than the nominal ones, several constraints may be

violated, and the optimal solution found using the nominal data may no longer be optimal

or even feasible.

To illustrate the importance of robustness in practical applications, we quote from the

case study by Ben-Tal and Nemirovski (2000) on linear optimization problems from the

Net Lib library:

In real-world applications of Linear Programming, one cannot ignore the possi-

bility that a small uncertainty in the data can make the usual optimal solution

completely meaningless from a practical viewpoint.

This observation raises the natural question of designing solution approaches that are
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immune to data uncertainty. Both robust optimization and stochastic programming have

been extensively studied to address this problem of uncertainty [27, 28, 31, 50, 92, 127],

with uncertainty being modeled as explicit scenarios or implicitly specified via a probability

distribution over the uncertain parameters.

Dantzig [50] introduced stochastic programming in the mid-1950s as an approach

to model data uncertainty by assuming scenarios for the data occurring with different

probabilities. The two main difficulties with such an approach are: (i) knowing the exact

distribution for the data, and thus enumerating scenarios that capture this distribution is

rarely satisfied in practice, and (ii) the size of the resulting optimization model increases

drastically as a function of the number of scenarios, which poses substantial computational

challenges.

A body of literature focused on robust approaches, in which we optimize against the

worst instances that might arise by using a min-max objective. The first robust approaches

proposed in [115, 133], before the the two major contributions by Bertsimas and Sim

[27, 28], were considered over-conservative, as highlighted by [19–21, 64, 65]. Bertsimas

and Sim in [27, 28] were the first to address over-conservatism of the robust optimization,

proposing an approach leading to a linear optimization model. Their approach is known as

Γ-robustness: it allows the control of the degree of conservatism of the solution, and it is

computationally tractable both practically and theoretically, unlike the previously proposed

non-linear approaches.

2.2.1 Γ-Robustness

We now discuss in detail the approach introduced by Bertsimas and Sim in 2003. The

content of this section comes from their seminal papers [27, 28].

The idea at the basis of these papers is that when the data in the constraints of a linear

programming problem are subject to uncertainty, we can model a robust optimization

problem that optimizes against the worst-case scenario in which up to Γ data are going to

deviate from their nominal values (where Γ is an input parameter). This robust problem can

be modeled as a linear programming of moderately larger size than the size of the nominal

problem. Moreover, the robust problem allows for control of the degree of conservatism of

the solution in terms of probabilistic bounds of constraint violations.

Let c, l, u be vectors in Rn, let A be an matrix in Rm×n, and b be a vector in Rm.

We consider the following nominal MIP on a set of n variables, the first k of which are integral
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min cTx

s.t. Ax ≤ b

l ≤ x ≤ u

xi ∈ Z i = 1, . . . , k.

(2.6)

We assume, without loss of generality, that data uncertainty affects only the elements of

the matrix A, and not the vectors b and c. Indeed, if b is uncertain, then we can introduce

a new variable xn+1, and write Ax− bxn+1 ≤ 0, l ≤ x ≤ u, 1 ≤ xn+1 ≤ 1, thus augmenting

A to include b; if, instead, c is uncertain, we can use the objective maximize z, add the

constraint z − cTx ≤ 0, and thus include this constraint into Ax ≤ b.

In typical applications, we have reasonable estimates for the mean value of the coefficients

aij and its range âij . We feel that it is unlikely that we know the exact distribution of

these coefficients. Specifically, the model of data uncertainty we consider is as follows. Let

N = {1, 2, . . . , n}. Each entry aij , j ∈ N is modeled as an independent, symmetric and

bounded random variable (but with unknown distribution) ãij , j ∈ N that takes values in

[aij − âij , aij + âij ]. Note that we allow the possibility that âij = 0. Note also that the only

assumption that we place on the distribution of the coefficients aij is that it is symmetric.

For robustness purposes, for every i, we introduce a parameter Γi, not necessarily integer,

that takes values in the interval [0, |Ji|], where Ji = {j| âij > 0}. The role of the parameter

Γi in the constraints is to adjust the robustness of the proposed method against the level of

conservatism of the solution. Consider the i-th constraint of the nominal problem aTi x ≤ bi.

Let Ji be the set of coefficients aij , j ∈ Ji that are subject to parameter uncertainty, i.e.,

ãij , j ∈ Ji independently takes values according to a symmetric distribution with mean

equal to the nominal value aij in the interval [aij − âij , aij + âij ]. Speaking intuitively, it

is unlikely that all of the aij , j ∈ Ji will change. Our goal is to be protected against all

cases in which up to ⌊Γi⌋ of these coefficients are allowed to change, and one coefficient ait

changes by at most (Γi − ⌊Γi⌋)âit.

In other words, we stipulate that nature will be restricted in its behavior, in that only

a subset of the coefficients will change in order to adversely affect the solution. We will

then guarantee that if nature behaves like this then the robust solution will be feasible

deterministically. We will also show that, essentially because the distributions we allow are

symmetric, even if more than ⌊Γi⌋ change, then the robust solution will be feasible with

very high probability. Hence, we call Γi the protection level for the i-th constraint.

Alice Calamita 31



2.2. Optimization under uncertainty

Specifically, we consider the following (still nonlinear) formulation of the robust coun-

terpart of Problem (2.6)

min cTx

s.t.
∑
j

aijxj + max
{Si∪{ti}|Si⊆Ji, |Si|≤⌊Γi⌋}, ti∈Ji\Si}

{
∑
j∈Si

âijyj + (Γi − ⌊Γi⌋)âitiyti} ≤ bi ∀i

− yj ≤ xj ≤ yj ∀j

yj ≥ 0 ∀j

lj ≤ xj ≤ uj ∀j

xi ∈ Z i = 1, . . . , k.

(2.7)

Theorem 2.2.1 Problem (2.7) has an equivalent MILP formulation as follows

min cTx

s.t.
∑
j

aijxj + ziΓi +
∑
j∈Ji

pij ≤ bi ∀i

zi + pij ≥ âijyj ∀i, j ∈ Ji

− yj ≤ xj ≤ yj ∀j

lj ≤ xj ≤ uj ∀j

pij ≥ 0 ∀i, j ∈ Ji

yj ≥ 0 ∀j

zi ≥ 0 ∀i

xi ∈ Z i = 1, . . . , k.

(2.8)

Proof We show how to model the constraints in (2.7) as linear constraints. Given a vector

x⋆, we define the protection function:

βi(x
⋆,Γi) = max

{Si∪{ti}|Si⊆Ji, |Si|≤⌊Γi⌋, ti∈Ji\Si}

∑
j∈Si

âij |x⋆j |+ (Γi − ⌊Γi⌋)âiti |x⋆ti |

 .
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This equals to

βi(x
⋆,Γi) = max

∑
j∈Ji

âij |x⋆j |zij

s.t.
∑
j∈Ji

zij ≤ Γi

0 ≤ zij ≤ 1 ∀j ∈ Ji.

(2.9)

Clearly the optimal solution value of Problem (2.9) consists of ⌊Γi⌋ variables at 1 and one

variable at Γi − ⌊Γi⌋. This is equivalent to the selection of subset {Si ∪ {ti}|Si ⊆ Ji, |Si| ≤

⌊Γi⌋, ti ∈ Ji \ Si} with corresponding cost function
∑

j∈Si
âij |x⋆j |+ (Γi − ⌊Γi⌋)âiti |x⋆ti |.

We next consider the dual of Problem (2.9):

min
∑
j∈Ji

pij + Γizi

s.t. zi + pij ≥ âij |x⋆j | ∀i, j ∈ Ji

pij ≥ 0 ∀j ∈ Ji

zi ≥ 0 ∀i.

(2.10)

By strong duality, since Problem (2.9) is feasible and bounded for all Γi ∈ [0, |Ji|], then the

dual problem (2.10) is also feasible and bounded and their objective values coincide. We

have that βi(x⋆,Γi) is equal to the objective function value of Problem (2.10). Substituting

to Problem (2.7), we obtain that Problem (2.7) is equivalent to the linear optimization

problem (2.8).

□

In other words, Bertsimas and Sim propose an MINLP approach addressing over-

conservatism of the robust optimization, and then show how to reformulate their robust

counterpart of the problem as a MILP, leading to a much more computationally tractable

approach.
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Chapter 3

The wireless network design problem

3.1 Introduction

Wireless network design (WND) is the problem of configuring a set of transmitters to provide

service in a target area. The term configuring refers both to the optimal identification of

the locations and some parameters of the transmitters, such as transmission power and/or

frequency.

When designing a telecommunications network, the goal is to provide connection service

to a portion of the territory, namely the target area. To test the connection on this area,

the area is usually partitioned into elementary areas, in line with the recommendations of

the telecommunications regulatory bodies. Each elementary area is called testpoint, and it

is assumed to represent all users within the corresponding elementary area. We can imagine

a testpoint as a sort of superuser or as a representative receiver. A simplified illustration of

a target area and its testpoints is shown in Figure 3.1.

Figure 3.1: Target area with testpoints.

In each testpoint, we can measure the signals coming from all the transmitters that

have been activated. The power received by each receiver is classified as serving power if
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it relates to the power emitted by the transmitter serving that receiver; otherwise, it is

classified as interfering power, according to the physical layer specifications of the LTE/5G

standard (for LTE standard see [128]). This situation is depicted in Figure 3.2. The received

power, both serving and interfering, can be considered proportional to the power emitted

by a fading coefficient which models the reduction in power during the transmission, the

so-called path loss. The fading coefficient can be evaluated through simulation tools that

consider the orography and morphology of the territory, the receiver-transmitter distance,

the frequency channel, the shape of the antenna, and other parameters (e.g., the average

height of buildings, and the average width of streets).

Figure 3.2: Signals received in a testpoint. The wanted signal is in black, the unwanted signals
are in red.

As we previously mentioned, the aim is to guarantee service coverage in the designated

area, and consequently, on the representative receivers of this area. A receiver is regarded as

served by a base station if the ratio of the serving power to the sum of the interfering powers

and noise power (Signal-to-Interference-plus-Noise Ratio or SINR) is above a threshold,

whose value depends on the desired quality of service.

The more general wireless network design problem can take different names depending

on the variables we aim to optimize when building the network. This thesis considers (i)

the site and the power assignment problem, assuming the frequency as fixed whereas the

emitted power as variable, and (ii) the base station deployment problem, assuming both

emitted power and frequency as fixed. We will discuss the two cases separately.

For the site and power assignment problem we assume that frequency channel is given

and equal for all transmitters. Having a fixed frequency is a straightforward assumption:

for different frequency channels the problem decomposes as there is no interference among

non-co-channel signals. For the base station deployment problem, we also assume that the
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power emissions are given and equal for all transmitters.

3.2 Literature overview

As wireless networks are becoming denser, due to technological advancements and increased

traffic [95], practitioners’ traditional design approach based on trial-and-error supported

by simulation has exhibited many limitations. The inefficiency of this approach leads to

the need for optimization approaches, which are critical for lowering costs and meeting

user-demanded service quality standards.

Many optimization models for WND have been investigated over the years; we rec-

ommend [97] for a thorough overview of the optimization challenges in modern wireless

network design. However, the natural formulation on which most models are based presents

severe limitations since it involves numerical problems in the problem-solving phase, which

emerge even in small instances. Indeed, the constraint matrices of these models contain

coefficients that range in a huge interval, as well as large big-M leading to weak bounds.

Several approaches have been proposed to solve the WND problem, both exact MIP-

based [5, 6, 34, 37, 48, 49, 56, 60, 62, 117] and heuristic [41, 59, 61, 63, 80, 109, 110].

The exact approaches that have been proposed in the literature are mainly oriented towards

non-compact formulations and row generation methods. The authors of [117] tackle the

problem of optimal base station locations and power emissions, maximizing the service

provider’s profit. Their MILP model is solved via an exact solution method that combines

combinatorial Benders decomposition, classical Benders decomposition, and valid cuts in a

nested way. In [34], the authors aim to maximize mobile operator profits by maximizing

coverage and minimizing costs. This paper takes its basis on the formulations presented in

previous works [5, 6, 56] related to LTE-RAN applications. The formulations proposed in

[5, 6, 34, 56] are solved using standard exact solvers, and tests have been done on randomly

generated instances.

In [110], a two-stage heuristic algorithm is proposed to solve large instances of MILP

network planning. In the first stage emission powers are assigned, while in the second

stage frequencies are optimized. In [80], the minimization of the total number of deployed

base stations is pursued. The model uses binary variables and is solved with a meta-

heuristic approach based on swarm intelligence. Another heuristic contribution is [41],

which considers the use of constraints on electromagnetic emissions and the distance from

sensitive areas. The pursued objective is a weighted function of installation costs and
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service coverage. The authors propose a heuristic based on a decomposition step, followed

by a partial enumeration of the solutions. In [63], a planning methodology is introduced

that minimizes interference while maintaining the coverage. The resulting non-convex

model is tackled by a two-stage heuristic, consisting of a local search followed by an integer

programming heuristic.

Some contributions investigate the aspect of numerical problems [37, 48, 49, 59–62, 109]

that arise in the natural formulations of WND due to a constraints matrix with coefficients

that greatly vary in their order of magnitude. The numerical issues make the problem

intractable for real-world instances, which are typically large. Consequently, most exact MIP-

based approaches that aim to overcome numerical drawbacks have been oriented towards

non-compact formulations and row generation methods. In particular, a non-compact

binary formulation is proposed in [49], in which both locations and power emissions of the

antennas are optimized to maximize population coverage. The authors discretize the power

emissions getting knapsack inequalities with generalized upper bounds (GUBs, defined in

[140]), which are reformulated using GUB covers. They also investigate an exact algorithm

consisting of row generation embedded in a branch-and-cut framework. In [62], the same

authors of [49] introduce a 0-1 model for a variant of WND related to the feasible server

assignment problem. In [48], numerically stable 0-1 formulations and a robust optimization

model managing signal propagation uncertainty are investigated. In [37], the maximum

link activation problem is considered, and a non-compact formulation is proposed that

uses cover inequalities to replace the source of numerical instability. In [60], the source of

numerical issues in WND is deeply investigated, and the use of numerically safe LP solvers

is suggested to make the solutions reliable.

As for the heuristic approaches proposed to overcome the numerical instabilities, in [59],

a MILP problem for the optimal allocation of power emissions and frequency channels

is tackled through a genetic algorithm suitable for large-scale problems. The model

maximizes the service coverage. In [109], a MILP model for the power assignment problem

in wireless networks is employed, and the signal orientation of the antenna is also considered.

A constructive heuristic followed by an improving local search is proposed. In [61], a

matheuristic is investigated, which combines a genetic algorithm exploiting a suitable linear

relaxation of the problem and an integer linear programming heuristic, improving the

solutions found with the relaxation.

A summary classification of the cited works can be found in Table 3.1, where NI stands

for numerical issues, indicating the contributions that address them. We refer the reader
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to [97] for a complete view of optimization and numerical challenges in modern wireless

network design.

Table 3.1: Scheme of contributions to wireless network design literature.

Paper Decision Variables NI Method Model Technology

[117] location, power emission exact MILP UMTS, W-CDMA

[34] location, power emission, frequency channel exact MILP 5G

[5, 6, 56] location, power emission, frequency channel, service (except for [6]), period exact MILP LTE-RAN

[110] power emission, frequency channel heuristic MILP DVB-T

[80] location heuristic 0-1 LP 5G

[41] location, frequency channel heuristic MILP 5G

[63] interference heuristic MINLP UMTS

[49] location, power emission exact 0-1 LP WiMAX, DVB-T

[48, 62] location, power emission exact 0-1 LP WiMAX

[37] location exact 0-1 LP -

[60] location, power emission exact MILP WiMAX

[59] power emission, frequency channel heuristic MILP WiMAX

[109] power emission, horizontal orientation heuristic MILP DVB

[61] power emission, frequency channel, transmission scheme heuristic 0-1 LP DVB-T

DVB-T, Digital Video Broadcasting-Terrestrial; WiMAX, Worldwide Interoperability
for Microwave Access; UMTS, Universal Mobile Telecommunications System; W-CDMA,
Wideband Code Division Multiple Access; LTE-RAN, Long Term Evolution-Radio Access
Network; 5G, 5th Generation.

3.3 Mathematical formulation

In this section, we discuss the mathematical modeling of the two wireless network design

problems we address. In particular, we present the mathematical formulation of the site

and power assignment problem in Section 3.3.1, and the mathematical formulation of the

base station deployment problem in Section 3.3.2.

3.3.1 The variable-power case

The site and power assignment problem considers the optimization of both locations and

power emissions of the base stations. Locations are typically modeled through discrete

choices, whereas power emissions have been initially modeled through continuous variables,

leading to classical MIP models. Actually, the use of continuous decision variables contrasts

with the standard network planning practice of considering a small number of discrete

power values. Indeed, the design specifications of real-life antennas are always expressed

as rational numbers with bounded precision and, consequently, assume a finite number

of values. Motivated by this telecommunications practice, the authors of [49], introduced
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the practice of power discretization for modeling purposes. We will therefore refer to the

formulation introduced in [49] – which considers the discretization of the power – as the

natural formulation of the problem.

Let B be the finite set of potential transmitters and T be the finite set of receivers located

at the testpoints. Let P = {P1, . . . , P|P|} be the finite set of feasible power values assumed

by the activated transmitters, with P1 > 0 and P|P| = Pmax. Hence L = {1, . . . , |P|} is the

finite set of power value indices (or simply power levels). We introduce the variables

zbl =


1 if transmitter b is emitting at power Pl

0 otherwise

b ∈ B, l ∈ L

and

xtb =


1 if testpoint t is served by transmitter b

0 otherwise.

b ∈ B, t ∈ T

To enforce the choice of only one (strictly positive) power level for each activated

transmitter we use ∑
l∈L

zbl ≤ 1 b ∈ B. (3.1)

The mathematical formulation of the WND problem contains the so-called SINR

inequalities used to assess service coverage conditions. We recall that a testpoint t ∈ T is

regarded as covered by a base station β ∈ B if the SINRtβ is above a threshold. The SINRtβ

is given by the ratio of the serving power coming from β and the sum of the interfering

powers and noise power measured in t. The serving power is given by the product of

the power emitted by the serving base station β and the fading coefficient, modeling the

reduction of power in the signal from β to t. The interfering power is given by the sum

of all interfering contributions that are measured at the testpoint t. These interfering

contributions are modeled as the serving power, with the unique difference that the signal

is emitted by all the base stations that are activated, except for the serving one (i.e., except

for β).

The SINR is a good interference indicator since it can be used to define the effect of

interference on communication. Measuring the interference is important as it affects the

amount of information that can be transmitted [11]. Indeed, the Shannon capacity theorem,

which is at the basis of telecommunication systems, states that the maximum data rate at

which information can be reliably transmitted over a communication channel is subject to
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the amount of noise and interference present in the channel as follows

Ctβ = B log(1 + SINRtβ)

where Ctβ is the channel capacity (or maximum data rate) and B is the channel bandwidth.

Therefore, guaranteeing minimum SINR levels also means guaranteeing minimum data rate

levels.

To formulate the SINR inequalities, we refer to the discrete big-M formulation reported

in [49], which considers a discretization of the power range. Let ãtb > 0 be the fading

coefficient applied to the signal received in t ∈ T and emitted by b ∈ B. Let µ > 0 be the

system noise. Then a receiver t is served by a base station β ∈ B if the SINRtβ is above a

given SINR threshold δ > 0, namely

ãtβ
∑
l∈L

Plzβl

µ+
∑

b∈B\{β}

ãtb
∑
l∈L

Plzbl
≥ δ t ∈ T , β ∈ B : xtβ = 1 (3.2)

where the numerator represents the serving signal in t (coming from β), and the denominator

is the sum of the noise and the interfering signals in t (coming from all b ̸= β). Following

[49], we can rewrite the SINR condition (3.2) through the big-M constraints

ãtβ
∑
l∈L

Plzβl − δ
∑

b∈B\{β}

ãtb
∑
l∈L

Plzbl ≥ δµ−Mtβ(1− xtβ) t ∈ T , β ∈ B (3.3)

where Mtβ is a large (strictly) positive constant. When xtβ = 1, (3.3) reduces to (3.2);

when xtβ = 0 and Mtβ is sufficiently large, (3.3) becomes redundant. We can set, e.g.,

Mtβ = δµ+ δPmax

∑
b∈B\{β}

ãtb. (3.4)

Note that we can claim that a testpoint t ∈ T is covered if and only if there exists at least

one (t, β) with β ∈ B that can satisfy (3.3) with xtβ = 1.

A constraint to express a minimum service coverage of the territory is included. We

assume that each testpoint weights rt ∈ R to account for the fact that testpoints can

represent a different number of users or be more or less crucial in service coverage. A

minimum coverage level r ∈ R of the testpoint is enforced by the constraint:

∑
t∈T

rt
∑
b∈B

xtb ≥ r. (3.5)
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When rt are all equal to 1, r represents the minimum number of testpoint to be covered,

and the constraint above corresponds to a territorial coverage. When rt ∈ [0, 1] can be

interpreted as the fractions of the population living in the elementary area t ∈ T , then

r ∈ [0, 1] represents the fraction of the population to be covered by the service and the

constraint represents a population coverage.

Each testpoint must be covered by at most one serving base station, namely

∑
b∈B

xtb ≤ 1 t ∈ T . (3.6)

The objective functions proposed in the literature of WND are several, going from the

maximization of the coverage to the maximization of the quality of service. According to

the FUB, a considerable goal to pursue nowadays is the citizens’ welfare; therefore, the

model we refer to aims at identifying solutions with low environmental impact in terms of

electromagnetic pollution and/or power consumption. Reducing electromagnetic pollution

indeed involves reducing the power emitted by the transmitters [40]. Hence, we aim to

minimize the total number of activated base stations with a penalization on the use of

stronger power levels: the cost associated with the use of a power level equal to l ∈ L,

namely cl, is greater the greater is Pl.

Thus a natural formulation of the WND is the following 0-1 LP model:

minx,z
∑
b∈B

∑
l∈L

clzbl

(x, z) ∈ S

(3.7)

where the feasible region S is defined as

S =
{
(x, z) ∈ {0, 1}n+m : satisfying (3.1), (3.3), (3.5), (3.6)

}
with x = (xtb)t∈T , b∈B, z = (zbl)b∈B, l∈L and n = |T | × |B|,m = |B| × |L|.

3.3.2 The fixed-power case

The base station deployment problem considers the optimization of base station locations.

Let B be the finite set of potential transmitters and T be the finite set of receivers located
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at the testpoints. We introduce the variables

zb =


1 if transmitter b is activated

0 otherwise

b ∈ B

and

xtb =


1 if testpoint t is served by transmitter b

0 otherwise

b ∈ B, t ∈ T .

We denote by atb the power value measured in t ∈ T of the signal emitted by b ∈ B.

Given a transmitter b and a receiver t, the received power in t, denoted as atb, is given by

the product of the power emitted by b and the fading coefficient ãtb.

The service conditions can be modeled through the SINR conditions

atβzβ

µ+
∑

b∈B\{β}

atbzb
≥ δ t ∈ T , β ∈ B : xtβ = 1

that can be rewritten as the following big-M constraints

atβzβ − δ
∑

b∈B\{β}

atbzb ≥ δµ−Mtβ(1− xtβ) t ∈ T , β ∈ B (3.8)

in which we can set, e.g., Mtβ = δµ+ δ
∑

b∈B\{β}

atb.

Under the service and coverage constraints, we can minimize the number of activated

base stations. Thus a natural formulation is the following 0-1 LP model:

minx,z
∑
b∈B

zb

(x, z) ∈ S

(3.9)

where S is the feasible region defined as

S =
{
(x, z) ∈ {0, 1}n+m : satisfying (3.5), (3.6), (3.8)

}
with x = (xtb)t∈T ,b∈B, z = (zb)b∈B and n = |T | × |B|,m = |B|.
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3.4 Practical issues

In principle, MIP solvers can solve models (3.7) or (3.9). However, it is well-known that

numerical and memory issues arise when solving practical instances, as widely described in

[49, 60]. The main issues encountered are:

• the power received in each testpoint ranges in a large interval, from small values (order

of 10−7) to huge (105), which makes the range of coefficients ãtb in the constraints

matrix large and the solution process numerically unstable and possibly affected by

error;

• the big-M coefficients lead to poor quality bounds that impact the effectiveness of

standard solution procedures;

• real-life instances of these problems lead to models with a large number of variables

and constraints.

As a result, practical WND problems are hard to solve using standard optimal procedures

and/or natural formulations. Therefore, the objective of our contribution, given in Section

5, aims to render the optimal solution of realistic instances of the WND problem more

practicable.
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Chapter 4

Variants of the facility location

problem

This chapter delves into two specific variants of the facility location problem: congested

facility location and partial set covering location. These combinatorial problems serve as

the foundation for the problem discussed in Chapter 6.

4.1 The congested facility location problem

Over the last century, facility location has emerged as a critical area of study, attracting the

interest of academics and industry professionals because of its wide-ranging applications.

For an introduction to location models, the reader can refer to [125], for a survey on this

problem to [138], whereas for a comprehensive bibliography of modern research in the main

location problem types to [126].

In this chapter, we introduce a variant of facility location problems (FLP), which is

the quadratic multiple allocation facility location problem, commonly referred to as the

congested facility location problem (CFLP). In this problem, we are given a set of potential

facility locations and a set of customers. The goal is to meet customer demand through open

facilities. The demand can be fractionally met by multiple facilities, allowing for multiple

allocation. Multiple allocations are particularly relevant in contexts where the customer

represents the population of a specific area, and individuals within the same area may be

served by different facilities, such as in a telecommunications context. In the standard FLP,

having a linear objective function, the cost to be minimized comprises the sum of facility

opening cost and customer allocation cost. Instead, the aim of the congested variant of

FLP is to attain a more balanced solution, also taking into account the minimization of

45



4.1. The congested facility location problem

congestion to prevent facility overload. The CFLP incorporates the complexity of possible

congestions at open facilities to express the diseconomies of scale or penalization in the

quality of service produced by the congestion. Congestion costs can arise due to a range of

factors, such as the employment of additional overtime workers, the use of more expensive

materials, or neglecting or postponing equipment maintenance schedules [93]. The quality

of service is instead influenced by congestion for what concerns, e.g., waiting times [10, 66]

or user data rates, depending on the application at hand. Consequently, the goal of CFLP

is to minimize the sum of facility opening cost, customer allocation cost, and congestion

cost. The latter is usually characterized in terms of service or production costs at facilities

or customer waiting times. Among the different ways of modeling congestion cost, we refer

to the one using convex quadratic functions.

This problem can be seen as a telecommunication problem in which there is the need

to place transmitters (the facilities), minimizing the cost of the infrastructure and the

congestion at the transmitters. Congestion in telecommunications networks may result from

a sudden increase in the demand of users allocated to a specific transmitter. Addressing

congestion is crucial, as it directly impacts the performance and efficiency of the networks.

Indeed, elevated demand for a single transmitter can compromise the quality of service,

leading to reduced data rates for the users connected to that particular transmitter.

Moreover, taking into account the minimization of the congestion has an effect which is

similar to imposing a limited capacity on the transmitters. Indeed, as stated in [54], CFLP

could be considered a reformulation of the facility location problem with limited capacities

on the facilities, as the congestion function in the objective function can be seen as a penalty

function associated with capacity constraints, that penalizes every additional unit being

served by a given facility.

4.1.1 Literature overview

Despite its practical applicability and the theoretical challenges it offers due to its mixed-

integer nonlinear structure, the literature gave CFLP relatively little attention. The

problem was introduced in 1995 by Desrochers et al. [54], inspired by [98], in which a

similar formulation was proposed to illustrate a brief example involving skiers waiting for

chairlifts. The seminal paper [54] provides a column generation method embedded in a

branch-and-bound scheme. A comparison between different MIP formulations for the case of

convex and piece-wise linear production cost functions is made in [93]. Other contributions

include the two master theses [107] and [129] investigating the problem, and the article [68],
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where the authors propose a Benders decomposition method that is effective even though

the subproblem is not separable. A recent study on how off-the-shelf MIP solvers behave on

CFLP instances modeled throw mixed-integer second-order cone programs can be found in

[16]. Finally, [42] suggests a branch-and-bound algorithm based on Lagrangian relaxation

and subgradient optimization.

The CFLP we refer to in this chapter relies on convex quadratic functions to model

congestion costs. However, there are several other studies modeling facility congestion using

queuing theory, or taking into account different objective functions, that we do not intend

to revise in this thesis. We refer the reader to the survey [32] and the literature overviews

provided in [1, 141] for further information.

4.1.2 Mathematical formulation

We are given a finite set J of customers, each characterized by a demand dj ≥ 0 for j ∈ J ,

and a finite set I of potential facility locations. Opening a facility i ∈ I has a cost fi ≥ 0,

whereas serving a unit of demand of customer j ∈ J by facility i ∈ I has a cost cij ≥ 0.

Congestion at a facility i ∈ I is measured by the load of i, namely the overall amount of

demand served by facility i, considering all the customers served by i.

The CFLP consists of determining the facility locations to open and the fraction of

demand served by the selected facilities for each customer in order to minimize the overall

cost obtained as the sum of facility opening, customer allocation, and congestion costs.

Let yi ∈ {0, 1} denote the closing/opening of the facility location i ∈ I and xij ≥ 0 for

each i ∈ I, j ∈ J the fraction of the demand of customer j served by facility i when i is

open. Given the penalty function F (·), which is assumed to be non-negative, continuous

and convex for non-negative arguments, congestion cost are expressed through function

F (·) and penalize the load of the facilities.

Then, the CFLP can be modeled as the following MINLP

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

djcijxij +
∑
i∈I

F

(∑
k∈J

dkxik

)∑
j∈J

djxij (4.1)

∑
i∈I

xij = 1 j ∈ J (4.2)

xij ≤ yi i ∈ I, j ∈ J (4.3)

xij ≥ 0 i ∈ I, j ∈ J

yi ∈ {0, 1} i ∈ I
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where constraints (4.2) impose full customer demand satisfaction, whereas constraints (4.3)

guarantee that allocation to a facility i is only possible if it is open.

We introduce the aggregated variables vi to model the load of facility i, namely vi =∑
j∈J djxij . Then, the congestion cost at a facility i ∈ I can be expressed through F (vi)vi.

If we assume that F (t) is a linear function, i.e., F (t) = at+ b, with a and b non-negative

input coefficients, we can write the objective function (4.1) as

∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

djcijxij + b
∑
i∈I

vi + a
∑
i∈I

v2i .

Under the assumptions made on F (·), the objective function remains convex in (x, v, y)

for all non-negative values of x, as shown in [54], hence the model is a convex MINLP,

and in particular it is a mixed-integer convex quadratic program with indicator variables.

Consequently, we can derive its perspective reformulation (see Chapter 2.1.1 for details)

in which the quadratic term in the objective function representing the congestion, v2i , is

replaced by non-negative (additional) variables ui so as to move the non-linearity from the

objective to the constraints. The perspective reformulation of the CFLP is the following

mixed-integer conic programming

min
x,y,v,z

∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

djcijxij + b
∑
i∈I

vi + a
∑
i∈I

ui

v2i ≤ uiyi i ∈ I (4.4)

vi =
∑
j∈j

djxij i ∈ I

∑
i∈I

xij = 1 j ∈ J

xij ≤ yi i ∈ I, j ∈ J

xij ≥ 0 i ∈ I, j ∈ J

zi ≥ 0 i ∈ I

yi ∈ {0, 1} i ∈ I

where the rotated second-order cone constraints (4.4), together with the objective function’s

minimization, guarantee the quadratic load v2i of a facility i is zero if the facility is closed,

and it is ui if the facility i is open. The use of perspective reformulation on such problems

has been demonstrated to provide a considerably stronger continuous relaxation than the

natural problem formulation (see [85, 86] for details).
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4.2 The partial set covering location problem

Covering location problems constitute an important family of facility location problems,

incorporating a notion of coverage. In these problems, coverage is defined by a proximity

measure – often distance or travel time – establishing whether a facility can serve a demand

point. Indeed, a demand point is said to be covered by a facility if it lies within the coverage

radius of this facility.

Applications of covering location problems can be found in several sectors, e.g., in the

service sectors and emergency facilities for the ambulances [4], the healthcare facilities [131],

and the fire detection [55]; but also in wireless telecommunication [36], or in monitoring

equipment [102], and bank branch [9].

Among the notable problems of this class, there is the set covering location problem

(SCLP), which aims to locate a minimum-cost set of facilities such that all demand

points are covered at least once. However, the limitation of SCLP lies in the fact that it

arbitrarily values each demand point, without taking into account factors like its position

and size. This often leads to costly or impractical solutions. To mitigate this, the partial

set covering location problem (PSCLP) and the maximal covering location problem (MCLP)

were introduced. As opposed to the traditional SCLP, the PSCLP aims to minimize the

cost of establishing facilities while ensuring a specified (partial) amount of the total demand

is covered, whereas MCLP looks for the subset of facilities maximizing the coverage while

respecting a budget constraint.

The following example is designed to illustrate why PSCLP is a perfect fit for telecom-

munications network design. Suppose there is a telecommunications company that needs to

design a network of cellular transmitters to provide coverage for an area. The company has

identified various candidate locations for installing these transmitters, each having different

installation costs. The area can be partitioned into smaller blocks, each representing a

demand point that requires cellular coverage.

In a perfect world, each of these demand points would be fully covered by at least one

transmitter. However, doing so might incur prohibitive costs and could be unnecessary for

regions with low population density or less strategic importance. In such cases, it may be

acceptable to only partially cover the area. The goal of PSCLP is then to choose the best

locations for the transmitters in a way that minimizes the total cost while ensuring that a

target percentage of the total demand is covered. A graphical representation of the PSCLP

applied to telecommunications is shown in Figure 4.1, in which we see that only a subset of

transmitter locations has been chosen, the customer demand is only partially covered, there
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exists a coverage radius for each transmitter and the customers served by the transmitter

are inside this radius.

Figure 4.1: Representation of the partial set covering location problem.

4.2.1 Literature overview

In this section, we survey the literature on PSCLP and MCLP. Minimum cost covering

problems trace back to Hakimi’s work [91] in 1965, where he introduced the problem of

locating the minimum number of police officers so that everyone is within a given distance

from an officer; Hakimi suggests a solution procedure based on enumeration. The first

integer programming formulation of the problem was proposed in [136] to solve the problem

of locating emergency service facilities in a discrete space. Then, in [139], a heuristic

is proposed to assign ladder trucks to fire stations, and the problem is formulated as a

minimum cost covering.

Many authors [123, 132, 136] observed that the solution of the LP relaxation of MIP

formulations of the SCLP often has few fractional variables and provides a very good lower

bound. Despite this, there are few exact algorithms for solving MCLP and PSCLP.

PSCLP specifically has not received extensive study after its introduction in 1999 by

Daskin and Owen [51], who employed a Lagrangian heuristic in their approach. In 2019,

an exact approach based on Benders decomposition has been proposed in [45] (for both

PSCLP and MCLP), and several large-scale instances were made available by the authors

as a benchmark for future works; [45] also makes a complete description of the problem

and list the contributions made in the literature, on which this chapter is mainly based.

More recently in [39], five customized presolving methods have been discussed to enhance

the capability of employing MIP solvers in solving PSCLP.
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Other studies consider partial set covering problems in different contexts than location,

such as a mining application in [30], and a related problem in which customers whose

distance falls between a lower and an upper bound from their nearest facility are only

partially covered [26].

MCLP received more attention than PSCLP, especially for what concerns heuristic and

metaheuristic algorithms. An overview of the use, application, solution, and extension of

MCLP can be found in [116]. The MCLP was formulated for the first time by Church and

ReVelle [43] in 1974 as a 0-1 linear programming and in [114] was proved to be NP-hard.

There are two versions of this problem in the literature, one imposing an upper bound on

the number of open facilities – whose LP relaxation could be integral for relatively small

size instances (see [132])– and the other using a budget constraint – whose LP relaxation

usually leads to more fractional solutions.

For what concerns exact algorithms, Lagrangian relaxations are employed in [57] to

dualize the covering constraints. The Lagrangian dual is then solved using subgradient

optimization. This approach is integrated into a branch-and-bound framework.

Several heuristics have been proposed for the MCLP. Two greedy procedures that

iteratively choose the facility that increases the coverage the most, one allowing substitution,

are discussed in [43]. Another greedy procedure based on an adaptive search strategy is

provided in [121]. Several heuristic approaches based on the Lagrangian relaxation of the

constraints are suggested in [57, 78, 79, 106]. A decomposition heuristic employing partial

relaxation of the covering constraints, resulting in stronger bounds than LP relaxation,

is presented in [130]. Among the metaheuristics, we have [124] investigating an approach

based on heuristic concentration which reduces the problem size by discarding potential

facility locations that are unlikely to appear in an optimal solution. A genetic algorithm

to solve even large instances of MCLP is proposed in [13]. In [113], the authors discuss

an approach based on an adaptive memory to guide the search towards promising regions.

An improved version of the algorithm proposed in [113] is given in [112]. More recently, a

metaheuristic paradigm based on an adaptive iterated local search has been provided in

[111] to address large instances of the MCLP. Another metaheuristic based on the harmony

search algorithm is presented in [12].

For studies investigating the MCLP under data uncertainty, see e.g., [25, 44, 52, 104].

Finally, we refer the interested reader to the survey chapters [81] and [132] offering

reviews on covering problems, and to [67] for a classification of many variants of covering

location problems. The book [100] instead gives a general overview of location problems.
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4.2.2 Mathematical formulation

We are given a set of potential facility locations I with opening costs fi ≥ 0, i ∈ I, and a set

of customer locations J such that each customer j ∈ J is associated with a demand dj ≥ 0.

For each customer j, we are also given a subset I(j) ⊆ I of facility locations that can cover

j, i.e., that can fully serve the demand dj . Similarly, for a subset of facilities N ⊆ I, let

J(N) ⊆ J be the subset of customers that can be covered by N , and let J(i) = J({i}),

for i ∈ I. In Figure 4.2, we provide an example of an instance of the problem having 4

potential facilities (represented by the white vertices) and 7 customers (represented by the

grey vertices). The incident edges to a customer vertex j are linked to the facilities covering

this customer, i.e., to the set I(j); while the incident edges to a facility vertex i represent

the set of customers covered by the facility, i.e., the set J(i).

Figure 4.2: Example of an instance of PSCLP with 4 potential facilities (the white vertices) and 7
customers (the grey vertices).

Given a parameter D > 0, the PSCLP consists of choosing a subset of facilities to open

so as to make sure that the covered customer demand is at least D and the opening cost of

the facilities is minimized.

To formulate the problem, we introduce the binary variables yi for every potential

facility location i ∈ I, such that yi takes value 1 if facility i is open. We also introduce the

binary variables zj for every customer j ∈ J , such that zj takes value 1 if customer j is

covered by at least one open facility.
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The problem can then be formulated as the following integer linear programming model

min
∑
i∈I

fiyi (4.5)

s.t.
∑
i∈I(j)

yi ≥ zj j ∈ J (4.6)

∑
j∈J

djzj ≥ D (4.7)

yi ∈ {0, 1} i ∈ I

zj ∈ {0, 1} j ∈ J.

The objective function (4.5) of this model minimizes the opening cost of the facilities.

Constraints (4.6) guarantee that whenever a customer j is covered, at least one of the

facilities from its neighbourhood is open. Constraint (4.7) ensures that the covered customer

demand is at least D.
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Chapter 5

The wireless network design problem

We mentioned that practical WND problems are hard to solve using optimal procedures

as numerical and memory issues arise even in small instances of the problem. In this

chapter, we analyze separately the site and power assignment problem and the base stations

deployment problem. We discuss how to strengthen their natural formulations by means

of valid cutting planes, coefficient tightening and other presolve operations. All these

operations will speed up the solution of the problem and reduce its size, as shown in the

computational results of each case.

The content of this chapter is part of a paper [15] by myself and Professors Pasquale

Avella from Università del Sannio and Laura Palagi from Sapienza University of Rome

published in Networks, and a work [14] with the same authors recently submitted for

publication in a journal.

5.1 The variable-power case

In this section, we discuss the site and power assignment problem, considering the power

emissions as variables.

5.1.1 Presolve operations

Reducing the model size is crucial as real-life instances typically involve many variables

and constraints. In this section we describe several operations that allow us to reduce

the size of the problem by eliminating some xtb and zbl variables a priori. Note that the

elimination of the xtb variables also leads to the a priori elimination of the corresponding

SINRtb constraint (3.3).
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Reducing the number of servers

Usually, for reasons related to signal quality, only a certain number of transmitters (the

ones emitting the strongest signals received from the testpoint) are generally considered as

possible servers for a given testpoint. Therefore, we establish a number of possible servers

for each testpoint a priori. Namely, for each testpoint t, we select a subset of servers St,

corresponding to the transmitters emitting the strongest signals received in t.

Then, to further reduce the size of the problem, we delete all the variables modeling

transmitter-receiver pairs which any feasible solution would exclude. Specifically, suppose

we exclude the possibility of serving the full target area with a single transmitter, indeed

this case is trivial and would not require the use of optimization to be solved. In that case,

the best-case scenario is the one with only two transmitters deployed, where one transmitter

works as a server and the other as an interferer.

Hence, for each testpoint t, we fix xts = 0 for all those transmitters s ∈ St such that the

SINRts is below the threshold δ for each possible single interferer b ∈ B : b ̸= s. Namely, we

eliminate all xts such that

SINRts =
ãtsPi

µ+ ãtbPj
< δ ∀b ∈ B \ {s},∀Pi, Pj ∈ P

which can be easily verified directly with

SINRmax
ts =

ãtsPmax

µ+ ãthPmin
< δ with ãth := min

b∈B\{s}
{ãtb}.

Reducing power levels

To reduce the size of the problem, we also select a subset of transmitter power levels which

any feasible solution would exclude. Indeed, excluding again the possibility of serving the

full target area with a single transmitter, we can consider the best-case scenario as the

one with only two transmitters deployed, one server and one interferer. Hence, for each

transmitter b ∈ B and level of power l ∈ L, we fix zbl = 0 for all those (b, l) such that

the SINR is below the threshold δ for each possible interferer β ∈ B : β ̸= b and for each

testpoint t ∈ T . Namely, we eliminate all zbl such that

SINRtb =
ãtbPl

µ+ ãtβPj
< δ ∀t ∈ T , ∀β ∈ B \ {b}, ∀Pj ∈ P
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which can be easily verified directly with

SINRmax
tb =

ãtbPl

µ+ ãthPmin
< δ ∀t ∈ T , with ãth := min

β∈B\{b}
{ãtβ}.

Heuristic sparsification

We perform a heuristic sparsification to deal with the numerical issues arising from the

coefficients of the SINR inequalities. Specifically, we set a minimum threshold ε on the

received power below which the received power can be considered null. Namely, for each

t ∈ T , b ∈ B, Pi ∈ P we set

ãtbPi =


ãtbPi if ãtbPi ≥ ε

0 otherwise.

This allows us to reduce the size of the problem by eliminating some xtb variables a priori.

5.1.2 Cutting planes

A standard procedure for solving 0-1 LPs is the branch-and-bound algorithm, which

can significantly be improved by cutting planes, i.e., inequalities that are valid for all

integer solutions but not for some solutions of the linear relaxation. By means of such

inequalities, fractional linear relaxation solutions can be cut off. Valid inequalities are

internally generated by state-of-the-art MIP solvers. However, MIP solvers cannot take

advantage of the particular problem structure known to the user. For the problem at hand,

we identify some problem-specific cutting planes, including variable upper bounds and

families of clique inequalities, that we provide in this section.

Families of clique inequalities

Suppose again to exclude the possibility of serving the full target area with a single

transmitter and consider the best-case scenario as the one with only two transmitters

deployed, one server and one interferer. We observe that we can exclude:

• potential levels of power for a certain transmitter b ∈ B;

• potential serving signals for a certain testpoint t ∈ T ;

simply considering the minimum SINR required in t.
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Hence, for each testpoint t ∈ T , interferer b ∈ B with power Pl ∈ P and server β ∈ B

such that the SINR measured in t and that considers as the only interferer b is always

below the threshold δ, i.e.
ãtβPi

µ+ ãtbPl
< δ ∀Pi ∈ P

which can be easily verified directly with

ãtβPmax

µ+ ãtbPl
< δ (5.1)

we can exclude the possibility that b is activated at a power level equal to l and simultaneously

β serves t using

zbl + xtβ ≤ 1. (5.2)

Using (3.1) and (3.6), we can strengthen the cliques (5.2).

Theorem 5.1.1 Given (t, b, β, l) ∈ {T ,B,B,L} such that (5.1) is satisfied, with l minimum

power level satisfying (5.1) and b ̸= β, the following cliques are valid inequalities

∑
λ∈L:λ≥l

zbλ + xtβ ≤ 1 b ∈ B, t ∈ T , β ∈ B \ {b}. (5.3)

Proof If xtβ = 1, then for each λ ≥ l we have zbλ = 0 otherwise the SINRtβ constraint

(3.3) is violated. If instead zbλ = 1 for one λ ≥ l, then xtβ = 0 (β ̸= b) since the SINRtβ

constraint (3.3) is violated. Hence, we cannot have simultaneously that
∑

λ∈L:λ≥l

zbλ = 1 and

xtβ = 1.

Moreover, inequalities (5.2) are implied by (5.3) as

zbl + xtβ ≤
∑

λ∈L:λ≥l

zbλ + xtβ ≤ 1.

□

Theorem 5.1.2 Given (t, b, β, l) ∈ {T ,B,B,L} such that (5.1) is satisfied for all β ≠ b,

the following cliques are valid inequalities

zbl +
∑

β∈B\{b}

xtβ ≤ 1 b ∈ B, t ∈ T , l ∈ L. (5.4)

Proof If zbl = 1, then each xtβ = 0 (β ̸= b) since the SINRtβ constraint (3.3) is violated.

If instead xtβ = 1 for one β ̸= b, then zbl = 0 otherwise the SINRtβ constraint (3.3) is
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violated. Hence, we cannot have simultaneously that zbl = 1 and
∑

β∈B\{b}

xtβ = 1.

Moreover, inequalities (5.2) are implied by (5.4) as

zbl + xtβ ≤ zbl +
∑

β∈B\{b}

xtβ ≤ 1.

□

Moreover, given the testpoint t ∈ T , the server b ∈ B with power Pl ∈ P and the

interferer β ∈ B such that the SINR measured in t and that considers as the only interferer

β is always below the threshold δ for each possible β ̸= b, i.e.

ãtbPl

µ+ ãtβPj
< δ ∀β ∈ B \ {b}, ∀Pj ∈ P

which can be easily verified directly with

ãtbPl

µ+ ãthPmin
< δ, ãth := min

β∈B\{b}
{ãtβ} (5.5)

we can exclude the possibility that b is activated at a power level equal to l and simultaneously

b serves t using

zbl + xtb ≤ 1. (5.6)

Using (3.1), we can strengthen the cliques (5.6).

Theorem 5.1.3 Given (t, b, l) ∈ {T ,B,L} such that (5.5) is satisfied and l corresponds

to the maximum power level such that (5.5) is satisfied, the following cliques are valid

inequalities ∑
λ∈L:λ≤l

zbλ + xtb ≤ 1 b ∈ B, t ∈ T . (5.7)

Proof If xtb = 1, then for each λ ≤ l we have zbλ = 0, otherwise the SINRtb constraint

(3.3) is violated. If instead zbλ = 1 for one λ ≤ l, then xtb = 0 since the SINRtb constraint

(3.3) is violated. Hence, we cannot have simultaneously that
∑

λ∈L:λ≤l

zbλ = 1 and xtb = 1.

Moreover, inequalities (5.6) are implied by (5.7) as

zbl + xtb ≤
∑

λ∈L:λ≤l

zbλ + xtb ≤ 1.

□
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Variable upper bounds

Variable upper bound constraints (VUBs)

xtb ≤
∑
l∈L

zbl t ∈ T , b ∈ B (5.8)

enforce that a testpoint t ∈ T can be assigned to a transmitter b ∈ B only if b is activated,

i.e., only if b is using one strictly positive power level. They are known to strengthen the

quality of linear relaxation significantly.

Let us denote by Ltb ⊆ L the subset of power levels l that satisfy (5.5) for a given

transmitter-receiver pair (b, t) ∈ {B, T }, meaning that we can exclude that b is activated at

a power level l ∈ Ltb and simultaneously b serves t. The VUBs (5.8) can be tightened to

xtb ≤
∑

l∈L\Ltb

zbl t ∈ T , b ∈ B (5.9)

5.1.3 Reduced cost fixing to tighten the big-M

To further reduce the model size, we propose using a reduced cost fixing method, in short

RCF (see [2] for a survey on presolve techniques). Although this procedure is well-known

and widespread, no one has ever tried to see its effects on this type of problem (based on

our knowledge).

By solving the linear relaxation of the problem, we can get the lower bound lb and the

corresponding reduced costs c̄bl associated with the sole variables zbl in the optimal solution

of the linear relaxation. Then, given an upper bound ub > lb, if c̄bl ≥ ub− lb for some b ∈

B, l ∈ L, the corresponding zbl must be at its lower bound in every optimal solution; hence

we can fix zbl = 0.

Whenever the fixing of a variable zbl occurs at a given l ∈ L such that Pl = Pmax, we

can recompute and reduce the big-M , resulting in a tightening of the formulation. Indeed,

after the RCF, we may have some transmitters b that cannot emit at the maximum power

level l such that Pl = Pmax, since the corresponding zbl variables have been fixed to zero.

In such cases, the value by which atb is weighted in the big-M (see (3.4)) can be reduced to

the highest power value that b can assume, which is strictly less than Pmax.

To formalize it, let us define the set BR ⊆ B of base stations affected by RCF, i.e., such

that b ∈ BR if the variable zbl has been fixed to zero for at least one l ∈ L. Then, for a

given b ∈ BR, we can define the set LR
b ⊂ L of power levels that b can assume after the

RCF. We denote by PR
b,max the power value corresponding to the maximum power level
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that b ∈ BR can assume. Since LR
b ⊂ L, we have that PR

b,max ≤ Pmax. Using this notation,

we can write down the new value of the big-M

M ′
tβ = δµ+ δ

Pmax

∑
b∈B\{β,BR}

ãtb +
∑
b∈BR

PR
b,maxãtb

 = δµ+ δ
∑

b∈B\{β}

P̃bãtb

which satisfies Mtβ ≥ M ′
tβ since Pmax ≥ P̃b =


Pmax if b ∈ B \ BR

PR
b,max if b ∈ BR.

The smaller the optimality gap given by the estimated lower and upper bounds, the

greater the number of zbl variables that can be fixed to zero, and the smaller the big-M

coefficients. Hence, applying a standard algorithm – as implemented in MIP commercial

solvers – to the tightened formulation (i.e., the formulation got after the RCF) produces

stronger bounds and a faster solution.

We can apply a further reduction. Since we have information on the maximum number

of transmitters that can be installed from the ub, we can further reduce the value of the

big-M by replacing the sum of all the interfering signals in the testpoint t with the sum

of the strongest interfering signals in t. In particular, only the strongest γ interferers are

considered, where γ is the maximum number of transmitters that can be activated. Given

γ, the big-M can be computed as

M ′′
tβ = δµ+ δ

∑
b∈At\{β}

P̃bãtb ≤ M ′
tβ ≤ Mtβ (5.10)

where At ⊂ B is the set of the γ base stations emitting the strongest signals received in t,

i.e |At| = γ. The smaller is γ, and the smaller is the big-M ; therefore, the estimate of γ

should be as accurate as possible.

We observe that getting a good lower bound is straightforward since constraints (5.8)

naturally lead to a good linear relaxation value. Conversely, finding a good upper bound is

a more daunting task. Although commercial MIP solvers can be used to derive a feasible

solution, it may be time-consuming. Consequently, we derived a fixing heuristic based on

the observation that the fractional values of the variables in the LP relaxation are often

good predictors of zero/non-zero variables in an optimal ILP solution. This especially

occurs when the LP relaxation is extremely tight. The scheme of our fixing heuristic is

reported in Figure 5.1. The variables rounded to zero correspond to the power levels that

are not needed by the transmitters to cover the target area.
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Start

1. Solve the LP relaxation of the problem
and take the fractional solution

2. Identify the set of fractional variables
that are likely to be zero (i.e., whose value

is less than a very low threshold in the fractional solution)

3. Fix the selected variables to zero and
perform bound strengthening to propagate implications

4. Solve the resulting ILP problem to
get a near-optimal feasible solution

End

Figure 5.1: Block diagram representing the fixing heuristic.

5.1.4 The final formulation

The final formulation (F) we propose differs from the initial formulation (3.7) since:

(i) it is the result of a reduced cost fixing procedure;

(ii) it includes the addition of the VUBs (5.9) and the cliques (5.3), (5.4), (5.7);

(iii) the big-M appearing in the SINR is formulated as in (5.10);

(iv) the number of servers and the number of levels for the power has been reduced

according to the three operations described in Section 5.1.1.

5.1.5 Computational experiments

We compare the results obtained using formulation (3.7) – that we denote as the basic

formulation, or B – and the final setting in Section 5.1.4 – that we denote as F – to solve

the site and power assignment problem. The code has been implemented in Python, and

the experiments have been carried out on a Ubuntu server with an Intel(R) Xeon(R) Gold

5218 CPU running at 2.30 GHz, with 96 GB of RAM and 8 cores. Gurobi Optimizer 10.0.1

[88] with default settings has been employed as an MIP solver. We set a time limit of four

hours for computation time.

The testbed

The FUB provided us with the testbed of an existing LTE network, in which the set of

transmitters consists of the 135 authentic potential locations for the transmitters in the
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Municipality of Bologna (Italy). Since the technology we refer to is 4G LTE 800 MHz, the

elementary areas should have a square shape with a side of 100 m following the Italian

Resilience Plan [94], which is based on the guidelines given by the Body of European

Regulators for Electronic Communications [23, 24]. Thus, the set of the testpoints provided

by the FUB corresponds to the centres of the 14 078 squared elementary areas that can be

obtained on Bologna.

The system noise and the power received in each receiver by each possible transmitter

have been simulated by the FUB using the Cost Hata model [7, 77, 128]. The power values

are in W and scaled by a factor of 1010 to avoid numerical issues and obtain better accuracy

on optimal solutions, as suggested in [60]. Accordingly, the threshold on the quality of

service δ and the system noise µ are expressed in W ; µ is also scaled by 1010. The emitted

power values considered in this study are three: 20W , 40W , 80W . The threshold ε has

been set around -110 dBmW [135, 137]. In (3.5), the parameter rt has been set to the

fraction of the population living in the elementary area t ∈ T , and r to the minimum

fraction of the population to be covered by service. We used |St| = 10, namely we selected

the strongest ten signals as possible servers for each testpoint t.

Since the number of the testpoints, which is strictly related to the size of the elementary

areas, significantly impacts the size of the problem, we decided to aggregate the testpoints

and consequently reduce the number of variables and constraints of the model. It is crucial

to note that this step was indispensable, since without it the size of the problem exceeded

the memory limits of our computational resources, preventing us from even creating a

mathematical model of the problem. Specifically, we used k-means clustering to smartly

partition testpoints into groups (or clusters) such that intra-cluster data points are as

similar as possible while keeping the clusters as different (far) as possible. We considered

the sum of the squared distance between the cluster centroid and the vectors describing

the data points as a measure of similarity. For this analysis, we considered the medium

level of power only. In particular, we assume that each testpoint t ∈ T is characterized by

a power vector pt = [ãtbP2]b∈B ∈ R|B| of the received power values from each transmitter

b ∈ B emitting at the medium power level l = 2. Intuitively, we assume that two points

with similar power vectors have similar behavior with respect to the SINR, and hence they

can be aggregated in the same cluster. This behaviour is independent of the power level

used for this analysis.

We fixed the number of clusters to K and used the k-means++ algorithm implemented

in the Scikit-learn library [119] with the default setting values for the maximum number

of iterations and the relative tolerance, enabling a multistart procedure to improve the
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local solution. The solution returned by the algorithm is made up of the clusters Ci and

their centroids pci with i ∈ 1, . . . ,K, that generally do not correspond to any point pt. We

selected as the representative for each cluster Ci, the receiver t ∈ Ci having the closest pt to

pci .

Depending on the urban and territorial morphology and transmitter positions, clusters

may have different cardinality. Specifically, it is possible to identify areas split into many

small clusters as the variation of the power received differs significantly even in neighboring

points (e.g., in dense urban areas). In other areas, a coarse cluster is sufficient to represent

the behavior of the receivers within it (e.g., in rural areas). This procedure resembles

the widespread coarsening and refinement approach of the METIS algorithm [96], which

suggests a first selection and subsequent refinement where necessary.

The territorial distribution of the testpoints of the Municipality of Bologna is depicted

in Figure 5.2. The blue dots are the 14 078 original testpoints of the Municipality of Bologna

identified by the FUB according to [23, 24, 94]. The black dots are the 4 693 testpoints

selected with the clustering procedure when the number of clusters is fixed to K = 4693

(about one-third of the original testpoints).

Figure 5.2: In black are the testpoints selected with the clustering procedure, and in blue are the
original testpoints of the Municipality of Bologna.

By reducing the number of testpoints and the number of base stations serving each

testpoint, we got a reduced network. From this network, we derived eleven instances (BOV1

to BOV11), each of them differing in the quality of service required (increasing with the

number) in the receivers and in the fraction of the population to be served, as reported in

Table 5.1. The estimate of the upper bound has then been obtained on each instance using

the fixing heuristic.

Compared to the instances we derived for the fixed power case (see Section 5.2.5), we
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observe that the instances used for the variable power case were obtained considering a

more restricted range of the SINR threshold δ: this is because unfortunately both Gurobi

and our fixing heuristic are not in able to find good feasible solutions to be used in the

RCF within the time limit for instances that require high service values (δ > −5 dBW).

Table 5.1: Characteristics of the instances: SINR threshold (δ) and fraction of population to be
served (r).

Instance BOV1 BOV2 BOV3 BOV4 BOV5 BOV6 BOV7 BOV8 BOV9 BOV10 BOV11

δ[dBW] -10 -9,5 -9 -8.5 -8 -7.5 -7 -6.5 -6 - 5.5 - 5

r 1 1 1 1 1 1 1 1 1 0.99 0.99

Results

Here we show the impact of the operations discussed in the previous Sections 5.1.1, 5.1.2,

5.1.3. The tested formulations are described in Table 5.2. In particular, we focus on three

evaluation criteria, namely size, sparsity, quality of the bounds at the root node and the

end of the optimization.

Table 5.2: Characteristics of the tested formulations.

Formulation Characteristics

B Basic formulation (3.7)

B+CPs Formulation (3.7) plus the addition of cutting planes (i.e., VUBs (5.9) and cliques (5.3), (5.4), (5.7))

F Final setting reported in Section 5.1.4

Figures 5.3-5.5 show the average number of variables, constraints and non-zeros of each

formulation respectively. Figures 5.6-5.7 show three box plots, one for each formulation,

displaying the distribution of the data concerning the relative gap at the root node and

the end of the optimization, based on a summary of five numbers (minimum value, first

quartile, median value, third quartile, and maximum value).
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Figure 5.3: Average number of variables in the tested formulations (see Table 5.2).

Figure 5.4: Average number of constraints in the tested formulations (see Table 5.2).

Figure 5.5: Average number of non-zeros in the tested formulations (see Table 5.2).

Graphs in Figures from 5.3 to 5.7 show that:

• formulation B+CPs, leads to a significant improvement in the root relaxation value,

revealing the decisive effect of adding the cutting planes;

• the aggressive reduction scheme in F, also including the RCF procedure, produces
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Figure 5.6: Box plots of the relative gap at the root node in the tested formulations (see Table
5.2).

Figure 5.7: Box plots of the relative gap at the end of the optimization phase in the tested
formulations (see Table 5.2).

a slight worsening of the root bound but leads to a definitely reduced and sparser

formulation;

• we can solve the instances to optimality within the time limit only using formulation

F; however, a good final gap can be reached already using B+CPs.

A comparison between formulation B and formulation F is reported in Table 5.3. The

evaluation metrics considered are: number of variables (NumVars), constraints (NumConstrs)

and non-zeros (NumNZs); maximum value of the big-M (MaxBigM); relative optimality

gap at the root node (RootGap), final relative optimality gap (Gap); number of explored

nodes (Nodes); total solution time (Time). Denoting the optimal value with Opt, the

value of the lower bound at the root node with RootLB, and the value of the best lower

bound with BestLB, the RootGap is computed as 100(Opt-RootLB)/Opt, and the Gap
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as 100(Opt-BestLB)/Opt. We reported in bold the gap of instances solved to optimality

within the time limit.

Table 5.3: Optimization results for the instances BOV1–BOV11 (see Table 5.1): a comparison
between the basic (B) and the final (F) formulations. Time is expressed in seconds.

Instance Formulation NumVars NumConstrs NumNZs MaxBigM RootGap[%] Gap[%] Nodes Time[s]

BOV1 B 633960 638383 256097415 91958,73 100,00 92,31 1484 TL

F 47201 164365 8170212 45979,28 9,97 0,00 83 429,96

BOV2 B 633960 638383 256097415 103179,39 100,00 7,69 1503 TL

F 47201 169027 8185122 103179,20 9,97 0,00 110 534,67

BOV3 B 633960 638383 256097415 115769,18 100,00 69,23 14472 TL

F 47201 174015 8201068 115768,96 9,97 0,00 122 518,33

BOV4 B 633960 638383 256097415 129895,16 92,31 76,92 14505 TL

F 47201 179348 8217919 64947,46 9,97 0,00 129 471,71

BOV5 B 633960 638383 256097415 145744,77 100,00 76,92 12182 TL

F 47201 185052 8265317 145744,49 9,97 0,00 105 541,17

BOV6 B 633960 638383 256097415 161284,63 92,31 76,92 15032 TL

F 47200 190259 8241827 80642,16 9,97 0,00 151 680,76

BOV7 B 633960 638383 256097415 183481,79 92,31 61,54 14708 TL

F 47200 197513 8265097 183481,44 9,97 0,00 293 586,75

BOV8 B 633960 638383 256097415 205869,96 92,31 84,62 14353 TL

F 47201 204542 8322856 205869,56 9,97 0,00 127 598,99

BOV9 B 633960 638383 256097415 230989,89 92,31 69,23 14793 TL

F 47202 212046 8394185 115494,79 9,97 0,00 86 537,43

BOV10 B 633960 638384 256598940 259174,92 90,00 90,00 14756 TL

F 47158 220226 7108664 259174,08 9,63 0,00 37 1922,65

BOV11 B 633960 638384 256598940 290799,04 90,00 90,00 14753 TL

F 47157 229013 7156663 142654,51 9,63 0,00 37 2311,70

TL, time limit reached

Results show that formulation F is definitely reduced in size and sparser than B. This

is mainly due to the presolve operations and the reduced cost fixing procedure. The value

of the largest big-M used in F is half that used in B in half the instances. The quality of

the bounds at the root node is better in F, mainly due to the addition of cutting planes.

Thanks to a good root bound, the number of the explored nodes is heavily reduced in F,

and consequently, the time spent on the branch-and-cut tree search. Overall, solution times

are significantly reduced if we compare F to B. Indeed, none of the basic formulations have

been successfully solved within the time limit of 4 hours, whereas each final formulation

has been solved to optimality in less than 40 minutes.

In the end, formulation F turns out to be much more competitive than the basic formulation

B.

Finally, in Table 5.4 we reported the computational time of every phase of the final

setting F. In particular, by LBTime we denoted the time needed to get the lower bound
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Table 5.4: Solution times on the instances BOV1–BOV11 (see Table 5.1) of the final formulation.
Time is expressed in seconds.

Instance LBTime[s] UBTime[s] SolTime[s] Time[s]

BOV1 34,85 31,53 363,58 429,96

BOV2 33,61 34,56 466,50 534,67

BOV3 32,79 34,88 450,66 518,33

BOV4 37,57 41,40 392,74 471,71

BOV5 33,25 42,21 465,71 541,17

BOV6 39,08 47,49 594,19 680,76

BOV7 34,14 52,14 500,47 586,75

BOV8 33,75 54,54 510,70 598,99

BOV9 36,43 64,36 436,64 537,43

BOV10 47,49 28,61 1846,55 1922,65

BOV11 52,87 29,39 2229,44 2311,70

given by the linear relaxation of the problem, by UBTime the time needed to get an upper

bound using our fixing heuristic, by SolTime the time needed to solve the problem after the

RCF procedure, and by Time the overall solution time given by the sum of the previous

components. The speed with which the instances can be solved using the scheme based on

RCF is due to the speed of calculation of the lower and upper bounds. Both depend on the

good quality of the linear relaxation of the problem, achieved thanks to the inclusion of the

cuts we introduced. Note that for higher quality values, unfortunately the lower bound

gets slightly worse and it is no longer possible to exploit our fixing heuristic. We also tried

to exploit Gurobi as a heuristic to obtain an upper bound on high service instances, but

unfortunately the bounds produced by Gurobi in times compatible with the use of this

procedure were not good enough to actually apply the RCF.

5.2 The fixed-power case

In this section, we focus on the base station deployment problem, considering the power

level as fixed. We discuss how to strengthen the natural formulation of the problem by

means of valid cutting planes and coefficient tightening operations. We also propose several

operations and an aggregation of constraints in order to reduce the problem size.
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5.2.1 Cutting planes

In the fixed-power case, the VUBs become:

xtb ≤ zb t ∈ T , b ∈ B. (5.11)

Moreover, for each testpoint t ∈ T , interferer b ∈ B and server β ∈ B such that the

SINR measured in t and that considers as the only interferer b is below the threshold δ, i.e.

atβ
µ+ atb

< δ (5.12)

we can exclude the possibility that b is activated and simultaneously β serves t using the

clique

zb + xtβ ≤ 1. (5.13)

Using (3.6), we can strengthen the cliques (5.13).

Theorem 5.2.1 Given (t, b, β) ∈ {T ,B,B} such that (5.12) is satisfied for all β ̸= b, the

following cliques are valid inequalities

zb +
∑

β∈B\{b}

xtβ ≤ 1 b ∈ B, t ∈ T . (5.14)

Proof If zb = 1, then each xtβ = 0 (β ̸= b) since the SINRtβ constraint (3.8) is violated. If

instead xtβ = 1 for one β ̸= b, then zb = 0 otherwise the SINRtβ constraint (3.8) is violated.

Hence, we cannot have simultaneously that zb = 1 and
∑

β∈B\{b}

xtβ = 1.

Moreover, inequalities (5.13) are implied by (5.14) as

zb + xtβ ≤ zb +
∑

β∈B\{b}

xtβ ≤ 1.

□

5.2.2 Aggregation of the SINR constraints

To address the numerical criticalities outlined in Section 3.4, we present a reformulation of

the SINR constraints.

Each SINR constraint (3.8) can be strengthen by replacing the zβ with the xtβ as in
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the following:

atβxtβ − δ
∑

b∈B\{β}

atbzb ≥ δµ−Mtβ(1− xtβ) t ∈ T , β ∈ B. (5.15)

Theorem 5.2.2 Inequalities (5.15) are valid for S.

Proof When xtβ = 1, the corresponding inequality of (5.15) becomes atβ−δ
∑

b∈B\{β}

atbzb ≥

δµ which is the required SINR inequality. When xtβ = 0, we get −δ
∑

b∈B\{β}

atbzb ≥ δµ−Mtβ

that is trivially satisfied.

□

Proposition 5.2.3 Inequalities (3.8) are implied by inequalities (5.11) and (5.15).

Proof For each t ∈ T and β ∈ B, inequalities (3.8) and (5.15) can be written respectively

as zβ ≥ h
atβ

and xtβ ≥ h
atβ

where h = δ
∑

b∈B\{β} atbzb + δµ − Mtβ(1 − xtβ) and using

atβ > 0. Inequality (5.11) can be written as zβ − xtβ ≥ 0. Hence we get that inequality

(3.8) can be obtained summing up inequalities (5.11) and (5.15), meaning that it is implied

by them.

□

In order to reduce the size of the problem, we aggregate constraints (5.15) using (3.6),

producing a new form of SINR constraints that we name aggregate SINR constraints

(1 + δ)
∑
b∈B

atbxtb − δ
∑
b∈B

atbzb ≥ δµ−Mt(1−
∑
b∈B

xtb) t ∈ T (5.16)

where the big-M term depends only on the testpoint t and could be set to

Mt = δµ+ δ
∑
b∈B

atb ≥ Mtβ.

Theorem 5.2.4 Inequalities (5.16) are valid for S.

Proof Given t ∈ T , we can have the following cases according to (3.6): t is covered by

exactly one base station β, or t is not covered by any base station. In the former case,

thanks to (3.6), the sum
∑
b∈B

atbxtb reduces at most to a single element atβxtβ, being β
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the unique transmitter serving testpoint t, and the same is for
∑
b∈B

xtb = xtβ. Thus (5.16)

reduces to

(1 + δ)atβxtβ − δ
∑
b∈B

atbzb ≥ δµ−Mt(1− xtβ).

Since xtβ = 1 implies zβ = 1, we get that (5.15) is satisfied . In the latter case, no

transmitter is serving testpoint t and we get
∑
b∈B

atbxtb = 0 and
∑
b∈B

xtb = 0. Thus (5.16)

reduces to

−δ
∑
b∈B

atbzb ≥ δµ−Mt

which satisfy (5.15) when xtβ = 0.

□

We observe that Theorems 5.2.2 and 5.2.4 and Proposition 5.2.3 allow using the aggregate

constraints (5.16) for replacing all the SINR constraints (3.8) in problems (3.9). Indeed,

for each receiver t the aggregate SINR constraint is only one, whereas the SINR constraints

are m = |B|, meaning that we can significantly reduce the number of constraints by using

the aggregate constraints only.

5.2.3 Presolve operations

We describe how to reduce the model size by eliminating some xtb variables a priori and

how to tighten the formulation by reducing the value of the big-M .

Reducing the number of servers

For each testpoint t, we select a subset of servers St corresponding to the transmitters

emitting the strongest signals received in t. Excluding the possibility of serving the full

target area with a single transmitter, we can consider the best-case scenario as the one with

only two transmitters deployed, where one transmitter works as a server and the other as an

interferer. Hence, for each testpoint t, we fix xts = 0 for all those transmitters s ∈ St such

that the SINR is below the threshold δ for each possible interferer b ∈ B : b ̸= s. Namely,

we eliminate all xts such that

SINRts =
ats

µ+ atb
< δ ∀b ∈ B \ {s}
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which can be easily verified directly with

SINRmax
ts =

ats
µ+ ath

< δ, with ath := min
b∈B\{s}

{atb}.

Heuristic sparsification

We set a minimum threshold ε on the received power below which the received power can

be considered null. Namely, we set

atb =


atb if atb ≥ ε

0 otherwise.

This allows us to reduce the size of the problem by eliminating some xtb variables a priori.

Coefficient tightening by big-M reduction

We can tighten the formulation by computing the smallest possible big-M . Consider the

big-M suitable for the aggregate SINR constraints, namely

Mt = δµ+ δ
∑
b∈B

atb for t ∈ T .

To decrease its value, we replace the sum of the signal power received from all the transmitters

in testpoint t with the sum of the strongest interferers. In particular, only the strongest

α interferers might be considered, where α is an upper bound of the optimal number of

activated base stations, i.e. α ≥
∑
b∈B

z∗b with (x∗, z∗) optimal solution. Given α, the big-M

can be computed as

M ′
t = δµ+ δ

∑
b∈At

atb for t ∈ T (5.17)

where At is the set of the α base stations emitting the strongest signals received in t, i.e.

|At| = α. The better is the bound α, the smaller is the big-M . Hence, the estimate of α

must be as accurate as possible.

5.2.4 The final formulation

The final formulation (F) we propose differs from the initial formulation (3.9) since:

(i) it includes the addition of the VUBs (5.11) and the cliques (5.14);
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(ii) it contains the aggregate SINR constraints (5.16) instead of the SINR constraints

(3.8);

(iii) the big-M appearing in the aggregate SINR is formulated as in (5.17);

(iv) the number of servers has been reduced according to the first two operations described

in Section 5.2.3.

5.2.5 Computational experiments

We compare the results obtained using formulation (3.9) – that we denote as the basic

formulation, or B – and the final setting presented in 5.2.4 – that we denote as F – to solve

the base station deployment problem. The code has been implemented in Python, and

the experiments have been carried out on a Ubuntu server with an Intel(R) Xeon(R) Gold

5218 CPU running at 2.30 GHz, with 96 GB of RAM and 8 cores. Gurobi Optimizer 10.0.1

[88] with default settings has been employed as an MIP solver. We set a time limit of four

hours for computation time.

The testbed

We obtained the instances from the same testbed previously described in Section 5.1.5. We

here underline a few differences between the variable-power case and the fixed-power case.

To generate the power data, the transmitter power emission was set at the mean value of

40 W .

From the reduced network, we derived ten instances (BOF1 to BOF10), each of them

differing in the quality of service required (increasing with the number) in the receivers

and in the fraction of the population to be served, as reported in Table 5.5. Not to affect

the solution time, we fixed a priori the upper bounds α to small percentages of activated

transmitters (15%, about 10% and 5%); a posteriori, we verified that the optimal number

of activated transmitters was lower than α. An estimate of α can also be obtained using a

heuristic. We observe that the instances used for the fixed-power case have been obtained

considering a bigger range of the SINR threshold δ and are indeed more representative than

the instances used in the variable-power case.

Results

Here we show the impact of the operations discussed in the previous Sections 5.2.1, 5.2.2,

5.2.3. The tested formulations are described in Table 5.6. In particular, we focus on four

evaluation criteria, namely size, sparsity, quality of root bounds, and times.
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Table 5.5: Characteristics of the instances: SINR threshold (δ) and fraction of population to be
served (r).

Instance BOF1 BOF2 BOF3 BOF4 BOF5 BOF6 BOF7 BOF8 BOF9 BOF10

δ[dBW] -10 -8,5 -7,5 -6 -5 -3 0 +3 +5 +7

r 1 1 1 1 0.99 0.95 0.85 0.75 0.70 0.65

Table 5.6: Characteristics of the tested formulations.

Formulation Characteristics

B Basic formulation (3.9)

B+CPs Formulation (3.9) plus the addition of cutting planes (i.e., VUBs (5.11) and cliques (5.14))

B+CPs+Agg Formulation B+CPs, plus the replacement of the SINRs (3.8) with the aggregate SINRs (5.16)

F Final setting reported in Section 5.2.4

Figures 5.8-5.10 show the average number of variables, constraints and non-zeros of each

formulation respectively. Figures 5.11-5.12 shows four box plots, one for each formulation,

displaying the distribution of the data concerning the relative gap at the root node and the

computational time based on a summary of five numbers (minimum value, first quartile,

median value, third quartile, and maximum value).

Figure 5.8: Average number of variables in the tested formulations (see Table 5.6).

Graphs in Figures from 5.8 to 5.12 show that:

• formulation B+CPs, leads to a significant improvement in the root relaxation value,

revealing the decisive effect of adding the cutting planes;

• the aggregation of the SINR constraints in formulation B+CPs+Agg involves, in

some instances, a slight worsening of the bounds but leads to a definitely reduced

and sparser formulation;

• sparsity continues to increase after carrying out coefficient tightening operations:

Alice Calamita 77



5.2. The fixed-power case

Figure 5.9: Average number of constraints in the tested formulations (see Table 5.6).

Figure 5.10: Average number of non-zeros in the tested formulations (see Table 5.6).

Figure 5.11: Box plots of the relative gap at the root node in the tested formulations (see Table
5.6).

formulation F is characterized by fewer non-zeros and also by fewer variables and

constraints.
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Figure 5.12: Box plots of the computational times in the tested formulations (see Table 5.6).

A comparison between formulation B and formulation F is reported in Table 5.7. The

evaluation metrics considered are: number of variables (NumVars), constraints (NumConstrs)

and non-zeros (NumNZs); relative optimality gap at the root node (RootGap), final relative

optimality gap (Gap); number of explored nodes (Nodes); total solution time (Time).

Denoting the optimal value with Opt, the value of the lower bound at the root node with

RootLB, and the value of the best lower bound with BestLB, the RootGap is computed as

100(Opt-RootLB)/Opt, and the Gap as 100(Opt-BestLB)/Opt. We reported in bold the

gap of instances solved to optimality within the time limit.

Results show that formulation F is definitely reduced in size and sparser than B. This is

mainly due to the aggregation of the constraints and the coefficient tightening, as previously

discussed. The quality of the bounds at the root node is better in F, mainly due to the

addition of cutting planes. In some instances (e.g., BOF6, BOF8–BOF10), the problem

formulated with F is even solved at the root node. Thanks to a good root bound, the

number of the explored nodes is heavily reduced in F, and consequently, the time spent

on the branch-and-cut tree search. Overall, solution times are significantly reduced if we

compare F to B. Indeed, only BOF4 has been successfully solved within the time limit of

4 hours using formulation B, whereas each instance has been solved to optimality in less

than 1 hour and 30 minutes using formulation F.

In the end, formulation F turns out to be much more competitive than the basic formulation

B.

We refer the reader to Appendix A for the figures that show the assignment of testpoints

to each activated base station according to the optimal solutions found in the instances.
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Table 5.7: Optimization results for the instances BOF1–BOF10 (see Table 5.5): a comparison
between the basic (B) and the final (F) formulations. Time is expressed in seconds.

Instance Formulation NumVars NumConstrs NumNZs RootGap[%] Gap[%] Nodes Time[s]

BOF1 B 633690 638248 86210410 100.00 61.54 14825 TL

F 409434 427433 2102620 7.55 0.00 35 5283.24

BOF2 B 633690 638248 86210410 92.31 76.92 29755 TL

F 409434 429434 2115448 7.92 0.00 79 1246.83

BOF3 B 633690 638248 86210410 92.31 84.62 14964 TL

F 409434 430889 2124711 8.01 0.00 80 1682.48

BOF4 B 633690 638248 86210410 92.31 0.00 4114 4470.41

F 433907 409434 2143364 7.88 0.00 124 1164.48

BOF5 B 633690 638249 86711935 90.00 90.00 29208 TL

F 409434 436297 2481646 8.87 0.00 41 1907.63

BOF6 B 633690 638249 86711935 85.71 85.71 30235 TL

F 409434 443191 2520896 0.00 0.00 1 1618.57

BOF7 B 633690 638249 86711935 80.00 80.00 29993 TL

F 409434 462855 2630988 17.97 0.00 148 2399.62

BOF8 B 633690 638249 86711935 75.00 75.00 30075 TL

F 409434 498128 2859026 0.00 0.00 1 1324.79

BOF9 B 633690 638249 86711935 66.67 66.67 44649 TL

F 409434 526184 3066771 0.00 0.00 1 1594.35

BOF10 B 633690 638249 86711935 66.67 66.67 44492 TL

F 409434 558474 3315367 0.00 0.00 1 4144.37

TL, time limit reached

5.3 Critical analysis of the model

In the previous sections, we discussed how to accelerate the solution of WND problems

requiring service and coverage requirements. In this chapter, we take under consideration

the modeling of an additional requirement which is usually not taken into account in the

literature, but could have a huge impact on the optimal solution of the problem: the (finite)

capacity of the transmitters. We also report the modeling of another phenomenon, the

electromagnetic field produced by the activation of the antennas.

We only discuss the modeling of these requirements, without presenting any compu-

tational experiments for lack of data. However, we believe that the modeling is itself

interesting for the reader, and represents a first step towards a future study that would

take under consideration these aspects.
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Capacity constraints

Capacity constraints can be used to enforce a maximum number of users per transmitter

and are based on a target user data rate. In particular, by assuming that the users have a

target data rate (DR) that they aim to achieve in downlink, we can obtain the maximum

number of users u that any transmitter can serve simultaneously as (see [83])

u = ⌊B × SE

DR
⌋

in which the numerator is the cell capacity, given by the product between the bandwidth B

and the downlink spectral efficiency SE.

Capacity constraints can be formulated as

ϵ
∑
t∈T

dtxtb ≤ u b ∈ B

where the number of users dt inside testpoints t ∈ T that are served by transmitter b ∈ B

must be not greater than the number of users u that b can serve at the same time. The

parameter dt can be extracted from population/traffic data in t, whereas ϵ ∈ [0, 1] is a

penetration factor of the technology1.

Capacity constraints can be tightened by adding the variable z on the right hand side,

namely

ϵ
∑
t∈T

dtxtb ≤ u
∑
l∈L

zbl b ∈ B.

For the fixed-power case, they become

ϵ
∑
t∈T

dtxtb ≤ uzb b ∈ B.

Electromagnetic field constraints

Another aspect we did not consider, that was recently studied in the literature, concerns

the electromagnetic field emissions (EMF). A measure used to evaluate the EMF emissions

is the power density (see [41]). To guarantee that the overall power density measured in a

testpoint t ∈ T is below the limit lt, we can use the so-called EMF constraints, introduced

in [41]. These constraints are defined over all the testpoints that are not falling in the

exclusion zones of the installed base stations: indeed these testpoints are not subject to the

EMF limits defined for the general public as they are too close to the activated transmitters.

1E.g., ϵ = 0.3 means that we estimate that only 30% of the population makes use of that technology.
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We focus on the fixed-power case first. To identify the testpoints that must be excluded,

the binary variables wt are introduced. In particular, wt is defined as follows

wt ≥ Izonetb zb t ∈ T , b ∈ B

wt ≤
∑
b∈B

Izonetb zb t ∈ T

where Izonetb is a binary input parameter taking value 1 if testpoint t is inside the exclusion

zone of transmitter b. This means that wt is activated if testpoint t is inside at least

one exclusion zone and it is deactivated if t is outside the exclusion zones of all installed

transmitters. The EMF constraints are then defined as follows

p̃baset (1− wt) +
∑
b∈B

p̃addtb (1− wt)zb ≤ lt t ∈ T . (5.18)

In (5.18), the power density is modeled through the coefficients p̃addtb and p̃baset . In particular,

the total power density is given by the contributions from the newly installed base stations

(
∑

b∈B p̃addtb zb) as well as the ones from the already installed base stations (p̃baset ). The limit

lt established by the National law could depend on the characteristics of the testpoint t:

e.g., the limits on residential areas are different from those on general public areas. The

term (1−wt) is used in such a way that a testpoint t falling inside the exclusion zone of an

installed base station is not considered when the power density is evaluated against the

limits.

Note that constraints (5.18) are nonlinear, therefore the authors of [41] linearized them

through the McCormick envelopes. Namely, they introduce the binary variables ytb defined

as

ytb ≤ 1− wt t ∈ T , b ∈ B

ytb ≤ zb t ∈ T , b ∈ B

ytb ≥ zb − wt t ∈ T , b ∈ B

to replace the nonlinear product (1− wt)zb in (5.18). Hence, the EMF constraints become

p̃baset (1− wt) +
∑
b∈B

p̃addtb ytb ≤ lt t ∈ T .

For the variable-power case, we can simply replace zb with
∑
l∈L

zbl.

Alice Calamita 82



5.4. Conclusions

5.4 Conclusions

The design of wireless networks is a typical problem in the telecommunications sector, with

relevant practical applications. Due to the increasing size of the new generation networks,

co-existing in an extremely congested radio spectrum and subject to local and international

constraints, determining suitable transmitter locations and power emissions has become

an increasingly challenging task. Traditional design methods employed by practitioners,

relying on trial-and-error supported by simulation, have demonstrated various limitations.

Therefore, optimization approaches have become indispensable for cost reduction and

meeting user-demanded service quality standards.

Since the early 1980s, several optimization models have been developed for designing wireless

networks. However, the natural formulation on which most models are based presents

severe limitations since it involves numerical issues in the problem-solving phase, which

emerge even in small instances, preventing the solution of instances of practical interest.

Indeed, the constraint matrices of these models contain coefficients that range in a huge

interval, as well as large big-M leading to weak bounds.

This chapter addresses two primary wireless network design problems: (i) the site and

the power assignment problem, where power is allocated among a set of discrete values,

and (ii) the base station deployment problem, assuming fixed-power emissions.

For the variable-power case, we worked on improving the natural formulation proposed

in the literature by introducing several presolve operations to reduce the number of problem

variables and overall problem size. Additionally, we implemented cliques and variable

upper bounds to cut off fractional solutions, accelerating solution times. Furthermore, we

proposed an aggressive reduction scheme based on a reduced cost fixing procedure that

leads to the reduction of the big-M values, strengthening the formulation and reducing the

problem size.

For the fixed-power case, we intervened in the natural formulation of the problem

by carrying out both strengthening operations (i.e., additions of variable upper bounds

and cliques, variable replacement, big-M reduction) and size reduction operations (i.e.,

constraints aggregation, heuristic coefficient tightening).

The reformulation and operations we introduced enabled us to efficiently solve large

instances of the problem to optimality, in solution times consistent with planning operations,

for both the fixed and the variable-power case. All the tests were conducted on realistic

LTE data from the Municipality of Bologna in Italy.

We remark that the reduced cost fixing procedure – employed in the variable-power
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case – should only be used when proper upper bounds can be computed quickly: in this

regard, our fixing heuristic played a crucial role in the success of this approach. However,

finding an upper bound is not always trivial, especially when high-quality service is required.

Indeed, we could test our reduced cost fixing approach only on instances requiring low to

medium service.

To conclude, this chapter has provided a comprehensive exploration of the wireless

network design problem from a modeling perspective. Emphasis was placed on improving

the natural formulation of the problem with the final scope of tackling real-world scenarios.

It is noteworthy to mention that the scope of this research did not delve deeply into ad

hoc methods for solving the problem, with the exception of reduced cost fixing – which

was found to be an efficient methodology only in a limited application area. This approach

was taken in line with the specifications from the FUB, which sought solutions that would

be straightforward for practitioners (namely, telecommunication operators) to implement.

While this constraint offered a clear direction for our current research, future work could

certainly expand upon this by investigating specialized methods for solving the wireless

network design problem.

In future work, we also plan to investigate how the inclusion of capacity constraints

in the problem formulation affects the optimal solution of the problem. In fact, even if

capacity constraints are usually not taken into consideration in the literature, we believe

they can actually influence the topology of the solution, and consequently the coverage

achieved. We also intend to consider the modeling of the electromagnetic field, produced

by the activation of the base stations, to determine if the solution complies with National

law limits and, if not, to assess how these limits impact solution topology.
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Chapter 6

The congested partial set covering

location problem

6.1 Introduction

In Chapter 4 we discussed the congested facility location problem and the partial set

covering location problem. The former was introduced in 1995 by Desrochers et al. [54] to

prevent the overloading effect of the facilities and induce better resource allocation. The

latter was introduced in 1999 by Daskin and Owen [51] to mitigate the drawbacks of the

well-known set covering location problem, yielding to costly and impractical solutions due

to its full coverage requirement. Despite their practical relevance, both the PSCLP and

the CFLP have received very little attention in the scientific literature. However, recent

works [45, 68, 69] showed promising results given by exact methods based on Benders

decomposition for the deterministic PSCLP and CFLP. Moreover, the literature on PSCLP

gave no consideration to the inherent volatility of the parameters used in the mathematical

model and the, consequently, unreliable deterministic solution. Indeed, uncertainty has

been investigated in another variant of set covering location, that is the maximal covering

location problem, but not specifically on the PSCLP. For all these reasons, we address the

PSCLP in a new quadratic and robust variant, which considers the minimization of the

congestion at the facilities and the protection against the changes in demand.

Hence, the problem we introduce in this chapter is a novel problem that we denote

as the congested partial set covering location problem (CPSCLP), a variant of the facility

location problem that may arise in the context of designing telecommunication networks,

or (more in general) in service and communications networks. The problem consists of

choosing where to locate the facilities among the candidate sites that can satisfy a (partial)
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target demand, in such a way as to minimize the cost of facility opening and congestion.

This problem can be seen as a telecommunication problem in which there is the need

to place transmitters (the facilities), minimizing the cost of the infrastructure and the

congestion at the transmitters. In fact, the more the demand associated with the transmitter,

the less the quality of service (i.e., the data rate) given to the users.

We study the CPSCLP under the assumption of uncertain customer demand. In order

to create a reliable and efficient network architecture that is robust against demand changes,

we propose to deal with data uncertainty using the approach known as Γ-robustness (see

[27]). For an introduction to the Γ-robustness and optimization under uncertainty, we refer

the reader to Chapter 2.2. The basis of this approach is that we assume that nature is

restricted in its behaviour, in the sense that at most Γ customers are supposed to deviate

from their expected demand and adversely affect the feasibility and the optimality of the

deterministic solution. Uncertainty in customer demand is quite realistic as in general the

demand comes out from an estimate due to its inner volatility or a lack of historical data.

In the following sections, we formulate the deterministic problem and derive its robust

counterpart, which consists of optimizing against the worst-case scenario. We then refor-

mulate the robust counterpart as a mixed-integer second-order cone program using the

perspective reformulation and finally address its solution with Benders decomposition-based

approaches.

The content of this chapter is part of a paper [35] with Professors Ivana Ljubic from

ESSEC Business School of Paris and Laura Palagi from Sapienza University of Rome. The

paper has been recently submitted for publication in a journal.

6.2 The deterministic problem

We are given a set I of potential facility locations with opening cost fi ≥ 0 for i ∈ I, and a

set J of customer locations such that each customer j ∈ J is associated with a demand

dj ≥ 0. For each customer j, we are also given a subset I(j) ⊆ I of facility locations

that can “cover” j, i.e., that can fully serve the demand dj . Similarly, let J(N) ⊆ J for a

subset of facilities N ⊆ I, be the subset of customers that can be covered by N , and let

J(i) = J({i}), for i ∈ I.

Given a parameter 0 < D ≤
∑

j∈J dj , CPSCLP aims at identifying a subset of facilities

to open in order to ensure that the total served customer demand is at least D, while

minimizing the overall costs, given by facility opening expenses and congestion cost.

For each i ∈ I, the binary variable yi is set to one if facility i is open, and to zero
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otherwise. For each i ∈ I and j ∈ J , the continuous allocation variable xij ≥ 0 denotes the

fraction of the demand of customer j ∈ J served by facility i ∈ I.

We observe that we chose to use fractional xij motivated by the telecommunication

context. Indeed, if we consider the customer as a representative user – namely a sort of

superuser that represents multiple users, just like in wireless network design – it could be

useful to allow for fractional demand satisfaction, i.e. for fractional xij . This is because if

we only allow for full demand satisfaction or nothing (xij ∈ {0, 1}), we may end up with

certain superusers that are not covered at all because their demand cannot be satisfied

in full. Instead, allowing fractional xij , part of a superuser demand can be served too.

Furthermore, the demand from a superuser can be split among multiple transmitters (every

transmitter may serve only some users inside the superuser), which is amenable when we

minimize congestion costs.

To model congestion cost, we follow what is done in the literature of CFLP [54, 68], in

which to penalize each additional unit of demand served by a given facility, convex quadratic

cost functions are used. Specifically, we introduce the auxiliary aggregated variables vi ≥ 0

for each i ∈ I, defined as

vi =
∑
j∈J

djxij

denoting the total demand served by facility i, also known as facility load. Then, given a

function F (·), which is assumed to be non-negative, continuous and convex for non-negative

arguments, the congestion cost at a facility i ∈ I is given by F (vi)vi. We can assume that

F (t) is a linear function, i.e., given the non-negative input coefficients a and b, we have

that F (t) = at+ b.

The problem at hand can be modeled as follows

min
∑
i∈I

fiyi + b
∑
i∈I

vi + a
∑
i∈I

v2i (6.1)

s.t.
∑
i∈I

∑
j∈J

djxij ≥ D (6.2)

vi =
∑
j∈J

djxij i ∈ I (6.3)

∑
i∈I(j)

xij ≤ 1 j ∈ J (6.4)

0 ≤ xij ≤ yi j ∈ J, i ∈ I(j) (6.5)

yi ∈ {0, 1} i ∈ I.
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The objective (6.1) aims to minimize the sum of the facility opening cost and the

congestion cost. Constraint (6.2) ensures the total customer demand served is at least D.

Constraints (6.3) define the facility load. Assignment constraints (6.4) make sure that the

fraction of covered demand of a customer does not exceed the unit. Finally, constraints

(6.5) ensure that allocation to a facility is only possible if it is open.

We can observe that: (i) the problem is a mixed-integer non-linear program, (ii) the

constraints are all linear, (iii) the objective function is separable, and is made of a linear

component in y and a convex quadratic component in v, (iv) the problem is NP-hard since

it is a generalization of the traditional set covering location problem, which is NP-hard [51].

6.3 The robust counterpart of the problem

In real-world scenarios, customer demand often varies or is difficult to estimate. To capture

this uncertainty, we assume that each entry dj , j ∈ J of the vector of demand d is modeled

as an independent, symmetric and bounded random variable (with unknown distribution)

d̃j , j ∈ J that takes values in [dj − d̂j , dj + d̂j ]. We allow the possibility that the deviations

d̂j from the nominal coefficients dj could also be zeros, i.e. that d̂j = 0 for some j ∈ J .

We adopt the notion of protection introduced by Bertsimas and Sim in [27] known as

Γ-robustness, which assumes that only a subset of the coefficients of d will deviate from

their nominal values, adversely affecting the solution. Hence, we introduce an integer

number Γ, taking values in the interval [0, |J |], that limits the number of demand deviations.

Parameter Γ controls the level of robustness against the solution: if Γ = 0, we completely

ignore the uncertainty (deterministic setting), while if Γ = |J |, we are considering all

possible demand deviations (which is the most conservative strategy).

We note that the vector of demand d is involved in congestion and coverage affecting

both optimality and feasibility. By protecting against the uncertainty, we mean that we are

interested in finding an optimal solution that:

1. optimizes against all scenarios under which up to Γ demand coefficients can vary in

such a way as to maximally influence the objective; the worst-case scenario is given

by increasing demand;

2. is protected against all cases in which up to Γ demand coefficients change affecting

the feasibility; the worst-case scenario is given by decreasing demand.

We observe that the two worst-case realizations play against each other.
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We now introduce a robust counterpart of the problem, that optimizes against the

worst-case realizations under demand uncertainty and reads

min
∑
i∈I

fiyi + b
∑
i∈I

vi + a
∑
i∈I

v2i (6.6)

s.t. vi =
∑
j∈J

djxij + max
{S|S⊆J,|S|≤Γ}

∑
j∈S

d̂jxij

 i ∈ I (6.7)

∑
i∈I

∑
j∈J

djxij − max
{S|S⊆J,|S|≤Γ}

∑
i∈I

∑
j∈S

d̂jxij

 ≥ D (6.8)

∑
i∈I(j)

xij ≤ 1 j ∈ J (6.9)

0 ≤ xij ≤ yi j ∈ J, i ∈ I(j) (6.10)

yi ∈ {0, 1} i ∈ I (6.11)

where, for a given Γ and allocation choice xij , the load vi (and consequently the objective

function) is now taking into account also the sum of the Γ largest deviations in case the

demand is increasing from the nominal value, whereas in the covering constraint we are

considering the sum of the Γ largest deviations in case the demand is decreasing from the

nominal value. We observe that we can relax constraints (6.7) replacing the equalities with

inequalities of type ≥. By applying strong duality to the inner maximization terms in

(6.7) and (6.8), we can derive the following equivalent convex MIQP model of the robust

counterpart

min
(τ,ρ,π,σ)≥0, y∈{0,1}|I|

∑
i∈I

fiyi + b
∑
i∈I

vi + a
∑
i∈I

v2i (6.12)

s.t. vi −
∑
j∈J

djxij −

Γρi +
∑
j∈J

σij

 ≥ 0 i ∈ I (6.13)

∑
i∈I

∑
j∈J

djxij −

Γτ +
∑
j∈J

πj

 ≥ D (6.14)

τ + πj ≥
∑
i∈I

d̂jxij j ∈ J (6.15)

ρi + σij ≥ d̂jxij j ∈ J, i ∈ I (6.16)∑
i∈I

xij ≤ 1 j ∈ J (6.17)

0 ≤ xij ≤ yi j ∈ J, i ∈ I(j) (6.18)
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which is a much more computationally tractable formulation, having a (separable) convex

quadratic objective function and all linear constraints. We denote formulation (6.13)-(6.18)

as the extended formulation.

Theorem 6.3.1 The extended formulation (6.13)-(6.18) is equivalent to (6.7)-(6.11).

Proof We show how to get formulation (6.13)-(6.18), following what is done in Theorem 1

of [27]. Given i ∈ I and a vector x⋆i , we define the protection function α representing the

sum of the Γ largest deviations as

α(x⋆i ) = max
{S|S⊆J,|S|≤Γ}

∑
j∈S

d̂jx
⋆
ij

 .

By introducing the binary variables wij , the protection function α can be equivalently

formulated as

α(x⋆i ) = max
∑
j∈J

d̂jx
⋆
ijwij

s.t.
∑
j∈J

wij ≤ Γ

wij ∈ {0, 1} j ∈ J

which equals to

α(x⋆i ) = max
∑
j∈J

d̂jx
⋆
ijwij

s.t.
∑
j∈J

wij ≤ Γ (ρi)

0 ≤ wij ≤ 1 j ∈ J (σij)

(6.19)

where we relaxed the integrality of variables wij since the matrix of the constraints is totally

unimodular and Γ is integral (linear programs of this form have integral optima). Clearly

the optimal solution of Problem (6.19) consists of Γ variables at 1. We next consider the

dual of Problem (6.19)

min Γρi +
∑
j∈J

σij

s.t. ρi + σij ≥ d̂jx
⋆
ij j ∈ J

σij ≥ 0 j ∈ J

ρi ≥ 0.

(6.20)
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By strong duality, since Problem (6.19) is feasible and bounded for all Γ ∈ [0, |J |], then the

dual problem (6.20) is also feasible and bounded and their objective functions assume the

same value in an optimal solution. Hence, α(x⋆i ) is equal to the optimal value of Problem

(6.20) for each i ∈ I.

Then, given a vector x⋆, we define the protection function β representing the sum of

the Γ largest deviations as:

β(x⋆) = max
{S|S⊆J,|S|≤Γ}

∑
i∈I

∑
j∈S

d̂jx
⋆
ij

 .

By introducing the binary variables wij , the protection function β can be equivalently

formulated as

β(x⋆) = max
∑
i∈I

∑
j∈J

d̂jx
⋆
ijwj

s.t.
∑
j∈J

wj ≤ Γ

wj ∈ {0, 1} j ∈ J

which equals to

β(x⋆) = max
∑
i∈I

∑
j∈J

d̂jx
⋆
ijwj

s.t.
∑
j∈J

wj ≤ Γ (τ)

0 ≤ wj ≤ 1 j ∈ J (πj)

(6.21)

where we relaxed the integrality of variables wij since the matrix of the constraints is totally

unimodular and Γ is integral (linear programs of this form have integral optima). Clearly

the optimal solution of Problem (6.21) consists of Γ variables at 1. We next consider the
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dual of Problem (6.21)

min Γτ +
∑
j∈J

πj

s.t. τ + πj ≥
∑
i∈I

d̂jx
⋆
ij j ∈ J

πj ≥ 0 j ∈ J

τ ≥ 0.

(6.22)

By strong duality, since Problem (6.21) is feasible and bounded for all Γ ∈ [0, |J |], then the

dual problem (6.22) is also feasible and bounded and their objective functions assume the

same value in an optimal solution. Hence, β(x⋆) is equal to the optimal value of Problem

(6.22).

□

Interpretation of the variables ρ,σ, τ ,π

We can give the following interpretation to the dual variables ρ, σ, τ, π of the convex

reformulation of the robust counterpart of the problem. For instance, let us consider the

protection function β used in the covering constraint. When we go to the dual, we replace

the primal objective representing the sum of the Γ largest deviations with the sum of the

components of the dual variables, namely with Γτ +
∑

j∈J πj .

Suppose to sort all the deviations d̂j
∑

i∈I x
⋆
ij for a given allocation x⋆ij from the largest

to the smallest. We then consider only the Γ largest deviations, hence the first Γ. Now,

we fix τ to the Γ-th (sorted) deviation, and πj to what remains of the j-th deviation if

we subtract τ , as depicted in Figure 6.1. Then, the sum of the components of the dual

variables represents exactly the sum of the Γ largest deviations and the meaning of each

dual variable is explained.

Similarly, we can derive the meaning of the other dual variables ρ representing the Γ-th

deviation and σ representing what remains of the deviation once we subtract ρ.

An example

Suppose we are given a problem having five possible locations for the facilities (|I| = 5)

and six customers (|J | = 6). In Figure 6.2 we represent this problem using the white

vertices for the facilities and the grey vertices for the customers. The dotted lines indicate
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Figure 6.1: Meaning of dual variables in the covering constraint of the robust congested partial
set covering location problem.

potential links between facilities and customers; the absence of a dotted line between a

facility i and a customer j implies that facility i cannot serve customer j (for example

because the distance between them is greater than the given radius of coverage). We set

1

2

3

4

5

1

2

3

4

5

6

Figure 6.2: Possible links between facilities (white vertices) and customers (grey vertices).

parameter Γ = 4, implying that at most four customers (out of six) will deviate from

their nominal demand, representing a pretty conservative scenario. The costs for opening

the facilities are given by f = [27 34 50 80 79]T . The nominal demands are given

by d = [92 15 71 51 59 50]T , and the deviations from the nominal demands are

d̂ = [17 3 0 6 13 15]T . The target coverage is set at D = 70%
∑

j∈J dj .

Figures 6.3-6.4 present the optimal solutions under deterministic and robust settings

for the given value of Γ. The robust solutions are obtained considering three different cases:

protection against uncertainty only in congestion, only in coverage, and in both congestion

and coverage.

In the case we consider an increasing demand affecting the load, what happens is that we

face more congestion cost and the optimal value (ObjV al) increases. If we instead consider
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Deterministic
ObjV al = 301.15

v1 = 78.87

v2 = 78.87

v3 = 78.87
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0.98

0.48

0.38

1

0.10

0.52

0.62

0.55

0.10

Robust in congestion & coverage
ObjV al = 426.27

v1 = 108.83

v2 = 99.14

v3 = 99.14

Figure 6.3: Optimal solution and value (ObjV al) of the deterministic case on the left. Optimal
solution and value (ObjV al) of the robust case in which we protect against uncertainty in both
congestion and coverage on the right. Open (closed) facilities are represented by the light-blue
(white) vertices, customers by the grey vertices. The value vi next to facility i is its load, whereas
the value on the line between i and j is the fraction of demand xij of costumer j served by facility i.
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0.68

0.34

0.16

0.14

0.70

0.66
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Robust in congestion
ObjV al = 348.82

v1 = 90.05

v2 = 87.39

v3 = 87.39
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1

1

0.32

1
0.68

0.51

0.20

Robust in coverage
ObjV al = 356.80

v1 = 92.00

v2 = 88.63

v3 = 88.63

Figure 6.4: Optimal solution and value (ObjV al) of the robust case in which we protect against
uncertainty in congestion on the left. Optimal solution and value (ObjV al) of the robust case
in which we protect against uncertainty in coverage on the right. Open (closed) facilities are
represented by the light-blue (white) vertices, customers by the grey vertices. The value vi next to
facility i is its load, whereas the value on the line between i and j is the fraction of demand xij of
costumer j served by facility i.

a decreasing demand affecting coverage, solving the robust counterpart of the problem

leads to covering a demand higher than the target demand, increasing the facility loads and

again congestion cost. When we consider both uncertainties, we end up covering more than

D and considering more load, with a double impact on congestion cost. Additionally, the

robust model differentiates between customers whose deviation from the nominal demand
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could highly affect the coverage and/or the congestion and customers who are not affecting

the deterministic solution at all. Hence, there is this extra information in the model, which

may influence the distribution of the demand among the facilities and the coverage among

the customers. Remember that we are looking for partial set covering, and not full coverage.

6.3.1 Perspective reformulation of the robust counterpart

The extended formulation of the robust counterpart of the problem belongs to the the class

of convex MINLPs having “off/on” decisions forcing the continuous variables either to be

0 or to be in a convex set. A very effective reformulation technique that can be applied

to such situations is the so-called perspective reformulation, described in [74, 86] and in

Chapter 2.1.1, which is based on the property that the perspective of a convex function is

itself convex; this property can be used to construct a tighter reformulation.

To derive the perspective reformulation, we introduce the non-negative variables ui for

i ∈ I, and use them to replace the quadratic term v2i in the objective function. We thus

impose that v2i ≤ ui, and replace the convex function v2i with its perspective defined by

yi(vi/yi)
2 if yi > 0, and zero if yi = 0. Then, the perspective reformulation of the robust

counterpart of the problem reads as follows

min
(u,v,τ,ρ,π,σ)≥0, y∈{0,1}|I|

∑
i∈I

fiyi + b
∑
i∈I

vi + a
∑
i∈I

ui

s.t. v2i ≤ uiyi i ∈ I (6.23)

(6.13) − (6.18)

where constraints (6.23) are rotated second-order cone (SOC) constraints, imposing that

the quadratic load v2i is 0 when facility i is closed (yi = 0), and it is equal to ui when

facility i is open (yi = 1). The perspective reformulation of the problem is still convex as

the right-hand side of the SOC is the product of non-negative variables.

It is well-known (see e.g., [8, 72, 73, 75, 84, 86]) that the continuous relaxation of a

perspective reformulation produces stronger bounds than the bounds given by the continuous

relaxation of the original formulation. Consequently, we can say that the original formulation

(6.13)-(6.18) lies in an extended space compared to the perspective reformulation, and for

this reason, we called it the “extended” formulation.
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6.4 A Benders decomposition approach

The size of the formulation of the robust counterpart depends on the number of customers

and facility locations. In real world context, the number of customers can be quite large,

affecting the size and so the solution time of this type of problem. In this regard, we

propose to use Benders decomposition (for an introduction to this solution method, see

Chapter 2.1.3). Our idea is to reduce as much as possible the number of variables in the

problem, by projecting out of the master problem (at least) all the variables that depend

on the number of customers, i.e., x and σ. This will lead to a boosting in the solution time,

as we will see in the computational results Section 6.6.

In this section, we investigate the use of two different separations, both leading to a

convex MISOCP master problem containing SOC constraints and the complete objective,

and an LP subproblem. The advantage of keeping SOC constraints in the master formulation

is that the master problem has a very tight relaxation, which is amenable when dealing

with Benders decomposition as it reduces solution times incredibly. We also observe that

the subproblem – which is solved several times to generate valid cuts for the master – is an

LP that can be therefore efficiently solved by any state-of-the-art solver.

First choice of separation

The first Benders implementation considers the separation of the continuous variables

(x, π, σ). The master problem is then defined on the variables (y, v, u, ρ, τ) and is given by

min
(u,ρ,τ)≥0, y∈{0,1}|I|

∑
i∈I

fiyi + b
∑
i∈I

vi + a
∑
i∈I

ui

s.t. ϕ(y, v, ρ, τ) ≥ 0

vi ≥ Γρi i ∈ I (6.24)

v2i − uiyi ≤ 0 i ∈ I

where ϕ(y, v, ρ, τ) refers to the convex function expressing the optimal solution value of the

subproblem as a function of (y, v, ρ, τ), and it can be approximated by linear cuts to be

generated on the fly, known as Benders cuts, that are valid for any given vector (y, v, ρ, τ).

Note that there are two types of Benders cuts: the optimality cuts and the feasibility

cuts. We will generate only Benders feasibility cuts. Indeed, there is no need for Benders

optimality cuts in our approach, as the only variables appearing in the objective function

(y, v, u) belong to the master problem. Hence, we will only need Benders feasibility cuts to
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discard infeasible points.

Constraints (6.24) are lower bounds to the variable v used to strengthen the formulation

and derived from constraint (6.13), which appears in the subproblem.

The number of Benders feasibility cuts is exponential, which makes it impractical to

enumerate all of them in advance. Since only some of them are necessary to find an optimal

solution, they will be dynamically separated by the decomposition approach. Consequently,

the master formulation will contain only a subset of Benders cuts, belonging to a so-called

relaxed master problem.

Our master problem is a MISOCP, thus a convex MINLP that can be solved as an

MILP by a branch-and-cut approach where the integrality requirement on y is relaxed

and linear outer-approximations of the SOC constraints are generated on the fly, or it can

be solved as an MINLP by a branch-and-cut approach relying on an NLP solver for the

solution of the continuous problem at every node.

Benders cuts can be computed by solving a convex subproblem (an LP in our approach).

Given a master solution (ȳ, v̄, ū, ρ̄, τ̄), the subproblem is given by

ϕ(ȳ, v̄, ρ̄, τ̄) = min
(x,π,σ)≥0

0

s.t.
∑
j∈J

djxij +
∑
j∈J

σij ≤ v̄i − Γρ̄i i ∈ I

∑
i∈I

∑
j∈J

djxij −
∑
j∈J

πj ≥ D + Γτ̄

∑
i∈I

d̂jxij − πj ≤ τ̄ j ∈ J

d̂jxij − σij ≤ ρ̄i j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J

xij ≤ ȳi j ∈ J, i ∈ I(j).

The solution of the subproblem leads to the generation of a Benders feasibility cut,

i.e., a cutting plane that discards the infeasible master solution (ȳ, v̄, ū, ρ̄, τ̄). Solving a

subproblem that could potentially be infeasible may lead to computational issues. An

infeasible primal solution means that in the dual space we are optimizing over an unbounded

cone. Among the successful strategies to overcome these difficulties are the normalization

techniques that consist of solving the dual LP over a bounded polyhedron. There is

abundant literature on different normalization techniques for Benders feasibility cuts, see,

e.g., [45, 70, 105, 108, 118]. We use a very natural approach exploiting the fact that the
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solution (ȳ, v̄, ū, ρ̄, τ̄) of the relaxed master problem is infeasible for the subproblem if

and only if the demand covered by ȳ is strictly less than D + Γτ̄ . Indeed, in our case,

the covering constraint forms the irreducible infeasible subsystem, which is the minimal

subset of constraints whose removal makes the problem feasible. Hence, instead of solving

a feasibility LP given by the formulation above, we search for the maximum coverage. The

resulting subproblem is the following LP

ϕ′(ȳ, v̄, ρ̄, τ̄) = max
(x,π,σ)≥0

∑
j∈J

∑
i∈I

djxij −
∑
j∈J

πj

s.t.
∑
j∈J

djxij +
∑
j∈J

σij ≤ v̄i − Γρ̄i i ∈ I

∑
i∈I

d̂jxij − πj ≤ τ̄ j ∈ J

d̂jxij − σij ≤ ρ̄i j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J

xij ≤ ȳi j ∈ J, i ∈ I(j)

in which we observe that for every given (ȳ, v̄, ū, ρ̄, τ̄), (x, π, σ) = (0, 0, 0) is a feasible

solution, i.e., this problem is always feasible and bounded as both x and π are bounded. If

the optimal value of the subproblem ϕ′(ȳ, v̄, ρ̄, τ̄) is greater or equal to D + Γτ̄ , the master

solution is feasible and we do not need to generate any Benders cut. If, instead, ϕ′(ȳ, v̄, ρ̄, τ̄)

is strictly less than D + Γτ̄ , the master solution is infeasible and we do generate a Benders

feasibility cut. The Benders cut is then given by ϕ′(y, v, ρ, τ) ≥ D + Γτ (and no more by

ϕ(y, v, ρ, τ) ≥ 0) for every feasible (y, v, ρ, τ).

We introduce the auxiliary variable δ ≥ 0 defined as v − Γρ. Because of concavity, ϕ′(·)
can be overestimated by a supporting hyperplane at (ȳ, ρ̄, δ̄, τ̄), so the following linear cut
is valid

ϕ′(ȳ, ρ̄, δ̄, τ̄)+ξy(ȳ, ρ̄, δ̄, τ̄)
T (y−ȳ)+ξρ(ȳ, ρ̄, δ̄, τ̄)

T (ρ−ρ̄)+ξδ(ȳ, ρ̄, δ̄, τ̄)
T (δ−δ̄)+ξτ (ȳ, ρ̄, δ̄, τ̄)(τ−τ̄) ≥ ϕ′(y, ρ, δ, τ) ≥ D+Γτ

where ξy(ȳ, ρ̄, δ̄, τ̄), ξρ(ȳ, ρ̄, δ̄, τ̄), ξδ(ȳ, ρ̄, δ̄, τ̄), ξτ (ȳ, ρ̄, δ̄, τ̄) denote subgradients of ϕ′ with

respect to y, ρ, δ, τ in (ȳ, ρ̄, δ̄, τ̄). Depending on the problem, the computation of the

subgradients could be heavy.

Therefore, we introduce a simple reformulation of the problem that makes their calcula-

tion straightforward, following what was done in [68]. The reformulation of the subproblem

reads

Alice Calamita 98



6.4. A Benders decomposition approach

ϕ′(ȳ, ρ̄, δ̄, τ̄) = max
(x,π,σ)≥0

∑
j∈J

∑
i∈I

djxij −
∑
j∈J

πj

s.t.
∑
j∈J

djxij +
∑
j∈J

σij − δi ≤ 0 i ∈ I

∑
i∈I

d̂jxij − πj − τ ≤ 0 j ∈ J

d̂jxij − σij − ρi ≤ 0 j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J

xij − yi ≤ 0 j ∈ J, i ∈ I(j)

yi = ȳi i ∈ I (6.25)

ρi = ρ̄i i ∈ I (6.26)

δi = δ̄i i ∈ I (6.27)

τ = τ̄ (6.28)

where we keep the master variables as variables of the subproblem as well, and we apply

variable fixing through (6.25)–(6.28).

Note that y is defined as a continuous variable. Each variable-fixing equation is meant

to be imposed by modifying the lower and upper bounds on the corresponding variable, e.g.,

for the master variable y we can impose ȳ ≤ y ≤ ȳ, which can be handled very efficiently

by the solver in a preprocessing phase when the ȳ is given.

Note that by construction, y only appears in the trivial constraints (6.25), hence the

subgradient is simply ξy(ȳ, ρ̄, δ̄, τ̄) = r̄y, where r̄y is the vector of reduced costs associated

with y. Accordingly, we have ξρ(ȳ, ρ̄, δ̄, τ̄) = r̄ρ, ξδ(ȳ, ρ̄, δ̄, τ̄) = r̄δ, ξτ (ȳ, ρ̄, δ̄, τ̄) = r̄τ , with

rρ, rδ, rτ vectors of reduced cost associated with the variables ρ, δ, τ . This leads to the

Benders cut

ϕ′(ȳ, ρ̄, δ̄, τ̄)+
∑
i∈I

r̄yi(yi− ȳi)+
∑
i∈I

r̄ρi(ρi− ρ̄i)+
∑
i∈I

r̄δi(δi− δ̄i)+ r̄τ (τ− τ̄) ≥ D+Γτ (6.29)

where each component of the reduced cost defines an upper bound on the increase of the

objective function ϕ′(ȳ, ρ̄, δ̄, τ̄) when one component of (ȳ, ρ̄, δ̄, τ̄) increases.
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Second choice of separation

We now discuss an alternative choice for the separation. We consider having (y, u, v) as

master variables and we separate (x, ρ, τ, π, σ). The master problem is given by the MISOCP

min
(u,v)≥0, y∈{0,1}|I|

∑
i∈I

fiyi + b
∑
i∈I

vi + a
∑
i∈I

ui

s.t. ϕ(y, v) ≥ 0

v2i − uiyi ≤ 0 i ∈ I (6.30)

where ϕ(y, v) refers to the convex function expressing the optimal solution value of the

subproblem as a function of y and v, and it can be approximated by linear Benders feasibility

cuts, that are valid for any given vector (y, v).

Note that, also in this case, there is no need for Benders optimality cuts, as the only

variables appearing in the objective function are y, v, and u that are not separated.

Given a master solution (ȳ, v̄, ū), the subproblem is the following LP

ϕ(ȳ, v̄) = min
(x,ρ,τ,π,σ)≥0

0

s.t.
∑
j∈J

djxij + Γρi +
∑
j∈J

σij ≤ v̄i i ∈

∑
j∈J

∑
i∈I

djxij − Γτ −
∑
j∈J

πj ≥ D

τ + πj −
∑
i∈I

d̂jxij ≥ 0 j ∈ J

σij + ρi − d̂jxij ≥ 0 j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J

xij ≤ ȳi i ∈ I(j), j ∈ J.

If we apply the same normalization technique of the Benders cut described in the previous

paragraph, the subproblem becomes
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ϕ′(ȳ, v̄) = max
(x,ρ,τ,π,σ)≥0

∑
j∈J

∑
i∈I

djxij − Γτ −
∑
j∈J

πj

s.t.
∑
j∈J

djxij + Γρi +
∑
j∈J

σij ≤ v̄i i ∈ I

τ + πj −
∑
i∈I

d̂jxij ≥ 0 j ∈ J

σij + ρi − d̂jxij ≥ 0 j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J

xij ≤ ȳi j ∈ J, i ∈ I(j).

which is always feasible and bounded.

We generate a Benders cut if and only if ϕ′(ȳ, v̄) < D, i.e., if (ȳ, v̄) does not guarantee

the required coverage. The Benders cut is then given by ϕ′(y, v) ≥ D (and no more by

ϕ(y, v) ≥ 0) for every feasible (y, v).

Because of concavity, ϕ′(·) can be overestimated by a supporting hyperplane at (ȳ, v̄),

so the following linear cut is valid

ϕ′(ȳ, v̄) + ξy(ȳ, v̄)
T (y − ȳ) + ξv(ȳ, v̄)

T (v − v̄) ≥ ϕ′(y, v) ≥ D

where ξy(ȳ, v̄), ξv(ȳ, v̄) denote subgradients of ϕ′ with respect to y, v in (ȳ, v̄). We can

reformulate the subproblem as follows

ϕ′(ȳ, v̄) = max
(x,ρ,τ,π,σ)≥0

∑
j∈J

∑
i∈I

djxij − Γτ −
∑
j∈J

πj

s.t.
∑
j∈J

djxij + Γρi +
∑
j∈J

σij − vi ≤ 0 i ∈ I

τ + πj −
∑
i∈I

d̂jxij ≥ 0 j ∈ J

σij + ρi − d̂jxij ≥ 0 j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J

xij − yi ≤ 0 j ∈ J, i ∈ I(j)

yi = ȳi i ∈ I (6.31)

vi = v̄i i ∈ I (6.32)
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where we keep the master variables as variables of the subproblem as well, and we apply

variable fixing through (6.31)–(6.32). By construction, y and v only appear in the trivial

constraints (6.31) and (6.32), hence the subgradients are simply ξy(ȳ, v̄) = r̄y and ξv(ȳ, v̄) =

r̄v where r̄y is the vector of reduced costs associated with y and r̄v is the vector of reduced

costs associated with v. Note that y must be defined as a continuous variable as reduced

cost can only be computed for continuous problems. The Benders cut reads

ϕ′(ȳ, v̄) +
∑
i∈I

r̄yi(yi − ȳi) +
∑
i∈I

r̄vi(vi − v̄i) ≥ D (6.33)

where each component of the reduced cost r̄yi (or r̄vi) defines an upper bound on the

increase of the objective function ϕ′(ȳ, v̄) when ȳi (or v̄i) increases.

6.5 Embedding Benders decomposition within an MIP solver

There are two ways of implementing Benders decomposition:

1. using a cutting-plane procedure, also known as multi-tree approach, where each time a

Benders cut is generated, the cut is included in the master problem and the latter is

solved again until optimality;

2. using a branch-and-Benders-cut algorithm, also known as single-tree approach, in

which a single enumeration tree is created and Benders cuts are separated at the

nodes as in a classical branch-and-cut procedure.

The traditional approach is the multi-tree and it requires the solution of possibly several

master problems to optimality. The single-tree approach instead requires the solution

of only one master problem and has become very popular in the recent literature (see,

e.g., [68, 69, 105]); however, its implementation was mainly applied in an MILP (rather

than MISOCP) context. For more information about these two approaches and flowchart

diagrams, see Section 2.1.3.

In this section we describe the steps for the design of a Benders decomposition approach

to be embedded in a modern MIP solver, revealing all the implementation ingredients that

play an important role in the design of an effective code. The discussion is based on the

MIP solver we used, namely Gurobi; however, our approach can be easily extended to other

solvers.

Note that we do not use any specialized solution method to solve the master problem

or the subproblem as well. Indeed, using a general-purpose MIP solver benefits many
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advantages, such as a better warm-start mechanism and effective heuristics. Moreover, this

choice simplifies the implementation process considerably.

Implementation of single-tree approach

For the single-tree approach, the procedure is to define a customized callback function to

be called at every node of the branch-and-cut applied to the master problem.

The callback function, described in Algorithm 1, defines how the separation is done.

We restricted the separation to integer solutions only, thereby solving the subproblem to

possibly generate Benders cuts exclusively when the master relaxation solution y ∈ [0, 1]|I|.

If at the subproblem solution the target coverage is not reached, this incumbent must be

discarded. Therefore, we generate a normalized Benders cut, inject this cut into the master

problem and proceed through the branching tree until an optimal solution is found or the

maximum time is exceeded.

Algorithm 1 Single-tree Benders implementation
if an MIP incumbent of the master problem is found then

extract the MIP incumbent solution of relaxed the master problem
update the lower and upper bounds of the master variables appearing in the feasible

subproblem
solve the updated subproblem
if the target coverage is not reached then

get the reduced costs associated with the master variables in the subproblem
add the normalized feasibility Benders cut to the master problem

end if
end if

In order to use the custom callback function, we set the optimization parameter

LazyConstraints to 1 for the master problem. We also set the parameter timeLimit to stop

the solution process when the maximum time is reached.

Implementation of multi-tree approach

The code of the multi-tree Benders decomposition method is reported in Algorithm 2. It

involves solving a master problem iteratively, updating the subproblem at every optimal

solution of the master, and generating Benders cuts until the master solution does not

violate the required coverage (we denote it as the termination condition in the algorithm)

or the process terminates due to exceeding of the time limit.
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Algorithm 2 Multi-tree Benders implementation
while termination condition is not met or a maximum time is not exceeded do

solve the relaxed master problem
extract the optimal solution of the master problem
update the lower and upper bounds of the master variables appearing in the feasible

subproblem
solve the updated subproblem
if the target coverage is not reached then

get the reduced costs associated with the master variables in the subproblem
add the normalized feasibility Benders cut to the master problem

else
termination condition is met

end if
end while

6.5.1 Addressing degeneracy in Benders decomposition

When applying Benders decomposition, a highly degenerate subproblem admitting several

optimal solutions can result in the generation of shallow Benders cuts. This slows down the

convergence of the Benders decomposition, requiring the addition of many cuts, which do

not improve the bound that much. There are many techniques proposed in the literature

to address degeneracy (see, e.g., [120]). Inspired by the perturbation technique proposed in

[69] to accelerate the convergence of a cut loop (i.e., the cut separation at the root node of

the branching tree), we adapt this technique, that we will refer to as ϵ-technique, leading to

stronger cuts. The result is an accelerated convergence and a fewer number of generated

cuts, as shown from the computational experience provided later in Section 6.6.

The ϵ-technique can be summarized as follows. Consider the bound constraints that fix

the master variables to their values in the subproblem and replace the bounds equal to zero

with a sufficiently small ϵ > 0. We denote the problem obtained as a perturbed subproblem.

We show that we are forcing the perturbed problem to produce smaller reduced costs

associated with the variables we fix, leading to stronger Benders cuts. Finally, to calculate

the cut on the non-perturbed subproblem, we can derive ϕ′ as a function of the optimal

value of the perturbed problem and use the reduced costs of the perturbed problem as well.

We now analyze in detail this perturbation technique for each separation choice.
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First choice of separation

Consider the non-perturbed subproblem formulated as follows

ϕ′(ȳ, ρ̄, δ̄, τ̄) = max
(x,π,σ)≥0

∑
j∈J

∑
i∈I

djxij −
∑
j∈J

πj

s.t.
∑
j∈J

djxij +
∑
j∈J

σij − δi ≤ 0 i ∈ I

∑
i∈I

d̂jxij − πj − τ ≤ 0 j ∈ J

d̂jxij − σij − ρi ≤ 0 j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J (αj)

xij − yi ≤ 0 j ∈ J, i ∈ I(j)

yi = ȳi i ∈ I (βi)

ρi = ρ̄i i ∈ I (γi)

δi = δ̄i i ∈ I (∆i)

τ = τ̄ (µ)

(6.34)

where by α,β,γ,∆ and µ we denote the dual variables. Given the optimal dual solution

(ᾱ, β̄, γ̄, ∆̄, µ̄), the optimal value of the dual of (6.34) is

ϕ′(ȳ, ρ̄, δ̄, τ̄) =
∑
j∈J

ᾱj +
∑
i∈I

ȳiβ̄i +
∑
i∈I

ρ̄iγ̄i +
∑
i∈I

δ̄i∆̄i + τ̄ µ̄.

We can get the expression of the Benders cut from the LP dual by imposing that the dual

objective at the optimal solution is at least the target coverage, namely

∑
j∈J

ᾱj +
∑
i∈I

β̄iyi +
∑
i∈I

γ̄iρi +
∑
i∈I

∆̄iδi + µ̄τ ≥ D + Γτ.

The dual problem is highly degenerate as many objective coefficients, i.e., many components

of ȳ, ρ̄, δ̄ and τ̄ can be zero, resulting in several free components of the dual variables β, γi,

∆, µ and many equivalent optimal solutions. To get the strongest Benders cut, we need the

dual multipliers appearing in the cut to take the smallest values possible. To get this, we

can apply the ϵ-technique that consists of replacing the zero objective coefficients of ȳ, ρ̄, δ̄,

τ̄ with a sufficiently small ϵ > 0 and solving the resulting problem. This induces the dual

model to minimize also the components of the dual variables β, γ, ∆, µ associated with

the originally zero objective coefficients.
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Unfortunately, solving the dual of the subproblem often leads to more numerical issues

than solving its primal, hence we explain how to apply this technique to the primal

subproblem. Specifically, given a sufficiently small ϵ > 0, applying the ϵ-technique to the

primal problem consists of replacing ȳ, ρ̄, δ̄ and τ̄ with

ȳϵi =


ȳi if ȳi > 0

ϵ if ȳi = 0,

ρ̄ϵi =


ρ̄i if ρ̄i > 0

ϵ if ρ̄i = 0,

δ̄ϵi =


δ̄i if δ̄i > 0

ϵ if δ̄i = 0,

τ̄ ϵ =


τ̄ if τ̄ > 0

ϵ if τ̄ = 0

for each i ∈ I, simply replacing each zero component of ȳ, ρ̄, δ̄ and τ̄ with a sufficiently

small ϵ. Then, the perturbed subproblem reads

ϕ′(ȳϵ, ρ̄ϵ, δ̄ϵ, τ̄ ϵ) = max
(x,π,σ)≥0

∑
j∈J

∑
i∈I

djxij −
∑
j∈J

πj

s.t.
∑
j∈J

djxij +
∑
j∈J

σij − δi ≤ 0 i ∈ I

∑
i∈I

d̂jxij − πj − τ ≤ 0 j ∈ J

d̂jxij − σij − ρi ≤ 0 j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J (αϵ
j)

xij − yi ≤ 0 j ∈ J, i ∈ I(j)

yi = ȳϵi i ∈ I (βϵ
i )

ρi = ρ̄ϵi i ∈ I (γϵi )

δi = δ̄ϵi i ∈ I (∆ϵ
i)

τ = τ̄ ϵ (µϵ)

(6.35)

where by αϵ,βϵ,γϵ,∆ϵ and µϵ we denote the dual multipliers. The Benders cut obtained

from the Lagrangian dual of (6.35) is

ϕ′(ȳϵ, ρ̄ϵ, δ̄ϵ, τ̄ ϵ) +
∑
i∈I

r̄ϵyi(yi − ȳϵi ) +
∑
i∈I

r̄ϵρi(ρi − ρ̄ϵi) +
∑
i∈I

r̄ϵδi(δi − δ̄ϵi ) + r̄ϵτ (τ − τ̄ ϵ) ≥ D+Γτ

where r̄ϵy, r̄ϵρ, r̄ϵδ, r̄
ϵ
τ are the vectors of reduced costs associated with y, ρ, δ, τ . We now

state some properties of the perturbed problem and clarify the relationship between the

perturbed and the non-perturbed problem.
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Lemma 6.5.1 The following equations are valid

r̄y = β̄, r̄ρ = γ̄, r̄δ = ∆̄, r̄τ = µ̄, r̄ϵy = β̄ϵ, r̄ϵρ = γ̄ϵ, r̄ϵδ = ∆̄ϵ, r̄ϵτ = µ̄ϵ.

Proof Consider the non-perturbed problem (6.34). Since (6.34) is an LP, from the equiva-

lence between LP duality and Lagrangian duality for LP problems we have

∑
j∈J

ᾱj+
∑
i∈I

β̄iyi+
∑
i∈I

γ̄iρi+
∑
i∈I

∆̄iδi+µ̄τ = ϕ′(ȳ, ρ̄, δ̄, τ̄)+
∑
i∈I

r̄yi(yi−ȳi)+
∑
i∈I

r̄ρi(ρi−ρ̄i)+
∑
i∈I

r̄δi(δi−δ̄i)+r̄τ (τ−τ̄)

which implies

∑
i∈I

β̄iyi =
∑
i∈I

r̄yiyi,
∑
i∈I

γ̄iρi =
∑
i∈I

r̄ρiρi,
∑
i∈I

∆̄iδi =
∑
i∈I

r̄δiδi, r̄ττ = µ̄τ,

∑
j∈J

ᾱj = ϕ′(ȳ, ρ̄, δ̄, τ̄)−
∑
i∈I

r̄yi ȳi −
∑
i∈I

r̄ρi ρ̄i −
∑
i∈I

r̄δi δ̄i − r̄τ τ̄ ,

meaning that r̄yi = β̄i, r̄ρi = γ̄i, r̄δi = ∆̄i, r̄τ = µ̄ for each i ∈ I, namely the dual

variables associated with the fixing constraints are the reduced costs associated with the

fixed variables. By applying the same procedure to the perturbed problem (6.35), we get

r̄ϵyi = β̄ϵ
i , r̄

ϵ
ρi = γ̄ϵi , r̄

ϵ
δi
= ∆̄ϵ

i , r̄
ϵ
τ = µ̄ϵ for each i ∈ I.

□

Proposition 6.5.2 If there exists a sufficiently small ϵ > 0 such that the dual solution

(αϵ, βϵ, γϵ,∆ϵ, µϵ) of the perturbed problem (6.35) is an optimal solution of the dual of the

non-perturbed problem (6.34), then

(1)

ϕ′(ȳ, ρ̄, δ̄, τ̄) =


ϕ′(ȳϵ, ρ̄ϵ, δ̄ϵ, τ̄ ϵ)− ϵ

∑
i∈I: ȳi=0

r̄ϵyi − ϵ
∑

i∈I: ρ̄i=0

r̄ϵρi − ϵ
∑

i∈I: δ̄i=0

r̄ϵδi if τ > 0

ϕ′(ȳϵ, ρ̄ϵ, δ̄ϵ, τ̄ ϵ)− ϵ
∑

i∈I: ȳi=0

r̄ϵyi − ϵ
∑

i∈I: ρ̄i=0

r̄ϵρi − ϵ
∑

i∈I: δ̄i=0

r̄ϵδi − ϵr̄ϵτ if τ = 0

(2) the following inequality

ϕ′(ȳ, ρ̄, δ̄, τ̄)+
∑
i∈I

r̄ϵyi(yi− ȳi)+
∑
i∈I

r̄ϵρi(ρi− ρ̄i)+
∑
i∈I

r̄ϵδi(δi− δ̄i)+ r̄ϵτ (τ − τ̄) ≥ D+Γτ

(6.36)

is a valid Benders cut for the non-perturbed problem (6.34).
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Proof From the definition of yϵ,ρϵ,δϵ and τ ϵ we have

∑
i∈I

ȳϵi =
∑
i∈I

ȳi + ϵ
∑

i∈I: ȳi=0

1 (6.37)

∑
i∈I

ρ̄ϵi =
∑
i∈I

ρ̄i + ϵ
∑

i∈I: ρ̄i=0

1 (6.38)

∑
i∈I

δ̄ϵi =
∑
i∈I

δ̄i + ϵ
∑

i∈I: δ̄i=0

1 (6.39)

τ̄ ϵ =


τ if τ > 0

ϵ if τ = 0.

(6.40)

Consider the expression of the dual objective of the perturbed problem (6.42) at optimal

value

ϕ′(ȳϵ, ρ̄ϵ, δ̄ϵ, τ̄ ϵ) =
∑
j∈J

ᾱϵ
j +

∑
i∈I

ȳϵi β̄
ϵ
i +

∑
i∈I

ρ̄ϵi γ̄
ϵ
i +

∑
i∈I

δ̄ϵi ∆̄
ϵ
i + τ̄ ϵµ̄ϵ.

By using (6.37)-(6.40) we get

ϕ
′
(ȳ

ϵ
, ρ̄

ϵ
, δ̄

ϵ
, τ̄

ϵ
) =



∑
j∈J

ᾱ
ϵ
j +

∑
i∈I

ȳiβ̄
ϵ
i +

∑
i∈I

ρ̄iγ̄
ϵ
i +

∑
i∈I

δ̄i∆̄
ϵ
i + τ̄ µ̄

ϵ

︸ ︷︷ ︸
ϕ′(ȳ,ρ̄,δ̄,τ̄)

+ϵ
∑

i∈I: ȳi=0

r̄ϵyi︷︸︸︷
β̄
ϵ
i +ϵ

∑
i∈I: ρ̄i=0

r̄ϵρi︷︸︸︷
γ̄
ϵ
i +ϵ

∑
i∈I: δ̄i=0

r̄ϵδi︷︸︸︷
∆̄

ϵ
i if τ > 0

∑
j∈J

ᾱ
ϵ
j +

∑
i∈I

ȳiβ̄
ϵ
i +

∑
i∈I

ρ̄iγ̄
ϵ
i +

∑
i∈I

δ̄i∆̄
ϵ
i + τ̄ µ̄

ϵ

︸ ︷︷ ︸
ϕ′(ȳ,ρ̄,δ̄,τ̄)

+ϵ
∑

i∈I: ȳi=0

r̄ϵyi︷︸︸︷
β̄
ϵ
i +ϵ

∑
i∈I: ρ̄i=0

r̄ϵρi︷︸︸︷
γ̄
ϵ
i +ϵ

∑
i∈I: δ̄i=0

r̄ϵδi︷︸︸︷
∆̄

ϵ
i +ϵ

r̄ϵτ︷︸︸︷
µ̄
ϵ if τ = 0

which proves (1) for the assumption we made on ϵ and using Lemma 6.5.1.

If ϵ is sufficiently small that (αϵ, βϵ, γϵ,∆ϵ, µϵ) is an optimal solution of the dual of the

non-perturbed problem (6.34), then for Lemma 6.5.1, we can use r̄ϵyi , r̄
ϵ
ρi , r̄

ϵ
δi

and r̄ϵτ in

(6.29) and (2) is proved.

□
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Second choice of separation

Consider the non-perturbed subproblem formulated as follows

ϕ′(ȳ, v̄) = max
(x,ρ,τ,π,σ)≥0

∑
j∈J

∑
i∈I

djxij − Γτ −
∑
j∈J

πj

s.t.
∑
j∈J

djxij + Γρi +
∑
j∈J

σij − vi ≤ 0 i ∈ I

τ + πj −
∑
i∈I

d̂jxij ≥ 0 j ∈ J

σij + ρi − d̂jxij ≥ 0 j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J (αj)

xij − yi ≤ 0 j ∈ J, i ∈ I(j)

yi = ȳi i ∈ I (βi)

vi = v̄i i ∈ I. (γi)

(6.41)

where by α, β and γ we denote the dual variables. Given the optimal dual solution (ᾱ, β̄, γ̄),

the optimal value of the dual of (6.41) is

ϕ′(ȳ, v̄) =
∑
j∈J

ᾱj +
∑
i∈I

ȳiβ̄i +
∑
i∈I

v̄iγ̄i.

We can get the expression of the Benders cut from the LP dual by imposing that the dual

objective at the optimal solution is at least the target coverage, namely

∑
j∈J

ᾱj +
∑
i∈I

β̄iyi +
∑
i∈I

γ̄ivi ≥ D.

The dual problem is highly degenerate as many objective coefficients, i.e., many components

of ȳ and v̄ can be zero, resulting in several free components of the dual variables β and γ

and many equivalent optimal solutions. To get the strongest Benders cut, we need the dual

multipliers appearing in the cut to take the smallest values possible. To get this, we can

apply the ϵ-technique that consists of replacing the zero objective coefficients of ȳ and v̄

with a sufficiently small ϵ > 0 and solving the resulting problem. This induces the dual

model to minimize also the components of the dual variables β and γ associated with the

originally zero objective coefficients.

Unfortunately, solving the dual of the subproblem often leads to more numerical issues

than solving its primal, hence we explain how to apply this technique to the primal
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subproblem. Specifically, given a sufficiently small ϵ > 0, applying the ϵ-technique to the

primal problem consists of replacing ȳ and v̄ with

ȳϵi =


ȳi if ȳi > 0

ϵ if ȳi = 0

and v̄ϵi =


v̄i if v̄i > 0

ϵ if v̄i = 0

for each i ∈ I, simply replacing each zero component of ȳ and v̄ with a sufficiently small ϵ.

Then, the perturbed subproblem reads

ϕ′(ȳϵ, v̄ϵ) = max
(x,ρ,τ,π,σ)≥0

∑
j∈J

∑
i∈I

djxij − Γτ −
∑
j∈J

πj

s.t.
∑
j∈J

djxij + Γρi +
∑
j∈J

σij − vi ≤ 0 i ∈ I

τ + πj −
∑
i∈I

d̂jxij ≥ 0 j ∈ J

σij + ρi − d̂jxij ≥ 0 j ∈ J, i ∈ I(j)∑
i∈I

xij ≤ 1 j ∈ J (αϵ
j)

xij − yi ≤ 0 j ∈ J, i ∈ I(j)

yi = ȳϵi i ∈ I (βϵ
i )

vi = v̄ϵi i ∈ I. (γϵi )

(6.42)

where by αϵ, βϵ and γϵ we denote the dual multipliers. The Benders cut obtained from the

Lagrangian dual of (6.42) is

ϕ′(ȳϵ, v̄ϵ) +
∑
i∈I

r̄ϵyi(yi − ȳϵi ) +
∑
i∈I

r̄ϵvi(vi − v̄ϵi ) ≥ D

where r̄ϵy and r̄ϵv are the vectors of reduced costs associated with y and v. We now state some

properties of the perturbed problem and clarify the relationship between the perturbed

and the non-perturbed problem.

Lemma 6.5.3 The following equations are valid

r̄y = β̄, r̄v = γ̄, r̄ϵy = β̄ϵ, r̄ϵv = γ̄ϵ.

Proof Consider the non-perturbed problem (6.41). Since (6.41) is an LP, from the equiva-
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lence between LP duality and Lagrangian duality for LP problems we have

∑
j∈J

ᾱj +
∑
i∈I

β̄iyi +
∑
i∈I

γ̄ivi = ϕ′(ȳ, v̄) +
∑
i∈I

r̄yi(yi − ȳi) +
∑
i∈I

r̄vi(vi − v̄i)

which implies

∑
i∈I

β̄iyi =
∑
i∈I

r̄yiyi,
∑
i∈I

γ̄ivi =
∑
i∈I

r̄vivi,
∑
j∈J

ᾱj = ϕ′(ȳ, v̄)−
∑
i∈I

r̄yi ȳi −
∑
i∈I

r̄vi v̄i,

meaning that r̄yi = β̄i and r̄vi = γ̄i for each i ∈ I, namely the dual variables associated

with the fixing constraints are the reduced costs associated with the fixed variables. By

applying the same procedure to the perturbed problem (6.42), we get r̄ϵyi = β̄ϵ
i and r̄ϵvi = γ̄ϵi

for each i ∈ I.

□

Proposition 6.5.4 If there exists a sufficiently small ϵ > 0 such that the dual solution

(αϵ, βϵ, γϵ) of the perturbed problem (6.42) is an optimal solution of the dual of the non-

perturbed problem (6.41), then

(1) ϕ′(ȳ, v̄) = ϕ′(ȳϵ, v̄ϵ)− ϵ
∑

i∈I: ȳi=0

r̄ϵyi − ϵ
∑

i∈I: v̄i=0

r̄ϵvi

(2) the following inequality

ϕ′(ȳ, v̄) +
∑
i∈I

r̄ϵyi(yi − ȳi) +
∑
i∈I

r̄ϵvi(vi − v̄i) ≥ D (6.43)

is a valid Benders cut for the non-perturbed problem (6.41).

Proof From the definition of yϵ and vϵ we have

∑
i∈I

ȳϵi =
∑
i∈I

ȳi + ϵ
∑

i∈I: ȳi=0

1 (6.44)

∑
i∈I

v̄ϵi =
∑
i∈I

v̄i + ϵ
∑

i∈I: v̄i=0

1. (6.45)

Consider the expression of the dual objective of the perturbed problem (6.42) at optimal

value

ϕ′(ȳϵ, v̄ϵ) =
∑
j∈J

ᾱϵ
j +

∑
i∈I

ȳϵi β̄
ϵ
i +

∑
i∈I

v̄ϵi γ̄
ϵ
i .
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By using (6.44)-(6.45) we get

ϕ′(ȳϵ, v̄ϵ) =
∑
j∈J

ᾱϵ
j +

∑
i∈I

ȳiβ̄
ϵ
i +

∑
i∈I

v̄iγ̄
ϵ
i︸ ︷︷ ︸

ϕ′(ȳ,v̄)

+ϵ
∑

i∈I: ȳi=0

r̄ϵyi︷︸︸︷
β̄ϵ
i +ϵ

∑
i∈I: v̄i=0

r̄ϵvi︷︸︸︷
γ̄ϵi

which proves (1) for the assumption we made on ϵ and using Lemma 6.5.3.

If ϵ is sufficiently small that (αϵ, βϵ, γϵ) is an optimal solution of the dual of the non-

perturbed problem (6.41), then for Lemma 6.5.3, we can use r̄ϵyi and r̄ϵvi in (6.33) and (2)

is proved.

□

6.5.2 Other implementation details of the Benders decomposition

In this section, we reveal all the rounding operations we made and the thresholds we used

to mitigate numerical issues.

When we get a master solution (an MIP incumbent for the single-tree, an optimal

solution for the multi-tree approach), we round to 0-1 the binary variables belonging to the

master solution. This is done even if the values should already be 0-1, as the solver may

lack precision. Note that we do this rounding as the separation is only on integer master

solutions.

When applying the ϵ-procedure, instead of replacing zero coefficients with ϵ, we replace

the coefficients below a given small tolerance tolβ > 0 with ϵ. This is because the solver is

supposed to treat values below some internal threshold as zero.

Once the subproblem at a given master solution is solved, the condition we should

theoretically check to decide on the generation of the Benders cut is if ϕ′(ȳ, v̄, τ̄ , ρ̄) < D+Γτ̄

for the first separation choice, and if ϕ′(ȳ, v̄) < D for the second separation choice. To

get a more precise check of this condition from the numerical point of view, we implement

the first condition as (ϕ′(ȳ, v̄, τ̄ , ρ̄)− Γτ̄) /D < 1 − tolα and the second condition as

ϕ′(ȳ, v̄)/D < 1− tolα, where tolα > 0 is a given small tolerance.

6.6 Computational experiments

All the experiments run on a Ubuntu server with an Intel(R) Xeon(R) Gold 5218 CPU

running at 2.30 GHz, with 96 GB of RAM and 8 cores.
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As for the optimizer, we use Gurobi at its latest release (10.0.3) with a time limit (TL) of

900 seconds. On Gurobi, to guarantee better numerical precision, we set integrality tolerance

IntFeasTol to 10−9, feasibility tolerance FeasibilityTol to 10−9, the optimality tolerances

OptimalityTol to 10−9 and MIPGap to 0. As for the setting of Benders decomposition

methods in Gurobi, we enable the parameter for lazy constraints (LazyConstraints=1) for

the single-tree approaches to avoid any reductions and transformations that are incompatible

with lazy constraints, and disable presolve (Presolve=0 ) in all the Benders approaches since

during the presolve phase the model is not complete as many constraints are missing and

the optimizer could make reductions without knowing the full problem.

We also set the following values for the tolerances defined in the previous section:

tolα = 10−5, tolβ = 10−6, ϵ = 10−8.

Testbed

The testbed is made of large-size instances derived from Cordeau et al. [45]. The original

instances are tailored for realistic scenarios where the number of customers is much larger

than the number of potential facility locations (i.e., |J | >> |I|). In particular, we selected

instances with 1000 customers and 100 potential facility locations. Customer demand in

these instances was generated by Cordeau et al. by uniformly sampling from the range

[1,100] and rounding to the nearest integer. The spatial coordinates for both customers

and facilities were randomly selected from the interval [0, 30].

We further adapted the testbed to suit our study on robust and congested settings by

injecting uncertainty in the customer demand and generating congestion quadratic cost.

Specifically, for each customer j, the deviation d̂j from the nominal demand dj was set as a

random integer drawn from the interval [0, 20% dj ], meaning that the maximum possible

deviation from the nominal value is 20%. Customers affected by uncertainty are those

for which d̂j > 0. Protection from the uncertainty in customer demand was introduced

with varying levels of Γ in {2.5%, 5%, 10%, 15%, 20%, 30%, 40%, 50%}|J |. We limited Γ at

50% of customers to avoid overly conservative models. Congestion costs were computed by

carefully setting the parameters a and b to balance linear and quadratic costs, and obtain

optimal solutions requiring the opening of less than half of the potential facilities.

We used a set of 153 instances of the CPSCLP to compare the performance of different

methods and formulations. The characteristics of each instance, including its optimal value

and the number of open facilities at the optimal solution, are reported in Tables B.1-B.2

of the Appendix B. We observe that we excluded from the original set of 160 instances 7
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instances where the Gurobi encountered numerical troubles in at least one of the tested

methods leading to inconsistent results, following what was done also in the recent study

[29] on perspective cuts and perspective reformulation.

Numerical results

The purpose of this section is to evaluate the performance of our Benders approaches as

possible competitive exact algorithms to solve robust and congested PSCLPs. To the best

of our knowledge, no previous computational study appeared in the literature for such a

problem, despite its potential theoretical and practical relevance. For this reason, in this

section we compare the performance of our Benders algorithms against the direct use of

Gurobi applied as a black-box MIP solver to the perspective reformulation of the robust

counterpart of the problem. We also test Gurobi on the extended formulation of the robust

counterpart of the problem to show the effectiveness of the perspective reformulation. We

choose to compare our Benders algorithms to Gurobi as it is considered one of the state-of-

the-art MIP solvers and is usually used as a benchmark to compare the performance of

newly developed exact algorithms. Moreover, Gurobi allows the implementation of callbacks

on problems with quadratic constraints, a necessary feature for the implementation of our

single-tree approaches.

We report the results given by ten exact algorithms: Gurobi on the extended formulation

(Ext-GUROBI), Gurobi on the perspective reformulation (GUROBI), and eight versions of

our Benders algorithms directly on the perspective reformulation: one single-tree version

for each separation choice without and with the ϵ-technique (ST-BEN1, ST-BEN2, STϵ-

BEN1, STϵ-BEN2), one multi-tree version for each separation choice without and with the

ϵ-technique (MT-BEN1, MT-BEN2, MTϵ-BEN1, MTϵ-BEN2).

Numerical results are shown in Tables B.3-B.8 of the Appendix B. Using the values

reported in the tables, we made Table 6.1 with summary results and a graphical representa-

tion of the overall performance of the different exact algorithms in Figure 6.5, illustrating

the percentage of problems solved by each algorithm as a function of the computational

time. The metrics shown in Table 6.1 are: i) the average computational time (AvgTime[s])

expressed in seconds, ii) the average relative gap at the end of the optimization (AvgGap[%]),

iii) the average number of Benders cuts generated (AvgBenCuts), and iv) the percentage

of solved instances (SolvedInst[%]). It is important to note that the performance profiles

in Figures 6.5 do not represent the cumulative solution time but show the percentage of

problems the algorithm can solve within a certain amount of time. The best performance are
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graphically represented by the curves in the upper part of the plot. From this representation,

we can also infer the percentage of instances solved by a specific algorithm. Note that if a

line corresponding to a method does not appear in the plot, it is because the method could

not solve any of the instances.

Table 6.1: Summary average results on the instances of the CPSCLP. “TL” stands for time limit.

Method AvgTime[s] AvgGap[%] AvgBenCuts SolvedInst[%]

Ext-GUROBI TL 58,65 - 0

GUROBI 414,96 0,01 - 99,35

ST-BEN1 893,16 4,93 156,83 1,96

STϵ-BEN1 TL 1,13 86,8 0

ST-BEN2 700,92 3,8 138,39 26,80

STϵ-BEN2 130,88 0,004 27,73 98,69

MT-BEN1 790,40 23,11 39,16 0

MTϵ-BEN1 871,11 0,83 58,09 0

MT-BEN2 658,18 18,09 40,31 18,30

MTϵ-BEN2 142,58 0,03 12,79 90,20

Figure 6.5: Performance profiles.

The profiles show that Ext-GUROBI behaves poorly for this problem as none of the

instances can be solved by this method and the relative gaps at the end of the optimization

are pretty high, all over 50%. The second worst performing methods for what concerns
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the number of solved instances are the Benders approaches for separation choice 1 (with or

without the ϵ-technique): STϵ-BEN1 and MTϵ-BEN1 solved 0 instances and the relative

gaps at the end of the optimization are around 1% on average; the same methods without

the ϵ-technique yield to higher gaps, 5% for ST-BEN1 and 23% for MT-BEN1, with 3

instances solved for ST-BEN1 and 0 instances solved for MT-BEN1. Then, we have the

Benders approaches for separation choice 2 without the ϵ-technique: ST-BEN2 solved 41

instances (around 27%) and MT-BEN2 solved 28 instances (around 18%). The Benders

methods for separation choice 2 with ϵ-technique, instead, solved most of the instances:

STϵ-BEN2 solved 151 instances and MTϵ-BEN2 solved 138 instances (around 90%). Finally,

GUROBI solved 152 instances up to 153.

As for resolution times, the algorithms running on the perspective reformulation are

extremely faster than the one running on the extended formulation: indeed, Ext-GUROBI

cannot solve any instance before the time limit and the gaps are still high at the time

limit. For all the other methods, using the perspective reformulation, even if the instances

are not solved within the time limit, the gaps are much smaller. The fastest methods are

STϵ-BEN2 and MTϵ-BEN2 in a large percentage of the instances considered (more than

98%), and GUROBI in the remaining ones. On solved instances, with STϵ-BEN2 times of

GUROBI are reduced on average by almost 70%, with MTϵ-BEN2 times of GUROBI are

reduced on average by almost 83%.

For what concerns the direct comparison between the best-performing methods, STϵ-

BEN2 and MTϵ-BEN2, we can notice that both approaches are very effective, with MTϵ-

BEN2 being slightly superior in terms of solution times, and STϵ-BEN2 being slightly

superior in terms of the number of solved instances.

From Figure 6.6 we can further compare the Benders approaches in terms of number of

generated cuts. From the comparison of the box plots and Table 6.1 we can assess that

the generation of cuts is reduced in both single and multi-tree approaches when using the

ϵ-technique in most of the cases. Moreover, the average gap is reduced in all the Benders

methods when using the ϵ-technique.

In Figures 6.7-6.8 we report the performance profiles for each fixed value of Γ to assess

how Γ affects the performance of each solution algorithm. Whether a line corresponding to

a method does not appear in the graph, it is because the method could not solve any of the

instances characterized by that specific value of Γ.

From these figures, STϵ-BEN2 and MTϵ-BEN2 consistently emerge as the best-performing

methods across all tested values of Γ. Specifically, MTϵ-BEN2 significantly outperforms
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Figure 6.6: Boxplot of the number of Benders cuts generated by Benders decomposition methods.

STϵ-BEN2 for very low values of Γ (Γ = {2.5%|J |, 5%|J |}). However, as Γ increases, the

performance gap between GUROBI and the Benders methods STϵ-BEN2 and MTϵ-BEN2

narrows. This trend could be attributed to our approach of generating Benders cuts solely

at integer points, thereby necessitating a higher number of branching steps in the Benders

algorithms. In future work, we intend to explore the impact of generating cuts also at

fractional solutions at the root node to understand whether this observed trend persists.

As for Benders methods with separation choice 2 that do not employ the ϵ-trick, they

exhibit good performance at low Γ values. Specifically, ST-BEN2 outperforms Gurobi in

more than 80% of instances when Γ = 2.5%|J | and in over 20% of instances when Γ = 5%|J |.

Similarly, MT-BEN2 beats Gurobi in nearly 80% of cases having Γ = 2.5%|J | and in more

than 40% when Γ = 5%|J |. However, their performance drastically declines as Γ increases,

indicating a high limitation in their scalability with respect to increasing levels of protection

against uncertainty.

In summary, our findings indicate that: (i) perspective reformulation results in smaller

optimality gaps compared to extended formulation; (ii) separation choice 2 outperforms

separation choice 1; (iii) employing the ϵ-technique aids in reducing both the number of

generated cuts and the optimality gap, thereby accelerating convergence; (iv) The gap

between GUROBI’s performance and that of the best Benders approaches narrows with

increasing values of Γ; (v) the best-performing methods overall are the single-tree and

multi-tree Benders approaches with separation choice 2 using the ϵ-technique.
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Figure 6.7: Performance profiles for low values of Γ.

6.7 Future work

In our investigation into the problem of congested partial set covering location, we suggested

the application of a Benders decomposition method. One compelling advantage of this

method is its ability to significantly reduce the number of variables, with a consequent

reduction of the computational times when there is no need to generate an abundant number

of cuts.

Looking forward, our Benders-based method can also address partial set covering

location problems incorporating some additional requirements. Moreover, we propose two

possible ways to accelerate the solution of the master problem that we have not tested yet.

Finally, we discuss the investigation of the price of robustness.
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Figure 6.8: Performance profiles for medium to high values of Γ.

Additional constraints

Given the input parameter si representing the finite capacity of facility i ∈ I, we can

consider the addition of (explicit) capacity constraints vi ≤ siyi, imposing an upper limit

on the load of each facility i.

Another interesting extension would be to impose a p-median constraint, which is

particularly used in contexts where there is a maximum (or a target) number of facilities to

open, denoted as p. This constraint can be expressed through
∑

i∈I yi ≤ p (or
∑

i∈I yi = p).

What we observe is that the Benders-based methods discussed in this chapter are

directly applicable to these cases. This is because the variables implicated in capacity and

p-median constraints – y and v – belong to the master problem.

Translated into operational terms, the inclusion of such constraints to the problem
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would entail a straightforward integration of the same constraints into the master problem,

whereas the Benders subproblem and cut remain the same. Therefore, a future study

could extend to consider such cases in the testbed, to see if Benders approaches remain

competitive compared to state-of-the-art MIP solvers.

Boosting the solution of the master problem

Let us consider the master problem

min
(u,v[,ρ,τ ])≥0,y∈{0,1}|I|

∑
i∈I

fiyi + b
∑
i∈I

vi + a
∑
i∈I

ui

s.t. ϕ(y, v[, ρ, τ ]) ≥ 0

v2i − uiyi ≤ 0 i ∈ I

[vi ≥ Γρi] [i ∈ I]

where the parts in squared brackets only appear in case we are applying the first separation

choice, otherwise they do not appear in the formulation. We can strengthen the master

problem by adding a cardinality constraint to the master variables y and, consequently,

give a lower bound to the optimal value of the facility opening cost in this way

min
(u,v[,ρ,τ ])≥0,y∈{0,1}|I|

∑
i∈I

fiyi + b
∑
i∈I

vi + a
∑
i∈I

ui

s.t. ϕ(y, v[, ρ, τ ]) ≥ 0

v2i − uiyi ≤ 0 i ∈ I

[vi ≥ Γρi] [i ∈ I]∑
i∈I

fiyi ≥ g(Imin)

∑
i∈I

yi ≥ Imin

where by Imin we denote the minimum number of facilities needed to cover at least D and

by g(Imin) we denote the minimum cost of opening exactly Imin facilities. We introduce the

0-1 variables zj to denote if a customer j ∈ J is covered or not. To find Imin and g(Imin)

we can solve
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g(Imin) = min
∑
i∈I

fiyi

s.t.
∑
j∈J

djzj − max
{S|S⊆J,|S|≤Γ}

∑
j∈S

d̂jzj

 ≥ D (α)

zj ≤
∑
i∈I(j)

yi j ∈ J (βj)

yi ∈ {0, 1} i ∈ I

zj ∈ {0, 1} j ∈ J

which can be reformulated as the following MILP

g(Imin) = min
(α,β)≥0

∑
i∈I

fiyi

s.t.
∑
j∈J

djzj − Γα−
∑
j∈J

βj ≥ D

zj ≤
∑
i∈I(j)

yi j ∈ J

α+ βj ≥ d̂jzj j ∈ J

yi ∈ {0, 1} i ∈ I

zj ∈ {0, 1} j ∈ J

(6.46)

since

max
{S|S⊆J,|S|≤Γ}

∑
j∈S

d̂jzj


is equivalent to

max

∑
j∈J

d̂jzjwj :
∑
j∈J

wj ≤ Γ, 0 ≤ wj ≤ 1 ∀j ∈ J


which is equivalent to its dual

min

Γα+
∑
j∈J

βj : α+ βj ≥ d̂jzj ∀j ∈ J, α ≥ 0, β ≥ 0

 .

Note that we can relax the integrality of zj in (6.46). If we denote the optimal solution of

(6.46) with (y⋆, z⋆, α⋆, β⋆), then Imin is given by
∑

i∈I y
⋆
i .

Proposition 6.7.1 g(Imin) provides a lower bound to the optimal opening cost of facilities.

Proof Consider the variable zj as zj =
∑

i∈I xij and consider another vector of variables
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v ≥ 0. We can rewrite Problem (6.46) as follows

g(Imin) = min
(α,β)≥0

∑
i∈I

fiyi + b
∑
i∈I

vi + a
∑
i∈I

v2i

s.t.
∑
j∈J

∑
i∈I

djxij − Γα−
∑
j∈J

βj ≥ D

∑
i∈I

xij ≤
∑
i∈I(j)

yi j ∈ J

α+ βj ≥
∑
i∈I

d̂jxij j ∈ J

∑
i∈I

xij ≤ 1 j ∈ J

vi ≥ 0 i ∈ I

0 ≤ xij ≤ 1 i ∈ I, j ∈ J

yi ∈ {0, 1} i ∈ I

(6.47)

since the only constraint on v variables is that v ≥ 0, hence at the optimal solution we

have v = 0. We observe that Problem (6.47) is a relaxation of the extended formulation

(6.13)-(6.18) (and also a relaxation of its perspective reformulation). Hence, its optimal

value provides a lower bound to the optimal value of the extended formulation.

□

We observe that

• y⋆ is feasible for the robust counterpart of the problem, as it is 0-1 and satisfies the

target demand in the worst-case scenario;

• we can use y⋆ as a warm start to the master problem;

• we can get an upper bound to the master problem (a cutoff value) by fixing y⋆ in the

counterpart of the problem and getting the objective value obtained by optimizing

with respect to the remaining (continuous) variables.

One more consideration is that, based on the values of the input parameters a and b

weighting the components of the congestion cost, the optimal value of the counterpart of

the problem is reached at the optimal vector ỹ, which could be a sparse vector or a dense

vector. From early testing, vector y⋆ seems to be a pretty sparse vector. Therefore, another

interesting upper bound to the master problem is given by the dense vector yi = 1 for

all i ∈ I, namely when we open all the facilities. This feasible solution may be a better
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warm start to the problem compared to y⋆ when the optimal ỹ is pretty dense, and the

corresponding upper bound more strict to the one produced by y⋆.

Hence, one strategy could be providing both solutions as warm starts to the problem

and choosing as a cutoff value the minimum between the two optimal values given by the

two feasible solutions.

We conclude by claiming that usually, the automatic warm start of Gurobi is more

optimized than a custom warm start, even if the custom warm start is producing a good

initial feasible solution, and for this reason, it is not recommended to change it. We also

observe that the presence of cardinality constraints could generate numerical issues when

they are combined with the conic constraints of the perspective reformulation. However,

we would like in future research to test the use of cardinality constraints and warm start,

both together and separated, to assess whether they decrease solution times in Gurobi.

Sensitivity analysis on Γ

In this chapter we studied a robust problem characterized by an unusual feature: the worst

realizations occur in the case of increasing demand for what concerns the congestion, and in

the opposite case of decreasing demand for the coverage. Therefore, it would be interesting

to investigate how the optimal value, solution time, facility loads and number of open

facilities vary based on the values of Γ in each of the following scenarios: the deterministic

case, the case considering uncertainty only in congestion, the one with uncertainty only in

coverage, and the case where uncertainty exists in both congestion and coverage. Exploring

these scenarios could provide critical insights into how sensitive the planning is to various

types of uncertainty, thus offering a more comprehensive understanding of the problem.

6.8 Conclusions

We presented a novel investigation into solving a robust and convex quadratic variant of the

partial set covering location problem using modern Benders decomposition. We addressed

a facility location problem affected by congestion, aiming for better resource allocation and

balanced solutions. Specifically, we introduced the congested partial set covering location

problem, which involves determining a subset of facility locations to open and efficiently

allocating customers to these facilities, so as to minimize the combined costs of facility

opening and congestion while ensuring target coverage. To enhance the resilience of the

solution against demand fluctuations, we proposed to address the case under uncertain

customer demand using Γ-robustness. We showed the formulation of the deterministic
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problem and its robust counterpart.

However, the size of the robust counterpart grows with the number of customers and

facility locations, which can pose challenges in real-world contexts where the customer

number is significant. To overcome this issue, we proposed the use of Benders decomposition

to effectively reduce the number of variables by projecting out of the master problem all

the variables dependent on the number of customers. Although Benders decomposition is

a traditional technique, our approach is innovative as it leverages the implementation of

callback functions in combination with quadratic constraints, a novel option provided by

(few) state-of-the-art solvers. Furthermore, we were able to demonstrate the effectiveness

of Benders decomposition, even though the Benders subproblem is non-separable. We

illustrated how to incorporate our Benders approach within an MIP solver, addressing

explicitly all the ingredients that are instrumental for its success. We discussed and tested

both single-tree and multi-tree implementations of Benders decomposition, testing two

different separation choices. We also proposed a perturbation technique to generate stronger

Benders cuts in case of problem degeneracy.

To validate the effectiveness of our method, we conducted extensive computational

experiments on various (adapted) instances from existing literature. Overall, the results

showed that the best-performing methods are the single-tree and multi-tree Benders

approaches with one particular separation choice and using the perturbation technique.

Other future work will concern the study of the behaviour of Γ in each uncertain

term, the use of warm start and/or cardinality constraints in the master problem, and the

introduction of capacity and/or p-median constraints.
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Conclusions

In this doctoral thesis, we addressed critical challenges in the design of service and commu-

nications networks. With telecommunications playing a crucial role in modern society, the

introduction of 5th Generation technology has imposed rigorous network quality standards.

Consequently, network providers contend with the complexities of optimal facility location

planning and coverage. In response to this need, we investigated models and solution

approaches for covering location problems in the telecommunications field.

Our first contribution concerned the design of wireless networks, a typical problem

in the telecommunications sector with crucial practical implications. The expansion of

new-generation networks, operating in a congested radio spectrum, posed challenges in

determining optimal transmitter locations and power emissions. Traditional methods

employed by practitioners, relying on simulation and trial-and-error practices, proved

limited, necessitating optimization approaches for cost reduction and meeting service

quality standards. Several optimization models have been developed for designing wireless

network; however, the natural formulation on which most models are based presents severe

limitations, preventing the solution of instances of practical interest. We tackled two primary

wireless network design problems: the site and power assignment problem for variable-power

emissions and the base station deployment problem for fixed-power emissions. For the

variable-power case, we enhanced existing formulations by introducing presolve operations,

and valid cutting planes such as cliques and variable upper bounds. Additionally, an

aggressive reduction scheme was used to improve the formulation and reduce problem size.

In the fixed-power case, we intervened with both strengthening and size reduction operations

involving the aggregation of service constraints and the addition of valid inequalities. In

both problems, we were able to achieve optimal solutions in solution times in line with the

times required in the planning phase on large instances based on an authentic case sourced
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from an Italian municipality.

The second contribution, with broader applicability to service and communications

networks, focused on a variant of the partial set covering location problem. This problem

involves choosing the minimum-cost subset of facilities satisfying a target demand. However,

existing literature on the problem does not account for congestion or demand uncertainty.

To address this gap, we decided to minimize congestion cost associated with overloaded

facilities in a robust framework, accounting for uncertainties in customer demand, to

enhance better resource allocation and solution resilience against demand fluctuations.

By reducing facility congestion, we not only guarantee to meet delivery schedules and

uphold rigorous quality standards, but we also respond to the contemporary society’s

growing demand for high service quality. The size of the resulting problem grows with

the number of customers, which could be very large in real-life networks. To handle

this, we employed Benders decomposition to eliminate all the variables dependent on the

number of customers, and proposed the use of a perturbation technique to generate stronger

Benders cuts. Computational experiments on various large-size instances taken from the

literature demonstrated the effectiveness of our solution approach, which outperforms the

state-of-the-art solver Gurobi.

In conclusion, this thesis contributes to solving complex location problems with covering

constraints in the telecommunications sector, providing solutions that bridge the gap

between theoretical research and its applicability to the real-world.
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Appendix A

Additional Figures

The wireless network design problem

Figures A.1-A.10 refers to the base station deployment problem. In particular, each figure

depicts the optimal solution found on an instance using the final formulation. They report

the optimal assignment of testpoints to each activated base station via color code. The

black dots represent the uncovered testpoints, whereas the grey dots represent the original

testpoints not included in the instance. The activated base stations have the same color as

the testpoints they serve. The representations show that the assignment of the testpoints

to the base stations is consistent with their respective positions.

The direction of the signal emitted by the antennas is illustrated with an arrow. The

arrow represents a simplification of the antenna pattern, which actually is similar to a main

lobe with side and back lobes, as schematized in Figure A.11. Another way to illustrate

how the signal emitted by the antenna radiates into space is to plot the received power

values in the target area of a signal emitted by a given antenna. Figure A.12 represents

precisely this, reproducing the strongest power values in yellow and the less strong ones in

dark blue. The multi-lobed formation is also visible in this image.
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Figure A.1: Optimal assignment of testpoints to the base stations on BOF1.
N/A, not available since the testpoint is not in the instance

Figure A.2: Optimal assignment of testpoints to the base stations on BOF2.
None, the testpoint is covered by none of the activated antennas; N/A, not available since the
testpoint is not in the instance
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Figure A.3: Optimal assignment of testpoints to the base stations on BOF3.
None, the testpoint is covered by none of the activated antennas; N/A, not available since the
testpoint is not in the instance

Figure A.4: Optimal assignment of testpoints to the base stations on BOF4.
None, the testpoint is covered by none of the activated antennas; N/A, not available since the
testpoint is not in the instance
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Figure A.5: Optimal assignment of testpoints to the base stations on BOF5.
None, the testpoint is covered by none of the activated antennas; N/A, not available since the
testpoint is not in the instance

Figure A.6: Optimal assignment of testpoints to the base stations on BOF6.
None, the testpoint is covered by none of the activated antennas; N/A, not available since the
testpoint is not in the instance
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Figure A.7: Optimal assignment of testpoints to the base stations on BOF7.
None, the testpoint is covered by none of the activated antennas; N/A, not available since the
testpoint is not in the instance

Figure A.8: Optimal assignment of testpoints to the base stations on BOF8.
None, the testpoint is covered by none of the activated antennas; N/A, not available since the
testpoint is not in the instance
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Figure A.9: Optimal assignment of testpoints to the base stations on BOF9.
None, the testpoint is covered by none of the activated antennas; N/A, not available since the
testpoint is not in the instance

Figure A.10: Optimal assignment of testpoints to the base stations on BOF10.
None, the testpoint is covered by none of the activated antennas; N/A, not available since the
testpoint is not in the instance
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Figure A.11: Scheme of the antenna pattern.

Figure A.12: Antenna pattern through power values.
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Additional Tables

The congested partial set covering location problem

Tables B.1-B.2 report the characteristics of the instances of congested partial set covering

location. Specifically, for each instance, the following data are reported: a unique identifier

ID, a number s linked to the seed of the instance generator, the maximum number of

customer deviations Γ we consider for the robust setting, the maximum distance of coverage

R, the best upper bound found for instance at hand BestUB, and the number of open

facilities OpenFac at the best feasible solution found on the instance.

Tables B.3-B.5 report the results of four exact algorithms: Gurobi on the extended

formulation (Ext-GUROBI), Gurobi on the perspective reformulation (GUROBI), and the

two best-performing versions of our Benders algorithms using the perspective reformulation:

the single-tree version with separation choice 2 using the ϵ-technique (STϵ-BEN2) and

the multi-tree version with separation choice 2 using the ϵ-technique (MTϵ-BEN2). The

metrics we use are: i) the computational time (Time[s]) expressed in seconds, ii) the relative

gap at the end of the optimization (Gap[%]), iii) the number (or the average number for

the multi-tree approaches) of branching nodes explored (Nodes) and iv) the number of

Benders cuts generated (BenCuts). As for the Gap, the internal relative gap of Gurobi was

used where available. For the single-tree method in the absence of feasible solutions and

multi-tree method running out of time, the gap was computed as 100BestUB−BestLB
BestUB , where

BestUB is the best upper bound found for instance at hand considering all tested methods

(see Tables B.1-B.2), and BestLB is the best lower bound found by the method at hand for

the same instance. Tables B.6-B.8 report the results of the single and multi-tree versions of

our Benders algorithms using the ϵ-technique with the aim of comparing the two choices of

separation. The metrics we use for the comparison are the same as Tables B.3-B.5.
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Table B.1: Instances of CPSCLP (part 1).

ID s Γ R BestUB OpenFac ID s Γ R BestUB OpenFac

1 1 25 5,5 27239,74 41 39 2 50 6,25 27464,28 41

2 1 25 5,75 27162,26 41 40 2 100 5,5 28240,57 42

3 1 25 6 27080,35 41 41 2 100 5,75 28212,39 42

4 1 25 6,25 27005,71 41 42 2 100 6 28167,52 42

5 1 50 5,5 27952,05 41 43 2 100 6,25 28136,46 42

6 1 50 5,75 27856,05 41 44 2 150 5,5 28467,09 43

7 1 50 6 27769,04 41 45 2 150 5,75 28440,29 42

8 1 50 6,25 27669,14 41 46 2 150 6 28400,78 42

9 1 100 5,5 28450,44 42 47 2 150 6,25 28383,90 42

10 1 100 5,75 28406,33 42 48 2 200 5,5 28673,03 43

11 1 100 6 28368,57 42 49 2 200 6,25 28586,59 43

12 1 100 6,25 28316,45 42 50 2 300 5,5 28976,21 43

13 1 150 5,5 28680,39 42 51 2 300 5,75 28947,27 43

14 1 150 5,75 28631,80 42 52 2 300 6 28899,97 43

15 1 150 6 28597,00 42 53 2 300 6,25 28881,89 43

16 1 150 6,25 28557,92 42 54 2 400 5,5 29170,93 43

17 1 200 5,5 28898,38 42 55 2 400 6 29083,84 43

18 1 200 6 28807,26 42 56 2 500 5,75 29281,64 43

19 1 200 6,25 28763,63 43 57 2 500 6 29221,62 43

20 1 300 5,5 29228,79 42 58 2 500 6,25 29197,22 43

21 1 300 5,75 29168,65 42 59 3 25 5,5 28108,43 35

22 1 300 6 29123,02 42 60 3 25 5,75 28018,51 35

23 1 300 6,25 29072,71 43 61 3 25 6 27951,82 35

24 1 400 5,5 29477,27 43 62 3 25 6,25 27886,82 35

25 1 400 5,75 29401,55 42 63 3 50 5,5 28789,70 36

26 1 400 6 29350,02 43 64 3 50 5,75 28683,83 36

27 1 400 6,25 29295,53 43 65 3 50 6 28608,38 36

28 1 500 5,5 29634,08 43 66 3 50 6,25 28531,91 36

29 1 500 5,75 29559,19 43 67 3 100 5,5 29319,41 36

30 1 500 6 29504,86 43 68 3 100 5,75 29264,81 36

31 1 500 6,25 29450,37 43 69 3 100 6 29245,32 36

32 2 25 5,5 27037,92 41 70 3 100 6,25 29197,75 36

33 2 25 5,75 26973,19 41 71 3 150 5,5 29563,69 37

34 2 25 6 26909,97 41 72 3 150 6 29497,71 36

35 2 25 6,25 26862,46 41 73 3 150 6,25 29466,02 37

36 2 50 5,5 27687,26 42 74 3 200 5,5 29766,99 37

37 2 50 5,75 27614,66 42 75 3 200 5,75 29705,32 37

38 2 50 6 27533,15 42 76 3 200 6 29692,82 37
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Table B.2: Instances of CPSCLP (part 2).

ID s Γ R BestUB OpenFac ID s Γ R BestUB OpenFac

77 3 200 6,25 29660,42 37 115 4 400 5,75 30941,75 38

78 3 300 5,5 30089,87 37 116 4 400 6 30923,64 38

79 3 300 5,75 30022,47 37 117 4 400 6,25 30905,46 38

80 3 300 6 30010,20 37 118 4 500 5,5 31119,74 39

81 3 300 6,25 29979,06 37 119 4 500 5,75 31094,42 38

82 3 400 5,5 30285,64 37 120 4 500 6 31076,66 38

83 3 400 5,75 30214,90 37 121 4 500 6,25 31057,25 38

84 3 400 6 30202,67 37 122 5 25 5,5 27614,20 40

85 3 400 6,25 30169,95 37 123 5 25 5,75 27515,77 40

86 3 500 5,5 30450,82 37 124 5 25 6 27421,87 40

87 3 500 5,75 30372,28 37 125 5 25 6,25 27346,55 40

88 3 500 6 30356,26 37 126 5 50 5,5 28300,76 41

89 3 500 6,25 30321,74 37 127 5 50 5,75 28207,67 40

90 4 25 5,5 28769,80 36 128 5 50 6 28112,83 40

91 4 25 5,75 28688,22 36 129 5 50 6,25 28034,17 40

92 4 25 6 28626,61 36 130 5 100 5,5 28827,47 41

93 4 25 6,25 28566,13 36 131 5 100 5,75 28801,14 41

94 4 50 5,5 29455,33 37 132 5 100 6 28763,12 41

95 4 50 5,75 29349,76 37 133 5 100 6,25 28716,61 41

96 4 50 6 29265,07 37 134 5 150 5,5 29086,06 41

97 4 50 6,25 29186,63 37 135 5 150 5,75 29060,88 41

98 4 100 5,5 30005,30 38 136 5 150 6 29031,55 41

99 4 100 5,75 29978,57 37 137 5 150 6,25 29000,45 41

100 4 100 6 29954,70 37 138 5 200 5,5 29310,83 41

101 4 100 6,25 29926,45 37 139 5 200 5,75 29284,08 41

102 4 150 5,5 30240,51 38 140 5 200 6 29253,31 41

103 4 150 5,75 30219,40 37 141 5 200 6,25 29227,89 41

104 4 150 6 30204,67 37 142 5 300 5,5 29637,01 42

105 4 150 6,25 30190,79 37 143 5 300 5,75 29608,42 41

106 4 200 5,5 30441,22 38 144 5 300 6 29577,26 41

107 4 200 5,75 30418,71 38 145 5 300 6,25 29544,77 42

108 4 200 6 30403,79 38 146 5 400 5,5 29863,25 42

109 4 200 6,25 30389,21 38 147 5 400 5,75 29832,83 42

110 4 300 5,5 30763,43 38 148 5 400 6 29797,02 42

111 4 300 5,75 30739,45 38 149 5 400 6,25 29763,65 42

112 4 300 6 30723,60 38 150 5 500 5,5 30022,97 42

113 4 300 6,25 30707,81 38 151 5 500 5,75 29992,16 42

114 4 400 5,5 30968,95 38 152 5 500 6 29957,95 42

153 5 500 6,25 29923,87 42
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Table B.3: Performance of the exact procedures on the testbed (part 1). Runs reaching the time
limit of 900 seconds are indicated by “TL”.

Ext-GUROBI GUROBI STϵ-BEN2 MTϵ-BEN2

ID Time[s] Gap[%] Nodes Time[s] Gap[%] Nodes Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts

1 TL 59,20 1673 308,53 0 102 84,52 0 52409 18 25,53 0 2455,18 10

2 TL 60,06 1759 376,45 0 143 39,95 0 6547 23 18,53 0 2247,78 8

3 TL 60,48 1569 392,77 0 97 22,70 0 48320 12 14,35 0 2122,67 5

4 TL 61,09 1559 391,38 0 305 38,02 0 54293 22 23,05 0 1984,63 7

5 TL 58,08 2718 369,75 0 19 92,87 0 7286 23 28,90 0 5167,36 10

6 TL 58,79 2213 444,53 0 38 70,84 0 33649 26 33,13 0 3875,08 11

7 TL 59,94 1577 329,34 0 178 43,02 0 33566 18 29,67 0 3655,60 9

8 TL 60,68 1579 447,25 0 46 113,10 0 35117 19 56,62 0 4500,46 12

9 TL 55,28 8685 392,58 0 36 48,11 0 34184 24 40,95 0 6715,73 10

10 TL 58,32 2983 426,73 0 24 39,78 0 33105 24 42,81 0 4592,82 10

11 TL 59,16 2945 401,47 0 50 36,14 0 30973 20 32,91 0 5077,80 9

12 TL 60,05 1637 612,98 0 25 97,77 0 35565 31 56,37 0 4500,25 15

13 TL 56,32 5801 365,86 0 36 36,87 0 31402 18 52,25 0 5272,92 12

14 TL 58,32 4020 405,90 0 33 35,80 0 31115 20 42,19 0,01 6808,60 4

15 TL 58,55 2135 496,43 0 15 56,55 0 17981 45 31,21 0 6564,18 10

16 TL 60,24 1566 519,91 0 164 69,44 0 34434 24 49,99 0 5358,25 15

17 TL 55,80 7444 366,97 0 18 169,62 0 17233 36 64,77 0 5694,80 14

18 TL 58,46 1732 562,01 0 19 102,04 0 10275 30 38,50 0 4621,58 11

19 TL 59,43 1726 549,85 0 100 60,87 0 12948 27 45,01 0 6232,85 12

20 TL 55,84 5194 297,68 0 295 77,22 0 34450 49 68,22 0 6665,00 16

21 TL 56,94 2055 679,59 0 66 52,49 0 32384 23 48,21 0 6176,33 11

22 TL 58,02 1942 504,38 0 111 51,44 0 31207 35 43,46 0 3442,80 14

23 TL 59,50 1607 705,04 0 25 40,36 0 10603 21 50,96 0 4156,62 12

24 TL 56,43 4204 428,51 0 401 208,53 0 17892 55 82,65 0 4557,50 23

25 TL 57,19 2703 416,35 0 429 178,43 0 17336 57 100,74 0 6828,93 14

26 TL 57,45 1929 350,79 0 282 71,80 0 8701 28 124,56 0 4506,54 12

27 TL 58,58 1678 569,68 0 180 62,96 0 12706 22 39,31 0 5035,36 10

28 TL 56,02 4406 593,17 0 210 384,74 0 40447 57 68,23 0 4545,60 19

29 TL 56,12 2068 415,38 0 161 182,72 0 37938 29 49,30 0 5250,50 13

30 TL 58,11 1661 368,05 0 315 83,76 0 34029 20 41,06 0 6753,55 10

31 TL 59,28 1595 499,51 0 139 36,47 0 4274 23 30,72 0 5593,13 7

32 TL 57,99 3645 369,81 0 344 126,30 0 7410 30 31,85 0 2172,36 10

33 TL 59,56 1483 339,01 0 200 69,43 0 7891 22 35,43 0 1703,08 11

34 TL 58,90 5521 329,45 0 453 116,02 0 7820 31 24,83 0 1389,22 8

35 TL 60,48 3958 353,08 0 348 40,59 0 5612 12 36,95 0 968,78 8

36 TL 57,79 2930 436,19 0 222 149,38 0 22245 32 71,36 0 2351,04 23

37 TL 58,79 1596 469,25 0 344 137,62 0 16935 26 62,03 0 2348,38 15

38 TL 59,39 1594 443,41 0 968 136,17 0 15798 32 51,76 0 1827,73 14

39 TL 59,65 1531 507,80 0 676 127,56 0 12827 25 48,39 0 2111,43 13

40 TL 56,50 4206 446,64 0 258 169,78 0 17333 47 148,35 0 3084,66 31

41 TL 57,88 2087 514,22 0 70 83,66 0 18409 52 176,48 0 3219,17 29

42 TL 58,63 1966 426,08 0 124 146,97 0 16777 40 126,67 0 3629,62 28

43 TL 59,38 1524 433,70 0 95 341,45 0 20984 21 76,69 0 4082,00 14

44 TL 57,21 3210 449,88 0 430 273,04 0 18594 50 176,16 0 4265,24 28

45 TL 57,28 4188 354,73 0 383 268,25 0 16461 51 267,68 0 5025,69 28

46 TL 58,38 2502 323,97 0 265 454,27 0 18607 63 87,04 0 3409,76 24

47 TL 59,85 2086 529,80 0 53 73,41 0 15448 35 47,85 0 3872,69 12

48 TL 56,69 2200 381,80 0 147 434,02 0 22949 76 253,88 0 3754,39 30

49 TL 59,75 1679 492,46 0 349 29,02 0 7464 25 44,10 0 3066,20 14

50 TL 56,01 2533 342,57 0 56 142,44 0 13114 44 176,79 0 3535,42 32

51 TL 57,62 2505 343,76 0 196 382,76 0 18972 86 168,88 0 5048,27 29
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Table B.4: Performance of the exact procedures on the testbed (part 2). Runs reaching the time
limit of 900 seconds are indicated by “TL”.

Ext-GUROBI GUROBI STϵ-BEN2 MTϵ-BEN2

ID Time[s] Gap[%] Nodes Time[s] Gap[%] Nodes Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts

52 TL 58,61 2172 306,18 0 249 391,81 0 19718 42 100,90 0 4387,91 21

53 TL 58,94 1589 744,31 0 291 99,73 0 14488 23 84,93 0 4303,31 15

54 TL 55,58 2347 409,46 0 416 606,62 0 3632 42 331,72 0 3190,33 47

55 TL 57,93 1585 572,31 0 79 591,09 0,26 2633 5 243,01 0 4629,81 31

56 TL 56,21 2628 680,26 0 298 TL 0,47 10972 13 207,33 0 3926,31 41

57 TL 57,26 2403 447,42 0 554 250,05 0 14241 87 145,21 0 3706,32 27

58 TL 58,60 1528 543,78 0 13 60,27 0 12305 23 44,04 0 4081,64 13

59 TL 59,30 6007 379,08 0 119 40,24 0 35887 14 29,67 0 4464,75 7

60 TL 60,61 2367 284,72 0 25 33,91 0 12909 15 31,99 0 7112,63 7

61 TL 61,23 4250 322,25 0 66 38,91 0 27138 12 25,13 0 2746,43 6

62 TL 63,20 1651 361,25 0 26 34,41 0 10480 8 20,27 0 4151,33 5

63 TL 58,59 3849 314,39 0 30 63,92 0 18773 31 58,22 0 8848,58 11

64 TL 60,26 1929 253,84 0 1 45,42 0 16264 14 43,11 0 8528,33 8

65 TL 60,93 2273 302,70 0 407 93,94 0 14908 22 54,33 0 8831,78 8

66 TL 61,84 2156 391,95 0 233 80,83 0 16244 20 51,60 0 10989,50 7

67 TL 55,89 10376 394,24 0 85 58,10 0 15290 38 TL 1,39 6478,20 4

68 TL 58,26 6270 374,05 0 41 49,86 0 13492 33 TL 0,24 1285,00 2

69 TL 60,52 1934 404,79 0 46 162,66 0 16191 26 93,57 0 20379,08 12

70 TL 61,43 2072 397,11 0 83 50,44 0 15472 21 69,29 0 14424,33 8

71 TL 56,00 9869 216,39 0 410 78,53 0 17577 29 102,60 0 7855,40 19

72 TL 59,74 4459 333,06 0 50 41,40 0 10014 23 77,20 0 12628,69 12

73 TL 61,32 3656 664,75 0 116 68,50 0 13002 21 56,93 0 14201,60 9

74 TL 56,93 6450 495,12 0 231 148,23 0 57661 45 TL 1,17 11983,00 3

75 TL 59,05 3062 554,48 0 108 61,26 0 52636 16 58,61 0 14578,50 9

76 TL 59,54 2343 339,07 0 193 43,89 0 49224 22 87,15 0 10201,76 16

77 TL 61,48 1647 447,53 0 96 377,27 0 42990 55 78,61 0 17195,36 10

78 TL 56,71 6702 444,47 0 126 278,28 0 21520 89 TL 0,42 10142,33 14

79 TL 57,90 4737 248,94 0 116 69,62 0 13657 35 77,33 0 8646,38 15

80 TL 60,10 2657 434,90 0 15 41,64 0 6473 24 63,77 0 15033,36 10

81 TL 60,15 1972 386,78 0 1 34,06 0 9038 21 57,33 0 13746,73 10

82 TL 57,12 4630 365,26 0 339 293,85 0 6450 29 TL 0,03 9319,00 16

83 TL 58,41 2571 233,69 0 1 130,95 0 56385 23 66,77 0 12757,87 14

84 TL 58,86 1854 302,13 0 1 30,30 0 48489 14 99,85 0 17825,54 12

85 TL 60,45 1492 535,38 0 1 43,33 0 36169 20 74,98 0 13722,09 10

86 TL 56,05 7294 443,79 0 259 215,72 0 21334 82 256,79 0 11377,06 33

87 TL 57,57 4658 337,27 0 24 652,23 0 20990 45 67,81 0 9156,50 11

88 TL 58,72 2639 370,19 0 23 63,28 0 8212 28 TL 0,39 10578,00 6

89 TL 59,76 1902 348,69 0 45 97,08 0 10711 23 315,69 0,07 4150,80 4

90 TL 62,93 532 434,21 0 43 34,49 0 7625 15 14,64 0 8705,00 4

91 TL - 1 320,02 0 512 17,63 0 5416 13 16,99 0 11139,80 4

92 TL 62,46 1070 367,79 0 551 29,09 0 5279 10 25,30 0 11695,20 4

93 TL 63,26 1509 425,42 0 177 40,72 0 5387 15 31,04 0 6817,57 6

94 TL 59,76 1678 381,32 0 103 22,48 0 4754 17 57,47 0 11655,60 9

95 TL 60,88 2333 260,50 0 18 38,66 0 5468 10 45,21 0 12743,57 6

96 TL 61,73 1477 439,49 0 115 45,28 0 11156 11 55,72 0 13867,11 8

97 TL 62,61 1505 458,36 0 246 42,94 0 6798 14 41,94 0 9426,70 9

98 TL 57,82 6177 260,73 0 283 18,89 0 4966 24 TL 0,03 11236,80 4

99 TL 60,24 3381 500,46 0 47 38,99 0 9855 24 TL 0,31 13626,00 5

100 TL 61,31 1905 395,18 0 39 13,64 0 7790 18 61,81 0 14786,82 10

101 TL 62,33 1466 503,26 0 22 15,70 0 4408 14 75,79 0 24469,30 9

102 TL 58,44 6753 214,83 0 188 57,75 0 8758 26 TL 0,15 14899,89 8
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Table B.5: Performance of the exact procedures on the testbed (part 3). Runs reaching the time
limit of 900 seconds are indicated by “TL”.

Ext-GUROBI GUROBI STϵ-BEN2 MTϵ-BEN2

ID Time[s] Gap[%] Nodes Time[s] Gap[%] Nodes Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts

103 TL 59,87 2621 363,29 0 99 61,57 0 10509 23 72,15 0 12724,00 12

104 TL 60,90 1925 415,56 0 28 18,29 0 7792 18 84,67 0 19106,23 12

105 TL 61,92 2189 478,66 0 61 23,65 0 8908 14 88,61 0 19102,46 12

106 TL 58,75 3499 219,25 0 192 18,62 0 4183 19 76,34 0 9639,00 13

107 TL 60,21 1882 335,21 0 64 60,22 0 7885 25 92,26 0 15314,14 13

108 TL 61,30 1502 379,03 0 83 14,72 0 6037 18 89,45 0 20072,50 9

109 TL 62,03 1653 TL 1,16 1 60,37 0 20543 25 64,65 0 13826,40 9

110 TL 57,88 3859 320,76 0 405 29,25 0 5544 16 110,32 0 13377,54 12

111 TL 59,46 3217 351,74 0 127 70,08 0 12416 19 TL 0,004 11293,40 4

112 TL 60,28 1855 366,18 0 204 28,68 0 8212 19 114,90 0 25354,46 12

113 TL 61,66 1534 672,75 0 62 32,35 0 8090 19 74,25 0 12823,82 10

114 TL 58,24 2277 440,30 0 58 19,54 0 4579 19 124,26 0 13152,05 19

115 TL 59,08 1951 417,83 0 183 38,48 0 7837 25 76,18 0 10683,62 12

116 TL 60,60 1453 531,86 0 108 22,01 0 6846 21 62,93 0 10258,92 11

117 TL 61,16 1497 513,56 0 146 115,50 0 23323 25 TL 0,43 12054,33 5

118 TL 57,48 4943 312,10 0 174 36,84 0 5917 29 110,74 0 19407,94 16

119 TL 58,90 2538 321,24 0 73 34,77 0 8577 21 TL 0,34 5060,14 6

120 TL 59,90 1671 367,14 0 54 27,06 0 7415 19 92,17 0 13914,00 11

121 TL 61,13 1512 353,40 0 75 33,27 0 8345 16 TL 0,001 17082,13 14

122 TL 57,51 3068 289,84 0 168 80,79 0 7776 21 35,03 0 2495,00 8

123 TL 57,29 5126 272,01 0 155 80,62 0 8317 28 30,61 0 2050,09 10

124 TL 58,54 4201 291,19 0 57 64,99 0 7622 20 42,72 0 1561,70 9

125 TL 59,63 2818 411,42 0 164 34,63 0 5873 13 31,03 0 2179,44 8

126 TL 56,39 3915 345,55 0 133 41,93 0 6886 17 34,01 0 3814,91 10

127 TL 57,56 2040 421,95 0 167 40,16 0 9004 14 28,52 0 3616,00 9

128 TL 58,61 2707 302,65 0 188 145,59 0 10785 23 30,27 0 2895,89 8

129 TL 59,57 2012 389,37 0 105 70,78 0 9556 14 31,14 0 4039,29 6

130 TL 53,93 8614 281,01 0 191 443,09 0 14115 34 37,88 0 3360,75 11

131 TL 56,64 4641 502,86 0 77 84,52 0 10489 25 37,88 0 5002,91 10

132 TL 58,16 1993 322,66 0 318 211,37 0 11196 25 38,89 0 5101,58 11

133 TL 58,83 1581 383,29 0 144 435,76 0 11346 23 37,52 0 5222,20 9

134 TL 53,71 8310 428,46 0 201 350,88 0 15731 39 54,16 0 5541,36 13

135 TL 55,34 6150 260,03 0 93 54,34 0 9450 19 38,79 0 4049,36 10

136 TL 58,01 3517 438,07 0 361 92,34 0 11821 27 47,65 0 3791,07 13

137 TL 58,65 2613 403,51 0 511 34,07 0 8860 14 40,57 0 5084,00 11

138 TL 54,84 5305 352,51 0 287 161,25 0 12224 29 54,28 0 5593,64 13

139 TL 56,49 2951 372,97 0 386 87,49 0 11994 22 69,62 0 7986,21 13

140 TL 57,79 2306 529,34 0 421 18,17 0 6810 19 43,85 0 7838,27 10

141 TL 59,22 1670 469,44 0 430 29,84 0 7371 21 65,36 0 9565,08 12

142 TL 54,06 6569 329,08 0 557 402,60 0 15702 40 51,43 0 4305,50 13

143 TL 56,12 3915 353,38 0 724 391,73 0 13418 35 52,39 0 5543,93 14

144 TL 57,55 2369 553,27 0 230 200,26 0 13059 26 45,75 0 5122,39 17

145 TL 58,21 1793 459,78 0 551 180,89 0 12057 23 65,79 0 7344,53 16

146 TL 54,52 4205 375,73 0 412 140,38 0 13264 31 78,73 0 6022,95 18

147 TL 56,40 2616 389,91 0 644 70,24 0 11395 28 74,62 0 5953,29 16

148 TL 57,20 1651 749,69 0 223 167,93 0 13985 21 67,90 0 9372,69 15

149 TL 58,68 1587 576,97 0 207 23,92 0 7371 18 63,42 0 12804,29 13

150 TL 54,07 6470 346,15 0 647 756,13 0 23722 74 94,68 0 5418,13 22

151 TL 55,21 4680 406,63 0 683 499,26 0 13988 40 59,99 0 4787,22 17

152 TL 56,30 2028 322,37 0 534 157,85 0 11933 21 56,22 0 6451,77 12

153 TL 58,04 1682 474,56 0 222 496,39 0 11144 25 51,13 0 8109,93 13
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Table B.6: Comparison between STϵ-BEN1, MTϵ-BEN1, STϵ-BEN2, MTϵ-BEN2 on the testbed
(part 1). Runs reaching the time limit of 900 seconds are indicated by “TL”.

STϵ-BEN1 MTϵ-BEN1 STϵ-BEN2 MTϵ-BEN2

ID Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts

1 TL 0,33 25142 470 TL 0,33 634,28 249 84,52 0 52409 18 25,53 0 2455,18 10

2 TL 0,31 24310 422 TL 0,32 710,75 251 39,95 0 6547 23 18,53 0 2247,78 8

3 TL 0,27 27745 499 TL 0,31 536,86 244 22,70 0 48320 12 14,35 0 2122,67 5

4 TL 0,40 40329 402 TL 0,28 557,10 265 38,02 0 54293 22 23,05 0 1984,63 7

5 TL 0,99 21954 64 TL 0,36 2669,42 149 92,87 0 7286 23 28,90 0 5167,36 10

6 TL 0,66 24953 110 TL 0,35 2571,91 165 70,84 0 33649 26 33,13 0 3875,08 11

7 TL 0,83 25108 72 TL 0,50 1866,18 115 43,02 0 33566 18 29,67 0 3655,60 9

8 TL 0,62 25150 119 TL 0,48 1599,34 111 113,10 0 35117 19 56,62 0 4500,46 12

9 TL 0,54 26008 32 TL 0,13 7200,25 55 48,11 0 34184 24 40,95 0 6715,73 10

10 TL 0,40 23938 31 TL 0,04 8291,91 44 39,78 0 33105 24 42,81 0 4592,82 10

11 TL 0,49 25741 37 TL 0,12 6054,18 77 36,14 0 30973 20 32,91 0 5077,80 9

12 TL 0,31 27420 83 TL 0,22 6945,81 75 97,77 0 35565 31 56,37 0 4500,25 15

13 TL 0,67 36797 24 TL 0,28 8664,33 33 36,87 0 31402 18 52,25 0 5272,92 12

14 TL 0,26 29314 30 TL 0,20 7460,66 41 35,80 0 31115 20 42,19 0,01 6808,60 4

15 TL 0,61 29931 22 TL 0,07 7410,04 54 56,55 0 17981 45 31,21 0 6564,18 10

16 TL 0,36 23859 27 TL 0,19 7338,49 53 69,44 0 34434 24 49,99 0 5358,25 15

17 TL 0,20 25456 47 66,89 1,32 3735,57 6 169,62 0 17233 36 64,77 0 5694,80 14

18 TL 0,21 27550 52 TL 0,25 9030,57 49 102,04 0 10275 30 38,50 0 4621,58 11

19 TL 0,23 27365 57 TL 0,27 8810,28 47 60,87 0 12948 27 45,01 0 6232,85 12

20 TL 1,14 25720 21 TL 0,66 9902,57 30 77,22 0 34450 49 68,22 0 6665,00 16

21 TL 0,91 26689 22 TL 0,54 9198,07 29 52,49 0 32384 23 48,21 0 6176,33 11

22 TL 0,57 27626 24 TL 0,49 9571,91 34 51,44 0 31207 35 43,46 0 3442,80 14

23 TL 0,45 32035 24 TL 0,68 9501,76 24 40,36 0 10603 21 50,96 0 4156,62 12

24 TL 1,95 26810 22 TL 1,35 11089,92 12 208,53 0 17892 55 82,65 0 4557,50 23

25 TL 1,92 34775 17 TL 0,84 7928,74 26 178,43 0 17336 57 100,74 0 6828,93 14

26 TL 1,25 28543 22 TL 0,67 11252,30 30 71,80 0 8701 28 124,56 0 4506,54 12

27 TL 0,97 26101 27 TL 0,67 9358,06 33 62,96 0 12706 22 39,31 0 5035,36 10

28 TL 2,19 26582 16 TL 1,25 8868,30 20 384,74 0 40447 57 68,23 0 4545,60 19

29 TL 1,65 30821 19 TL 0,97 10835,43 30 182,72 0 37938 29 49,30 0 5250,50 13

30 TL 1,43 33182 14 TL 1,18 9081,82 21 83,76 0 34029 20 41,06 0 6753,55 10

31 TL 0,81 32596 25 TL 0,91 10423,19 21 36,47 0 4274 23 30,72 0 5593,13 7

32 TL 0,49 39456 324 TL 0,54 1300,64 157 126,30 0 7410 30 31,85 0 2172,36 10

33 TL 0,39 36764 476 TL 0,60 912,60 121 69,43 0 7891 22 35,43 0 1703,08 11

34 TL 0,32 34657 658 TL 0,43 1143,78 190 116,02 0 7820 31 24,83 0 1389,22 8

35 TL 0,38 34150 420 TL 0,43 1148,28 186 40,59 0 5612 12 36,95 0 968,78 8

36 TL 1,80 31756 47 TL 0,73 3705,34 96 149,38 0 22245 32 71,36 0 2351,04 23

37 TL 1,78 31374 34 TL 0,89 2992,58 65 137,62 0 16935 26 62,03 0 2348,38 15

38 TL 1,36 40430 85 TL 0,69 3054,23 102 136,17 0 15798 32 51,76 0 1827,73 14

39 TL 1,33 30313 56 TL 0,85 2843,93 71 127,56 0 12827 25 48,39 0 2111,43 13

40 TL 1,48 27329 14 TL 0,88 9465,65 20 169,78 0 17333 47 148,35 0 3084,66 31

41 TL 0,87 27705 19 TL 0,88 7687,82 21 83,66 0 18409 52 176,48 0 3219,17 29

42 TL 1,14 27611 22 TL 0,80 8652,06 33 146,97 0 16777 40 126,67 0 3629,62 28

43 TL 1,28 21839 17 TL 0,92 9144,59 27 341,45 0 20984 21 76,69 0 4082,00 14

44 TL 1,48 23521 15 TL 0,85 8798,36 28 273,04 0 18594 50 176,16 0 4265,24 28

45 TL 1,42 24721 18 TL 1,04 7956,56 16 268,25 0 16461 51 267,68 0 5025,69 28

46 TL 1,00 24424 20 TL 0,82 9834,19 32 454,27 0 18607 63 87,04 0 3409,76 24

47 TL 1,90 23735 12 TL 0,98 11382,38 16 73,41 0 15448 35 47,85 0 3872,69 12

48 TL 1,60 16969 12 TL 1,36 10544,00 13 434,02 0 22949 76 253,88 0 3754,39 30

49 TL 1,55 28175 13 TL 1,04 9122,76 21 29,02 0 7464 25 44,10 0 3066,20 14

50 TL 1,77 23221 20 TL 1,46 10045,50 18 142,44 0 13114 44 176,79 0 3535,42 32

51 TL 1,83 28937 15 TL 1,65 11296,50 14 382,76 0 18972 86 168,88 0 5048,27 29
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Table B.7: Comparison between STϵ-BEN1, MTϵ-BEN1, STϵ-BEN2, MTϵ-BEN2 on the testbed
(part 2). Runs reaching the time limit of 900 seconds are indicated by “TL”.

STϵ-BEN1 MTϵ-BEN1 STϵ-BEN2 MTϵ-BEN2

ID Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts

52 TL 2,87 27103 11 TL 1,35 9615,43 23 391,81 0 19718 42 100,90 0 4387,91 21

53 TL 1,70 25780 16 TL 1,48 9154,31 16 99,73 0 14488 23 84,93 0 4303,31 15

54 TL 2,26 34552 17 TL 1,81 7321,86 13 606,62 0 3632 42 331,72 0 3190,33 47

55 TL 2,24 37380 12 TL 1,84 11125,45 11 591,09 0,26 2633 5 243,01 0 4629,81 31

56 TL 2,39 25744 11 TL 2,25 10706,73 11 TL 0,47 10972 13 207,33 0 3926,31 41

57 TL 2,05 25726 15 TL 2,34 9367,44 8 250,05 0 14241 87 145,21 0 3706,32 27

58 TL 1,69 28211 13 TL 2,00 9248,18 10 60,27 0 12305 23 44,04 0 4081,64 13

59 TL 0,61 39500 160 TL 0,70 2518,26 82 40,24 0 35887 14 29,67 0 4464,75 7

60 TL 0,16 48174 314 TL 0,42 2544,79 161 33,91 0 12909 15 31,99 0 7112,63 7

61 TL 0,36 47314 388 TL 0,44 2697,70 161 38,91 0 27138 12 25,13 0 2746,43 6

62 TL 0,35 50100 486 TL 0,42 2545,24 149 34,41 0 10480 8 20,27 0 4151,33 5

63 TL 1,26 24309 43 TL 0,44 6024,84 127 63,92 0 18773 31 58,22 0 8848,58 11

64 TL 1,18 27697 46 TL 0,42 4695,28 133 45,42 0 16264 14 43,11 0 8528,33 8

65 TL 1,14 26134 53 TL 0,77 5193,65 62 93,94 0 14908 22 54,33 0 8831,78 8

66 TL 0,76 30377 158 TL 0,47 4277,47 151 80,83 0 16244 20 51,60 0 10989,50 7

67 TL 0,93 26894 31 TL 0,31 11376,29 62 58,10 0 15290 38 TL 1,39 6478,20 4

68 TL 0,15 34126 92 TL 1,33 9796,43 6 49,86 0 13492 33 TL 0,24 1285,00 2

69 TL 0,04 34109 249 TL 0,35 10724,83 53 162,66 0 16191 26 93,57 0 20379,08 12

70 TL 0,59 30067 44 TL 0,39 8820,61 59 50,44 0 15472 21 69,29 0 14424,33 8

71 TL 1,62 47719 21 TL 0,28 8639,59 70 78,53 0 17577 29 102,60 0 7855,40 19

72 TL 0,97 48700 30 TL 2,41 9259,80 4 41,40 0 10014 23 77,20 0 12628,69 12

73 TL 1,39 47710 23 TL 0,27 11694,90 60 68,50 0 13002 21 56,93 0 14201,60 9

74 TL 1,85 31647 17 TL 1,13 16467,83 12 148,23 0 57661 45 TL 1,17 11983,00 3

75 TL 0,95 30166 35 TL 0,88 10471,56 15 61,26 0 52636 16 58,61 0 14578,50 9

76 TL 0,84 43117 35 TL 0,45 10542,40 49 43,89 0 49224 22 87,15 0 10201,76 16

77 TL 1,27 24528 23 78,92 1,27 13890,75 7 377,27 0 42990 55 78,61 0 17195,36 10

78 TL 1,73 31838 16 TL 1,67 12108,89 8 278,28 0 21520 89 TL 0,42 10142,33 14

79 TL 1,69 31830 21 TL 0,84 13021,36 27 69,62 0 13657 35 77,33 0 8646,38 15

80 TL 1,56 33708 20 TL 0,67 11848,43 47 41,64 0 6473 24 63,77 0 15033,36 10

81 TL 1,72 37026 15 TL 1,50 18374,22 8 34,06 0 9038 21 57,33 0 13746,73 10

82 TL 1,30 45277 19 TL 1,22 11329,79 23 293,85 0 6450 29 TL 0,03 9319,00 16

83 TL 1,67 27269 26 TL 1,09 14449,74 27 130,95 0 56385 23 66,77 0 12757,87 14

84 TL 2,21 31289 25 TL 0,81 16081,14 44 30,30 0 48489 14 99,85 0 17825,54 12

85 TL 1,58 50284 19 TL 0,84 14002,65 43 43,33 0 36169 20 74,98 0 13722,09 10

86 TL 2,50 30741 14 TL 1,40 9530,00 29 215,72 0 21334 82 256,79 0 11377,06 33

87 TL 1,68 48351 21 TL 1,23 11097,63 27 652,23 0 20990 45 67,81 0 9156,50 11

88 TL 0,94 41503 28 TL 1,30 11643,12 25 63,28 0 8212 28 TL 0,39 10578,00 6

89 TL 2,01 33741 17 TL 1,26 14320,85 25 97,08 0 10711 23 315,69 0,07 4150,80 4

90 TL 0,27 30855 542 TL 0,63 2413,11 83 34,49 0 7625 15 14,64 0 8705,00 4

91 TL 0,32 38269 496 TL 0,36 1982,10 191 17,63 0 5416 13 16,99 0 11139,80 4

92 TL 0,30 35937 578 TL 0,34 1689,57 191 29,09 0 5279 10 25,30 0 11695,20 4

93 TL 0,25 38629 663 TL 0,35 1983,50 182 40,72 0 5387 15 31,04 0 6817,57 6

94 TL 0,69 24559 114 TL 0,34 3816,97 149 22,48 0 4754 17 57,47 0 11655,60 9

95 TL 0,60 27103 178 TL 0,35 3056,47 163 38,66 0 5468 10 45,21 0 12743,57 6

96 TL 0,58 27252 188 TL 0,35 3864,94 151 45,28 0 11156 11 55,72 0 13867,11 8

97 TL 0,44 36815 349 TL 0,38 3763,53 155 42,94 0 6798 14 41,94 0 9426,70 9

98 TL 0,64 38071 40 TL 0,05 11859,07 66 18,89 0 4966 24 TL 0,03 11236,80 4

99 TL 0,13 36062 76 TL 0,04 10962,34 68 38,99 0 9855 24 TL 0,31 13626,00 5

100 TL 0,85 34662 28 TL 0,69 8039,17 11 13,64 0 7790 18 61,81 0 14786,82 10

101 TL 0,72 35760 31 TL 0,20 9525,53 68 15,70 0 4408 14 75,79 0 24469,30 9

102 TL 0,49 36356 37 TL 0,14 11769,07 56 57,75 0 8758 26 TL 0,15 14899,89 8
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Table B.8: Comparison between STϵ-BEN1, MTϵ-BEN1, STϵ-BEN2, MTϵ-BEN2, on the testbed
(part 3). Runs reaching the time limit of 900 seconds are indicated by “TL”.

STϵ-BEN1 MTϵ-BEN1 STϵ-BEN2 MTϵ-BEN2

ID Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts Time[s] Gap[%] Nodes BenCuts

103 TL 0,58 35034 45 TL 0,94 4121,78 8 61,57 0 10509 23 72,15 0 12724,00 12

104 TL 0,42 34677 56 TL 0,63 4248,33 11 18,29 0 7792 18 84,67 0 19106,23 12

105 TL 0,24 34085 94 TL 1,22 7396,57 6 23,65 0 8908 14 88,61 0 19102,46 12

106 TL 0,90 27397 38 TL 0,26 14291,08 25 18,62 0 4183 19 76,34 0 9639,00 13

107 TL 0,90 24502 25 TL 0,23 20584,57 46 60,22 0 7885 25 92,26 0 15314,14 13

108 TL 0,68 28563 38 TL 0,28 15105,79 42 14,72 0 6037 18 89,45 0 20072,50 9

109 TL 0,86 26882 47 TL 1,27 17165,14 6 60,37 0 20543 25 64,65 0 13826,40 9

110 TL 1,88 23885 16 TL 0,39 14259,21 38 29,25 0 5544 16 110,32 0 13377,54 12

111 TL 1,62 27126 18 465,03 0,59 15652,44 17 70,08 0 12416 19 TL 0,004 11293,40 4

112 TL 0,43 30410 57 TL 0,78 13483,00 12 28,68 0 8212 19 114,90 0 25354,46 12

113 TL 1,77 27444 20 TL 0,50 18146,48 29 32,35 0 8090 19 74,25 0 12823,82 10

114 TL 0,63 25712 51 786,73 1,14 14424,40 9 19,54 0 4579 19 124,26 0 13152,05 19

115 TL 1,04 23670 36 TL 0,64 19988,36 33 38,48 0 7837 25 76,18 0 10683,62 12

116 TL 0,84 26099 34 TL 0,79 12102,45 21 22,01 0 6846 21 62,93 0 10258,92 11

117 TL 0,88 28733 33 TL 0,46 20081,28 29 115,50 0 23323 25 TL 0,43 12054,33 5

118 TL 1,48 31814 19 TL 1,20 10087,31 15 36,84 0 5917 29 110,74 0 19407,94 16

119 TL 0,50 36218 69 TL 1,34 8299,20 9 34,77 0 8577 21 TL 0,34 5060,14 6

120 TL 1,39 35405 32 530,56 1,15 12872,67 11 27,06 0 7415 19 92,17 0 13914,00 11

121 TL 1,57 29639 19 TL 0,94 16034,96 24 33,27 0 8345 16 TL 0,001 17082,13 14

122 TL 0,83 31676 120 TL 0,70 2465,43 122 80,79 0 7776 21 35,03 0 2495,00 8

123 TL 0,79 30319 137 TL 0,90 1589,55 67 80,62 0 8317 28 30,61 0 2050,09 10

124 TL 0,51 35800 244 TL 0,60 1920,16 134 64,99 0 7622 20 42,72 0 1561,70 9

125 TL 0,55 38300 247 TL 0,51 1535,47 149 34,63 0 5873 13 31,03 0 2179,44 8

126 TL 1,89 31860 39 TL 0,85 3726,21 73 41,93 0 6886 17 34,01 0 3814,91 10

127 TL 1,75 28423 57 TL 0,85 3853,81 69 40,16 0 9004 14 28,52 0 3616,00 9

128 TL 1,53 29578 58 TL 0,77 3469,18 85 145,59 0 10785 23 30,27 0 2895,89 8

129 TL 1,57 33493 139 TL 0,84 3080,27 88 70,78 0 9556 14 31,14 0 4039,29 6

130 TL 1,06 50041 23 226,74 0,83 8611,45 19 443,09 0 14115 34 37,88 0 3360,75 11

131 TL 1,02 52096 21 TL 0,64 7464,77 39 84,52 0 10489 25 37,88 0 5002,91 10

132 TL 1,10 53730 22 TL 0,61 9904,51 39 211,37 0 11196 25 38,89 0 5101,58 11

133 TL 1,55 54902 24 TL 0,90 8945,49 35 435,76 0 11346 23 37,52 0 5222,20 9

134 TL 0,97 49626 17 117,37 1,81 8277,00 7 350,88 0 15731 39 54,16 0 5541,36 13

135 TL 1,92 51073 15 TL 1,11 8325,31 15 54,34 0 9450 19 38,79 0 4049,36 10

136 TL 0,90 25745 21 TL 0,68 7440,53 45 92,34 0 11821 27 47,65 0 3791,07 13

137 TL 0,92 42426 20 TL 0,67 9790,59 49 34,07 0 8860 14 40,57 0 5084,00 11

138 TL 1,58 22950 14 TL 0,76 8125,08 38 161,25 0 12224 29 54,28 0 5593,64 13

139 TL 0,98 31770 31 TL 0,98 11693,66 29 87,49 0 11994 22 69,62 0 7986,21 13

140 TL 1,42 34371 16 TL 0,84 12821,84 37 18,17 0 6810 19 43,85 0 7838,27 10

141 TL 1,12 25191 25 TL 0,97 10681,56 36 29,84 0 7371 21 65,36 0 9565,08 12

142 TL 1,91 47391 15 TL 1,15 15366,43 30 402,60 0 15702 40 51,43 0 4305,50 13

143 TL 1,93 63662 12 TL 1,88 7780,83 11 391,73 0 13418 35 52,39 0 5543,93 14

144 TL 1,81 53352 15 TL 1,06 13098,12 33 200,26 0 13059 26 45,75 0 5122,39 17

145 TL 1,22 41970 16 TL 1,33 16540,65 22 180,89 0 12057 23 65,79 0 7344,53 16

146 TL 1,55 38465 17 TL 1,51 13188,71 24 140,38 0 13264 31 78,73 0 6022,95 18

147 TL 2,00 35951 16 TL 1,39 11879,11 28 70,24 0 11395 28 74,62 0 5953,29 16

148 TL 2,01 36924 16 508,32 1,65 12333,44 15 167,93 0 13985 21 67,90 0 9372,69 15

149 TL 1,97 34962 16 TL 1,47 20889,16 25 23,92 0 7371 18 63,42 0 12804,29 13

150 TL 2,66 32391 16 TL 1,55 16715,22 23 756,13 0 23722 74 94,68 0 5418,13 22

151 TL 2,21 30141 16 TL 1,54 15266,79 29 499,26 0 13988 40 59,99 0 4787,22 17

152 TL 2,38 27368 22 TL 1,55 16010,70 30 157,85 0 11933 21 56,22 0 6451,77 12

153 TL 1,31 32177 13 TL 1,43 18229,13 31 496,39 0 11144 25 51,13 0 8109,93 13
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