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fabio.camilli@uniroma1.it).

Abstract: The policy iteration method is a classical algorithm for solving optimal control
problems. We introduce a policy iteration method for Mean Field Games systems and we
prove, under a classical monotonicity assumption on the coupling cost, the convergence of this
procedure to the solution of the problem.
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1. INTRODUCTION

The policy iteration method, introduced by Bellman
(1957), is an iterative procedure to solve the Hamilton-
Jacobi-Bellman (HJB in short) equation. This PDE, which
suffers from the so-called “curse of dimensionality”, is
approximated by a sequence of solutions of linear PDEs,
coupled at each step with an optimization problem for the
updating of the new policy. It is known that the algorithm
converges (see Fleming (1963); Puterman (1981); Santos
and Rust (2004)) and, in some cases, it is possible to prove
a (local) quadratic rate of convergence of the method (see
Bokanowski et al. (2009); Kerimkulov et al. (2020)).

Mean Field Games (MFG in short) theory, introduced in
Huang et al. (2006); Lasry and Lions (2007), characterizes
Nash equilibria for differential games involving a large
(infinite) number of agents. The corresponding mathemat-
ical formulation leads to the study of a system of PDEs,
composed by a HJB equation, characterizing the value
function and the optimal control for the agents; a Fokker-
Planck (FP in short) equation, governing the distribution
of the population when the agents behave in an optimal
way. In the case of a finite horizon problem with periodic
boundary conditions, the MFG system reads as

−∂tu−∆u+H(Du) = σF [m(t)](x) in Q

∂tm−∆m− div(mHp(Du)) = 0 in Q

m(x, 0) = m0(x), u(x, T ) = uT (x) in Td ,
(1)

where Q := Td× [0, T ], Td stands for the flat torus Rd/Zd,
H is a convex Hamiltonian and σ a positive parameter.
Let L(q) = supp∈Rd{p·q−H(p)} be the Legendre transform
of H. We consider the following policy iteration method
for (1):

Policy iteration algorithm: Fixed R > 0 and given a
bounded, measurable vector field q(0) : Td × [0, T ] → Rd
with ‖q(0)‖L∞(Q) ≤ R, iterate

(i) Solve{
∂tm

(n) −∆m(n) − div(m(n)q(n)) = 0, in Q

m(n)(x, 0) = m0(x) in Td.
(ii) Solve


−∂tu(n) −∆u(n) + q(n)Du(n) − L(q(n))

= σF [m(n)(t)](x) in Q

u(n)(x, T ) = uT (x) in Td.

(iii) Update the policy

q(n+1)(x, t) = arg max|q|≤R

{
q ·Du(n)(x, t)− L(q)

}
.

The main advantage of the method is that, at each iter-
ation, the linear HJB and FP equations are completely
decoupled and can be quickly solved with different numer-
ical methods.

In this paper, we will review some of the results proved
in Cacace et al. (2021); Camilli and Tang (2022). The
first result concerns the convergence of the policy iteration
method assuming either that the Hamiltonian is convex
and globally Lipschitz, hence in a setting similar to Flem-
ing (1963); Puterman (1981), or if the Hamiltonian has
polynomial growth, i.e. H(p) ' |p|γ , γ > 1.

Moreover, we study the rate of convergence of method.
We obtain, via purely PDE arguments, a linear rate of
convergence for the solution of the MFG system. More
precisely, the error between two successive iterations of
the sequence {(u(n),m(n))} generated by the algorithm
improves linearly with respect to the error of the previous
iterations, for sufficiently large n and small σ.

Finally, we introduce a suitable finite difference approxi-
mation of the MFG system and we show the convergence of
the policy iteration method for the discrete problem. Some
numerical tests in dimension one and two complete the
presentation. For reasons of space, we present the results
only in the case of the evolutive system (1). However,
similar results can also be proved in the ergodic stationary
setting.

The paper is organized as follows. In Section 2, we intro-
duce some notations and recall the convergence result in
Cacace et al. (2021). In Section 3, we prove the convergence
rate for the MFG policy iteration method. In Section 4 we
introduce an approximation of the MFG system while in
Section 5 we show some numerical tests.



2. CONVERGENCE OF THE POLICY ITERATION
METHOD

We denote by Lr(Td), 1 ≤ r ≤ ∞, the set of r summable
periodic functions and byW k,r(Td), k ∈ N and 1 ≤ r ≤ ∞,
the Sobolev space of periodic functions having r-summable
weak derivatives up to order k. For any r ≥ 1, we
denote by W 2,1

r (Q) the space of functions f such that
∂δtD

β
xf ∈ Lr(Q) for all multi-indices β and δ such that

|β| + 2δ ≤ 2. All these spaces are endowed with the
corresponding standard norm.
Defined W 1,0

s (Q) as the space of functions such that the
norm

‖u‖W 1,0
s (Q) := ‖u‖Ls(Q) +

∑
|β|=1

‖Dβ
xu‖Ls(Q)

is finite, we denote by H1
s(Q) the space of functions

u ∈ W 1,0
s (Q) with ∂tu ∈ (W 1,0

s′ (Q))′, where 1
s + 1

s′ = 1,
equipped with the natural norm

‖u‖H1
s(Q) := ‖u‖W 1,0

s (Q) + ‖∂tu‖(W 1,0

s′
(Q))′ .

For α ∈ (0, 1), we denote the classical parabolic Hölder
space Cα,

α
2 (Q) as the space of functions u ∈ C(Q) such

that

[u]
Cα,

α
2 (Q)

= sup
(x1,t1),(x2,t2)∈Q

|u(x1, t1)− u(x2, t2)|
(d(x1, x2)2 + |t1 − t2|)

α
2
<∞,

where d(x, y) stands for the geodesic distance from x to y
in Td. If s > d+ 2, then H1

s(Q) is continuously embedded
onto Cδ,δ/2(Q) for some δ ∈ (0, 1) (see Cirant and Goffi
(2019)).
We describe the assumptions on the data of the problem.
Concerning the Hamiltonian, we consider two different
settings

(H1) H is differentiable, convex and globally Lipschitz
continuous, i.e. there exists a constant R0 > 0 such
that

|DpH(p)| ≤ R0 for all p ∈ Rd .
(H2) H is of the form

H(p) = |p|γ , γ > 1.

Recall that

H(p) = p · q − L(q) if and only if q = DpH(p) .

Concerning the coupling cost, we assume that

(F1) F maps continuously P(Td), the set of probabil-
ity measure on Td, endowed with with the weak∗-
convergence, into a bounded subset of C0,1(Td).
Moreover∫

Td
(F [m1]− F [m2])d(m1 −m2) > 0 if m1 6= m2

(2)
for m1,m2 ∈ P1(Td).

Finally, for the initial and terminal data, we suppose that

(I) uT ∈W 2− 2
r ,r(Td), r > d+ 2;

m0 ∈W 1,s(Td), s > d+2, m0 ≥ 0 and
∫
Td m0(x)dx =

1.

The following result states the convergence of the policy
iteration method for (1) in the appropriate functional
spaces.

Theorem 1. Let either (H1) or (H2), (F1) and (I) be
in force. Then, for R sufficiently large, the sequence

(u(n),m(n)), generated by the policy iteration algorithm,
converges to the unique solution (u,m) ∈ W 2,1

r (Q) ×
H1
s(Q) of (1).

A similar convergence result also holds for a local coupling
F satisfying

F : R+ → R is continuous and there exists CF
such that |F (m)| < CF for m ≥ 0

(3)

and the monotonicity assumption (2).
Note also that, by the Sobolev embedding of W 2,1

r (Q) in

C1+α, 1+α2 (Q) for r > d+ 2 with

‖u‖C1+α,(1+α)/2(Q) ≤ C‖u‖W 2,1
r (Q)

and since q(n) = Hp(Du
(n−1)), it also follows the conver-

gence of policy q(n) to the optimal control q = Hp(Du) in
L∞(Q) for n→∞.
The proof of Theorem 1, see Theorems 2.3 and 2.5 in-
Cacace et al. (2021) for details, is based on the following
a priori estimates for the solution of the linear equations
involved in policy iteration method, which allows to prove
compactness of the sequence (u(n),m(n)).

Lemma 2. Given b ∈ L∞(Q;Rd), f ∈ Lr(Q) and uT ∈
W 2− 2

r ,r(Td) for some r > 1, then the problem{
−∂tu−∆u+ b(x, t)Du = f(x, t) in Q

u(x, T ) = uT (x) in Td

admits a unique solution u ∈W 2,1
r (Q) and it holds

‖u‖W 2,1
r (Q) ≤ C(‖f‖Lr(Q) + ‖uT ‖

W 2− 2
r
,r(Td)

),

where C depends on the norm of the coefficients as well as
on r, d, T . Furthermore, if r > d+ 2 we have Du ∈ Cα,α/2
for some α ∈ (0, 1).

Lemma 3. Given a bounded, measurable vector field g :
Q→ Rd and m0 ∈ L2(Td), m0 ≥ 0, then the problem{

∂tm−∆m− div(g(x, t)m) = 0 in Q,
m(x, 0) = m0(x) in Td,

has a unique non negative solution m ∈ H1
2(Q). Fur-

thermore, if m0 ∈ Ls(Td), s ∈ (1,∞), then m ∈
L∞(0, T ;Ls(Td)) ∩H1

2(Q) and, if m0 ∈W 1,s(Td), then

‖m‖H1
s(Q) ≤ C

for some constant C = C(‖g‖L∞(Q;Rd), ‖m0‖W 1,s(Td)).

3. RATE OF CONVERGENCE FOR THE POLICY
ITERATION METHOD

In this section, we study the rate of convergence for the
policy iteration method. We replace assumption (H1)
with

(H3) H is two times differentiable, satisfies (H1) and for
any S > 0, there exists CS > 0 such that

Hpp(p)q · q ≤ CS |q|2 for any |p| ≤ S, q ∈ Rd.

and (F1) with

(F2) F : Td × Ls(Td) → Lr(Td) and for all m1, m2 ∈
H1
s(Q)

‖F [m1]− F [m2]‖Lr(Td) ≤ CF ‖m1 −m2‖Ls(Td),
for r, s > d+2. Moreover F satisfies the monotonicity
assumption (2).a



The following theorem gives an estimate for the rate of
convergence for the policy iteration method, see Camilli
and Tang (2022), Theorem 3.1.

Theorem 4. Let either (H2) or (H3), (F2) and (I) be
in force and R as in Theorem 1. Then, there exists a
constant C, depending only on the data of problem, such
that, if (u(n),m(n)) is the sequence generated by the policy
iteration method, we have

‖m(n+1) −m(n)‖C(0,T ;Ls(Td)) ≤ C‖q(n+1) − q(n)‖L∞(Q),

‖m(n+1) −m(n)‖H1
2(Q) ≤ C‖q(n+1) − q(n)‖L∞(Q),

and

‖u(n+1) − u(n)‖W 2,1
r (Q) ≤ C

(
‖u(n) − u(n−1)‖2

W 2,1
r (Q)

+σ‖m(n+1) −m(n)‖C(0,T ;Ls(Td))
)
.

A key difficulty for obtain a convergence rate using Theo-
rem 4 is that we cannot control the constants C in the es-
timate of ‖m(n+1)−m(n)‖ and ‖u(n+1)−u(n)‖. To address
this difficulty, we introduce an additional assumption on
the smallness of the constant σ in the coupling cost. Note
that this assumption is not needed for the convergence
of the policy iteration method but only to get a linear
convergence rate to the solution of MFG system in the
policy iteration.

Corollary 5. Under the same assumptions of Theorem 4,
there exist constants σ0 > 0 and 0 < C∗ < 1, such that
for sufficiently large n and ∀σ < σ0,

‖u(n+1) − u(n)‖W 2,1
r (Q) + σ‖m(n+1) −m(n)‖C(0,T ;Ls(Td))

≤ C∗‖u(n) − u(n−1)‖W 2,1
r (Q).

4. APPROXIMATION OF THE MEAN FIELD GAMES
SYSTEM AND DISCRETE POLICY ITERATION

METHOD

In this section, we present some details on the numerical
approximation of the MFG system and we prove the
convergence of the corresponding discrete policy iteration
method in a simple setting. We consider the reference case
of the Eikonal-diffusion HJB equation, namely we choose
the Hamiltonian

H(x,Du) =
|Du|2

2
−V (x) = sup

q∈Rd
{q ·Du− 1

2
|q|2−V (x)} ,

where V is a given bounded potential, and we focus on the
stationary ergodic problem
−ε∆u+H(Du) + λ = F (m(x)) in Td

−ε∆m− div(mDpH(Du)) = 0 in Td∫ d

T
m(x)dx = 1, m ≥ 0,

∫ d

T
u(x)dx = 0 .

(4)
where F is a local coupling satisfying (2) and (3).
We define a grid G on Td, the vectors U,M approximating
respectively u,m at the grid nodes, and the number Λ
approximating the ergodic cost λ. Then, we approximate
(4) by the following nonlinear problem on G,

−ε∆]U +
1

2
|D]U |2 + Λ = V] + F](M)

−ε∆]M − div](M D]U) = 0∫
]

M = 1 , M ≥ 0 ,

∫
]

U = 0

(5)

where, in order to avoid cumbersome notation, we use the
symbol ] to denote suitable discretizations of the linear
differential operators, evaluations of functions at the grid
nodes, and quadrature rules for the integrals. For instance,
in dimension d = 1, given a uniform discretization of [0, 1]
with I nodes xi, for i = 0, . . . , I − 1, and space step
h = 1/I, we have

(∆]U)i =
1

h2
(
U[i−1] − 2Ui + U[i+1]

)
,

(D]U)i = (DLUi , DRUi) =
1

h

(
Ui − U[i−1] , U[i+1] − Ui

)
,

where the index operator [·] = {(·+ I)mod I} accounts
for the periodic boundary conditions. Moreover, using the
notation (·)+ = max {·, 0} and (·)− = min {·, 0}, we have

(|D]U |2)i =
(
DLU

+
i

)2
+
(
DRU

−
i

)2
,

(div](M D]U))i =
1

h

(
M[i+1]DLU

+
[i+1] −MiDLU

+
i

)
+

1

h

(
MiDRU

−
i −M[i−1]DRU

−
[i−1]

)
,

(F](M))i = F (Mi) , (V])i = V (xi) ,∫
]

M = h

I−1∑
i=0

Mi ,

∫
]

U = h

I−1∑
i=0

Ui .

It is worth noting that, at a formal level, D]U acts in
the scheme as a vector field with a number of components
2d, doubled with respect to dimension d of the problem.
This suggests a natural way to approximate the policy q
when building the policy iteration algorithm. Indeed, given
an initial guess Q = (QL, QR) : G → R2d and using the
notation Q± = (Q+

L , Q
−
R), we set Q(0) = Q and we iterate

on k ≥ 0 the following steps:

(i) Solve−ε∆]M
(k) − div](M

(k)Q(k)) = 0, on G∫
]

M (k) = 1 , M (k) ≥ 0.

(ii) Solve
−ε∆]U

(k) +Q
(k)
± ·D]U

(k) + Λ(k)

=
1

2
|Q(k)
± |2 + V] + F](M

(k)) on G∫
]

U (k) = 0 .

(iii) Update the policy

Q(k+1) =


D]U

(k) if |D]U
(k)| ≤ R

D]U
(k)

|D]U (k)|
R if |D]U

(k)| > R
on G.

(6)

The following theorem states the convergence of the above
discrete policy iteration, in the case of a quadratic Hamil-
tonian and in dimension one, but the argument can be
extended with similar techniques to any dimension and
more general Hamiltonians.

Theorem 6. Let F be a local coupling satisfying -(2)-
(3). Then, for R in (6) sufficiently large, the sequence
(U (k),Λ(k),M (k)), generated by the policy iteration algo-
rithm, converges to a solution (U,Λ,M) of (5)



For the proof, we refer to (Cacace et al., 2021, Theorem
5.1)

5. NUMERICAL SIMULATIONS

In this section, we provide some numerical tests and we
present a comparison with a direct Newton method for a
stationary MFG system introduced in Cacace and Camilli
(2016). Both algorithms are implemented in C language,
employing the free library SuiteSparseQR for solving the
linear systems via QR factorization. To check convergence,
given a tolerance τ > 0, we rely on the 2-norm of the
residual for the discrete nonlinear system

F(U,M,Λ) =



−ε∆]U +
1

2
|D]U |2 − V] − F](M) + Λ

−ε∆]M − div](M D]U)∫
]

U∫
]

M − 1


,

requiring ‖F(U (k),M (k),Λ(k))‖2 < τ . In the following test,
we set the problem in dimension d = 1, with τ = 10−8,
ε = 0.3, V (x) = sin(2πx) + cos(4πx) and F (m) = m2.
In particular, the choice of the coupling cost satisfies
the monotonicity assumption (2), ensuring uniqueness of
solutions for the MFG system. Moreover, we set the initial
guess for the Newton method as U (0) ≡ 0, M (0) ≡ 1 on G
and Λ(0) = 0, while we take the initial policy Q(0) ≡ (0, 0)
on G for the policy iteration algorithm.

Figure 1 shows the solution computed by the policy
iteration algorithm on a grid with |G| = 200 nodes, while in
Figure 2 we compare the performace of the two methods.
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Fig. 1. Policy iteration solution for the stationary MFG
system, (a) the corrector u and (b) the density m.

More precisely, in Figure 2a, we show the residuals of the
two methods, against the number of iterations needed to
reach the given tolerance τ . The Newton method converges
in just 5 iterations, while the policy iteration requires
24 iterations. Similarly, in Figure 2b-c-d we show the
differences between the solutions of the two methods in
the discrete L2 norm, against the number of iterations.
Due to the particular choice of the initial guess, at the first
iteration the two methods compute the same solution, but
the policy iteration algorithm requires more iterations to
reach the same accuracy for the residual. Nevertheless, as
reported in Table 1, the policy iteration exhibits a better
performance as the number of grid nodes increases, due to
the reduced size of the corresponding linear systems (see
the averaged CPU times per iteration). We must observe
that the comparison is not truly fair, since the update step
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Fig. 2. Policy iteration vs Newton method, (a) MFG sys-
tem residuals and (b-c-d) differences in the solutions
u, m, λ.

for the policy iteration is explicit in this example, with
a negligible computational cost. However, in the general
case, we expect that the relevant speed-up of the proposed
algorithm on large grids can compensate the efforts for the
optimization process in step (iii) of the method, since it is
a point-wise procedure that can be completely parallelized.

Now, let us consider the evolutive MFG system (1), again
in the special case of the Eikonal-diffusion HJB equation,
but in dimension d = 2. Spatial discretization is performed
in both variables as in the one dimensional case, while, for
time discretization, we employ an implicit Euler method
for both the time-forward FP equation and the time-
backward HJB equation. To this end, we introduce a
uniform grid on the interval [0, T ] with N + 1 nodes
tn = ndt, for n = 0, . . . , N , and time step dt = T/N .
Then, we denote by Un,Mn and Qn the vectors on G
approximating respectively the solution and the policy at
time tn. In particular, we set on G the initial condition
M0 = m0(·) and the final condition UN = uT (·). The

|G| Its Av.CPU/It (secs) Total CPU (secs)

NM 200 5 0.006 0.034

PI 200 24 0.003 0.079

NM 500 5 0.037 0.189

PI 500 25 0.009 0.247

NM 1000 5 0.173 0.865

PI 1000 25 0.036 0.917

NM 2000 5 0.973 4.869

PI 2000 25 0.241 6.039

NM 5000 5 13.662 68.313

PI 5000 25 1.724 43.115

NM 10000 5 123.769 618.845

PI 10000 25 7.917 197.949

Table 1. Policy iteration (PI) vs Newton
method (NM) under grid refinement, number
of iterations, averaged CPU times per itera-

tion, and total CPU times.



policy iteration algorithm for the fully discretized system

is the following: given an initial guess Q
(0)
n : G → R2d

for n = 0, . . . , N , initial and final data M0, UN : G → R,
iterate on k ≥ 0 up to convergence,

(i) Solve for n = 0, . . . , N − 1 on G{
M

(k)
n+1 − dt(ε∆]M

(k)
n+1 + div](M

(k)
n+1Q

(k)
n+1)) = M (k)

n

M
(k)
0 = M0

(ii) Solve for n = N − 1, . . . , 0 on G
U (k)
n − dt

(
ε∆]U

(k)
n −Q(k)

n,± ·D]U
(k)
n

)
= Un+1 + dt(

1

2
|Q(k)

n+1,±|2 + V] + F](M
(k)
n+1))

U
(k)
N = UN

(iii) Update the policy Q
(k+1)
n = D]U

(k)
n on G for n =

0, . . . , N , and set k ← k + 1.

Note that each iteration of the algorithm now requires the
solution of 2N linear systems of size |G| × |G|.
In the following test, we choose a number of nodes I = 50
for each space dimension and N = 100 nodes in time,
corresponding to 200 linear systems of size 2500 × 2500
per iteration. We set the final time T = 1, the diffusion
coefficient ε = 0.3, the coupling cost F (m) = m2 and the
potential V (x1, x2) = −| sin(2πx1) sin(2πx2)|. Moreover,
to check convergence, we rely on the discrete L2 squared
distance between policies at successive iterations, i.e. we

stop the algorithm when max
n

∫
]

|Q(k+1)
n − Q(k)

n |2 < τ ,

setting the tolerance τ = 10−8. Finally, we take the initial

policy Q
(0)
n ≡ (0, 0, 0, 0) on G for n = 0, . . . , N , while

we define the initial and final data M0 and UN approx-
imating on G the functions m0(x1, x2) = −uT (x1, x2) =
C exp

{
−40[(x1 − 1

2 )2 + (x2 − 1
2 )2]

}
, namely two Gaus-

sian with opposite signs centered at the point ( 1
2 ,

1
2 ), with

C > 0 such that
∫
T2 m0(x)dx = 1.

The algorithm requires 58 iterations to reach convergence
up to τ , with an averaged CPU time per iteration of 7.3
seconds, and a total CPU time of 423 seconds. In Figure
3, we report some relevant frames of the time evolution,
by plotting, for n fixed, the solution density Mn in gray
scales, and superimposing the optimal dynamics for the
FP equation, which is obtained by merging the two-sided
components of Qn, namely (Q1

n,L+Q1
n,R, Q

2
n,L+Q2

n,R). We
remark that, by definition, the absolute minimum of the
potential V is achieved at the points ( 1

4 ,
1
4 ), ( 3

4 ,
1
4 ), ( 1

4 ,
3
4 ),

( 3
4 ,

3
4 ). We observe that the optimal dynamics readily splits

the density symmetrically in four parts, pushing them to
concentrate around these minimizers, while, in the final
part of the time interval [0, T ], it forces the density to
merge again and concentrate exactly around the point
(1/2, 1/2) (i.e. the absolute minimizer of uT ), in order
to to satisfy the final condition for the HJB equation.
This configuration corresponds to the so called turnpike
phenomenon. Roughly speaking, it turns out that the solu-
tion of the evolutive problem corresponds to approach the
solution of the corresponding stationary ergodic problem,
standing on this equilibrium as long as possible before
moving again towards uT .

t = 0 t = 0.1 t = 0.2

t = 0.3 t = 0.7 t = 0.8

t = 0.85 t = 0.9 t = 1

Fig. 3. Solution of the evolutive MFG system at different
times, mass density in gray scales and optimal dy-
namics.

6. CONCLUSION

We presented a policy iteration algorithm for MFG sys-
tems, discussing its convergence and showing some error
estimates. In this paper we restrict the discussion to MFGs
with separable Hamiltonians. Recently in Laurière et al.
(2021) the authors considered the convergence rate of
policy iteration algorithms for MFGs with non-separable
Hamiltonians using contraction fixed point method. In the
future, we plan to extend this approach to other types
of MFG systems, such as those associated with MFG of
Controls.
Another possible direction of research would be to consider
a modified version of fictitious play for mean field games.
It can be shown to be connected with policy iteration:
instead of updating m(n), it is averaged with previous steps
of m(n). Fictitious play type method has been especially
important for considering multi-agent reinforcement learn-
ing models as MFGs.
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