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Abstract: Skeletal muscle regeneration entails a multifaceted process marked by distinct phases,
encompassing inflammation, regeneration, and remodeling. The coordination of these phases hinges
upon precise intercellular communication orchestrated by diverse cell types and signaling molecules.
Recent focus has turned towards extracellular vesicles (EVs), particularly small EVs, as pivotal
mediators facilitating intercellular communication throughout muscle regeneration. Notably, injured
muscle provokes the release of EVs originating from myofibers and various cell types, including
mesenchymal stem cells, satellite cells, and immune cells such as M2 macrophages, which exhibit
anti-inflammatory and promyogenic properties. EVs harbor a specific cargo comprising functional
proteins, lipids, and nucleic acids, including microRNAs (miRNAs), which intricately regulate gene
expression in target cells and activate downstream pathways crucial for skeletal muscle homeostasis
and repair. Furthermore, EVs foster angiogenesis, muscle reinnervation, and extracellular matrix
remodeling, thereby modulating the tissue microenvironment and promoting effective tissue regener-
ation. This review consolidates the current understanding on EVs released by cells and damaged
tissues throughout various phases of muscle regeneration with a focus on EV cargo, providing new
insights on potential therapeutic interventions to mitigate muscle-related pathologies.

Keywords: extracellular vesicles; skeletal muscle damage; muscle regeneration; miRNAs

1. Introduction

Skeletal muscle regeneration consists of a highly coordinated sequence of events that
recapitulate the process of embryonic skeletal muscle development [1,2]. In the early stage
of muscle regeneration, the injured muscle fibers undergo necrosis, and cellular contents,
together with chemotactic factors, are released into the extracellular space, activating
the inflammatory response [3]. The inflammatory phase is characterized by recruiting
inflammatory cells, mainly neutrophils and macrophages, at the injury site. Inflammation
represents a crucial step in the regenerative process, since it is responsible for muscle debris
removal and the activation of satellite cells [4,5]. The next event is the regenerative phase,
which is distinguished by the proliferation of activated satellite cells (SCs), also known as
muscle stem cells [6]. Located between the sarcolemma and the basal lamina surrounding
the myofibers, these cells typically remain quiescent under normal circumstances [7,8].
However, in response to various stimuli such as exercise, muscle growth, or injury, they
become activated, enter the cell cycle to proliferate briefly, and subsequently differentiate
into new myotubes or fuse with damaged myofibers for muscle repair. Following this
activation and proliferation, SCs can return to a quiescent state, reconstituting the in vivo
stem cell reservoir in preparation for subsequent regeneration processes [9–11]. The final
phases of myofiber regeneration include the remodeling and maturation of muscle tissue,
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where reinnervation is established, the deposition of the extracellular matrix being initiated,
and the recovery of the functional performance of the injured muscle [12,13].

It appears clear that efficient muscle regeneration is a coordinated process in which
multiple factors are activated in sequence to restore and/or preserve muscle structure
and function after an injury, and it is strictly dependent on fine communication between
different cell types [5]. In this context, a key role is played by extracellular vesicles (EVs),
which originate from the inward budding of the endosome membrane [14,15]. Extracellular
vesicles are composed of lipid bilayers with diameters ranging from the inward budding
of the endosome membrane. Extracellular vesicles are composed of lipid bilayers with
diameters ranging from 20–30 nm [16] to 10 µm [17], secreted from almost all living cells,
and detected in various body fluids and tissues [18–22]. EVs are released extracellularly
with the functional purpose of transferring their informative cargo into targeted cells [23].
Macromolecules, such as lipids, proteins DNA, and RNA species like mRNAs, tRNAs,
rRNAs, lncRNAs, and microRNAs, are enriched within EVs and exosomes, and their
composition is related to the differentiation stage, environmental conditions, and epigenetic
status of the parental cells [24].

MicroRNAs (miRNAs) are small non-coding RNAs approximately 19–24 nucleotides
in length that function as negative regulators of gene expression. They exert their effects by
binding to target messenger RNAs (mRNAs), leading to mRNA degradation or inhibition
of protein translation [25–28]. A subset of miRNAs, called myomiRs, are exclusively or
preferentially expressed in striated or enriched muscle, and are important factors in skeletal
muscle myogenesis [29–32]. Indeed, it has been demonstrated that they participate in
the regulation of muscle growth and differentiation, and ablation of miRNA results in
muscle abnormalities and perinatal death [33,34]. MiRNAs can be secreted from cells in a
stabilized form, bound either to proteins or within extracellular vesicles such as exosomes.
MiRNA-associated exosomes play a role in cell-to-cell communication, which can either be
communication between neighboring cells or distant cells in a different organ [35].

The involvement of extracellular vesicles, including exosomes, during skeletal muscle
regeneration has been extensively studied in the literature, and here we aim to review
the most recent publications regarding their involvement in different phases of skeletal
muscle regeneration.

2. The Inflammatory Phase

Inflammation represents a crucial and necessary phase in muscle regeneration. Upon
muscle injury, the damaged muscle fibers release chemotactic factors to the extracellular
space, which induces the infiltration of many types of immune cells [3]. Macrophages repre-
sent the most abundant inflammatory cell population in the regenerative process, exerting
both a proinflammatory and anti-inflammatory role. In fact, in the early phase post-injury,
the proinflammatory macrophages, the M1 macrophages, remove cellular debris, stimulate
satellite cell proliferation, and prevent premature myogenic cell fusion. M1 macrophages
are followed by anti-inflammatory/promyogenic M2 macrophages, which support the
differentiation of myoblasts and regulate the resolution of inflammation via the release of
anti-inflammatory cytokines (Figure 1A) [36,37]. The macrophage’s crucial role in acute
skeletal muscle injury repair is demonstrated by the fact that the absence of macrophage
infiltration or disruption of macrophage functions leads to profound impairment of muscle
regeneration and the development of muscle fibrosis [4,38–41].

Exosomes are secreted by a variety of cells, including macrophages [42], and recently it
was demonstrated that miRNAs transferred via exosomes have a crucial role in regulating
cellular functions [42]. Despite this, the extent to which macrophages communicate with
muscle myoblasts via exosomes, especially through the transfer of exosomal miRNAs
and exosomes’ role in muscle repair process, remains poorly understood. A recent paper
by Zhou and colleagues demonstrated that in the C2C12 cell line, treatment with miR-
501-enriched M2 exosomes promotes myoblast differentiation by targeting the ubiquitous
transcription factor Yin Yang 1 (YY1) [43]. Additionally, through in vivo experiments, the



Int. J. Mol. Sci. 2024, 25, 5811 3 of 13

authors demonstrated that M2 macrophage exosomes enhance inflammatory cell infiltration
and exert a therapeutic effect on damaged pubococcygeal muscle in experimental models
of stress urinary incontinence. These findings offer new insights into the promyogenic
mechanism of M2 macrophages and suggest that M2 macrophage exosomal miR-501 could
be a potential therapeutic tool to facilitate recovery from diseases resulting from muscle
injury [43] (Table 1).
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In addition, in a recent work published by Luo and colleagues, it was shown that under
conditions of high post-injury inflammation, local myoblasts secrete miRNA-containing
small EVs that can be taken up by surrounding macrophages, leading to incomplete M2
polarization and prolonged local inflammation, both in in vitro and in vivo experimental
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models. The authors demonstrated that miR-224, a miRNA differentially expressed in
small EVs deriving from inflammatory myoblasts, could inhibit M2 polarization through a
mechanism that likely involves direct suppression of its target gene. Furthermore, it has
been demonstrated that miR-224 is upregulated by retinoblastoma (RB) protein phospho-
rylation and E2F1 release in myoblasts. The crucial role of miR-224 in the treatment of
injured muscles was also demonstrated by the inhibition of miR-224 resulting in a dramatic
improvement in muscle remodeling and functional recovery by promoting M2 polarization
and alleviating inflammation [44] (Table 1).

Table 1. Tissue-specific EV miRNAs associated with skeletal muscle disorders.

Tissue/Source EVs miRNAs Cargo Physiological Effect Reference

M2 macrophages miR-501 Decreased inflammation (Stress urinary
incontinace/Pubococcygeal muscle) [43]

Myogenic cells miR224 Increased inflammation indamaged muscle [44]

Myogenic cells
miR-1, miR-133a, miR-133b, miR-206,

miR-208a, miR-208b, miR-486,
miR-499a, and miR-499b

Improved regeneration of damaged muscle [45]

Satellite cells miR-1, miR-133a, miR-133b, miR-206 Muscle differentiation of adipose stem
cells/inhibition of fibrotic tissue deposition [46]

Mesenchymal stem cells miR-126, miR-23a, miR-494 Restoration of vessels integrity in
damaged muscle [47,48]

Schwann cells

let-7, miR-125, miR-16, miR-103,
miR-10a, miR-191a, miR-196,-miR-21,
miR-23a, miR-26a, miR-27b, miR-93,

miR-99b, and miR-9a

Axonogenesis/guidance in
damaged muscle [49,50]

FAPS cells miR-206 Improvement of muscle regeneration
in DMD [51]

Adipocyte cells miR27a Insulin-resistance in Skeletal Muscle [52]

Placental MSC miR29c Improvement muscle regeneration [53]

Atrophic muscle fiber miR690 Sarcopenia [54]

3. The Regenerative Phase

The inflammatory response is followed by the regenerative phase (Figure 1B), marked
by satellite cell activation and the appearance of regenerating fibers, which can be identified
from a morphological point of view by the characteristic organization of nuclei in the central
position and the expression of the embryonic/neonatal isoform of myosin heavy chain.
When skeletal muscle undergoes damage, satellite cells (SCs) rapidly proliferate and subse-
quently fuse with the injured muscle, facilitating the formation of new muscle fibers [55].
This process plays a crucial role in promoting muscle growth, muscle remodeling, and
overall repair after damage.

In this context, the injured plasma membrane of skeletal myoblasts and myotubes
releases extracellular vesicles, including small EVs, which play a crucial role in medi-
ating changes in target cells, and activating downstream pathways involved in muscle
homeostasis and repair [56].

Exosomes, particularly those derived from mesenchymal stem cells (MSCs) or human
skeletal muscle cells (HSkMs) can enhance regeneration in various tissues, including
skeletal muscle [47,57,58]. Several studies show that MSC and HSkM exosomes enhance
angiogenesis and myogenesis, resulting in increased muscle cross-sectional areas and
reduced fibrotic tissue. These exosomes are rich in myogenic growth factors and miRNAs,
promoting muscle cell proliferation and differentiation and preventing apoptosis. The
genes involved in muscle regeneration, such as MyoD, myogenin, paired box 7 (Pax7), and
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embryonal myosin heavy chain (eMyhc), are upregulated in exosome-treated satellite cells
or in exosome-treated injured muscle, leading to improved muscle function in vivo [59].

Notably, injecting exosomes derived from the C2C12 mouse myoblast cell line into
the gastrocnemius muscle of injured mice promotes damage repair by triggering skeletal
muscle regeneration and inducing the upregulation of Pax7 gene expression, a master
regulator of SC function [60].

Muscle-derived exosomes carry specific lipids, such as cholesterol, sphingomyelin,
ceramide, and lipid rafts, along with functional proteins such as contractile proteins (actins,
myosins, and troponins) and myogenic growth factors [56,61]. Recently, Choi JS and col-
leagues demonstrated that exosomes released by differentiating human skeletal muscle
cells carry myogenic growth factors, including heparin-binding EGF-like growth factors
(HB-EGFs), vascular endothelial growth factors (VEGFs), insulin-like growth factors (IGFs),
IGF-binding protein 3 (IGFBP-3), hepatocyte growth factors (HGFs), fibroblast growth
factor 2 (FGF2), platelet-derived growth factors (PDGFs), interleukin 6 (IL6) and neu-
rotrophin 3. These factors promote in vitro myogenic differentiation of stem cells and
contribute in vivo to the regeneration of skeletal muscle tissue [61].

Furthermore, it is known that specific miRNAs, including miR-1, miR-133a, miR-
133b, miR-206, miR-208a, miR-208b, miR-486, miR-499a, and miR-499b, can be detected
in skeletal muscle [45], and their local injection triggered muscle regeneration in a rat
model of skeletal muscle injury [62]. Recently, it has been demonstrated that four myomiRs,
miR-1, miR-133a, miR-133b, and miR-206, are encapsulated in exosomes and are secreted
by skeletal muscle tissues to facilitate communication between skeletal muscle tissues and
neighboring cells during regeneration [63]. In addition, miR-206 and miR-1, loaded into
satellite cell-derived exosomes, are also able to stimulate the differentiation of adipose-
derived stem cells toward a myogenic lineage and can suppress collagen and fibronectin
production by nearby fibroblasts, targeting the master regulator of collagen and fibrogenic
expression, Rrbp1, finally promoting muscle regeneration [46] (Table 1).

4. The Remodeling Phase

The last stage of the regenerative process is the remodeling phase, in which cells talk
and socialize amongst themselves to remodel muscle contractile structure, vasculariza-
tion, and muscle–nerve communication, eliciting a full restoration of muscle functionality
(Figure 1C). Several works have demonstrated that exosome administration in in vitro
and in vivo models can strongly affect angiogenesis after muscle damage. Indeed, it has
been pointed out that an abundance of specific miRNAs, including miR-126, miR-23a, and
miR-494 [47,48], is crucial for the restoration of vessel integrity targeting angiogenesis-
related pathways (Table 1).

Muscle damage can also involve peripheral nerve injury, and in this context, during
the earliest stages of peripheral nerve regeneration, newly formed blood vessels contact
Schwann cells and guide their migration into the area of injury, influencing their relationship
with the regenerating axons [64]. Notably, the functional connection between muscle and
motor neuron axons is restored by a communicative mechanism that involves extracellular
vesicles [65,66]. In an elegant study, Madison and co-workers posited that EVs released by
the injured neuromuscular junction can enter the nerve stump directly or influence axon
regeneration via their distribution in the bloodstream [67].

The miRNA signature of exosome cargo during axon regeneration associated with
muscle damage has not yet been characterized. However, in mouse models of neuropa-
thy and nerve regeneration, 366 miRNAs, including those of the family of let-7, miR-125,
miR-16, miR-103, miR-10a, miR-191a, miR-196, miR-21, miR-23a, miR-26a, miR-27b, miR-93,
miR-99b, and miR-9a, have been identified as exosome cargo derived from Schwann cells.
Interestingly, the highest-expressed miRNAs were linked to the regulation of axonogen-
esis, axon guidance, and axon extension, confirming the involvement of Schwann cell
exosomes in axonal homeostasis. Moreover, it has been observed that circulating levels of
myomiRNAs such as miR-206 and miR-133a during surgical or pathological denervation
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are modulated during the reinnervation process or the progression of disease, suggesting
that muscles release messages to influence and restore the functional connection between
muscles and nerves [49,50] (Table 1).

In addition to muscle angiogenesis and muscle reinnervation, small EVs contribute
to extracellular matrix (ECM) remodeling of injured muscles. Indeed, small EVs derived
from MSCs carry several immunomodulatory proteins, such as HGF, IL10, and angiogenic
factors, including VEGF, and TGFβ that synergically orchestrate the functional restoration
of the muscle tissue environment [68,69].

A crucial role in ECM remodeling during skeletal muscle regeneration is exerted
by the fibroadipogenic cells (FAPs). FAPs are key players in muscle regeneration with
multimodal action, since they can elicit the deposition of fibrotic tissue or can facilitate
muscle regeneration based on the environmental niche where they are housed. In an
interesting work, Sandonà and co-workers demonstrated that in dystrophic muscles, where
muscle regeneration is impaired, FAP-derived EVs mediate functional interactions of FAP
cells with muscle satellite cells, boosting muscle regeneration and reducing muscle fibrosis if
enriched with miR-206, suggesting that the modulation of the exosome cargo can influence
the restoration of muscle tissue structure and functionalities [51] (Table 1).

5. Role of Extracellular Vesicles in Skeletal Muscle Pathologies

It is known that skeletal muscle can respond to various external stimuli such as
physical exercise, changes in hormonal balance, the availability of oxygen and nutrients,
and the activity of motor neurons. However, the plasticity of skeletal muscle can be
compromised under certain conditions, such as diabetes, disuse, denervation, and aging,
resulting in disruption in the functional capabilities and regenerative potential of skeletal
muscle. Indeed, most muscle pathologies are characterized by the progressive loss of
muscle tissue due to chronic degeneration combined with the inability of regeneration
machinery to replace the damaged muscle [70]. Sarcopenia, which is defined as the age-
related loss of muscle mass and strength, represents one of the most significant challenges
for older individuals since it is one of the main causes of impaired physical performance
and reduced mobility compromising normal activities of daily living [71]. In recent years,
several studies have highlighted the potential therapeutic role of exosomes in sarcopenia
regulation. Indeed, as mentioned above, skeletal muscle differentiation is a highly regulated
process that requires coordinated intercellular communication, in which exosomes play
a crucial role. Exosomes released from skeletal muscles promote myoblast proliferation
and differentiation and facilitate the transmission of vital signaling molecules between
muscle cells, highlighting their key role in mediating communication between myoblasts
and myotubes. Recent research conducted by Aswad et al. has shown that a high-fat
diet administered to mice causes their skeletal muscles to release exosomes, stimulating
myoblast proliferation and inducing alterations in gene expression associated with the
muscle cell cycle and differentiation in vitro [72]. Furthermore, exosomes derived from
other cell types, such as MSCs, increase the proliferation and differentiation of C2C12 cells,
while adipocyte-derived exosomal miR-27a triggers insulin resistance in skeletal muscle
cells [52] (Table 1).

In addition, it has been revealed that miR-29-enriched exosomes deriving from pla-
cental MSCs (PL-MSCs) increase the differentiation of human muscle cells. At the same
time, the in vitro treatment with conditioned medium or exosomes secreted by PL-MSCs
increased the differentiation of myoblasts and decreased the expression of fibrogenic genes
in Duchenne muscular dystrophy (DMD) patient myoblasts. This evidence highlights
the significant potential of exosomes as therapeutic agents in skeletal muscle sarcopenia
and suggests that the targeted delivery of exosomal miR-29c may have important clinical
applications in cell therapy of DMD [53].

Another important consequence of several pathological conditions and aging is the
imbalance between protein synthesis and degradation that triggers muscle atrophy and
severely compromises muscle function [73]. Atrophy is characterized by a decrease in
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muscle mass and at the histological level by a reduction in fiber cross-sectional area. It
results in reduced force production, easy fatigue, and reduced exercise capacity, along with
a lower quality of life [74]. It has been shown that among the main pathophysiological
causes correlated with the onset of atrophy, there are high levels of oxidative stress, chronic
inflammation, and decreased mitochondrial function, which then result in the stimulation of
signaling pathways involved in the ubiquitin-dependent proteasome system, the lysosome
and autophagy system, and mTOR activation [75–78]. One of the molecules that plays a
crucial role in inducing skeletal muscle atrophy is IL6 [79]. In a recent paper, Xuan Su and
colleagues revealed that stem cell-derived EVs with modification of miRNAs can attenuate
muscle atrophy through an inhibitory effect on the IL6 pathway [80] (Table 1). Another
study further demonstrated that atrophic muscle fiber-derived EV miR-690 inhibits satellite
cell differentiation during aging-induced muscle atrophy. These findings provide new
insight into sarcopenia and suggest a potential treatment strategy [54].

6. Extracellular Vesicle Delivery as a Therapeutic Tool for Tissue Repair
and Regeneration

Extracellular vesicles, and in particular small EVs, exhibit accommodating features that
suggest they would be promising therapeutic tools to promote the repair and regeneration
of soft tissue, including skeletal muscle. Nanoparticles can produce therapeutic outcomes
similar to cell therapies, with the added advantage of avoiding many drawbacks and
rejections. Despite most of the experimental evidence supporting extracellular vesicle
efficacy and safety, the studies performed have largely been confined to pre-clinical models.
The development of exosomal treatments is still in its early stages, with limited clinical
applications achieved so far. However, in this scenario, one significant advancement is
the purified exosome product (PEP) developed by the Mayo Clinic, obtained from human
plasma platelets. Currently, various applications of PEP, including tendon repair, peripheral
nerve regeneration, vaginal tissue regeneration (phase I clinical trial; ClinicalTrials.gov:
NCT04664738), myocardial infarction recovery (phase I clinical trial; ClinicalTrials.gov:
NCT04327635) and amyotrophic lateral sclerosis ALS7 (NCT06249412) are undergoing
phase I clinical trials [81] (Table 2).

Table 2. Current clinical trials related to EV intervention in skeletal muscle disorders.

Clinical Trial
Identifier Status Disease or Condition Phase Intervention

NCT04664738 Active not
recruiting

Skin graft, peripheral nerve
regeneration, vaginal
tissue regeneration

I Purified Exosome Product

NCT04327635 Enrolling by
invitation Myocardial infarction recovery I Purified Exosome Product

NCT06249412 Not yet recruiting Amyotrophic Lateral Sclerosis ALS7 Not applicable Purified Exosome Product

Few studies have evaluated the safety and side effects of exosome-based treatments.
Mesenchymal stem cells (MSCs) and plasma are two widely held sources for exosome
use; however, the safety of their clinical translation faces several challenges. Indeed, it has
been observed that plasma-derived EVs might carry molecules of diseased tissues and
drugs with high toxic potential [82]. Conversely, tumor-derived EVs have been shown
to deliver chemotherapeutics efficiently to recipient cells both in vitro and in vivo, but
evidence regarding their safe use is still debated [83,84]. Therefore, to tackle safety concerns
regarding exosome usage, it is recommended that a precise step-by-step approach [82]
be enhanced. This approach should entail identifying a reliable and efficient source of
therapeutic EVs, understanding the mechanisms underlying their therapeutic effects, and
exploring potential modifications to enhance safety. Additionally, extracellular vesicles
possess attributes aligning with an optimal drug delivery system, including a bilipid
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membrane structure, versatility in cargo transportation, and the capability to target tissues
with minimal toxicity concerns. However, extracellular vesicle productivity is low and
therefore represents another challenge for EV therapeutical use. To overcome this limitation
and enhance EVs’ therapeutic potential, researchers have employed different strategies,
including the optimization of exosomal cargo profiles by the overexpression of molecules
related to therapeutic effects [46]. Indeed, it has been described that the enrichment of
myotube-derived exosomes with miR-1, miR-133, miR-206, and miR-125b, miR-494, and
miR-601 promotes a broad action of pro-regenerative cellular events such as macrophage
polarization towards an anti-inflammatory and pro-regenerative state that, as mentioned
above, are prodromic for an efficient and complete regenerative process [46]. Another
methodological approach to compensate for EVs’ low productivity rate is an improvement
in EV delivery to target cells. This can be performed by specific treatment of parental
cells, exposing cells to exogenous compounds, or genetically manipulating parental cells to
enhance exosome production. In addition, parental cell treatment can be used to tailor EVs
to optimize their cargo profiles, thus improving their therapeutic effects [81].

A further strategy to ameliorate EVs’ therapeutic application is enhancement of EV
biodistribution and tissue targeting. Indeed, intravenously injected exosomes are rapidly
taken up by macrophages, which mainly accumulate in the liver and spleen, leading to
a low number of extracellular vesicles delivered into the target organ. To overcome this
limitation, ligand modification of extracellular vesicles has been proposed to attenuate
EV accumulation in filtering organs and to enhance accumulation in target tissues [85].
This approach was particularly useful for the modulation of inflammation by targeting
key cytokines, such as interleukin 6 (IL6). Indeed, in a recent work, EVs were engineered
to carry an IL6 signal transducer to inhibit the IL6 intercellular signaling cascades and
selectively attenuate the inflammatory response in muscle pathologies, such as DMD,
without interfering with the anti-inflammatory IL6 pathway [86].

Finally, another challenge is the optimization of exosome storage conditions. Indeed,
EV quality and integrity are crucial for targeting efficiency, cargo loading capacity, and
EV stability. A commonly used method to preserve extracellular vesicles is storage at
low freezing temperatures. It is widely demonstrated that the quantity and the quality of
extracellular vesicles are well maintained at -80 C; however, the freezing process requires
high shipping costs and special laboratory equipment, which represent a considerable
complication for the wide use of EVs in clinics.

Another method that can guarantee EV stability at higher temperatures is lyophiliza-
tion. The lyophilization (freeze-drying) technique is an established method for the isolation
and storage of exosomes, and unlike the low-temperature method is a cost-effective and
straightforward technique. However, little evidence has been collected to determine EV
efficacy and shelf-life after lyophilization, and thus lyophilized EVs are far from being used
in clinical application.

Therefore, despite the limitations described, extracellular vesicles are expected to
become effective therapeutic agents for various diseases, although there are no standardized
techniques for their isolation, purification, administration, or delivery.

Recently a new promising strategy has been reported that uses cellular nanoelectro-
poration to produce large quantities of small EVs loaded with therapeutic mRNAs and
miRNAs. Unlike traditional methods that load therapeutics into EVs after their formation,
this approach uses selected parental cells to generate therapeutic mRNAs from plasmid
DNAs, incorporate them into EV precursors, and release them through exocytosis. This
significantly improves the efficacy of EV therapies compared to those based on naturally
released or externally loaded small RNAs [87].

In conclusion, the use of EVs in regenerative medicine is becoming increasingly
attractive due to their high biocompatibility, low risk of immune response, and absence
of cells. Despite their promise, EV therapies currently face challenges such as a limited
RNA load, low production rates by parent cells, and a short lifespan within the body.
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Thus, establishing effective routes for EV injection and standard techniques for isolation,
qualification, and purification becomes essential for the clinical translation of exosome use.

7. Conclusions

In the present review, we summarized the growing knowledge on the role played
by extracellular vesicles in modulating the different phases of muscle regeneration. We
elucidated that vesicle cargo can modulate in a specific manner the pathways involved
in the inflammatory, regenerative, and remodeling phases, suggesting the possibility that
exosomes can be used as a therapeutic strategy to influence skeletal muscle regeneration.

However, it must be pointed out that although the scientific interest in vesicle commu-
nication is increasing, exosome clinical translation is currently still limited. This is mainly
due to the isolation and purification methodologies that hinder high-quality and large-scale
exosome production, along with their long-term storage and in vivo stability. Therefore,
further scientific efforts are necessary for the improvement of methodologies and to better
elucidate exosome cargo to develop clinical tools for human diseases.

Author Contributions: Conceptualization: C.P., G.D. and B.M.S. resources: C.P., G.D. and B.M.S.;
writing—original draft preparation: C.P., G.D. and B.M.S.; writing—review and editing: G.D. and
B.M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by: Progetto di ricerca di interesse di Ateneo—Linea D.3.1—Anno
2023, Università Cattolica del Sacro Cuore to BMS.

Conflicts of Interest: The authors declare no conflicts of interest.

Acronyms

EVs extracellular vesicles
miRNAs microRNAs
SCs satellite cells
lncRNAs long non-coding RNAs
YY1 Yin Yang 1
RB retinoblastoma
E2F1 E2 promoter binding factor 1
MSCs mesenchymal stem cells
HSkMs human skeletal muscle cells
Pax7 paired box 7
eMyhc embryonal myosin heavy chain
EGF epidermal growth factor
HB-EGFs heparin-binding EGF-like growth factors
VEGFs vascular endothelial growth factors
IGFs insulin-like growth factors
IGFBP-3 IGF-binding protein 3
HGFs hepatocyte growth factors
FGF2 fibroblast growth factor-2
PDGFs platelet-derived growth factors
IL6 interleukin 6
RRBP1 ribosome binding protein 1
ECM extracellular matrix
HGF hepatocyte growth factor
VEGF vascular endothelial growth factor
TGF-b transforming growth factor b
FAPs fibroadipogenic cells
PL-MSCs placental MSCs
DMD Duchenne muscular dystrophy
mTOR mechanistic target of rapamycin
PEP purified exosome product
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