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Abstract

We study expansion and flooding in evolving graphs, when nodes and edges are continuously
created and removed. We consider a model with Poisson node inter-arrival and exponential node
survival times. Upon joining the network, a node connects to d = O(1) random nodes, while an edge
disappears whenever one of its endpoints leaves the network. For this model, we show that, although
the graph has Ωd(n) isolated nodes with large, constant probability, flooding still informs a fraction
1 − exp(−Ω(d)) of the nodes in time O(logn). Moreover, at any given time, the graph exhibits a
“large-set expansion” property. We further consider a model in which each edge leaving the network
is replaced by a fresh, random one. In this second case, we prove that flooding informs all nodes in
time O(logn), with high probability. Moreover, the graph is a vertex expander with high probability.
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1 Introduction
In this paper, we investigate information diffusion in dynamic networks, with a focus on flooding, the
basic mechanism whereby each informed node in turn relays the information received to each of its
neighbors. Flooding represents the fastest protocol for broadcast, a fundamental communication primitive
in distributed systems.

We use the term dynamic network to denote communication networks that change over time, as nodes
enter or leave the system and links between nodes are created or destroyed. Several important cases of
information diffusion occur in networks that evolve over time, such as social or peer-to-peer networks.

Information diffusion in dynamic networks has been the focus of extensive previous work, surveyed in
Section 2. We are interested in models that i) exhibit node churn (that is, in which nodes enter and leave
the network over time) and ii) in which edges are created randomly, rather than according to sophisticated
distributed algorithms. Our motivation is that a satisfactory modeling of network formation in social
networks and peer-to-peer networks will have to meet both requirements. To the best of our knowledge,
information diffusion in dynamic networks with node churn and with random, uniform edge creation was
not studied before.

We consider two models, both of which generate sparse networks, meaning that these networks contain
O(n) edges, if n denotes the number of nodes. In both models, when a node is “born,” i.e., it enters
the network, the node connects to d = O(1) nodes, chosen at random among those currently in the
network, while the two models differ in the way nodes react to the failure of incident edges resulting
from neighbours leaving the network. We show that, as simple as they are, these dynamic random
graphs present interesting expansion properties and that flooding informs all or most nodes (depending
on details of the model) in O(log n) time.

We kept our modeling choices as simple as possible, defining models that are described by few
parameters, in order to identify qualitative features that we believe might prove robust across different
scenarios. If, as a result, our models may be too simplistic to reflect all properties of real networks,
one of the models we consider (the Poisson model with edge regeneration defined below) bears a certain
resemblance to the way peer-to-peer networks such as bitcoin are self-organize and evolve [24, 19].

1.1 Modeling networks that change with time
To define a dynamic network model in the framework outlined above, we have to specify how nodes enter
and exit the network, and how edges are generated and destroyed.

Modeling node churn. In this paper, we study a continuous-time model introduced in [22], in which
the number of births within each time unit follows a Poisson distribution with mean λ, and where the
lifetime of each node is independently distributed as an exponential distribution with parameter µ, so
that the average lifetime of a node is 1/µ and the average number of nodes in the network at any given
time is λ/µ. In order to reduce the number of parameters, we assume that the time it takes to send a
message along an edge is the same, or the same order as, the typical time between node births, which is
λ. We choose time units, so that λ = 1, and we let n = 1/µ.

Modeling edge creation and destruction. When a node enters the network, we assume that it
connects to d = O(1) nodes chosen uniformly at random among those currently in the network. Once
an edge (u, v) is created, it remains active as long as both u and v are alive. We study two models: one
without edge regeneration and one with edge regeneration. In the former, edges are created only when
a new node joins the network, while in the latter a node creates its outgoing edges not only when it
joins the network, but also every time it loses an outgoing edge due to one of its neighbors leaving the
network, so that its out-degree is always equal to d.

Although the assumption that a node can pick its neighbors uniformly at random among all nodes
currently in the network is unrealistic in many settings, the edge creation and regeneration processes
that describe our models resemble the way in which some unstructured peer-to-peer networks maintain
a “random” topology. For example, each full-node of the Bitcoin network running the Bitcoin Core
implementation has a “target out-degree value” and a “maximum in-degree value” (respectively 8 and
125, in the default configuration) and it locally stores a large list of (ip addresses of) “active” nodes.
Such list is initially started with nodes received in response to queries to some DNS seeds. Whenever the
number of its current neighbors falls below the configured target value, a full-node tries to establish new
connections with nodes sampled from its list. The list stored by a full-node is periodically advertised
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to its neighbors and updated with the lists advertised by its neighbors. Hence, in the long run each
full-node samples its out-neighbors from a list consisting a “sufficiently random” subset of all nodes in
the network.

1.2 Results and techniques
Informing most nodes in the models without edge regeneration. At first, a negative result for
the model without edge regeneration is Lemma 4.2, stating that, with high probability, Ωd(n) vertices
of the network are isolated at any given time. A vertex v becomes isolated if all the d edges created
at birth were to nodes that have meanwhile died, and v was never been chosen as neighbor by younger
nodes. Because of the presence of such isolated nodes, we can show (Theorem 4.4) that broadcasting a
message to all nodes is not possible, or at least it takes at least Ωd(n log n) time. Furthermore, there is
a constant probability that a broadcast dies out after reaching only O(1) vertices.

At the same time however, we prove Theorem 4.5, stating that a large constant probability exists
(tending to 1 as d → ∞ as 1 − exp(−Ω(d))) that a broadcast (starting at least Ω(n) round after the
creation of the network) will reach, say, 90% of the nodes (in general, a constant fraction that tends to
1 as d→∞ as 1− exp(−Ω(d))) after O(log n) time.

To prove this fast convergence we establish two results. The first one (Lemma 4.6) states that, within
O(log n/ log d) time, a broadcast reaches Ω(n/d) nodes. To prove this, we argue that, while the number
of informed nodes is less than O(n/d), there is a good probability that the number of informed nodes
grows by a constant factor at each round (and the probability that the above condition fails after exactly
t rounds decreases exponentially with t, so that we can take a union bound over all t). The basic idea of
this proof is to apply the principle of deferred decision to the d edges chosen by each vertex, and assume
that those edges are chosen after the vertex is informed, so that the “frontier” of newly informed vertices
keeps growing. There are two difficulties with this approach. One is that older nodes are likely to have
chosen neighbors that have meanwhile died, and so older nodes are unlikely to significantly contribute
to the number of nodes that will be newly informed at the next round. The second difficulty is that a
node may become informed by a message coming from one of the d neighbors chosen at birth, so that
we cannot really apply deferred decision in the way that we would like.

To overcome these difficulties, we only consider nodes that are informed through special kinds of
paths from the source node (this will undercount the number of informed nodes and make our result
true for a stronger reason). Specifically, we define an “onion-skin” process that only considers paths that
alternate between “young” nodes whose age is less than the median age and “old” nodes whose age is more
than the median age. Furthermore, this process arbitrarily splits the d edges chosen by each node at
birth into d/2 “type-A” edges and d/2 “type-B” edges, and only considers paths that, besides alternating
between young nodes and old nodes, also alternate between type-A edges and type-B edges. With this
restrictions and conventions in place, we can study what happens for every pair of consecutive rounds
by applying deferred decision.

As sketched above, we are thus able to show that Ω(n/d) nodes are informed within O(log n/ log d)
rounds. To complete the argument, we show (Lemma 4.3) that, if d is a sufficiently large constant, all
sets of at least n/10 vertices have constant vertex expansion1, which leads to informing at least .9n nodes
after another O(1) rounds. Above, 1/10 can be replaced by exp(−Ω(d)). This tradeoff is best possible
because, as we argued above, there likely are Ωd(n) isolated vertices that we will not be able to inform.

Informing all nodes in the models with edge regeneration. A first positive result for the model
with edge regeneration is Theorem 5.3, stating that at each time, the graph has constant vertex expansion
with high probability. This in turn implies (Theorem 5.7) that, despite the presence of node churn,
broadcast reaches all nodes within O(log n) rounds.

A standard approach to prove vertex expansion in random graphs works as follows: we bound the
probability that a fixed set of k vertices fails to have constant vertex expansion, then we take a union
bound by multiplying by

(
n
k

)
and then by summing over k. A first difficulty in our dynamic setting

is in characterizing the probability that an edge exists between a pair of vertices u, v, because such
probability is a non-trivial function of the age of u and v. The main difficulty is that, in order to
compute the probability that an edge (u, v) exists, we need to know the age of u and v and so we have
to take a union bound over all subsets of vertices of all possible ages. But, at any given time, there are

1Informally, the vertex expansion of a subset S of the vertices of a graph with vertex set V is the average number of
distinct vertices in V \ S that each vertex in S is connected to. It is a measure of how well S is connected to the rest of
the graph. This notion is formally given in Definition 3.1.
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Poisson dynamic graphs
without Edge Regeneration with Edge Regeneration

Expansion
properties

Negative Results There is a constant fraction
of isolated nodes w.h.p. (Lemma 4.2) —

Positive Results Θ(1)-Expansion of
big-size node subsets w.h.p. (Lemma 4.3)

Θ(1)-Expansion w.h.p.
(Theorem 5.3)

Flooding

Negative Results Flooding may not complete,
with probability Θ(1) (Theorem 4.4) —

Positive Results
Flooding informs a fraction

1− e−d/20 of the nodes in O(logn) time,
with probability 1− 2e−d/576 (Theorem 4.5)

Flooding time is O(logn)
w.h.p. (Theorem 5.7)

Table 1: Summary of our results.

nodes of age up to n log n, and so we end up with
(
n logn
k

)
cases in our union bound for sets of size k,

while the probability that one such set is non-expanding is as high as 1/
(
n
k

)O(1) for sets that contain
mostly young vertices. The point is that most of the

(
n logn
k

)
possible ways of choosing k nodes of all

possible ages involve choices of several old nodes, which are unlikely to have all survived. In order to
carefully account for the “demographics” of all possible sets of edges in our union bound, we look at the
logarithm of the probability that a certain set fails to expand, interpret it as the KL divergence of two
appropriately defined distributions, and then use inequalities about KL divergence.

We finally remark that some technical care is required when applying the above expansion properties
to bound flooding time and thus prove Theorem 5.7, since the analysis requires handling the presence of
a random number of node insertion/deletions during every 1-hop message transmission.

Table 1 summarizes our positive and negative results for the models we consider, providing references
to the corresponding theorems and lemmas that are proven in the sections that follow.

Roadmap. The remainder of this paper is organized as follows. We discuss related and previous work
in more detail in Section 2. In Section 3, we define the Poisson models of dynamic graphs, we state
our results for such models and provide their full proofs. In Section 4, we analyse the Poisson model
without edge regeneration, while Section 5 is devoted to the analysis of the model version with edge
regeneration. Section 6 provides some further overall remarks about our contribution and poses an open
question. Finally, some mathematical tools and technical lemmas we used in the analysis are given in
the Appendix.

2 Related work
A first, rough classification of dynamic graphs can be made according to an important feature: whether
or not the set of nodes keeps the same along all the graph process. In the affirmative case, we have an
edge-dynamic graph {Gt = (V,Et), t > 0} where the topology dynamics defines the way the edges of
a fixed set V of participant nodes change over time. For this class of dynamic graphs, several models,
such as worst-case adversarial changes [13, 14, 18] and Markovian evolving graphs [5, 6], have been
introduced, their basic connectivity properties have been derived, and, fundamental distributed tasks,
such as broadcast and consensus, have been rigorously analyzed.

In contrast, much less analytical works are currently available when (even) the set of participant
nodes can change over time. This class of dynamic graphs {Gt = (Vt, Et), t > 0} are often called
dynamic networks with churn [1]: in this framework, the specific graph dynamics describe both the node
insertion/deletion rule for the time sequence Vt and the edge updating rule for the time sequence Et. The
number of nodes that can join or leave the network at every round is called churn rate. For brevity’s sake,
in what follows we will only describe those previous analytical results on dynamic networks with churn
which are related to the models we studied in this paper. In particular, we mainly focus on previous
work where some connectivity properties of a dynamic networks with churn have been rigorously proved.

As remarked in the introduction, to the best of our knowledge, previous analytical studies focus
on distributed algorithms that are suitably designed to maintain topologies having good connectivity
properties.

Pandurangan et al. [22] introduced a partially-distributed protocol that constructs and maintains a
bounded-degree graph which relies on a centralized cache of a constant number of nodes. In more detail,
their protocol ensures the network is connected, has logarithmic diameter, and has always bounded de-
gree. The protocol manages a central cache which maintains a subset of the current set of vertices. When
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joining the network, a new node chooses a constant number of nodes in the cache. The insertion/deletion
procedures for the central cache follows rather complex rules which take O(log n) overhead and delays,
w.h.p.

In [11], Duchon et al presented ad-hoc protocols that maintain a given distribution of random graphs
under an arbitrary sequence of vertex insertions and deletions. More in detail, given that the graph Gt
is random uniform over the set of k-out-degree graphs with n nodes, they provide suitable distributed
randomized protocols that can insert (respectively delete) a node such that the graph Gt+1 at round
t is again random uniform over the set of k-out-degree graphs with n + 1 (respectively, n − 1) nodes.
They do not assume a centralized knowledge of the whole graph but, instead, their protocol relies on
some random primitives to sample arbitrary-sized subsets of nodes uniformly at random. For instance,
once a new node u is inserted, a random subset of nodes is selected (thanks to one of such centralized
primitives), and each of them is forced to delete one of its link and to deterministically connect to u.
The basic versions of their insertion/deletion procedures require each node to communicate with nodes
at distance 2, while their more refined version (achieving optimal performance) requires communications
over longer paths.

An important and effective approach to keep a dynamic graph with churn having good expansion
properties is based on the use of ID random walks. Roughly speaking, this approach let every par-
ticipating node start k independent random walks of tokens containing its ID and all the other nodes
collaborate to perform such random walks for enough time so that the token is well-mixed over the net-
work. Once a token is mature, it can be used by any node that, in that step, needs a new edge by simply
asking to connect to it. The probabilistic analysis then typically shows two main, correlated invariants:
on one hand, the edge set, arising from the above random-walk process, form a random graph having
good expansion properties. On the other hand, after a small number of steps, the random walks are
well-mixed.

Cooper et al [7] consider two deterministic churn processes: in the first one, at every round a new
node is inserted while no nodes leave the network, while, in the second process, the size n of the graph
does never change since, at every round, a new node is inserted and the oldest node leaves the graph (this
is in fact the streaming model we study in this paper). They provide a protocol where each node v starts
c ·m independent random walks (containing the ID-label of v) until they are picked up, m at a time,
by new nodes joining the network. The new node connects to the m peers that contributed the tokens
it got. The resultant dynamic topology is shown to keep diameter O(log n), and to be fault-tolerant
against adversarial deletion of both edges and vertices. We remark that the tokens in the graph must
be constantly circulated in order to ensure that they are well-mixed. Moreover, the rate at which new
nodes can join the system is limited, as they must wait while the existing tokens mix before they can
use them.

Law and Siu [15] provide a distributed algorithm for maintaining a regular expander in the presence
of limited number of insertions/deletions. The algorithm is based on a complex procedure that is able to
sample uniformly at random from the space of all possible 2d-regular graphs formed by d Hamiltonian
circuits over the current set of alive nodes. They present possible distributed implementations of this
sample procedure, the best of which, based on random walks, have O(log n) overhead and time delay.
Such solutions cannot manage frequent node churn.

Further distributed algorithms with different approaches achieving O(log n) overhead and time delay
in the case of slow node churn are proposed in [4, 12, 16, 23].

In [2], Augustine et al present an efficient randomized distributed protocol that guarantees the main-
tenance of a bounded degree topology that, with high probability, contains an expander subgraph whose
set of vertices has size n − o(n), where n is the stable network size. This property is preserved despite
the presence of a large oblivious adversarial churn rate — up to O(n/polylog(n)). In more detail, it is
preserved under an oblivious churn adversary [3] that: can remove any set of nodes up to the churn limit
in every round, and, at the same time, it should add (an equal amount of) nodes to the network with the
following constraints. A new node should be connected to at least one existing node and the number of
new nodes added to an existing node should not exceed a fixed constant (thus, all nodes have constant
bounded degree). The expander maintenance protocol is efficient even though it is rather complex and
the local overhead for maintaining the topology is polylogarithmic in n. A complication of the protocol
follows from the fact that, in order to prevent the growth of large clusters of nodes outside the expander
subgraph, it uses special criteria to “refresh” the links of some nodes, even when the latter have not been
involved by any edge deletion due to the node churn.

Recently, the flooding process has been analytically studied over dynamic graph models with churn
in [3, 1]. Here, the authors consider the model analysed in [2], that we discussed above. Using the
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expansion property proved in [2], they show that, for any fixed churn rate C(n) 6 n/polylogn managed
by an oblivious worst-case adversary, there is a set S of size n−O(C(n)) of nodes such that, if a source
node in S starts the flooding in round t, then all except O(C(n)) nodes get informed within round
t+O(log(n/C(n)) log n), w.h.p.

Our models are inspired by the way some unstructured P2P networks maintain a “well-connected”
topology, despite nodes joining and leaving the network, small average degree and almost fully decen-
tralized network formation. For example, after an initial bootstrap in which they rely on DNS seeds
for node discovery, full-nodes of the Bitcoin network [19] running the Bitcoin Core implementation turn
to a fully-decentralized policy to regenerate their neighbors when their degree drops below the config-
ured threshold [8]. This allows them to pick new neighbors essentially at random among all nodes of
the network [24]. Notice also that the real topology of the Bitcoin network is hidden by the network
formation protocol and discovering the real network structure has been recently an active subject of
investigations [9, 20].

3 Definitions and preliminaries
A dynamic graph G is a family of graphs G = {Gt = (Vt, Et) : t ∈ T}, where T is a totally-ordered
set (in this paper we consider continuous dynamic graphs, i.e., with T = R+). If {Vt}t and {Et}t are
families of random sets we call the corresponding random process a dynamic random graph. We call Gt
the snapshot of the dynamic graph at time t. For a set of nodes S ⊆ Vt, we denote with ∂tout(S) the
outer boundary of S in snapshot Gt; we omit superscript t when it is clear from the context. For any
set S, we denote with |S| its size.

In this paper, we study the vertex expansion of the snapshots (see Definition 3.1) and the flooding
time (see Definitions 3.2 and 3.3) for two continuous-time dynamic graph models in which nodes’ arrivals
follow a Poisson process and their lifetimes obey an exponential distribution (see Definitions 4.1 and 5.1).

The vertex expansion of a snapshot of a dynamic graph is the vertex expansion of a static graph. We
recall here the definition.

Definition 3.1 (Vertex expansion). The vertex isoperimetric number hout(G) of a graph G = (V,E) is

hout(G) = min
S⊂V :

06|S|6|V |/2

|∂out(S)|
|S|

,

where ∂out(S) is the outer boundary of S, i.e., ∂out(S) = {v ∈ V \ S : {u, v} ∈ E for some u ∈ S}.
Given a constant ε > 0, a graph G is a (vertex) ε-expander if hout(G) > ε.

Flooding is a popular epidemic process in which a source node s sends a message Ms to all its
neighbors that, in turn, forward Ms to all their neighbors, and so on. The flooding time is the time it
takes a message to arrive to all reachable nodes. There are different ways in which the flooding process
can be formalized in a continuous dynamic graph model, depending on how the time it takes a message
to flow from a node to its neighbors relates to the frequency of changes in the topology of the graph.
We here choose the following definition of “asynchronous” flooding, in which a message takes one unit of
time to flow from an informed node to its neighbors.

Definition 3.2 (“Asynchronous” flooding). Let G = {Gt = (Vt, Et) : t ∈ R+} be a dynamic (random)
graph. The flooding process over G starting at time t0 from vertex v0 ∈ Vt0 is the sequence of (random)
sets of nodes {It : t ∈ R+} where, It = ∅ for all t < t0, It0 = {v0} and,2 for every t > t0, It contains
all nodes in Vt that were neighbors of some node in It−1 in snapshot Gt−1, in addition to all previously
informed nodes

It =

((⋃
t′<t

It′

)
∪ ∂t−1

out (It−1)

)
∩ Vt .

The subset It is the set of nodes that, at time t, are in the informed state. We further say that the
flooding completes the broadcast if a time t exists such that It ⊇ Vt, in which case t− t0 is the flooding
time of the source message.

In order to analyze the flooding process in Definition 3.2, it will be convenient to study a discretized
version of the above process, in which nodes are informed only at discrete time steps.

2In this paper we thus assume that I0 contains the node joining the network at round t0.
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Definition 3.3 (Discretized” flooding). Let G = {Gt = (Vt, Et) : t ∈ R+} be a continuous dynamic
(random) graph. The discretized flooding process over G starting at time t0 ∈ R+ from vertex v0 ∈ Vt0
is the sequence of (random) sets of nodes {It : t ∈ N} where, It = ∅ for all t < t0, It0 = {v0} and,
for every t of the form t0 +m with integer m, It contains all nodes in It−1 that did not die in the time
interval (t− 1, t) and all nodes in Vt that were neighbors of some node in It−1 in the whole time interval
(t− 1, t):

It =
(
It−1 ∪ ∂t−1

out (It−1 ∩ Vt)
)
∩ Vt .

The subset It is the set of nodes that, at time t, are in the informed state. We further say that the flooding
completes the broadcast if a round t exists such that It ⊇ Vt−1, in which case t− t0 is the flooding time
of the source message.

Notice that, since in the discretized process informed nodes have to wait until the next discrete
time before relaying the message, the flooding time of the discretized process can only be larger than
the flooding time of the asynchronous one. We will prove upper bounds on the flooding time of the
discretized process, that thus are also upper bounds on the flooding time of the asynchronous one.

3.1 Node churning
We study dynamic graphs in which the set of nodes is governed by the following random process {Vt}t.

Definition 3.4 (Poisson node churn [22]). Let λ, µ ∈ R+. A Poisson node churn is a random process
{Vt : t ∈ R} such that:

1. V0 = ∅;
2. The arrival of new nodes in Vt is a Poisson process with rate λ;
3. Once a node is in Vt, its lifetime has exponential distribution with parameter µ.

This subsection provides some useful properties of the above random node churn process. First
observe that, according to Definition 3.4, the time interval between two consecutive node arrivals is an
exponential random variable of parameter λ, while the number of nodes joining the network in a time
interval of duration τ is a Poisson random variable with expectation τ · λ. Moreover {Vt : t ∈ R+} is
clearly a continuous Markov process.

A first important fact our analysis relies on is that we can bound the number of active nodes at
every time. In particular, it is easy to show that E [|Vt|] → λ/µ and, moreover, the following bound in
concentration holds.

Lemma 3.5 (Pandurangan et al. [22] - Number of nodes in the network). For every pair of parameters
λ and µ such that n = λ/µ is sufficiently large, consider the Poisson node churn {Vt : t ∈ R+} in
Definition 3.4. Then, for every fixed real t > 3n, w.h.p. |Vt| = Θ(n) and, more precisely,

Pr (0.9n 6 |Vt| 6 1.1n) > 1− 2e−
√
n .

Leveraging Lemma 3.5, in our analysis of the Poisson node churn process we set λ = 1, without loss
of generality, and we define the key parameter n = 1/µ, representing the expected number of nodes in
the network at each time step, in the long run. Moreover, since the probability that two or more churn
events occur at the same time is zero, the points of change of the dynamic graph yield a discrete-time
sequence of events. Thus, we can restrict ourselves to observe and prove properties of the dynamic graph
only when one graph-changing event occurs, i.e., at the arrival of a new node or at the death of an
existing one.

Definition 3.6. Let {Vt : t ∈ R+} be a Poisson node churn as in Definition 3.4. We define the infinite
sequence of random variables steps {Tr : r ∈ N} (with parameters λ and µ) as follows:

T0 = 0 and Tr+1 = inf{t > Tr : Vt 6= VTr } , for r = 0, 1, 2, . . . .

It is worth mentioning that, since {Vt : t ∈ R+} is a continuous Markov process, the stochastic process
{VTr : r ∈ N} defined above is a discrete Markov chain.

The proofs of the next lemmas of this subsection are based on standard probabilistic arguments and,
thus, they are given in Appendix C. In particular, the proof of the next lemma is given in Appendix C.3.
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Lemma 3.7. For every sufficiently large n, consider the Markov chain {VTr , r ∈ N} in Definition 3.6
with parameters λ = 1 and µ = 1/n. Then, for every fixed integer r > n log n,

0.47 6 Pr
(
|VTr+1 | = |VTr | − 1

)
6 0.53 (1)

and

0.47 6 Pr
(
|VTr+1 | = |VTr |+ 1

)
6 0.53 . (2)

Moreover, for each v ∈ NTr ,

1

2.2n
6 Pr

(
v 6∈ VTr+1

∣∣ v ∈ VTr) 6 1

1.8n
. (3)

Lemma 3.8 provides a useful bound on the lifetime of any node in the network. The proof is in
Appendix C.4.

Lemma 3.8 (Nodes’ lifetimes). Consider the Markov chain {VTr , r ∈ N} in Definition 3.6 with param-
eters λ = 1 and µ = 1/n. For every sufficiently large n and for every fixed integer r > 7n log n, with
probability at least 1− 2/n2.1, each node in VTr was born after step Tr−7n logn.

Finally, we give upper bounds on the number of nodes that join and leave the network in a time
interval of log n steps. The proof is in Appendix C.5.

Lemma 3.9. Let t0 = Tr0 for some r0 > 7n log n. For every sufficiently large n, in the interval
[t0, t0 + log n]:

1. With probability at least 1− 1/n, at most 4 log n nodes join the network;

2. With probability at least 1− 1/n, at most 4 log n nodes leave the network.

4 Graphs without edge regeneration
In this subsection, we consider the first variant of the Poisson model, in which new edges are created
only when new nodes join the network.

Definition 4.1 (Poisson dynamic graphs without edge regeneration). A Poisson Dynamic Graph without
edge regeneration (for short, PDG) G(λ, µ, d) is a continuous dynamic random graph {Gt = (Vt, Et) :
t ∈ R+} where the set of nodes Vt evolves according to Definition 3.4, while the set Et of edges is updated
according to the following topology dynamics:

1. When a new node appears, it makes d independent connection requests, each one to a destination
node chosen uniformly at random among the nodes in the network, and, each of such requests is
accepted by the destination so that the edge is activated (i.e. it is included in Et). The d independent
requests will be indexed in the range {1, . . . , d};

2. When a node dies, all its incident edges disappear.

4.1 On the topology of the snapshots
While static d-regular random graphs show good expansion properties even for small, constant values
of d (we give a simple proof of this well-known fact in Appendix C.1), the snapshots generated by the
Poisson model without edge regeneration exhibit a linear fraction of isolated nodes, even for large values
of d.

Lemma 4.2 (Isolated nodes). For every positive constant d and for every sufficiently large n, let {Gt =
(Vt, Et) : t ∈ R+} be a PDG sampled from G(λ, µ, d) with λ = 1 and µ = 1/n. For every fixed integer
r > 7n log n, w.h.p., GTr contains a subset S of nodes such that: i) |S| > 1

30ne
−3d; ii) each node in S is

isolated at Tr and remains isolated over its entire lifetime.

Proof. Let r > 7n log n. Define the event

Lr = {each node in VTr is born after time Tr−7n logn}∩{|VTi | ∈ [0.9n, 1.1n] with i = r−7n log n, . . . , r}.
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Then, Pr (Lr) > 1− 1/n2 follows from Lemma 3.5, Lemma 3.8 and a union bound. Conditioned on the
event Lr, when the generic node in VTr joined the network, the network itself has at least 0.9n and at
most 1.1n nodes. Let ε be an arbitrary value with 1/10 < ε 6 1/3: we denote by H the set of the εn
oldest nodes in VTr . Moreover, consider the subset A of all nodes in H that survive at most 2n further
steps from step Tr onwards, i.e.,

A = {v ∈ H s.t. v 6∈ VTr+2n} .

Next, using (3) from Lemma 3.7,

E [|A|] =
∑
v∈H

Pr
(
v 6∈ VTr+2n

)
=
∑
v∈H

(1−Pr (v ∈ Tr+2n)) > εn

(
1−

(
1− 1

1.8n

)2n
)

> (1− e−1)εn,

where, in the first inequality, we use that Pr (v ∈ Tr+2n) = Pr (v ∈ Tr+1)
∏2n
i=1 Pr (v ∈ Tr+i+1 | Tr+i)

and the fact that |H| = εn. So, for large enough n, we can apply a standard concentration argument
(Theorem A.1) to obtain

Pr
(
|A| > εn

4

)
> 1− e−εn/16 > 1− 1

n
.

Now, consider the random variable

X = {number of nodes in A that are isolated at time Tr and for the rest of their lifetime} .

We next show that, w.h.p., X > 1
10εne

−3d. First, to bound the expectation of X, for each v ∈ VTr , we
introduce the following random variables

∆in
v = {maximum in-degree of node v from Tr for the end of its lifetime},

∆out
v = {out-degree of the node v at time Tr}.

Since ∆out
v = 0 implies that node v will have no out-edges from step Tr onwards, we can then write X

as a function of ∆in
v and ∆out

v for v ∈ A:

X =
∑
v∈A

1{∆in
v =0}1{∆out

v =0} .

As each node establishes its links independently to the others,

E [X | Lr] =
∑
v∈A

Pr
(
∆in
v = 0

∣∣ Lr)Pr
(
∆out
v = 0

∣∣ Lr) . (4)

The probability of a node v ∈ VTr to have in-degree 0 over its entire lifetime, conditioned on Lr, is

Pr
(
∆in
v = 0

∣∣ Lr) =

(
1− 1

0.9n

)d(2n+εn)

> e−5d/2 ,

since each node v ∈ A has lifetime at most 2n steps and there are at most εn nodes younger than him
in H. The probability of a node v ∈ A having no out-edges in the current step (conditioned on Lr) is

Pr
(
∆out
v = 0

∣∣ Lr) =
(

1− εn

0.9n

)d
> e−d/2 ,

since a node v ∈ A has no out-edges at time Tr if its requests are not towards the nodes in A (the oldest
in VTr ), and the last inequality holds since ε 6 1/3. Therefore, since |A| > εn/4 with probability at least
1− 1/n, (4) implies

E [X | Lr] > E
[
X
∣∣∣ Lr, |A| > εn

4

]
Pr
(
|A| > εn

4

)
>
εn

4
e−3d

(
1− 1

n

)
>
εn

5
e−3d .

To get concentration results, we now write X as a function of 2n · d independent random variables and,
then, use the method of bounded differences. Let Y vj the random variables that indicates if the j-th
request of a node v ∈ ∪2n

i=0VTr+i is towards the set A. By definition, the random variables {Y jv : v ∈
VTr ∪ VTr+1 · · · ∪ VTr+2n , j ∈ {1, . . . , d}} are mutually independent. Denote by Y the vector of these
random variables. We can easily express X as a function of Y as X = f(Y). Notice that if the vectors
Y and Y′ only differ in one coordinate, then |f(Y)− f(Y′)| 6 2. This is because, in the worst case, an
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isolated node can change its destination from a dead node to another isolated node, so that the number
of isolated nodes can only decrease (or increase) by at most 2 units. We can thus apply Theorem A.2
and get

Pr (X 6 µ−M | Lr) 6 e−
2M2

4nd ,

where µ is any lower bound to E [X | Lr]. Taking µ = 1
5εne

−3d and M = 1
10εne

−3d yields

Pr

(
X 6

1

10
εne−3d

∣∣∣∣ Lr) 6 e−n
ε2e−6d

100d . (5)

Hence, the number of isolated nodes is X > 1
10εne

−3d w.h.p. If n is large enough, (5) and the law of
total probability imply

Pr

(
X 6

1

10
εne−3d

)
6 Pr

(
X 6

1

10
εne−3d

∣∣∣∣ Lr)+
1

n2
6 e−n

ε2e−2d

72d +
1

n2
6

2

n2
.

The lemma then follows by setting ε = 1/3.

The lemma that follows highlights weak expansion properties of the Poisson model without edge
regeneration. In particular, we show that, for any sufficiently large t, all subsets of Vt including a
sufficiently large, constant fraction of the nodes exhibit good expansion properties.

Lemma 4.3 (Expansion of large subsets). For every constant d > 20 and for every sufficiently large n,
let {Gt = (Vt, Et) : t ∈ R+} be a PDG sampled from G(λ, µ, d) with λ = 1 and µ = 1/n. Then, for every
fixed integer r > 7n log n, with probability at least 1− 2/n2, the snapshot GTr satisfies

min
ne−d/206|S|61.1n/2

|∂out(S)|
|S|

> 0.1 .

Proof. We prove that, for any two disjoint sets S, T ⊆ VTr , such that ne−d/20 6 |S| 6 1.1n/2, |T | =
0.1|S|, the event AS,T = {∂out(S) ⊆ T} occurs with negligible probability. To this purpose, consider
again the event

Lr = {each node in VTr was born after time Tr−7n logn}∩{|VTi | ∈ [0.9n, 1.1n] with i = r−7n log n, . . . , r},

and note again that Lemma 3.5 and Lemma 3.8 imply Pr (Lr) > 1 − 1/n2. From the law of total
probability,

Pr

(
min

ne−d/206|S|61.1n/2

|∂out(S)|
|S|

6 0.1

)
6

∑
ne−d/206|S|61.1n/2

|T |=0.1|S|

Pr (AS,T | Lr) +
1

n2
. (6)

To upper bound Pr (AS,T | Lr) let P = VTr −S−T and note that |P | > 0.9n− 1.1|S| by definition. The
event AS,T implies that all the edges originating from S must have destinations in T : this is equivalent
to have no edge between S and P . Since

|{(a, b) | a ∈ S, b ∈ P}| = |S| · |P | ,

two cases may arise:

Case 1: |{(a, b) | a ∈ S, b ∈ P, a younger than b}| > |S| · |P |/2;

Case 2: |{(a, b) | a ∈ S, b ∈ P, b younger than a}| > |S| · |P |/2.

For each a ∈ S, denote by Na the number of nodes in P that are older than a. In the first case, we
clearly have

∑
a∈S Na > |S| · |P |/2, so that

Pr (AS,T | Lr) 6
∏
a∈S

(
1− Na

1.1n

)d
6 e−d

∑
a∈S Na/(1.1n) 6 e−d|S|·|P |/2.2n . (7)

To derive the first inequality above, for each a ∈ S, we considered the probability that a fixed request
from node a has not a destination in P that is older than a. Moreover, we used the fact that, conditioned
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on the event Lr, the probability that a node a chooses any fixed, older node v ∈ VTr at least 1/1.1n.
Using a symmetric argument, we get the same claim for the second case. Hence, plugging (7) into (6)
and considering the number of possible ways to choose S and T disjoint and of appropriate sizes, we
obtain

Pr

(
min

ne−d/206|S|61.1n/2

|∂out(S)|
|S|

6 0.1

)
6

1.1n/2∑
s=ne−d/20

(
1.1n

s

)(
1.1n− s

0.1s

)
e−ds

0.9n−1.1s
2.2n +

1

n2
6

2

n2
, (8)

where, to prove the last inequality, for a large enough n and for any d > 20, we bound each binomial
coefficient via

(
n
k

)
6
(
n·e
k

)k and then, we calculate the derivative of the function f(s) that represents
each term of the sum: it turns out that each of such terms reaches its maximum at the extremes, i.e. in
s = 1 or in s = 1.1n/2. So, we get that the sum in (8), if d > 20, is bounded by 2/n2.

4.2 Flooding
The negative result of Lemma 4.2 implies that flooding has non-negligible chances to fail in rapidly
informing the entire network.

Theorem 4.4 (Flooding). For every positive constant d, for every sufficiently large n and for every
fixed r0 > 7n log n, the flooding process over a PDG sampled from G(λ, µ, d) with λ = 1, µ = 1/n and
starting at t0 = Tr0 satisfies the following claims:

1. With probability at least e−5d2 , for every t > t0, It contains at most d+ 1 nodes;
2. W.h.p., the flooding time is Ω(n) rounds.

Proof. Since the goal here is to prove a negative result, we will adopt the original Definition 3.2 of
asynchronous flooding. Let s0 be the source node, joining the network at time t0 = Tr0 . Consider the
event

Cr0+n
r0 = {|NTi | ∈ [0.9n, 1.1n] with i = r0, . . . , r0 + n} ,

and notice that Lemma 3.5 implies Pr
(
Cr0+n
r0

)
> 1− 1/n2. We next consider the following events:

A = “s0 has all its out-edges to nodes that are isolated at time t0 and for the rest of their lifetimes”,

B = “at least
ne−3d

30
nodes in Vt0 are isolated at time t0 and for the rest of their lifetimes”.

For sufficiently large n, Lemma 4.2 implies Pr (B) > 0.9, whence

Pr
(
B | Cr0+n

r0

)
=

Pr
(
B ∩ Cr0+n

r0

)
Pr
(
Cr0+n
r0

) > Pr (B) + Pr
(
Cr0+n
r0

)
− 1 > 0.9− 1

n2
>

1

2
,

where in the second inequality we use the simple inequality Pr (P ∩Q) > Pr (P ) + Pr (Q)− 1. Then,

Pr
(
A
∣∣ Cr0+n

r0

)
> Pr

(
A ∩B

∣∣ Cr0+n
r0

)
= Pr

(
A
∣∣ B ∩ Cr0+n

r0

)
Pr
(
B
∣∣ Cr0+n

r0

)
(9)

>

(
ne−3d

30

1

1.1n

)d
· 1

2
=

(
e−3d

3.3

)d
,

where the third inequality follows since Cr0+n
r0 implies that at time t0 there are at most 1.1n nodes in

the network. Define the event

E = “s0 is the destination of no in-edges over its lifetime” .

Then, the event A ∩ E implies that all informed nodes s0, s1, . . . , sd are isolated along their entires
lifetimes, whence

Pr (|It| 6 d+ 1 for all t > t0) > Pr (A ∩ E) . (10)

Denote by Ds0 the lifetime (in steps) of node s0. Since, for (3) from Lemma 3.7, s0 survives for n steps
with probability at most (1− 1/(2.2n))n, whenever n is large enough,

Pr
(
Ds0 6 n

∣∣ Cr0+n
r0

)
=

Pr
(
{Ds0 6 n} ∩ Cr0+n

r0

)
Pr
(
Cr0+n
r0

) > 1−
(

1− 1

2.2n

)n
− 1/n2 >

1

3
, (11)
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where we again used Pr (P ∩Q) > Pr (P ) + Pr (Q)− 1. Moreover,

Pr
(
E
∣∣ Cr0+n

r0

)
> Pr

(
E
∣∣ Cr0+n

r0 ∩Ds0 6 n
)
Pr
(
Ds0 6 n

∣∣ Cr0+n
r0

)
. (12)

Recalling that the destination node of each connection request is chosen uniformly at random over the
nodes currently in the network, and since at most n nodes join the network in n steps,

Pr
(
E
∣∣ Cr0+n

r0 ∩ {Ds0 6 n}
)
>

(
1− 1

0.9n

)dn
> e−2d. (13)

Combining (13) and (11) with (12),

Pr
(
E
∣∣ Cr0+n

r0

)
>
e−2d

3
. (14)

From (10), from the independence between A and E, from (9) and (14),

Pr (|It| 6 d+ 1 for all t > t0) > Pr
(
A ∩ E

∣∣ Cr0+n
r0

)
Pr
(
Cr0+n
r0

)
>

(
e−3d

3.3

)d
· e
−2d

3
> e−5d2 .

As for the second claim of the theorem, the linear lower bound on the flooding time τ can be easily
shown as follows. Lemma 4.2 implies the presence of at least 1

30e
−3dn = Ω(n) (when d is a constant)

isolated nodes at Tr0 , that will remain such over the rest of their lifetimes. As a consequence, to see all
nodes informed, one has to at least wait for all these nodes to leave the network: this requires τ = Ω(n)
time, w.h.p.

We next complement the negative results above by showing that, following the arrival of an informed
node at some time t, a fraction 1− e−Ω(d) of the vertices of the network will become informed within the
following O(log n) flooding rounds, with probability 1 − e−Ω(d). In the proof of the result that follows,
we consider the discretized flooding process from Definition 3.3 for the sake of the analysis.

Theorem 4.5 (Flooding completes for a large fraction of nodes). For every constant d > 112, for every
sufficiently large n and for every fixed r0 > 7n log n, there is a τ = O(log n/ log d + d), such that the
flooding process over a PDG sampled from G(λ, µ, d), with λ = 1, µ = 1/n and starting at t0 = Tr0 ,
satisfies

Pr
(
|It0+τ | > (1− e− d

25 )n
)
> 1− 3e−

d
56 .

The proof of the above theorem is a simple consequence of the next two lemmas.

Lemma 4.6 (Flooding reaches Ω(n) nodes, part 1). Under the hypotheses of Theorem 4.5, there is
τ1 = O(log n/ log d) such that

Pr

(
|It0+τ1 | >

2n

d

)
> 1− 2e−

d
56 .

Lemma 4.7 (Flooding reaches almost-all nodes, part 2). Under the hypotheses of Theorem 4.5, for
τ1 = O(log n/ log d) as in Lemma 4.6 and for some τ2 = O(d),

Pr

(
|It0+τ1+τ2 | > (1− e− d

25 )n | |It0+τ1 | >
2n

d

)
> 1− 1

n0.8
.

The proofs of Lemma 4.6 and Lemma 4.7 above are given in Subsections 4.2.1 and 4.2.2, respectively.
In particular, Theorem 4.5 follows by taking τ = τ1 + τ2, and noticing that

Pr
(
|It0+τ | > (1− e− d

25 )n
)
> Pr

(
|It0+τ1 | >

2n

d

)
Pr

(
|It0+τ1+τ2 | > (1− e− d

25 )n | |It0+τ1 | >
2n

d

)
>
(

1− 2e−
d
56

)(
1− 1

n0.8

)
> 1− 3e−

d
56 ,

where the last inequality holds for sufficiently large n given that d is a constant.
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4.2.1 Proof of Lemma 4.6

In this lemma we analyze the evolution of the flooding process from the onset, till a constant fraction of
the nodes has been informed. To this purpose, we consider all nodes that are in the system at time t0,
when the informed node joins the network. On the other hand, we completely disregard nodes that were
born in the interval [t0, t0+log n] (i.e., we don’t count them as hits, though we keep into account that they
remove probability mass from destinations in Vt0), since their number is negligible with high probability
from Lemma 3.9. Conversely, we do need to consider nodes that die in the interval [t0, t0 + log n],
since their failure might adversely affect flooding. Removing them at the onset or at the end may be
tricky, since in both cases we need to argue that their removal has no significant topological effects (we
cannot simply assume an adversarial removal). To sidestep these challenges, we remove each of them
with probability log n/n (this is an upper bound on the probability that a node dies in the interval
[t0, t0 + log n]) the first time it is reached by the flooding process. Moreover, to simplify the analysis we
introduce the Onion-Skin process, which iteratively builds a connected, bipartite graph, corresponding
to alternating paths, in which “young” nodes only connect to “old” ones. In particular, each realization
of this process generates a subset of the edges generated by the original topology dynamics, so that each
iteration of the process corresponds to a partial flooding in the original graph, in which a new layer of
informed nodes is added to the subset of already informed ones.

The Onion-Skin process and its analysis. Let m = |Vt0 |. From Lemma 3.5, we know that m ∈
[0.9n, 1.1n] with probability at least 1 − 1/n2. We now build a map h : S → [m], so that for v ∈ S,
h(v) = i if v is the i-th youngest node in the system at time t0. Note that h(s) = 1 by definition. We next
define Y = {v ∈ Vt0 : h(v) 6 m/2} as the subset of young nodes and O = {v ∈ VTr0 : h(v) > m/2 + 1}
as the subset of old nodes.

Starting from s, the Onion-Skin process builds a connected, bipartite graph, so that young nodes
are only connected to old ones. The process unfolds over a suitable number k of phases, with k =
O(log n/ log d). Each phase consists of two steps, in each of which a suitable subset of young nodes
attempt to establish links toward old nodes. In the following, we denote by Yk ⊆ Y and Ok ⊆ O
the subsets of young and old nodes that are informed by the end of phase k, respectively. In the
remainder, we let O−1 = ∅ for notational convenience and, without loss of generality, we use the interval
[d] to number the links established by each vertex. The Onion-Skin process is formally described in
Figure 4.2.1. It should be noted that each realization of this process generates a subset of the edges
generated by the original topology dynamics. Moreover, each iteration of the process corresponds to a
partial flooding in the original graph. Flooding is partial since i) the network uses a subset of the edges
that would be present in the original graph and ii) every newly informed node tosses a coin and dies
with probability log n/n, which is an upper bound on the overall probability of that node dying in the
interval [Tr0 , Tr0 + log n]. This last fact trivially follows since the lifetime of a node obeys an exponential
distribution with parameter µ = 1/n.

In the remainder of this proof, all events are conditioned on the following event, whose definition is
given in the proof of Lemma 4.2 and is repeated here to keep the proof self-contained:

Lr0 = {each node in VTr was born after time Tr0−7n logn} ∩ {|VTi | ∈ [0.9n, 1.1n] for i = r0 − 7n logn, . . . , r0}.

As already noted in the proof of Lemma 4.2, Pr (Lr0) > 1 − 1/n2 from Lemma 3.5, Lemma 3.8 and a
union bound.

It should be noted that in the Onion-Skin process, we are using the principle of deferred decisions,
delaying decision as to the establishment of a link (u, v) to the moment one of its endpoints is informed
in the flooding process. On the other hand, this means that the probability that the j-th connection
originating from u has v as destination is equal to 1/|VTr | if u’s arrival in the network corresponds to the
r-th event, with r 6 r0. The conditionings above (holding with probability at least 1−2/n2) ensure that
the above probability fell in the interval

[
1

1.1n ,
1

0.9n

]
for all nodes that were in the network at time Tr0 .

Note also that we are completely disregarding nodes that join the network in the interval [Tr0 , Tr0 +log n].
For these nodes, we are using Lemma 3.9 to conclude that their number is at most 4 log n, w.h.p.

We next analyze Phase 0 and the generic Phase k separately. For each i = 1, . . . , d, for each node
v ∈ Vt0 and for each set A ⊆ VTr0 , we define the Bernoulli random variable Rv,A as follows:

Rv,A =

{
1 if x > 1 connections from v have destination in A
0 otherwise
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Onion-Skin process:

Phase 0: Let Y0 := {s} and let s establish d links. Let Z0 ⊂ O the subset of old nodes that
are destinations of these links. Links with endpoints in Y are discarded. O0 is obtained
from Z0 by removing each vertex in Z0 (and the just established links) independently, with
probability log n/n.

Phase k > 1:

Step 1. Each node in Y − Yk−1 establishes links {1, . . . , d/2}. Let Wk ⊆ Y − Yk−1 the
subset of nodes with at least one link to nodes in Ok−1−Ok−2. Links to nodes in Y are
again discarded. Yk − Yk−1 is obtained from Wk by removing each vertex in Wk (and
the just established links) independently, with probability log n/n.

Step 2. Each node in Yk − Yk−1 establishes links {d/2 + 1, . . . , d}. Let Zk be the subset of
nodes in O −Ok−1 that are reached by at least one such link. Links to nodes in Y are
discarded. Ok −Ok−1 is obtained from Zk by removing each node in Zk (and the links
just established) independently, with probability log n/n.

Figure 1: The Onion-Skin process

Moreover, for each i = 1, . . . , d and for every v ∈ VTr0 that joined the network at step r̂ 6 r0, define the
variable A(i)

v ∈ VTr̂ as

A(i)
v = w, where w ∈ VTr̂ is the destination of the i-th connection request of v.

As for phase 0 of the Onion-Skin process, we prove the following claim.

Claim 4.8 (Analysis of Phase 0). At the end of Phase 0, it holds

Pr

(
|O0| >

d

16

)
>

(
1− 2 log n

n

)(
1− 2e−

d
36

)
.

Proof. For each v ∈ O,

Pr
(
∃i ∈ [d] : A(i)

s = v
)
> 1−

(
1− 1

1.1n

)d
> 1− e− d

1.1n ,

which implies, since d
1.1n 6 0.5,

E [Z0] = |O|
(

1− e− d
1.1n

)
>

0.9n

2
· d

1.43n
>
d

4
,

where the last equality follows since |O| > 0.9n/2. We next bound the probability that Z0 is smaller
than d/8. To this purpose, we cannot simply apply a Chernoff bound to the binary variables that
describe whether or not a node v ∈ O was the recipient of at least one link originating from s, since
these are not independent. We instead resort to Theorem A.2. In particular, we define the function
f(A

(1)
s , . . . , A

(d)
s ) = |Z0|. Clearly, f is well-defined and it satisfies the Lipschitz condition with values

β1 = · · · = βd = 1, since changing the destination of one link can affect the value of |Z0| by at most 1.
We can thus apply Theorem A.2 to obtain:

Pr

(
|Z0| <

d

8

)
6 Pr

(
|Z0| < E [|Z0|]−

d

8

)
6 e−

d
32 .

We next argue about |O0|. If |Z0| = x and B is the number of nodes in Z0 that are removed,

E [B] 6
x log n

n
.

Applying Markov’s inequality, for sufficiently large n,

Pr
(
B >

x

2

)
6

2 log n

n
,

whence the thesis immediately follows.
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We next analyze Phase k of the Onion-Skin process. We first examine Step 1 of this phase, i.e., the
number of nodes in Y − Yk−1 that connect to nodes in Ok−1 − Ok−2 using connection requests that
belong to the subset {1, . . . , d/2}.

Claim 4.9 (Analysis of Phase k - Step 1). Assume that |Ok−1| 6 n/d and |Yk−1| 6 n/d. For sufficiently
large n, at the end of Phase k, it holds

Pr

(
|Yk − Yk−1| >

yd

28

∣∣∣∣ |Ok−1 −Ok−2| = y

)
>

(
1− 2 log n

n

)(
1− e−

yd
56

)
. (15)

Proof. It should be noted that: i) no connections originating from nodes in Y −Yk−1 have been established
so far (otherwise, the involved nodes would belong to Yk−1, a contradiction), and ii) as a consequence, for
each u ∈ Y − Yk−1, none of its connections in {1, . . . , d/2} had destination in Ok−2. From the definition
of |Wk|,

|Wk| =
∑

v∈Y−Yk−1

Rv,Ok−1−Ok−2
.

Then, if v ∈ Y − Yk−1,

Pr
(
Rv,Ok−1−Ok−2

= 1
∣∣ |Ok−1 −Ok−2| = y

)
> 1−

(
1− y

1.1n

) d
2

> 1− e−
yd

2.2n ,

since at most 1.1n nodes were present when v joined the network. Since yd
2.2n 6 0.5,

1− e−
yd

2.2n >
yd

3n
.

As a consequence,

E [|Wk| | |Ok−1 −Ok−2| = y] > |Y − Yk−1| ·
yd

3n
>
yd

7
,

where the last inequality follows from the fact that |Y − Yk−1| > (0.45n − n/d) and d > 112. On the
other hand, the Rv,Ok−1−Ok−2

’s are mutually independent, so we can apply a standard Chernoff bound
(Theorem A.1) to obtain

Pr

(
|Wk| <

yd

14

∣∣∣∣ |Ok−1 −Ok−2| = y

)
6 e−

yd
56 .

If B denotes the number of vertices removed from Wk, we can proceed as in the analysis of Step 2 of
Phase 0 to obtain (15).

We now examine Step 2 of Phase k, i.e., we consider nodes in Yk − Yk−1 that connect to nodes in
O −Ok−1 using the requests labeled in {d/2 + 1, . . . , d}.

Claim 4.10 (Analysis of Phase k - Step 2). Assume that |Ok−1| 6 n/d and |Yk−1| 6 n/d. For sufficiently
large n, at the end of Phase k, it holds

Pr

(
|Ok −Ok−1| >

xd

28

∣∣∣∣ |Yk − Yk−1| = x

)
>

(
1− 2 log n

n

)(
1− e− xd56

)
. (16)

Proof. For every v ∈ O −Ok−1, it holds

Pr
(
∃u ∈ Yk − Yk−1,∃i ∈ [d/2] : A(i)

u = v
∣∣∣ |Yk − Yk−1| = x

)
> 1−

(
1− 1

1.1n

) xd
2

> 1− e− xd
2.2n .

since at most 1.1n nodes were present when v joined the network. Since xd
2.2n 6 0.5, we have that

1− e− xd
2.2n > xd

3n . From the facts above and from the definition of Zk in the Onion-Skin process,

E [|Zk| | |Yk − Yk−1| = x] > |O −Ok−1| ·
xd

3n
>
xd

7
,

where, similarly to Claim 4.9, we used |O −Ok−1| > 0.45n− n/d and d > 112.
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Differently from Claim 4.9, we cannot simply concentrate, since the events {A(i)
u = v} are negatively

correlated as v varies over O − Ok−1. We again resort to Theorem A.2. In this case, we have xd
2

connections that are established (independently of each other) from vertices in Yk − Yk−1. As for the
set of xd/2 variables {A(i)

u }u∈Yk−Yk−1,i∈[d/2] , we notice that the domain of A(i)
u is the set Vt if u joined

the system at time t and remind that we are conditioning to 0.9n 6 |Vt| 6 1.1n, as explained at the
beginning of the proof. We next define the function

f
(
{A(i)

u }u∈Yk−Yk−1,i∈[d/2]

)
= |Zk| ,

and, like in the analysis of Step 1 of Phase 0, we observe that f satisfies the Lipschitz condition with
constants β1 = · · · = β xd

2
= 1. We can thus apply Theorem A.2 to obtain

Pr

(
|Zk| <

xd

14

∣∣∣∣ |Yk − Yk−1| = x

)
6 e−

xd
56 .

Finally, we remove nodes from Zk exactly as we did in Phase 0 and in Step 1 of Phase k. The analysis
proceeds exactly the same, so that we can get (16).

Thanks to Claims 4.8, 4.9 and 4.10, we can prove the following conclusive result for the Onion-Skin
process that easily implies Lemma 4.6.

Claim 4.11. A positive integer k = O(log n/ log d) exists such that

Pr

(
|Yk ∪Ok| >

2n

d

)
> 1− 2e−

d
56 .

Proof. Consider the generic k-th phase and assume that |Yk−1| 6 n/d and |Ok−1| 6 n/d. Then, Claims
4.8, 4.9 and 4.10 combined with the chain rule imply

Pr

({
|Yk − Yk−1| >

(
d

28

)2k+1}
∩
{
|Ok −Ok−1| >

(
d

28

)2k })
>

2k∏
i=0

(
1− e−( d

28 )
i d
56

)(
1− 2 log n

n

)2k+1

.

So, for some k = log(n/d)
2 log(d/28) , at the end of Phase k,

Pr

({
|Yk − Yk−1| >

n

d

}
∩
{
|Ok −Ok−1| >

n

d

})
>

2k∏
i=0

(
1− e−( d

28 )
i d

56

)(
1− 2 log n

n

)2k+1

. (17)

For the expression

P =

2k+1∏
i=0

(
1− e−( d

28 )
i d
56

)
,

we next show that P > 1− e− d
56 . We start with the following bound

− logP = −
2k+1∑
i=0

log
(

1− e−( d
28 )

i d
56

)
6

2k+1∑
i=0

log

(
1

1− e−( d
28

d
56 )

i

)
6 2

2k+1∑
i=0

e−( d
28 )

i d
56 6 e−

d
56 ,

where: i) the third inequality holds because, for each x ∈ [0, 1], x > log
(

2
2−x

)
, and ii) the last inequality

follows for any d > 112 and from the fact that
∑∞
i=0 e

−( d28 )i 6 1
2 . So,

P =
1

elogP
> e−e

d/56

> 1− e− d
56 , (18)

where the last inequality follows since e−x > 1− x for each x > 0. Finally, from (17) and (18),

Pr

({
|Yk − Yk−1| >

n

d

}
∩
{
|Ok −Ok−1| >

n

d

})
>
(

1− e− d
56

)(
1− 2 log n

n

)2k+1

> 1− 2e−
d
56 ,

where the last inequality follows for n sufficiently large and since k = log(n/d)
2 log(d/28) .
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4.2.2 Proof of Lemma 4.7

We suppose |It0+τ1 | > 2n/d and, for the sake of simplicity, we omit this conditioning for the rest of the
proof. We then prove that, for t > t0 + τ1, the size of the set of informed nodes grows by a constant
factor in each flooding round, reaching (1− e−d/10)n within τ2 rounds, with τ2 = Θ(d). To this aim, we
note that Lemma 4.3 implies that, for d > 20, the graph Gt = (Vt, Et) is w.h.p. an expander for sets of
large size, i.e.,

min
S⊆Vt:

ne−d/206|S|61.1n/2

|∂out(S)|
|S|

> 0.1 .

Indeed, for t > t0 + τ1, |It| grows by a constant factor in each round, as long as |It| 6 1.1n/2. To see
this, recall that, from Definition 3.3,

It+1 = (It ∪ ∂tout(It ∩ Vt+1)) ∩ Vt+1.

Moreover, from Lemma 3.9, in each time unit, with probability exceeding 1−1/n, at most 4 log n informed
nodes leave the network. As a consequence, as long as |It| 6 1.1n/2,

Pr (|It+1| > 1.1|It| − 5 log n) > 1− 2

n
,

since this is the probability that Gt is an expander for large subsets, and that in [t, t + 1] at most
4 log n nodes leave the network. Since 2n/d 6 |It| 6 1.1n/2, we have |It+1| > 1.05|It| for sufficiently
large n, with probability at least 1 − 2/n. This implies that, within τ ′2 = Θ(log d) rounds, we will get
|It0+τ1+τ ′2

| > 1.1n/2, with probability at least 1−2d/n. For t > t0+τ1+τ ′2, we turn to the set St = Vt−It
of non-informed nodes in the graph at time t, showing that its size decreases by a constant factor in each
flooding round, as long as |St| > ne−d/20. To begin, we note that

∂out(St+1 ∩ Vt) ⊆ St − (St+1 ∩ Vt) , (19)

since ∂out(St+1 ∩Vt) are nodes reachable in one edge from the non-informed nodes, and so they were not
informed in the previous time. So, from (19) and Lemma 4.3, since |St+1 ∩ Vt| 6 1.1n/2, we get that, as
long as |St+1 ∩ Vt| 6 ne−d/20,

Pr (|St| > 1.1|St+1 ∩ Vt|) > 1− 1

n
, (20)

(this is indeed the probability that Gt is an expander for large subsets). Since, from Lemma 3.9, at
each step, at most 4 log n nodes join the network with probability 1 − 1/n, we have that |St+1| 6
|St+1 ∩ Vt|+ 4 log n. This fact, together with (20) implies that, as long as |St+1 ∩ Vt| 6 ne−d/20,

Pr (|St+1| 6 0.91|St|+ 4 log n) > 1− 2

n
.

This implies that in τ2 = Θ(d) rounds, we will get

|St0+τ1+τ2 ∩ Vt0+τ1+τ2 | 6 ne−d/20

with probability at least 1− 1/n0.9. So, again from Lemma 3.9, |St0+τ1+τ2 | 6 ne−d/25, with probability
at least 1− 1/n0.8.

5 Graphs with edge regeneration
In this section we will study Poisson dynamic graphs with continuous edge regeneration that can be
formalized as follows.

Definition 5.1 (Poisson dynamic random graphs with edge regeneration). A Poisson Dynamic Graph
with edge Regeneration G(λ, µ, d) (for short, PDGR) is a continuous dynamic random graph {Gt =
(Vt, Et) : t ∈ R+}, where the set of nodes Vt evolves according to Definition 3.4, while the set of edges Et
evolves according to the following topology dynamics:

1. When a new node appears, it makes d independent connection requests, each one to a destination
node chosen uniformly at random among the nodes in the network, and, each of such requests is
accepted by the destination so that the edge is activated (i.e. it is included in Et). The d independent
requests will be indexed in the range {1, . . . , d}.
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2. When a node dies, all its incident edges disappear (i.e. they are removed from Et);
3. When a node has one of its d outgoing edges disappearing, it makes a new connection request

to a destination node chosen uniformly at random among all the nodes in the network and the
destination accepts the request thus activating the corresponding edge.

5.1 Preliminary properties
A first immediate property of the PDGR model is that every node always has degree at least d.

We next provide an upper bound on the probability that a fixed node chooses any other active node
in the network as destination of one of its d requests. We remark that the bound O(1/n), we used in the
analysis of the model without edge regeneration, does not hold in this setting essentially because of the
edge regeneration and the presence of “very old” nodes (i.e. those nodes having age ω(n)). Thanks to a
more refined analysis, the next lemma shows an upper bound as function of the age of the nodes.

Lemma 5.2. For every constant d > 20 and for every sufficiently large n, let {Gt = (Vt, Et) : t ∈ R+} be
a PDGR sampled from G(λ, µ, d) with λ = 1 and µ = 1/n. Then, for every fixed integer r = Ω(n log n),
consider the snapshot GTr . Let u ∈ VTr be a node born in step Tr−i for some integer i 6 r. Then, if a
node v ∈ VTr is born before u, the probability that a fixed request of u has destination v is at most

1

0.8n

(
1 +

i

1.7n

)
. (21)

While, if v is born after u, the probability that a fixed request of u has destination v is always 6 1
0.8n .

Proof. We first bound the probability that a fixed request of u has destination v when v is younger than
u. We define the event3

Au,v = {a fixed request of u has destination v at time Tr},

and the event

Lr = {each node in VTr is born after time Tr−7n logn}∩{|VTi | ∈ [0.9n, 1.1n] with i = r−7n log n, . . . , r}.

From Lemma 3.5, Lemma 3.8 and an union bound we get that Pr (Lr) > 1− 1/n2. We notice that the
event Lr means that, when each node in VTr joined the network, the network has at least 0.9n nodes
and at most 1.1n nodes. From the law of total probability,

Pr (Au,v) 6 Pr (Au,v | Lr) +
1

n2
6

1

0.9n
+

1

n2
6

1

0.8n
,

where Pr (Au,v | Lr) 6 1/(0.9n) since u can choose v only after a death of one of its neighbors, being v
younger than u.

We now analyze the case in which v is older than u, where u is born at step Tr−i. For the law of
total probability,

Pr (Au,v) 6 Pr (Au,v | Lr) +
1

n2
. (22)

So, we need to evaluate Pr (Au,v | Lr). For each k > 1 and w ∈ VTk , define the event

Dw,k = {w dies at time Tk}.

To bound Pr (Dw,k | Lr), for each k = r − i, . . . , r and w ∈ NTk , we use Lemma 3.7 to get Pr (Dw,k) 6
1/(1.8n), and, hence, for the definition of conditional probability,

Pr (Dw,k | Lr) =
Pr (Dw,k ∩ Lr)

Pr (Lr)
6

Pr (Dw,k)

1− 1/n2
=

1/1.8n

1− 1/n2
6

1

1.7n
. (23)

Now, for each j = r − i, . . . , r, define the following events

Aju,v = {a fixed request of u connects to v at time Tj},
3We here avoid to index the specific requests of u since the considered graph process is perfectly symmetric w.r.t. the

d random requests of every node.
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and write Au,v = ∪rj=r−iAju,v. Notice that, for j = r − i, it holds that

Pr
(
Ar−iu,v

∣∣ Lr) 6 1

0.9n
, (24)

since this is the probability that the request of u has destination v at the time of u’s arrival (since v is
older than u). On the other hand, for each j = r− i+ 1, . . . , r, for the law of total probability, we have4

Pr
(
Aju,v

∣∣ Lr) 6 Pr

(
Aju,v

∣∣∣∣ Lr,∩j−1
j′=r−i

(
Aj
′

u,v

)C)
, (25)

since any fixed request of u can choose v as destination at step Tj only if, at step Tj−1, the same request
was not connected to v, so the second term derived from the law of total probability is equal 0, and
we omitted it. We notice that, conditioning on the event that u, at time Tj−1, is not connected to v,
the event Aju,v is the intersection between the two events “the node connected to the fixed request of u
dies at time Tj” and “the fixed request of u is re-connected to v at time Tj”. So, for the definition of
conditional probability,

Pr

(
Aju,v

∣∣∣∣ Lr,∩j−1
j′=r−i

(
Aj
′

u,v

)C)
6

1

1.7n
· 1

0.9n
, (26)

where the first factor 1/(1.7n) in the r.h.s. of (26) is an upper bound on the probability (conditional to Lr
from (23)) that the node to which u is connected dies at time Tj . Moreover, 1/(0.9n) is the probability,
conditional to Lr, that the request of u connects to v at time Tj , if its neighbour is died at time Tj . So,
recalling that Au,v = ∪rj=r−iAju,v, from (24), (25) and (26),

Pr (Au,v | Lr) 6
r∑

j=r−i
Pr
(
Aju,v

∣∣ Lr) 6 1

0.9n

(
1 +

i

1.7n

)
. (27)

Finally, since conditional to Lr, we get i 6 7n log n, using (27) in (22), the proof is completed.

5.2 Expansion properties
The expansion property satisfied by the Poisson model with edge regeneration can be formalized as
follows.

Theorem 5.3 (Expansion). For every constant d > 35 and for every sufficiently large n, let {Gt =
(Vt, Et) : t ∈ R+} be a PDGR sampled from G(λ, µ, d) with λ = 1 and µ = 1/n. Then, for every fixed
integer r > 7n log n, with probability at least 1 − 1/n, the snapshot GTr is a vertex ε-expander with
parameter ε > 0.1, i.e.,

min
S⊆VTr

06|S|61.1n/2

|∂out(S)|
|S|

> 0.1.

The proof proceeds analyzing three different size ranges of the vertex subset S ⊆ VTr , the expansion
of which has to be shown. We start by analyzing the most interesting case, namely, the expansion of
middle-size subsets.

Expansion of middle-size subsets. We consider subsets of size in the range n/ log2 n 6 |S| 6 n/14,
the analysis of which definitely represents one of the key technical contributions of this paper. Indeed,
departing from the other size ranges, we cannot use any rough, worst-case counting argument: for
instance, assuming that all nodes in the considered subset S have age O(n log n) and applying the
corresponding edge-probability bound given by (21) would lead to a useless, too large union bound for
the probability of non-expansion for some subset S.

To cope with this technical issue, we need to partition and classify the subsets S and T according to
their age profile. More in detail, we first define a sequence of Θ(log n) slices of possible nodes ages and
then we provide an effective age profile of each subset S (and T ) depending on how large its intersection
is with each of these slices. Thanks to the properties of the exponential distributions of the life of every

4The term EC denotes the complement of the event E.
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node in the Poisson model (see (3) in Lemma 3.7), we show that the existence of a given subset in a
given time has a probability that essentially depends on its profile. Roughly speaking, the more is the
number of old nodes in S, the less is the probability of the presence of S in VTr .

Then, combining this profiling with a more refined use of the parameterized bound on the edge
probability in (21), we get a mathematical expression (see (45)) that, in turn, we show to be dominated
by the KL divergence of two suitably defined probability distributions. Finally, our target probability
bound, stated in the next lemma, is obtained by the standard KL divergence inequality (see Theorem
A.4). The arguments above allow us to prove the following result.

Lemma 5.4 (Expansion of middle-size subsets). Under the hypothesis of Theorem 5.3, for subsets S of
VTr , with probability of at least 1− 2/n2,

min
n/ log2 n6|S|6n/14

|∂out(S)|
|S|

> 0.1.

Proof. From Lemma 3.8, all the nodes in VTr are born after time Tr−7n logn with probability of at least
1− 1/n2. So, if we define the event

Lr = {each node in VTr is born after time Tr−7n logn},

we get that Pr (Lr) > 1− 1/n2: through the rest of this proof, we will condition to this event. So, if we
denote i as the node that joined the network at step Tr−i+1 (i.e. the node has age i), conditioning on
Lr,

VTr ⊆ {1, 2, 3, . . . , 7n log n}.

We have to show that any two disjoint sets S, T ⊆ {1, 2, . . . , 7n log n}, such that n/ log2 n 6 |S| 6
n/14, |T | = 0.1|S|, S, T ⊆ VTr , and ∂out(S) ⊆ T , may exist only with negligible probability. To this aim,
we define the following event

AS,T = {∂out(S) ⊆ T} ∩ {S, T ⊆ VTr}.

For the law of total probability,

Pr

(
min

n/ log2 n6|S|6n/14

|∂out(S)|
|S|

6 0.1

)
6

∑
n/ log2 n6|S|6n/2,|T |=0.1|S|

S,T⊆{1,2,...,7n logn}

Pr (AS,T | Lr) +
1

n2
, (28)

and, hence, our next goal is to upper bound the quantity Pr (AS,T | Lr). For each i ∈ S, let Bi be the
event “ each of the d requests of node i has destination in S ∪ T ”. Then, we can write

AS,T =
⋂
i∈S

Bi ∩ {S, T ∈ VTr},

and, for Bayes’ rule,

Pr (AS,T | Lr) = Pr (∩i∈SBi | S, T ⊆ VTr , Lr)Pr (S, T ⊆ VTr | Lr) . (29)

From Lemma 5.2, conditional to the event {S, T ⊆ VTr},

Pr (Bi | S, T ⊆ VTr , Lr) =

[
|S ∪ T |

0.8n

(
1 +

i

1.7n

)]d
. (30)

Since we will use (29) to bound Pr (AS,T | Lr), we need an upper bound for Pr (S, T ⊆ VTr | Lr). To
this aim, we can use the bound in (3) of Lemma 3.7. However, according to the definition of step in
Definition 3.6, we know that the death of one node in one single step is not independent of the death
of the others. Indeed, if we know that, in a given step, the node v dies, we will also know that in this
step no other event occurs, and, so, none of the other nodes dies. Moreover, if we know that one node
does not die in a given step, the probability to die of the other nodes will be larger. To cope with this
issue, we consider the probability that a fixed set of node survives in one step. From Lemma 3.7, for an
arbitrary set of k nodes, it holds

Pr
(
v1, . . . , vk ∈ VTr

∣∣ v1, . . . , vk ∈ VTr−1 , Lr
)
6 1− k

2.2n
6

(
1− 1

2.2n

)k
, (31)
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where the last inequality follows from the binomial inequality, i.e. ∀x ∈ R s.t. x > −1 and ∀k ∈ N it holds
(1 + x)k > 1 + kx. We notice that (31) is the probability that the next step is not characterized by the
death of any of the k considered nodes. So, thanks to (31) and to the Markov property of {VTr : r ∈ N},

Pr (S, T ⊆ VTr | Lr) 6
∏

i∈S∪T

(
1− 1

2.2n

)i
6

∏
i∈S∪T

e−i/2.2n, (32)

where, in (32) we used the fact that, from (31), each node contributes in the product with a factor
1−1/(2.2n) for each step of its life. Since each node chooses the destination of its out-edges independently
of the other nodes, combining (30) and (32) with (29), we obtain

Pr (AS,T | Lr) 6
∏

i∈S∪T
e−i/2.2n ·

∏
i∈S

min

{
1,

[
|S ∪ T |

0.8n

(
1 +

i

1.7n

)]d}
. (33)

For each set H ⊆ VTr , we define the sequence (KH
1 , . . . ,K

H
L ) (where L = 7 log n), whose goal is to

classify the nodes of the set according to their age profile:

KH
1 = |H ∩ {1, 2, . . . , n}|,

KH
2 = |H ∩ {n+ 1, . . . 2n}|,
· · ·
KH
L = |H ∩ {(L− 1)n+ 1, . . . , Ln}|.

Notice that, if |H| = h and KR
1 = h1, . . . ,K

R
L = hL, then it must hold

∑L
m=1 hm = h. For each set

H ⊆ VTr , we denote the vector of random variables (KH
1 , . . . ,K

H
L ) as KH . According to this definition,

by setting k = (k1, . . . , kL) and h = (h1, . . . , hL), we can rewrite (28) as follows

Pr

(
min

n/ log2 n6|S|6n/14

|∂out(S)|
|S|

6 0.1

)
(34)

6
n/14∑

k=n/ log2 n

∑
k1+···+kL=k

h1+···+hL=0.1k

∑
S,T : KS=k

KT=h

Pr
(
AS,T s.t. KS = k, KT = h

∣∣ Lr)+
1

n2
.

Indeed, we have to sum over all the possible size k = n/ log2 n, . . . , n/14 of the set S, all the possible
vectors k and h whose sum of the elements is equal to k and 0.1k, respectively (i.e. the characterization
of the age profiles of S and T with |S| = k and |T | = 0.1k), and, finally, over all the possible sets S, T
characterized by KS = k and KT = h, respectively.

From (33), we get

Pr
(
AS,T s.t. KS = k, KT = h

∣∣ Lr)
6 p(k,h) =

∏
m=1,...,L

(
e−0.4(m−1)(km+hm) min

{
1,

[
|S ∪ T |

0.8n
(1 + 0.6m)

]dkm})
. (35)

The number of subsets S, T ⊆ {1, 2, . . . , 7n log n} such that (KS
1 , . . . ,K

S
L) = (k1, . . . , kL) and (KT

1 , . . . ,K
S
L) =

(h1, . . . , hL) is bounded by

n(k,h) =

L∏
m=1
km 6=0

(
n

km

)
·

L∏
`=1
h` 6=0

(
n

h`

)
. (36)

So, we introduce the quantity s(k,h) and, from (35) and (36),

s(k,h) =
∑

S,T :KS=k

KT=h

Pr
(
AS,T s.t. KS = k, KT = h

)
6 n(k,h) · p(k,h). (37)

Combining (36) and (35) with (37) and, since |S ∪ T | = 1.1k,

s(k,h) 6
L∏
`=1
h` 6=0

(
n

h`

)
e−0.4(`−1)h` ·

L∏
m=1
km 6=0

((
n

km

)
e−0.4(m−1)km min

{
1,

(
1.1k

0.8n
(1 + 0.6m)

)dkm})
.
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The next step is to prove that s(k,h) 6 2−0.15k and, to this aim, we split s(k,h) in two factors,
s1(k,h) and s2(k,h), defined as follows:

s1(k,h) =

L∏
m=1
hm 6=0

(
n

hm

)
e−0.4(m−1)hm ,

s2(k,h) =

L∏
m=1
km 6=0

(
n

km

)
e−0.4(m−1)km min

{
1,

(
1.1k(1 + 0.6m)

0.8n

)dkm}
.

To give an upper bound on s(k,h), we provide separate upper bounds for log(s1(k,h)) and log(s2(k,h)).
In particular, we want to show that

log(s(k,h)) 6 −0.15k, (38)

which implies that
s(k,h) 6 2−0.15k. (39)

We will start bounding log(s1(k,h)). Using
(
n
k

)
6
(
n·e
k

)k,
log(s1(k,h)) 6

L∑
m=1
hm 6=0

hm log

(
n

hm
e−0.4m+1.4

)
. (40)

Since log(x) is a concave function, we can apply Jensen’s inequality in Theorem A.3 taking am = hm
xm = n

hm
e−0.4m+1.4 and, recalling that

∑L
m=1 hm = 0.1k, we obtain

L∑
m=1
hm 6=0

hm log

(
n

hm
e−0.4m+1.4

)
6

L∑
m=1

hm log

(
n

0.1k

L∑
m=1

e−0.4m+1.4

)
. (41)

Since
∑L
m=1 e

−0.4m+1.4 6 7, combining (40) with (41) and since k 6 n/14, we get

log(s1(k,h)) 6 0.1k log

(
7n

0.1k

)
6 k log

( n
7k

)
, (42)

where the last inequality follows by a simple calculation.
As for log(s2(k,h)),

log(s2(k,h)) 6
L∑

m=1
km 6=0

km log

(
n

7k
· n · e
km

e−0.4(m−1)

(
min

{
1,

1.1k(0.6m+ 1)

0.8n

})d)
− k log

( n
7k

)
.(43)

Then, since log(s(k,h)) = log(s1(k,h)) + log(s2(k,h)), from (42) and (43),

log(s(k,h)) 6
L∑

m=1
km 6=0

km log

(
0.6n2

k · km
e−0.4m

(
min

{
1,

1.1k(0.6m+ 1)

0.8n

})d)
.

So, from the above inequality,

− log(s(k,h))

k
>

L∑
m=1
km 6=0

km
k

log

(
km
k

9

10
· k2

0.6n2
e0.4m

(
min

{
1,

1.1k(0.6m+ 1)

0.8n

})−d)
+ log(10/9)(44)

Now, notice that, if we prove that

L∑
m=1
km 6=0

km
k

log

(
km
k

9

10
· k2

0.6n2
e0.4m

(
min

{
1,

1.1k(0.6m+ 1)

0.8n

})−d)
> 0, (45)
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then, from (44), we would get (38), since log(10/9) > 0.15. So, we want to prove (45). Thanks to the KL
divergence inequality (see Theorem A.4), it is sufficient to show that the following functions are density
mass functions over {1, 2, . . . , L}:

pm =
km
k

and qm =
10

9
· 0.6n2

k2
e−0.4m min

{
1,

(
1.1k(0.6m+ 1)

0.8n

)d}
.

Notice that
∑L
m=1 pm = 1, and

L∑
m=1

qm =

0.9nk−1∑
m=1

10

9

0.6n2

k2
e−0.4m

(
9

10

)d−2(
1.1k(0.6m+ 1)

0.8n

)2

+

L∑
r=0.9nk

10

9

0.6n2

k2
e−0.4m

6 1.1

(
1.1

0.8

)2(
9

10

)d−3

+
10

9
· 0.6n2

k2
· e−0.36nk 6 1,

where the last inequality holds taking d large enough (d > 30) and k 6 n
14 . So, we have proved that

qm and pm are density mass functions over {1, 2, . . . , L} and so, thanks to Theorem A.4, (45) holds and
implies (39).

Combining (37) with (34) and using (39),

Pr

(
min

n/ log26|S|6n/14

|∂out(S)|
|S|

6 0.1

)
6

n/14∑
k=n/ log2 n

∑
k1+···+kL=k

h1+···+hL=0.1k

s(k,h) +
1

n2
6

2

n2
,

where the last inequality holds since the number of integral sequences k1, . . . , kL that sum up k is bounded
by
(
k+L
L

)
(and the same holds for hm). Hence, from simple calculations and recalling that L = 7n log n,

n/14∑
k=n/ log2 n

∑
k1+···+kL=k

h1+···+hL=0.1k

s(k,h) 6
n/14∑

k=n/ log2 n

(
L+ 0.1k

L

)(
L+ k

L

)
2−0.15k 6

1

n2
.

Expansion of small subsets. We next study vertex subsets of size O(n/ log2 n). Their number is
small enough to get the desired expansion property by apply a standard counting argument combined
with our bound on the edge probability in Lemma 5.2 without using the “age profile” argument we
required for the analysis of the middle-size subsets.

Lemma 5.5 (Expansion of small subsets). Under the hypothesis of Theorem 5.3, for subsets S of VTr ,
with probability of at least 1− 2/n2,

min
06|S|6n/ log2 n

|∂out(S)|
|S|

> 0.1.

Proof. We show that two disjoint sets S, T ⊆ Vt, with |S| 6 n/ log2 n and |T | = 0.1|S|, such that
∂out(S) ⊆ T , exist with negligible probability. For each S, T ⊆ VTr , we call such event

AS,T = {∂out(S) ⊆ T}.

Then, as for the event

Lr = {each node in VTr is born after time Tr−7n logn} ∩ {|VTr | ∈ [0.9n, 1.1n]},

from Lemma 3.5, Lemma 3.8 and an union bound, we obtain Pr (Lr) > 1−1/n2. So, for the law of total
probability,

Pr

(
min

06|S|6n/ log2 n

|∂out(S)|
|S|

6 0.1

)
6

∑
|S|6n/ log2 n
|T |=0.1|S|

Pr (AS,T | Lr) +
1

n2
. (46)
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The next step of the proof is to upper bound Pr (AS,T | Lr). From Lemma 5.2 and since Lr implies that
all the active nodes were born after time Tr−7n logn,

Pr (AS,T | Lr) 6
(
|S ∪ T |

0.8n

(
1 +

7n log n

1.7n

))d|S|
6

(
|S ∪ T |

0.8n
(1 + 5n log n)

)d|S|
. (47)

Notice that, since |S| 6 n/ log2 n, the above equation offers a sufficiently small bound. So, combining
(47) with (46), we obtain

Pr

(
min

06|S|6n/ log2 n

|∂out(S)|
|S|

6 0.1

)
6
n/ log2 n∑
s=1

(
1.1n

s

)(
1.1n− s

0.1s

)(
1.1s

0.8n
(1 + 5n log n)

)ds
+

1

n2
.(48)

In the equation above, we bounded each binomial coefficient with the inequality
(
n
k

)
6
(
n·e
k

)k for each
k 6 n and n > 2. Then, by calculating the derivative of the function f(s) that represents each term of
the sum, we derive that each of such terms reaches its maximum at the extremes, i.e. in s = 1 or in
s = n/ log2 n. So, we get that the sum in (48), if d > 35, is bounded by 2/n2.

Expansion of big subsets. The last case of our analysis of the vertex expansion of the PDGR model
considers subsets of big size |S| > n/14. It analysis proceeds exactly as the proof of Lemma 4.3 about
the expansion of large subsets in the PDG model. Indeed, in both the PDG and PDGR models, we use
the fact that any node u ∈ VTr chooses any fixed older node v ∈ VTr with probability > 1/1.1n (thanks
to Lemma 3.5). The proof is omitted since it is identical to that of Lemma 4.3.

Lemma 5.6 (Expansion of large subsets). Under the hypothesis of Theorem 5.3, for subsets S of VTr ,
with probability of at least 1− 2/n2,

min
n/146|S|6|VTr |/2

|∂out(S)|
|S|

> 0.1.

5.3 Flooding
In this section, we study the flooding process over the dynamic graph model PDGR with edge regeneration
we introduced in Definition 3.2. The vertex expansion property, shown in Theorem 5.3, is here exploited
to obtain a logarithmic bound on the time required by this process to inform all the nodes of the graph.
Notice that, according to the considered topology dynamics, if there is a time in which all the alive nodes
are informed, then every successive snapshot of the dynamic graph will have all its nodes informed as
well, w.h.p.

Theorem 5.7 (Flooding). For every constant d > 35, for every sufficiently large n and for every fixed
r0 > 7n log n, consider the flooding process in Definition 3.3 over a PDGR sampled from G(λ, µ, d), with
λ = 1 and µ = 1/n, and starting at t0 = Tr0 . Then, w.h.p., the flooding time is O(log n).

As remarked in Section 2, in dynamic networks without node churn, it has already been shown
that the good vertex expansion of every snapshot implies fast flooding time (see for instance [6]). In
the Poisson models, the presence of random node churn requires to consider some new technical issues.
Indeed, once we observe the set of informed nodes It at a given snapshot Gt = (Vt, Et), the expansion
of It refers to topology Et while the 1-hop message transmissions take one unit of time. So, during this
time interval, some topology changes may take place affecting the expansion observed at time t. To
cope with this issue, our analysis splits the process into three consecutive phases and prove they all have
logarithmic length, w.h.p.

As remarked in Section 3, the discretized version of the flooding process (Definition 3.3) is always
slower than the original one (Definition 3.2), so our proof of Theorem 5.7 will proceed by analyzing the
discretized process along three consecutive phases.

Phase 1: The bootstrap. The first phase lasts until the source information reaches a subset of size
nε, for some constant ε < 1 (to make some calculations simpler, in our analysis we fix ε = 0.1).
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Lemma 5.8 (Phase 1: The bootstrap). Under the hypotheses of Theorem 5.7 there is τ1 = O(log n)
such that, with probability at least 1− 1/n0.6,

|It0+τ1 | > n0.1.

Proof. Let t be such that t > t0 and |It| 6 n0.1. We want to prove that, w.h.p., |It+1| > 0.1|It|. According
to Definition 3.3, we write

It+1 = (It ∪ ∂tout(It ∩ Vt+1)) ∩ Vt+1. (49)

We first estimate the probability that It ∩ Vt+1 = It, i.e. the probability that all the nodes in It survive
for a time interval equal to 1. Since the life of a node follows an exponential distribution with parameter
1/n and since |It| 6 n0.1,

Pr (It = It ∩ Vt+1) > e−|It|/n > 1− 1

n0.9
. (50)

Then, we need to estimate the following probability

Pr
(
|(It ∪ ∂tout(It)) ∩ Vt+1| > 1.1|It|

)
>

Pr
(
|(It ∪ ∂tout(It)) ∩ Vt+1| > 1.1|It|

∣∣ |It ∪ ∂tout(It)| > 1.1|It|
)
Pr
(
|It ∪ ∂tout(It)| > 1.1|It|

)
(51)

From Theorem 5.3,

Pr
(
|It ∪ ∂tout(It)| > 1.1|It|

)
> Pr (Gt is an expander of parameter 0.1) > 1− 1

n
, (52)

since, if Gt is an expander of parameter 0.1, |∂tout(It)| > 0.1|It|. Moreover,

Pr
(
|(It ∪ ∂tout(It)) ∩ Vt+1| > 1.1|It| | |It ∪ ∂tout(It)| > 1.1|It|

)
> e−1.1|It|/n > 1− 1.1

n0.9
, (53)

since this is the probability that 1.1|It| fixed nodes in It ∪ ∂tout(It) survive for a time interval equal to 1.
So, combining (52) and (53) with (51), we get that, for a sufficiently large n,

Pr
(
|(It ∪ ∂tout(It)) ∩ Vt+1| > 1.1|It|

)
>

(
1− 1

n

)
·
(

1− 1.1

n0.9

)
> 1− 1

n0.8
. (54)

Thanks to (49), for any t such that |It| 6 n0.1,

Pr (|It+1| > 1.1|It|) = Pr
(
|(It ∪ ∂tout(It)) ∩ Vt+1| > 1.1|It| and It = It ∩ Vt+1

)
> Pr

(
|(It ∪ ∂tout(It)) ∩ Vt+1| > 1.1|It|

)
+ Pr (It = It ∩ Vt+1)− 1

> 1− 1

n0.8
− 1

n0.9
> 1− 1

n0.7
, (55)

where the first inequality follows from the fact that, for any two events A,B, it holds Pr (A ∩B) >
Pr (A) + Pr (B)− 1 and the second inequality follows from (50) and (54).

We can then easily conclude from (55) and from the chain rule that, after a phase of length τ1 =
O(log n) rounds, we get |It0+τ1 | > n0.1, with probability at least 1− 1/n0.6.

Phase 2: Exponential growth of the informed nodes. In the next lemma we show that, after
the bootstrap, the flooding process yields an exponential increase of the number of informed nodes until
it reaches half of the nodes in the network.

Lemma 5.9 (Phase 2). Under the hypotheses of Theorem 5.7 and assuming the claim of Lemma 5.8
holds for some τ1 = O(log n), with probability at least 1− 1/n0.8, a time τ2 = O(log n) exists such that

|It0+τ1+τ2 | >
1.1n

2
.

Proof. Let t > t0 + τ1 be such that such that n0.1 6 |It| 6 1.1n/2. We want to prove that for such t
we have that |It+1| > 1.09|It| with probability at least 1 − 1/n0.9. Observe first that, from claim 2 of
Lemma 3.9, in any time interval of unit length, at most 4 log n nodes leave the network, with probability
at least 1− 1/n. If Dt,t+1 is the number of nodes that leave the network in the time interval [t, t+ 1],

Pr (Dt,t+1 6 4 log n) > 1− 1

n
(56)
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We recall that from Definition 3.3 the set of infected nodes at time t+ 1 is

It+1 = (It ∪ ∂tout(It ∩ Vt+1)) ∩ Vt+1.

In Theorem 5.3, we have shown that, with probability at least 1 − 1/n, the graph Gt is such that each
subset of nodes S such that |S| 6 1.1n/2 satisfies |∂out(S)| > 0.1|S|. So, Theorem 5.3 with (56) imply

Pr (|It+1| > 1.1|It| − 3 log n) > Pr (|It+1| > |It|+ 0.1 (|It| − 4 log n)− 4 log n)

> Pr ({Gt is an expander of parameter 0.1} ∩ {Dt,t+1 6 4 log n}) > 1− 2

n
> 1− 1

n0.9
.

So, since for each t > t0 + τ1 we have that |It0+τ1 | > n0.1, with probability at least 1 − 1/n0.9 we have
that

|It+1| > 1.09|It|.

We thus have an exponential growth of the set of the informed nodes and, for the chain rule, there exists
a time τ2 = O(log n) such that |It0+τ1+τ2 | > 1.1n/2, with probability at least 1− 1/n0.8 for large enough
n.

Phase 3: Exponential decrease of the non-informed nodes. The analysis of this phase considers
the subset St ⊆ Vt of the non-informed nodes. More precisely, we prove that St+1 w.h.p. decreases by a
constant factor despite the node churn.

Lemma 5.10 (Phase 3). Under the hypotheses of Theorem 5.7, assume the claims of Lemma 5.8 and of
Lemma 5.9 hold for some τ1 = O(log n) and τ2 = O(log n), respectively. Then, with probability at least
1− 1/n1/3, there is a time τ3 = O(log n) such that

It0+τ1+τ2+τ3 = Vt0+τ1+τ2+τ3 .

Proof. For any t > t0 + τ1 + τ2, we now consider the set St+1 ⊆ Vt+1 of non informed nodes at time t+1,
i.e. St+1 = Vt+1 − It+1. We recall that the set of informed nodes at time t+ 1 is

It+1 = (It ∪ ∂tout(It ∩ Vt+1)) ∩ Vt+1.

It follows that, since every node v in ∂t+1
out (St+1 ∩ Vt) is reachable in 1-hop by the set of non-informed

nodes St at time t+ 1, v was not informed at time t. This implies that

∂t+1
out (St+1 ∩ Vt) ⊆ St − (St+1 ∩ Vt).

Since t > t0 + τ1 + τ2, we have that |St| 6 |Vt|− |It| 6 1.1n/2 and, since St+1∩Vt ⊆ St, for Theorem 5.3,
we have that |∂out(St+1 ∩ Vt)| > 0.1|St+1 ∩ Vt| with probability at least 1 − 1/n. Consider the random
variable Jt,t+1 that indicates the number of nodes that join the network in the time interval [t, t + 1].
Then, the above considerations imply that with probability at least 1− 1/n

|St+1| 6
1

1.1
|St|+ Jt,t+1.

Claim 1 of Lemma 3.9 imply that Jt,t+1 6 4 log n with probability at least 1− 1/n. So, with probability
at least 1− 2/n, we will have

|St+1| 6 0.91|St|+ 4 log n.

Moreover, if t is such that log2 n 6 |St| 6 1.1n/2, we have that for large enough n, with probability at
least 1− 2/n,

|St+1| 6 0.95|St|.

This implies that with probability at least 1−1/n1/2, there exists a τ ′3 = O(log n) such that |St0+τ1+τ2+τ ′3
| 6

log2 n.
After the process reaches a state with the above small number of non-informed nodes, we consider the
set of non-informed nodes at time t without including the set of nodes that join the network after time
t0 + τ1 + τ2 + τ ′3: we call the latter set as S∗t , for each t > t0 + τ1 + τ2 + τ ′3. Similar to the first part of
the proof, we get that ∂t+1

out (S∗t+1) ⊆ S∗t − S∗t+1. From Theorem 5.3, it holds, with probability at least
1− 1/n, |∂out(S∗t+1)| > |S∗t+1|, which implies

|S∗t+1| 6 0.91|S∗t |.
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Since |S∗t0+τ1+τ2+τ ′3
| 6 log2 n, there is a τ3 = O(log n) such that, |S∗t0+τ1+τ2+τ3 | < 1 with probability at

least 1− 1/n1/2.
In conclusion, let Jτ ′3,τ3 be the number of nodes that join the network from time t0 + τ1 + τ2 + τ ′3
to time t0 + τ1 + τ2 + τ3. Since the arrival of the nodes during an interval of length τ3 − τ ′3 is a
Poisson process of mean τ3 − τ ′3, for the tail bound for the Poisson distribution (Theorem B.4), w.h.p.
Jτ ′3,τ3 = O(log n). Moreover, from Lemma 3.5, each of these new nodes connect to the set of informed
nodes with probability at least (1 − (2 log2 n/n)d)(1 − 1/n2). Moreover, each informed node to which
the new nodes have connected survive for the 1-hop transmission with probability e−1/n > 1 − 1

n . So,
each node that joins the network after time t0 + τ1 + τ2 + τ ′3 gets informed within time t0 + τ1 + τ2 + τ3,
with probability at least 1 − 1/n1/2. We conclude that there exists a time τ3 = O(log n) such that
|It0+τ1+τ2+τ3 | = |Vt0+τ1+τ2+τ3 | with probability at least 1− 1/n1/3.

6 Overall remarks and open questions
We studied two models of fully-random dynamic networks with node churns. We analysed their expansion
properties and gave results about the performances of the flooding process. We essentially show that
such important aspects depend on the specific adopted topology dynamic, namely, on whether or not,
edge regeneration takes place along the time process.

We remark that the Poisson model with edge regeneration bears a certain similarity to the way
peer-to-peer networks such as Bitcoin are formed. In particular, although the random choices over the
current node set Vt the nodes make to establish connections is not the connection mechanism adopted in
standard Bitcoin implementations, the set of IP addresses of the active full-nodes of the Bitcoin network
can be easily discovered by a crawler (see, e.g., [24]). This implies that, potentially, nodes can implement
a good approximation of the fully-random strategy by picking random elements from such on-line table.

We see an interesting future research direction related to our work. The topology dynamics we
considered yield sparse graphs at every round, however, the maximum node degree can be of magnitude
O(log n). For some real applications this bound is too large, and finding natural, fully-random topology
dynamics that yield bounded-degree snapshots of good expansion properties is a challenging issue which
has strong theoretical and practical motivations [25, 1, 17].
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Appendix

A Mathematical tools
Theorem A.1 (Chernoff Bound, [10]). Let X1, . . . , Xn be independent Poisson trials such that Pr (Xi = 1) =
pi. Let X =

∑n
i=1Xi, µ = E [X] and suppose µL 6 µ 6 µH . Then, for all 0 < ε 6 1 and t > 0 the

following bounds hold
Pr (X > (1 + ε)µH) 6 e−

ε2

3 µH

Pr (X 6 (1− ε)µL) 6 e−
ε2

2 µL

Pr (X > E [X] + t) ,Pr (X 6 E [X]− t) 6 e−2 t
2

n .

Theorem A.2 (Method of bounded differences,[10]). Let Y = (Y1, . . . , Ym) be independent random
variables, with Yj taking values in the set Aj. Suppose the real-valued function f defined on

∏
j Aj

satisfies the Lipschitz condition with coefficients βj, i.e.

|f(y)− f(y′)| 6 βj

whenever vectors y y′ differs only in the j-th coordinate. Then, for any M > 0

Pr (f(Y) > E [f(Y)] +M) 6 e
− 2M2∑m

j=1
β2
j ,

and

Pr (f(Y) 6 E [f(Y)]−M) 6 e
− 2M2∑m

j=1
β2
j .

Theorem A.3 (Jensen’s inequality). For any real concave function ϕ, numbers x1, . . . , xL in its domain
and positive weights a1, . . . , aL, the following holds:∑L

m=1 amϕ(xm)∑L
m=1 am

6 ϕ

(∑L
m=1 amxm∑L
m=1 am

)
.

Theorem A.4 (Kullback-Leibler divergence inequality). Let pm and qm be two discrete probability mass
functions, with m ∈ {1, . . . , L}. We have that

L∑
r=1

pm log2

(
pm
qm

)
> 0 .

B Useful tools for Poisson processes
Definition B.1 (Counting process). The stochastic process {X(t), t > 0} is said to be a counting process
if X(t) represents the total number of events that occurred up to time t.

Definition B.2. Let {X(t), t > 0} be a counting process. It is a Poisson process if

1. X(0) = 0;

2. X(t) has independent increments;

3. the number of events in any interval of length t has a Poisson distribution with mean λt. That is,
for all s, t > 0,

Pr (X(t+ s)−X(s) = n) = e−λt
(λt)n

n!
, n > 0 .

Theorem B.3. Let {X(t), t > 0} be a Poisson process. Then, given X(t) = n, the n arrival times
S1, . . . , Sn have the same distribution as the order statistics corresponding to n independent random
variables uniformly distributed in the interval (0, t).
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Theorem B.4 (Tail bound for the Poisson distribution). Let X have a Poisson distribution with mean
λ. Then, for each ε > 0,

Pr (|X − λ| > x) 6 2e−
x2

2(λ+x)

Theorem B.5 ([21]). Let I be a countable set and let Tk, k ∈ I, be independent exponential random
variables of parameter qk. Let 0 < q =

∑
k∈I qk 6∞. Set T = infk Tk. Then this infimum is attained at

a unique random value K of k, with probability 1. Moreover, T and K are independent with T exponential
of parameter q and Pr (K = k) = qk/q.

C Omitted proofs

C.1 Static random graphs
Lemma C.1. The static random graph in which each node has d neighbors, each chosen uniformly at
random and independently of the others, is a Θ(1)-expander w.h.p., for each d > 3.

Proof. Consider the static random graph G = (N,E), where E is generated randomly as stated in the
claim of the Lemma. Let S ⊂ N a subset of the nodes, with |S| = s and T ⊆ N − S a second arbitrary
subset of the nodes, disjoint from S, with |T | = 0.1s. We know that in this model, an edge originating
from a node v has destination u with probability 1

n−1 . Since all edges are established independently from
each other, the probability that all edges originating from nodes in S have endpoints S ∪ T is(

|S ∪ T |
n− 1

)ds
.

So, the probability that the outer boundary of S is all in T is

Pr (∂out(S) ⊆ T ) 6

(
1.1s

n− 1

)ds
.

From a union bound over all sets T disjoint from S and with |T | = 0.1s, all sets S with s elements and
all possible sizes s = 1, . . . , n/2 of s we obtain:

Pr (G is not an expander) 6
n/2∑
s=1

(
n

s

)(
n− s
0.1s

)(
1.1s

n− 1

)ds
.

Standard calculus allows proving that the r.h.s. of the inequality above is upper bounded by 1/nd−2

for d > 3. To prove this, we use
(
n
s

)
6
(
n·e
s

)s and we compute the derivative of the function f(s) that
corresponds to each term in the resulting sum, obtaining that its maximum is attained when s = 1 or
s = n/2.

C.2 Jump processes
Thanks to Theorem B.5, we can easily analyze the random variables corresponding to times at which
new events occur in the Poisson node churn model.

Lemma C.2 (Jump process). Consider, the discrete Markov chain {VTr , r ∈ N} from Definition 3.6.
For every fixed integer r > 0 and for every integer N > 0, conditioned to the event “|VTr | = N ”, Tr+1 is
a random variable with exponential distribution and parameter Nµ+ λ. Moreover,

Pr
(
|VTr+1

| = |VTr | − 1
∣∣ |VTr | = N

)
=

Nµ

Nµ+ λ
, (57)

Pr
(
|VTr+1 | = |VTr |+ 1

∣∣ |VTr | = N
)

=
λ

Nµ+ λ
. (58)

Finally, for every fixed node v ∈ VTr , the probability that the next event is v leaving the network is

Pr
(
v 6∈ VTr+1

∣∣ v ∈ VTr , |VTr | = N
)

=
µ

Nµ+ λ
. (59)
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Proof. Conditional to the event “|VTr | = N ”, we consider the N random variables with exponential
distribution and parameter µ that represent the lifetimes of nodes in the network at time Tr. We further
consider the random variable with exponential distribution and with parameter λ that represents the
arrival time of the next node entering the network. We notice that i) these N + 1 random variables
are independent and ii) Tr+1 is the minimum among their values. Hence, Theorem B.5 implies that
Tr+1 has an exponential distribution with parameter Nµ+ λ. Moreover, conditional to “ |VTr | = N ”, the
event “ |VTr+1

| = |VTr | − 1” is the event in which the minimum Tr+1 is attained by one of the N random
variables representing the lifetimes of the nodes that are in the system at Tr. This and Theorem B.5
imply (57). A similar argument leads to (58) and (59).

C.3 Proof of Lemma 3.7
The lemma easily follows from Lemma C.2 and from concentration of the number of nodes as stated in
Lemma 3.5. To begin, for each r > n log n, we define the following event:

Cr = {|VTr | ∈ [0.9n, 1.1n]}.

Lemma 3.5 immediately implies Pr (Cr) > 1 − 1/n2. We next show Pr
(
|VTr+1

| = |VTr |+ 1
)
6 0.53 in

(1). For each r > n log n, we write:

Pr
(
|VTr+1 | = |VTr | − 1

)
= Pr

(
|VTr+1

| = |VTr | − 1
∣∣ Cr)Pr (Cr) + Pr

(
|VTr+1

| = |VTr | − 1
∣∣ CCr )Pr

(
CCr
)
.

The equation above and the law of total probability in turn imply:

Pr
(
|VTr+1

| = |VTr | − 1
)
6

1.1n∑
N=0.9n

Pr
(
|VTr+1

| = |VTr | − 1
∣∣ |VTr | = N

)
Pr (|VTr | = N | CTr ) +

1

n2
.(60)

From Lemma C.2, with λ = 1 and µ = 1/n, we also have:

Pr
(
|VTr+1

| = |VTr | − 1
∣∣ |VTr | = N

)
=

N/n

N/n+ 1
. (61)

Hence, combining (61) and (60),

Pr
(
|VTr+1

| = |VTr | − 1
)
6

1.1n∑
N=0.9n

N

N + n
Pr (|VTr | = N | CTr ) +

1

n4
6 0.53 .

To show 0.47 6 Pr
(
|VTr+1 | = |VTr |+ 1

)
in (2), we can use the inequality above:

Pr
(
|VTr+1 | = |VTr |+ 1

)
= 1−Pr

(
|VTr+1 | = |VTr | − 1

)
> 1− 0.53 = 0.47.

Following the very same line of argument, we prove the lower bound forPr
(
|VTr+1 | = |VTr | − 1

)
in (1), the

upper bound forPr
(
|VTr+1

| = |VTr |+ 1
)
in (2), and the two inequalities in (3) forPr

(
v 6∈ VTr+1

∣∣ v ∈ VTr).
C.4 Proof of Lemma 3.8
Proof. Let r > 7n log n. Denote by CTr the event {|VTr | ∈ [0.9n, 1.1n]}. Lemma 3.5 implies Pr (CTr ) >
1− 1/n2. Furthermore, from Lemma 3.7 and the memoryless property of the exponential distribution:

Pr
(
v ∈ VTr

∣∣ v ∈ VTr−7n logn

)
6

(
1− 1

2.2n

)7n logn

6 e−3.1 logn =
1

n3.1
. (62)

We next show that every node in VTr joined the network after time Tr−7n logn, with high probability. To
this purpose, we condition on the event CTr , which holds with high probability has shown above.

Pr (there exists a node v ∈ VTr born before Tr−7n logn)

6 Pr (there exists a node v ∈ VTr born before Tr−7n logn | CTr ) +
1

n2

and, since CTr guarantees that the nodes in the network at time Tr are at most 1.1n, from equation (62)
we get the lemma.
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C.5 Proof of Lemma 3.9
Proof. As for the first claim, consider the random variable Jt0,t0+logn that indicates the number of nodes
that join the network in the time interval [t0, t0 + log n]. Definitions 3.4 and B.2 (Poisson Process) imply
that Jt0,t0+logn is a Poisson random variable with mean log n. The tail bound for the Poisson distribution
(Theorem B.4) than yields:

Pr (Jt0,t0+logn 6 4 log n) > 1− 1

n
.

As for the second claim, we indicate with L the number of nodes that have left the network in the
time interval [t0, t0 + log n]. Consider the generic node i ∈ Vt0 and let Li(τ) be the binary random
variable such that Li(τ) = 1 if i is not alive at time t0 + τ and Li(τ) = 0 otherwise. Clearly,

L =
∑
i∈Vt0

Li(log n).

Since the death process follows the exponential distribution with parameter µ = 1/n,

Pr (Li(log n) = 1) = 1− e−
logn
n 6

log n

n
.

Since each node leaves the network independently of the other nodes, from the Chernoff’s bound (The-
orem A.1)

Pr (L > 4 log n | |Vt0 | ∈ [0.9n, 1.1n]) 6
1

n2
,

and the thesis follows from Bayes’ rule and from Lemma 3.5, that guarantees that |Vt0 | ∈ [0.9n, 1.1n]
with probability at least 1− 1/n2, when t0 = Tr0 with r0 > 7n log n.
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