
Advances in Remote Sensing, 2023, 12, 99-122 
https://www.scirp.org/journal/ars 

ISSN Online: 2169-2688 
ISSN Print: 2169-267X 

 

DOI: 10.4236/ars.2023.124006  Dec. 4, 2023 99 Advances in Remote Sensing 
 

 
 
 

Enhancing Surface Soil Moisture Estimation 
through Integration of Artificial Neural 
Networks Machine Learning and Fusion of 
Meteorological, Sentinel-1A and Sentinel-2A 
Satellite Data  

Jephter Ondieki1* , Giovanni Laneve2, Maria Marsella1, Collins Mito3  

1DIMA-Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Roma, Italy 
2SIA-School of Aerospace Engineering, Sapienza University of Rome, Roma, Italy 
3Department of Physics, University of Nairobi, Nairobi, Kenya 

 
 
 

Abstract 
For many environmental and agricultural applications, an accurate estima-
tion of surface soil moisture is essential. This study sought to determine 
whether combining Sentinel-1A, Sentinel-2A, and meteorological data with 
artificial neural networks (ANN) could improve soil moisture estimation in 
various land cover types. To train and evaluate the model’s performance, we 
used field data (provided by La Tuscia University) on the study area collected 
during time periods between October 2022, and December 2022. Surface soil 
moisture was measured at 29 locations. The performance of the model was 
trained, validated, and tested using input features in a 60:10:30 ratio, using 
the feed-forward ANN model. It was found that the ANN model exhibited 
high precision in predicting soil moisture. The model achieved a coefficient 
of determination (R2) of 0.71 and correlation coefficient (R) of 0.84. Fur-
thermore, the incorporation of Random Forest (RF) algorithms for soil 
moisture prediction resulted in an improved R2 of 0.89. The unique combina-
tion of active microwave, meteorological data and multispectral data provides 
an opportunity to exploit the complementary nature of the datasets. Through 
preprocessing, fusion, and ANN modeling, this research contributes to ad-
vancing soil moisture estimation techniques and providing valuable insights 
for water resource management and agricultural planning in the study area.  
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1. Introduction 

Understanding hydrological processes, agricultural productivity, and water re-
source management all depend on having an accurate estimation of surface soil 
moisture [1]. At both a regional and global level, soil moisture has been retrieved 
using a variety of remote sensing techniques. The sensitivity of optical remote 
sensing to atmospheric effects and vegetation cover prevents it from accurately 
estimating soil moisture, despite the fact that it still offers useful information 
about land surface properties [2]. In order to get around the shortcomings of 
optical sensors for estimating soil moisture, the integration of active microwave 
data, such as Sentinel-1, has emerged as a promising strategy [3]. 

To increase the accuracy of soil moisture estimation, the fusion of remote 
sensing data has attracted a lot of attention recently [4]. Active microwave and 
multispectral data fusion has demonstrated great promise for more accurately 
capturing the spatiotemporal dynamics of soil moisture. Sentinel-1 is the best 
satellite for soil moisture monitoring because it can observe in any weather and 
at any time of day or night thanks to its Synthetic Aperture Radar (SAR) capa-
bilities. Sentinel-2A, on the other hand, provides invaluable insights into the 
characteristics of the land surface and the dynamics of the vegetation thanks to 
its high spatial resolution multispectral data [5]. 

By examining the backscatter measurements at various polarizations, radar is 
a useful tool for determining soil moisture (SM). Due to their superior penetra-
tion abilities, previous research has shown that microwave responses at low fre-
quencies (P to L-band) are particularly sensitive to SM levels on both bare and 
vegetated surfaces [6]. The Japanese Advanced Land Observation Satellite-2 
(ALOS-2) and the Argentine satellite SAOCOM (Satélite Argentino de Observa-
ción Con Microondas) are just two examples of remote sensing satellites that 
have synthetic-aperture radar (SAR) systems which operate at low frequencies. 

Fortunately, SAR systems that operate at higher frequencies, such as the C and 
X bands, exemplified by satellites like Sentinel-1, Radar Imaging Satellite 1 
(RISAT-1), RADARSAT-1 & 2, and Constellation of Small Satellites for the Me-
diterranean Basin Observation-SkyMed (COSMO-SkyMed), and TerraSAR-X, 
have proven to be effective in providing accurate results for soil moisture re-
trieval. Numerous research studies have effectively harnessed these high-frequency 
SAR systems for tasks such as soil moisture mapping and retrieval [7] [8] [9] and 
crop monitoring [8] [10]. 

Numerous theoretical and empirical backscattering models have been pro-
posed for the estimation of soil moisture based on SAR images. These models, 
including those by [11] [12] [13] [14], rely on quad-polarized microwave SAR 
images (HV, VV, HH, and VH) and sensor characteristics like wavelength and 
incidence angle. By inverting these models, one can derive parameters for soil 
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permittivity and soil roughness. Topp’s model [15] is an example where soil 
moisture can be estimated using soil permittivity, as demonstrated in various 
studies [9] [16]-[24]  

However, a common challenge is the limited availability of quad-polarized 
SAR images. To address this limitation, some researchers have developed tech-
niques to eliminate one of the unknown parameters, typically surface roughness, 
by incorporating in-situ measurements [19] [20]. This modification has allowed 
the adaptation of existing backscattering models, both empirical and theoretical, 
for use with dual-polarized SAR images, thus overcoming the constraint of 
quad-polarized data. Once the empirical model is established, soil moisture can 
be calculated by solving a single equation with one unknown parameter. How-
ever, the accuracy of the derived soil moisture depends on the precision of sur-
face roughness measurement [25]. 

In recent times, deep learning and machine learning models have emerged as 
highly effective tools for predicting surface soil moisture over extensive spatial 
and temporal scales [7] [26] [27]. In contrast to physical models, these machine 
and deep learning models rely on data-driven approaches. They utilize a range of 
relevant input features to map their output. Examples of such input features in-
clude brightness temperature, SAR backscatter, sensor characteristics, geo-
graphic information, and meteorological variables, as outlined by [28]. During 
the training phase, these machine learning models learn the relationships and 
patterns within the input data to make predictions about soil moisture dynam-
ics. Subsequently, they can be applied to unobserved data to assess their predic-
tive performance. Among the favored machine learning models for soil moisture 
estimation is Artificial Neural Networks (ANN), as demonstrated in studies by 
[29] [30] [31]. 

[32] Conducted soil moisture estimation with a daily spatial resolution of 12 
km using data from the Advanced Very High-Resolution Radiometer (AVHRR) 
and Tropical Rainfall Measuring Mission (TRMM). They employed Support 
Vector Regression (SVR) models at six different study sites, incorporating three 
input features: backscatter values, incidence angle from TRMM, and normalized 
difference vegetation index from AVHRR. Their findings indicated that the root 
mean square error (RMSE) was less than 2%, and the correlation coefficients for 
all sites ranged from 0.34 to 0.77. They also compared the SVR model’s perfor-
mance with that of Artificial Neural Networks (ANN) and Multivariate Linear 
Regression (MLR) models, concluding that SVR outperformed both ANN and 
MLR in terms of performance. 

[33] proposed a method based on ANN with a 10 km spatial resolution for es-
timating daily soil moisture. They utilized data from the International Soil 
Moisture Network (ISMN), along with backscatter, local incidence angle, azi-
muth angle, Latitude, and Longitude to train the ANN model. Their results 
showed that ANN performed well on test datasets, achieving a correlation coef-
ficient (R) of 0.82 and an RMSE of 0.04 m3/m3. 
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The studies mentioned above highlight a common challenge in soil moisture 
products, which is finding a balance between spatial and temporal resolutions. 
Some products offer higher spatial resolution but lower temporal coverage, while 
others prioritize temporal frequency over spatial detail. This trade-off depends 
on the choice of input features and the specific soil moisture products used to 
train machine learning models. 

To address this issue and enhance both spatial and temporal resolutions in 
soil moisture retrieval, this study leverages the capabilities of dual-polarized Sen-
tinel-1 and multi-spectral Sentinel-2 data. Additionally, it incorporates SRTM 
elevation data and meteorological information. The goal is to create high-resolution 
and frequent estimations of surface soil moisture. 

To achieve this, a novel methodology is introduced, which combines micro-
wave data from Sentinel-1, optical data from Sentinel-2, meteorological data, 
and topographic data from SRTM-DEM. This approach relies on a fully con-
nected feed-forward Artificial Neural Network (ANN) as its core component. 
Initially, thirteen derived features are selected as input variables for training the 
ANN architecture. 

2. Materials and Methods 
2.1. Description of the Study Area 

The research is centered on the Maccarese region in Italy, which is known for its 
varied land cover types, encompassing agricultural fields, natural vegetation, and 
urban areas (Figure 1). The accurate estimation of soil moisture in this particu-
lar area poses notable challenges. This is due to the fact that each of these land 
cover types can have distinct soil properties and moisture dynamics, making it 
more challenging to develop a single, accurate estimation model that works 
across all these environments. Also the soil properties vary significantly within 
the region, leading to spatial heterogeneity in soil moisture content. Factors such 
as soil type, texture, and compaction levels can affect soil moisture retention and 
distribution. 

2.2. Datasets  

We utilized publicly available satellite data, including Sentinel-1A (SAR), Senti-
nel-2A (optical) images and meteorological data. The Sentinel images were 
downloaded from the official website of the Corpenicus data hub  
(https://scihub.copernicus.eu/). A comprehensive description of the Sentinel 
images is provided in Table 1. 

2.3. Field Measurement 

We utilized soil moisture data collected by 29 soil measurement stations of the 
La Tuscia University during the field campaigns from October 2022 to Decem-
ber 2022. A universal random grid sampling approach was used in the field to 
measure soil moisture. The study area was divided into small square grids measuring  
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Figure 1. Location of the field test sites at Maccarese Farm, Rome, Italy. 
 
Table 1. Detailed descriptions of the Sentinel-1A/2A images. 

Date (dd/mm/yyyy) 
Sentinel-1A 

Polarization Pixel size(m) Pass 

06/10/2022 Dual (VH, VV) 10 Descending 

07/10/202 Dual (VH, VV) 10 Ascending 

18/10/2022 Dual (VH, VV) 10 Descending 

19/10/2022 Dual (VH, VV) 10 Descending 

30/10/2022 Dual (VH, VV) 10 Ascending 

11/11/2022 Dual (VH, VV) 10 Descending 

12/11/2022 Dual (VH, VV) 10 Ascending 

23/11/2022 Dual (VH, VV) 10 Descending 

24/11/2022 Dual (VH, VV) 10 Ascending 

05/12/2022 Dual (VH, VV) 10 Descending 

06/12/2022 Dual (VH, VV) 10 Ascending 

17/12/2022 Dual (VH, VV) 10 Descending 

18/12/2022 Dual (VH, VV) 10 Ascending 

29/12/2022 Dual (VH, VV) 10 Descending 

30/12/2022 Dual (VH, VV) 10 Ascending 

Date (dd/mm/yyyy) 
Sentinel-2A 

Tale 
Wavelength 

(nm) 
Spatial Resolution 

(m) 

15/10/2022 76 646 - 685, 774 - 907 10 

11/12/2022 76 646 - 685, 774 - 907 10 
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40 m × 40 m, and measurements were taken on a random grid. Each measure-
ment was at least 40 meters apart. The sensor depth was 5 cm below the surface. 
The average of these measurements was then computed to obtain a representa-
tive soil moisture value for each grid. This method enabled a direct comparison 
of soil moisture at the point level to the corresponding satellite pixel. 

2.4. Meteorological Data 

The meteorological data which included precipitation, wind speed, cloud cover, 
solar illumination, soil temperature was obtained from the  
https://www.visualcrossing.com/weather-data website for the study. 

2.5. Methodology 

In order to extract input features for the machine learning model, we first 
processed the satellite images. Then, for training, validation, and testing, we en-
gineered features and created a feed-forward multi-layer ANN model. Finally, 
we compared the output of the ANN model to RF benchmark algorithms and 
evaluated ANN performance in terms of error analysis and spatial distribution 
analysis. The subsections that follow go over the specifics of feature extraction 
and model setup. 

2.5.1. Feature Extraction 
1) Image processing 
Sentinel-1A images were subjected to preprocessing using the Sentinel Appli-

cation Platform (SNAP v8.0), which is a freely available open-source tool de-
signed for Earth Observation data manipulation. The preprocessing of raw Sen-
tinel-1A GRD images encompassed radiometric calibration, the removal of 
speckle noise, and terrain correction (Figure 2). 
 

 

Figure 2. Sentinel-1 GRD preprocessing workflow. 
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In addition, Sentinel-2A images underwent processing to compute the norma-
lized vegetation index (NDVI). This was achieved by calculating the ratio of the 
difference between near-infrared and red bands to their sum. The resulting 
NDVI image exhibited a spatial resolution of 10 × 10 meters. Pixel values in the 
NDVI image ranged from −1 to +1, with higher NDVI values serving as an in-
dicator of robust and healthy vegetation [34]. 

2) Feature selection and scaling 
The effectiveness of any machine learning model relies heavily on the quality 

of its input data. In our research, we carried out three distinct feature engineer-
ing procedures, namely feature extraction, generation, and scaling. Initially, we 
extracted 13 features from a combination of Sentinel-1A and Sentinel-2A im-
ages, as well as meteorological and DEM (Digital Elevation Model) data. These 
features encompassed backscatter values (σ0) from Sentinel-1A images in both 
VV and VH polarizations. Radar backscatters (VH and VV) are particularly sen-
sitive to soil moisture due to the presence of a dielectric gradient [35]. We also 
calculated NDVI values from Sentinel-2A imagery, and elevation data were 
normalized relative to mean sea level at each pixel using the DEM. Additionally, 
we obtained geographical coordinates (Latitude and Longitude) for every pixel 
in the input images. 

Furthermore, we collected meteorological data from various monitoring sta-
tions, including details on soil temperature, precipitation, wind speed, cloud 
cover, and solar radiation. It’s important to note that the well-established rela-
tionship between soil moisture and surface elevation was employed extensively 
in observing soil moisture patterns and developing machine learning models 
[36]. 

Geolocation variables (i.e., Latitude and Longitude) were integrated into spa-
tial machine learning applications to account for spatial dependencies in the data 
[31]. Additionally, we generated two synthetic features (VH/VV and VH-VV) by 
combining VH and VV through linear data fusion, augmenting the existing fea-
ture set (VH and VV). These synthetic features are more attuned to the geome-
tric and dielectric properties of soil [37].  

Then, the image pixels of the input features were rescaled to a standard grid 
size (10 × 10 m) using the nearest neighbor resampling method. Finally, we 
scaled each of the 13 features using the standard z-score method. 

2.5.2. Model Setup 
1) Feed-forward ANN 
Three hidden layers were implemented in this study using TensorFlow’s Keras 

API. The first layer, which serves as the input layer, was made up of 64 neurons, 
each with a Rectified Linear Unit (ReLU) activation function to add nonlinearity 
to the network. This layer is set up to accept input. Following that, two hidden 
layers were added, each with 64 neurons and ReLU activation functions. Nota-
bly, these hidden layers used L2 regularization with a regularization coefficient 
of 0.01, which is intended to reduce overfitting by penalizing large weight mag-
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nitudes. The final layer, which consists of a single neuron, generated raw nu-
merical predictions. This model was trained using the Adam optimizer, which 
has a learning rate of 0.001 and minimizes the mean squared error loss, which is 
a common choice for regression problems. 

Furthermore, early stopping was implemented as a training callback, with a 
patience of 10 epochs and the option to restore the best weights, facilitating 
model convergence and preventing overfitting during the training process. This 
architecture is a versatile framework for a variety of regression tasks, providing 
depth and regularization techniques to optimize predictive performance while 
reducing the risk of overfitting. 

A pixel-based approach was used in this study, with each pixel in the study 
area treated as an independent sample for soil moisture estimation. The ex-
tracted features are fed into the artificial neural network (ANN) model as input 
variables. 

2.5.3. Model Evaluation 
The performance of our trained model was assessed using the scaled testing da-
taset, with two key evaluation metrics, the coefficient of determination (R2) and 
mean squared error (MSE). The MSE measures the average squared difference 
between the observed and predicted soil moisture values, providing insight into 
the model’s precision. On the other hand, R-squared signifies the proportion of 
variability in the observed soil moisture values that can be accounted for by the 
model’s predictions, indicating its explanatory power. 

We also computed the correlation coefficient between the observed soil mois-
ture values and the model’s predictions for the training, validation, and testing 
datasets. This helped us understand the strength and direction of the relation-
ship between the predicted and actual values. 

To gauge the uncertainties in the model predictions, we calculated them by 
multiplying the square root of the MSE with the standard deviation of the re-
spective datasets. This approach provides a measure of the dispersion or spread 
of the predicted values, indicating the level of confidence we can have in the 
model’s predictions. 

3. Results and Discussions 

This study centered on the Maccarese region in Italy, we developed an Artificial 
Neural Network (ANN) model to estimate surface soil moisture. The results of 
the work were not only shown but also meticulously discussed, demonstrating 
the remarkable performance of the ANN model in accurately determining soil 
moisture levels in this diverse and complex region in this section. 

3.1. The Temporal Changes in the Average Measured Soil  
Moisture and the Polarized Backscattering Coefficients of  
Sentinel-1 in Both VV and VH Polarizations 

Figure 3 illustrates the temporal fluctuations in spatially averaged Soil Moisture  

https://doi.org/10.4236/ars.2023.124006


J. Ondieki et al. 
 

 

DOI: 10.4236/ars.2023.124006 107 Advances in Remote Sensing 
 

 

Figure 3. Presents the temporal changes in spatially averaged in-situ soil moisture (SM) measurements, alongside the corres-
ponding spatially averaged Sentinel-1 backscattering coefficients (VV, VH, VV/VH, and VH-VV) for the Maccarese site. 

 
(SM) values obtained from 63 selected pixels within the study area. These mea-
surements correspond to the date of the Sentinel-1A overpass in the study re-
gion. This figure offers a visual representation of how soil moisture content 
changes over time in the selected area. 

Additionally, the figure displays several Sentinel-1A backscattering coeffi-
cients, including VV, VH, VV/VH, and VH-VV polarized backscattering coeffi-
cients. These coefficients quantify the strength of the radar signal reflected back 
to the satellite from the Earth’s surface. The spatial average presented in the fig-
ure reflects the average response of the radar signal across the study area. This 
provides valuable insights into the temporal variations in the intensity of radar 
signal reflections in relation to in-situ soil moisture levels. 

The relationships and correlations between soil moisture and radar backscat-
tering coefficients was assessed by examining the temporal variations of these 
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parameters. This data was useful for understanding the dynamics and interac-
tions between soil moisture content and radar signals measured by Sentinel-1A. 

A simple regression analysis of backscattering coefficients and soil moisture 
shows that Sigma VH, VV/VH, and VH-VV have a positive relationship (Figure 
4). A positive correlation between the VH (vertical transmit and horizontal re-
ceive) radar backscattering coefficient and soil moisture suggests that as soil 
moisture increases, so does the VH coefficient. This means that wetter soil tends 
to produce stronger VH radar signals. A positive relationship between VH-VV 
(the difference between VH and VV) and soil moisture suggests that the signi-
ficance of the difference between the VH and VV coefficients increases with soil 
moisture levels. This implies that the backscatter difference between these two 
polarizations is affected by soil moisture, with wetter soil having a more noticea-
ble impact on VH-VV. Given that VH/VV (the ratio of VH to VV) and soil 
moisture have a positive correlation, the ratio tends to rise as soil moisture rises.  
 

 

Figure 4. Scatter plot between observed SM and backscatter coefficient. 
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Since changes in surface roughness and dielectric properties can both be im-
pacted by soil moisture, this ratio may be especially sensitive to those changes. In 
other words, as the backscattering coefficients increase, so does the soil moisture 
content. In fact, [35] claimed that soil moisture causes an increase in the superfi-
cial radar response because wet soil has a higher reflection coefficient than dry 
soil, which increases the intensity of the backscattering coefficient. 

The VV (vertical transmit and vertical receive) radar backscattering coeffi-
cient has a slightly negative correlation with soil moisture, indicating that as soil 
moisture levels rise, the VV coefficient tends to decrease, albeit slightly. This im-
plies that wetter soil produces weaker VV radar signals. Inverse relationships 
between SAR signal and soil moisture were also discovered in the literature, [38]. 
[39] initial hypothesis that it might be caused by variations in soil roughness 
contribution on the total backscatter is still being investigated as one of the 
causes of this behavior. The explanation given more recently was that it was a 
volumetric contribution [40] caused by subsurface backscattering [41]. 

These correlations shed important light on how soil moisture affects how ra-
dar signals interact with it and how this interaction changes over time. The 
orientation of surface features, the makeup of the soil, and the amount of vegeta-
tion cover can all affect how each coefficient behaves specifically. 

We show the relative importance score for each feature in Figure 5(a). In our 
analysis, an ensemble of regression trees was built using the Least Squares Gra-
dient Boosting (LSBoost) algorithm to assess the relative weights of the different 
features. Each tree was trained to predict the target variable using the input fea-
tures. The following are the principal elements of our plan: 

Ensemble of Regression Trees: To combine predictions from various trees and 
increase the reliability and precision of our predictive model, an ensemble of re-
gression trees was used. The boosting technique was used, with each tree in the 
ensemble focusing on instances that had previously been incorrectly classified. 
Feature importance scores were calculated based on how frequently a feature 
was used for node splitting across all trees and how much it contributed to lo-
wering prediction error. 

More predictive power (i.e., a more relevant feature) is indicated by a high 
value for the feature’s importance. We found that the feature importance score 
for soil temperature, Longitude, Elevation, Sigma (σ0) VV, and VH is very high. 
According to earlier research [35], the backscatter features (VV and VH) have a 
significant contribution. High Longitude contribution suggests that the geoloca-
tion feature may be under control. It’s interesting to note that the importance 
scores of the synthetic features (VV/VH and VH-VV) produced through a linear 
data fusion are almost identical and relatively higher than those of other input 
features like, NDVI, solar illumination, wind speed, and cloud cover. 

We generated a 13 × 13 matrix called a feature association matrix (Figure 
5(b)). The strength of the association or similarity between any two feature pairs 
is represented by each cell in the matrix. Typically, the values are determined by 
applying a particular metric or methodology (such as correlation coefficients,  
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(a) 

 
(b) 
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(c) 

Figure 5. (a): Feature importance; (b): Feature association heat map; (c): Feature correlation matrix. 
 
mutual information, etc.). This matrix was developed to evaluate the degree of 
correlation or similarity between the input features. Correlation describes how 
much two features vary together. When two features have a high correlation, it 
indicates that they tend to move in the same direction while a low correlation 
suggests that they move independently. As previously stated, highly correlated 
features can have a negative impact on the machine learning model. Here’s how 
it’s done: 

Correlated features can make the model unstable by providing redundant in-
formation. Small changes in one feature can cause significant fluctuations in the 
model’s predictions when features are highly correlated. Highly correlated fea-
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tures can make the model more sensitive to data uncertainty or noise. This sen-
sitivity can result in overfitting, in which the model fits the data noise rather 
than the underlying patterns. 

A high correlation between the features is indicated by a high value in the 
feature association matrix (Figure 5(c)). We found no significant correlation 
between our features. This shows that the model was correctly trained using the 
input features without any instability or sensitivity. 

3.2. Performance Evaluation of the Model 

We conducted a thorough evaluation of our trained feed-forward ANN model’s 
performance using different datasets to gauge the effectiveness of the training 
process. Initially, the model showed promising results on the training data, 
achieving an R-value of 0.85 and an R-squared value (R2) of 0.72, as depicted in 
Figure 6. 

However, it’s essential to avoid bias by solely relying on training data. There-
fore, we further assessed the model’s performance using previously unseen data, 
including validation and testing datasets. During the parameter tuning phase,  
 

   
 

   

Figure 6. Model performance on training, validation, testing, and complete datasets. The dashed line in figure represents y = x 
line. 
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the model’s performance was evaluated using the validation data, resulting in an 
R-value of 0.85 and an R2 of 0.72, demonstrating a strong agreement between 
in-situ and predicted soil moisture. 

Subsequently, the testing data was introduced to our model, and its perfor-
mance was evaluated. The measured soil moisture in the field closely matched 
the model’s predictions, yielding an R-value of 0.84 and an R2 of 0.71. 

In summary, when considering all datasets (training, validation, and testing 
data), our trained model exhibited an overall accuracy with an R-value of 0.84 
and an R2 of 0.71, indicating its effectiveness in estimating soil moisture across 
different scenarios. 

3.3. Error Analysis 

Figure 7 shows the error in the training, validation, and testing process. The 
number of times the same error occurred is indicated by the height of the 
stacked bars. To represent errors ranging from −30% (leftmost bin) to +30% 
(rightmost bin), bin sizes of 20 were chosen. The vertical red line signifies the 
zero error. Underestimation is represented by the area to the left of this line, and 
overestimation is represented by the area to the right. We modeled the error 
histogram with a Gaussian distribution. The histogram would have a mean of 
zero and be normally distributed in a perfect world. The distribution of our his-
togram is almost normal, and the peak at the zero error line indicates a good fit. 
 

 

Figure 7. Shows the error histogram for the training, validation, and testing phases (with 20-bin 
spacing). Overestimated and underestimated regions are shown to the left and right of the zero error 
(red) line, respectively. 

https://doi.org/10.4236/ars.2023.124006


J. Ondieki et al. 
 

 

DOI: 10.4236/ars.2023.124006 114 Advances in Remote Sensing 
 

Figure 8 depicts the comparison between observed and predicted soil mois-
ture values, along with a 95% confidence interval (C.I.). The figure shows that 
the predicted soil moisture values closely match the observed values, indicating a 
strong agreement between the model’s predictions and the actual measurements. 
The inclusion of a 95% confidence interval provides a clear indication of the lev-
el of confidence in the model’s predictions, underscoring the model’s accuracy 
in estimating soil moisture. 

3.4. Comparison with the RF Algorithms Approach 

To ensure a comprehensive evaluation, we conducted a comparison between the 
performance of our fully connected feed-forward ANN (Figure 6) and the RF 
(Random Forest) (Figure 9) algorithms for predicting soil moisture using the 
same dataset. Our findings indicate that the proposed ANN architecture did not 
perform as well as the RF algorithm. 

The RF algorithm achieved a higher R-squared value (R2) of 0.88, indicating a 
better fit to the data, and a lower mean squared error (MSE) of 18.80, which sig-
nifies reduced prediction errors. Additionally, the mean absolute error (MAE) of 
2.22 suggests that the RF algorithm had a smaller average absolute difference 
between predicted and observed soil moisture values. 

These results are visualized in Figure 9, further highlighting the superior per-
formance of the RF algorithm in comparison to our ANN model for soil mois-
ture prediction 

3.5. Sensitivity Analysis 

To assess the consistency of our data-driven feed-forward ANN model, we con-
ducted a sensitivity analysis. This analysis was crucial in understanding how our 
model responds to uncertainties in input features. We achieved this by intro-
ducing a 5% uncertainty in all the input features simultaneously while keeping 
other features constant. We then examined how uncertainties in individual fea-
tures impacted the overall uncertainty in the response variable, which is soil 
moisture. 

Our observations revealed that the uncertainty in the model-derived soil 
moisture fell within the range of 0% to +1% when input features had an uncer-
tainty of approximately 5% (as shown in Figure 10). Notably, uncertainties in 
features such as VV, VH, wind speed, solar illumination, soil temperature, pre-
cipitation, and elevation did not have a significant impact on the model’s per-
formance. This suggests that when these features are subject to a 5% uncertainty, 
the model’s predictions for soil moisture remain relatively unaffected, resulting 
in a smaller uncertainty in soil moisture. 

On the other hand, features like NDVI, VH-VV, and longitude exhibited 
greater sensitivity to the presence of uncertainty. When these features expe-
rienced a 5% uncertainty, the model’s predictions for soil moisture were more 
affected, leading to a larger uncertainty in the soil moisture estimates. 
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Figure 8. The line plot of observed and predicted soil moisture plotted for training, validation, and testing. 
 

 

Figure 9. RF model performance on training, validation, testing, and complete datasets. 
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Figure 10. Sensitivity of feed-forward ANN by considering uncertainties (±5%) in input 
features. 

3.6. Soil Moisture Map in Maccarese 

Figure 11 show the surface soil moisture map generated by the ANN for the 
time period 19 October 2022. Soil moisture appears to be relatively high on the 
Maccarese at the right lower margin. 

3.7. Discussions 

The current study demonstrates the efficacy of estimating soil moisture in the 
study area using a combination of publicly available multi-sensor data, including 
Sentinel SAR, optical sensors, and meteorological sources. These findings sup-
port the viability of such an approach and shed light on the factors that influence 
soil moisture levels in this particular geographic area. 

The use of a feed-forward artificial neural network (ANN) algorithm in con-
junction with these various sensors produced remarkable results. The developed 
model’s accuracy and reliability are reflected in its high coefficient of determina-
tion (R2 greater than 0.72) and low root mean square error (RMSE) of 6.43%. 
These findings are consistent with previous studies [42] [43] that have been 
conducted in temperate regions such as Poland, Germany, and Italy. The con-
sistency of these findings with prior research highlights the methodology’s ro-
bustness and adaptability to different geographic contexts. 

To estimate surface soil moisture, we used a fully connected feed-forward 
ANN algorithm and data fusion techniques. One of the most important contri-
butions of this research is the identification of factors that have a significant im-
pact on soil moisture levels in the study area. As shown in Figure 5(a), soil tem-
perature, geographic coordinates (latitude and longitude), VH (Vertical-Horizontal)  
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Figure 11. Predicted surface soil moisture map using ANN. 
 
polarization, and VV (Vertical-Vertical) polarization were identified as critical 
variables influencing soil moisture. These factors are important in in soil mois-
ture dynamics [44] [45] [46] [47]. 

Notably, this study emphasizes the importance of taking these variables into 
account when developing soil moisture prediction models, as they are strongly 
correlated with variations in soil moisture. This knowledge is useful for local 
agricultural practices, hydrological studies, and environmental management be-
cause it allows for more accurate forecasting and informed decision-making. 

Building upon the foundations laid by previous studies such as [48] [49] [50], 
which highlighted the importance of accurate soil moisture estimation in envi-
ronmental and agricultural contexts, this research expands our understanding of 
soil moisture dynamics. The comparison with Random Forest (Rf) algorithms, 
which achieved an R2 of 0.89, underscores the competitive performance of the 
ANN model. This achievement suggests that the integration of active micro-
wave, meteorological data, and multispectral data through preprocessing and 
fusion techniques can be a powerful approach for soil moisture estimation, 
echoing the findings of [51] who also advocated for multi-sensor data fusion 
techniques. 

4. Conclusions and Recommendations 

The culmination of this research has yielded significant results with profound 
implications for our comprehension of soil moisture dynamics and its applica-
tions in the study area. The Artificial Neural Network (ANN) model developed 
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in this study exhibited an impressive performance, achieving a coefficient of de-
termination (R2) of 0.71 and a correlation coefficient (R) of 0.84. These results 
not only underscore the model’s capability to accurately estimate surface soil 
moisture but also emphasize its suitability for the diverse land cover types, in-
cluding agricultural fields, natural vegetation, and urban areas. 

Future studies should focus on the temporal analysis of soil moisture dynam-
ics using L-band SAR data such as SAOCOM, providing insights into seasonal 
variations and their impacts. Additionally, research could explore L-band SAR’s 
application in agriculture for crop health assessment and irrigation manage-
ment, especially in the context of Maccarese’s diverse land cover types. Under-
standing how impervious surfaces in urban areas affect soil moisture estimation 
using L-band SAR is crucial for urban planning and water management. Cali-
bration and validation with ground-based measurements, integration with cli-
mate models, and comparative analyses with other radar frequencies should be 
pursued to ensure data accuracy and utility. The potential benefits of data fusion 
with various sensors and advanced machine learning algorithms should also be 
investigated, along with sensitivity analyses considering factors like vegetation, 
soil types, and topography, ultimately advancing the use of L-band SAR for soil 
moisture estimation in the region. 
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