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Dynamics of active particles with space-
dependent swim velocity

Lorenzo Caprini, *a Umberto Marini Bettolo Marconi, b René Wittmann a and
Hartmut Löwen a

We study the dynamical properties of an active particle subject to a swimming speed explicitly

depending on the particle position. The oscillating spatial profile of the swim velocity considered in this

paper takes inspiration from experimental studies based on Janus particles whose speed can be

modulated by an external source of light. We suggest and apply an appropriate model of an active

Ornstein Uhlenbeck particle (AOUP) to the present case. This allows us to predict the stationary

properties, by finding the exact solution of the steady-state probability distribution of particle position

and velocity. From this, we obtain the spatial density profile and show that its form is consistent with the

one found in the framework of other popular models. The reduced velocity distribution highlights

the emergence of non-Gaussianity in our generalized AOUP model which becomes more evident as the

spatial dependence of the velocity profile becomes more pronounced. Then, we focus on the time-

dependent properties of the system. Velocity autocorrelation functions are studied in the steady-state

combining numerical and analytical methods derived under suitable approximations. We observe a non-

monotonic decay in the temporal shape of the velocity autocorrelation function which depends on the

ratio between the persistence length and the spatial period of the swim velocity. In addition, we

numerically and analytically study the mean square displacement and the long-time diffusion coefficient.

The ballistic regime, observed in the small-time region, is deeply affected by the properties of the swim

velocity landscape which induces also a crossover to a sub-ballistic but superdiffusive regime for

intermediate times. Finally, the long-time diffusion coefficient decreases as the amplitude of the swim

velocity oscillations increases because the diffusion is mainly determined by those regions where the

particles are slow.

1 Introduction

Nowadays, special active matter systems,1–4 such as engineered
E. coli bacteria and artificial Janus colloids, can be controlled
by external stimuli.5–10 For instance, by tuning the power
illumination of light, the swim velocity of each active particle
can be increased or reduced11,12 and self-assembly such
as ‘‘living’’ clusters13 or active molecules14 are observed. An
approximate linear relation between light intensity and swim
velocity11 makes possible a strong control on the parameter of
the motility and allows designing complex spatial patterns of the
swim velocity landscapes. This experimental advance offers
intriguing perspectives in the world of active matter and provides
interesting applications, ranging from micro-motors15,16 and

rectification devices17,18 to motility-ratchets,19 where an asym-
metric spatial profile of the light intensity is used to induce an
asymmetric spatial shape of the swim velocity which produces a
net directional motion. Spatial motility landscapes have been
also used to experimentally trap Janus particles20,21 and to
investigate the occurrence of polarization patterns induced by
motility gradients.22,23 Among the fascinating applications based
on light-sensitive active particles, we mention bacteria-based
‘‘painting’’, experimentally realized with engineered E. coli, by
Arlt et al.9,24 and, independently, by Frangipane et al.,25 through
which some images, such as those of Charles Darwin and Albert
Einstein, have been reproduced. In addition, a numerical study
investigates the use of light-sensitive active particles to favor the
clustering in a channel geometry and even to induce their
clogging, through a sort of plug which can be removed by simply
turning off the light.26

From a theoretical perspective, the active Brownian particle
(ABP) model has been generalized to the case of non-uniform
swim velocity27–30 also to account for the well-known quorum
sensing,31–33 chemotaxis and pseudochemotaxis.34–37 This model
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allows reproducing and predicting one of the leading results
concerning the static properties of this system, i.e. a spatial
density proportional to the inverse of the swim velocity, originally
predicted in the framework of run & tumble dynamics.38,39 While
it is somehow rather intuitive that a single active particle spends
more time in the spatial regions where it moves slowly, in the
interacting case, fascinating phenomena can be observed, such as
the spontaneous formation of a membrane in two-step motility
profiles40 and cluster formation in regions with small activity.41

Many active matter studies even include a temporal dependence
in the activity landscape42–45 for instance in the form of traveling
waves.46,47 These systems lead to coherent propagation of particle
spikes,19 useful to separate binary mixtures,43 and, in some
cases, produce counterintuitive directed motion opposite to the
propagation of the density wave.18,48

However, while ABP and run & tumble particles in two
dimensions can always be studied numerically, they are quite
difficult to be analytically investigated in the presence of a
motility landscape: for instance, expressions for the temporal
correlations, long-time-diffusion or steady-state dynamical
properties remain unknown in those cases. In analogy with
the case of homogeneous swim velocity, an alternative
dynamics, known as the active Ornstein-Uhlenbeck particle
(AOUP) model, has been proposed by Martin et al.49 to describe
active particles in the presence of spatial-dependent active
force. In our paper, we propose a new version of the AOUP
for space-dependent swim velocity that allows us to obtain
more realistic results and further theoretical predictions for
static and time-dependent observables. Our work poses the
basis to derive new interesting analytical results in future
works, for instance concerning pressure, effective interactions
and steady-state probability distributions in the presence of
external potentials, which have been analytically studied only in
the case of a uniform swim velocity.

The paper is structured as follows: in Section 2, we introduce
the model to describe the dynamics of active particles with
space-dependent swim velocity, in particular, the generalization of
the Ornstein-Uhlenbeck (AOUP) model. Sections 3 and 4 report
numerical and analytical results in the interaction-free case
and focus on the steady-state and time-dependent properties,
respectively. In the final section, conclusions are presented.

2 Model
2.1 ABP model with spatial-dependent swim velocity

The active Brownian particle (ABP) dynamics represents one of
the most established and favorite models to investigate the
non-equilibrium behavior of apolar dry active particles.1,2,50

It reproduces cluster formation51 and motility induced phase
separation.52–60 In this model, the active particle is described by
a stochastic dynamics for both its position, x, and the degree of
freedom called active force, fa, whose physical origin usually
depends on the system under consideration: flagella for
bacteria and chemical reactions for Janus particles, to mention
just a few examples. In the ABP dynamics, fa is chosen with

constant modulus proportional to the active speed v0 of the
particle. Introducing the friction coefficient, g, the active
force is:

fa = gv0n̂, (1)

where n̂ is a unit vector with components (cos y,sin y) and y
defines the particle orientation (or direction of the active force)
which contains the main stochastic source of the motion,
evolving as a Brownian process. The generalization to a spatial
and time dependent swim velocity, can be simply achieved by
replacing v0 - u(x,t) in eqn (1). Since inertial effects are negligible
in most of the experimental systems at the microscopic scale, the
dynamics of active particles in two dimensions reads:

_x ¼
ffiffiffiffiffiffiffiffi
2Dt

p
wþ uðx; tÞn̂; (2a)

_y ¼
ffiffiffiffiffiffiffiffi
2Dr

p
x; (2b)

where x and w are d-correlated noises with zero average and
unit variance, while Dt and Dr are the translational and rota-
tional diffusion coefficients, respectively. The inverse of Dr

defines the persistence time of the single-particle trajectory,
i.e. the average time that the particle spends without changing
direction, t = 1/((d � 1)Dr), where d is the dimension of the
system.61,62 The function u(x,t) is the swim velocity induced by
the active force that, here, is a generic function of both position
and time. The shape of u(x,t) cannot be chosen arbitrarily but
must satisfy the following properties dictated by physical
arguments:

(1) u(x,t) Z 0, for every x and t, because the swim velocity is
positive by definition and is nothing but the modulus of the
velocity induced by the active force.

(2) u(x,t) needs to be chosen as a bounded function of its
arguments because the swim velocity cannot reach an infinite value.

In this work, we restrict to a static profile, so that u(x,t) =
u(x). While most of the theoretical results are valid for arbitrary
u(x), we further consider a one-dimensional profile of the swim
velocity to test our predictions by numerical simulations.
Specifically, inspired by the experiments with Janus particles
studied in ref. 11 and taking in mind properties (i) and (ii), we
choose u(x) as a periodic function of its argument varying along
with one spatial coordinate, namely x:

uðxÞ ¼ v0 1þ a cos 2p
x

S

� �� �
; (3)

with the spatially averaged swim velocity v0 4 0 and the ampli-
tude a o 1 so that (i) and (ii) are always satisfied. The spatial
profile of u(x) is shown in Fig. 1. The parameter S 4 0 determines
the spatial period of the swim velocity, while v0(1� a) and v0(1 + a)
are the minimal and maximal swim velocity, respectively.

2.2 AOUP model with spatial-dependent swim velocity

The active Ornstein-Uhlenbeck particle (AOUP) model62–68 has
been introduced in the field of active matter as a continuous-
time version of an active model used in Monte Carlo
simulations69 and, independently, in ref. 70. It has been also
used to describe the behavior of colloidal particles immersed in
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active baths, for instance formed by bacteria71 and to simplify
the ABP dynamics.72,73 The AOUP model reproduces the typical
phenomenology of active particles because a single-particle
trajectory shows a certain degree of persistence, the mean
square displacement of the two models coincides.74–76 Both
AOUP and ABP active particles accumulate near obstacles77–79

and display the non-equilibrium clustering, known as motility
induced phase separation (MIPS).80,81 The AOUP approximation
has been employed to obtain a plethora of analytical results
which cannot be achieved by using the ABP: perturbative
expressions for the probability distribution of particle position
and velocity,80 approximated formula for the pressure,82,83 the
effective temperature in confined systems,69 and the analytical
shape of the spatial and temporal velocity correlation function of
dense active systems.84–87

In the AOUP description, the active force is simply described
by a two-dimensional Ornstein-Uhlenbeck process and can be
generalized to the case of spatio-temporal swim velocities, as
follows:

_x ¼
ffiffiffiffiffiffiffiffi
2Dt

p
wþ uðx; tÞg; (4a)

t _g ¼ �gþ
ffiffiffiffiffi
2t
p

v: (4b)

The main simplification with respect to the ABP dynamics (2) is
obtained by replacing the unit vector n̂ with an Ornstein-
Uhlenbeck process, g, with unit variance and typical time t,
which intrinsically defines the persistent time of the trajectory.
The term v is a vector of white noises whose components are
d-correlated. Taking u(x,t) = v0, we recover the standard AOUP
model by assuming v0

2 = dDa/t, where Da is the diffusion
coefficient due to the active force and d is the dimension of
the system. Recall that the full connection with the ABP
model could be established by fixing (d � 1)t = 1/Dr so that
the time-correlation of the AOUP active force coincides with

that of the ABP one.73,88 We also note that the AOUP model
allows us to consider a one-dimensional system with a spatial
velocity profile (as eqn (3)) at variance with the ABP model for
which we have to consider both spatial components of the
system. In appendix A, we discuss the difference between the
present model and the alternative AOUP dynamics with space-
dependent motility landscape introduced by Martin et al.68

2.2.1 Velocity description of AOUP. Many theoretical
advances in the study of the AOUP model stem from the
introduction of an auxiliary description of the active particle
in terms of position, x, and particle velocities, v, which can be
obtained by performing a change of variable (x,g) - (x, :x = v).
This simple strategy makes the AOUP model particularly
appealing because its dynamics becomes similar to the well
studied dynamics of passive underdamped Brownian particles.
In the following, we generalize this method to account for the
spatial-dependent swim velocity u(x,t). Here, for simplicity, we
neglect the thermal noise since the translational diffusivity is
usually some order of magnitudes smaller than the active one,1

Dt { Da. However, we remind that a generalization of the
method to include also the thermal noise can be obtained by
following ref. 77. Taking the time-derivative of eqn (4a), using
eqn (4b) to eliminate _g and g in favor of x and v (using again
eqn (4a)), we get:

:x = v, (5a)

t _v ¼ � vþ uðx; tÞ
ffiffiffiffiffi
2t
p

v

þ t
v

uðx; tÞ
@

@t
þ v � r

� �
uðx; tÞ:

(5b)

The first line of eqn (5b) resembles the dynamics in the case of
a constant swim velocity u(x,t) = v0: the dynamics of an over-
damped active particle is mapped onto that of an underdamped
passive particle with mass gt subject to an inertial force, an
effective friction whose amplitude is 1/t and a stochastic white
noise. However, in the present case, the noise amplitude in
eqn (5) contains a spatial and temporal dependence via the
function u(x,t). The second line provides an additional force
term accounting both for the time and space-dependence of
u(x,t). By choosing a static profile, such that u(x,t) = u(x), the
new term quadratically depends on v and is spatially modulated
by the function rxlog(u(x)). As a consequence, the latter term
changes its sign depending on the region of space where the
particle is placed, a feature that guarantees the convergence of
the dynamics. We remark that this term cannot be interpreted
as a friction force, because of its even parity under time-reversal
transformation.

To switch back from the coordinates (x,v) to (x,g), one has to
account for the Jacobian of the transformation which, now, is
not trivial at variance with the case u(x,t) = v0. Indeed, the
relation:

v = :x = u(x,t)g (6)

implies that the Jacobian is a function of x and t which reads:

| J| = u(x,t) (7)

Fig. 1 Swim velocity profile. The solid black curve shows the spatial
profile of the swim velocity u(x), rescaled by the typical particle velocity
v0, as a function of the dimension-less position, x/(v0t), i.e. the position
rescaled by the persistence length in the case u(x) = v0. In the graph, the
role of the parameters, a and k = v0t/S are evidenced.
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so that the probability distribution in the original coordinates,
namely p̃(x,g), and the one obtained after the change of
variables, namely p(x,v), satisfy:

p̃(x,g,t) = u(x,t)p(x,v,t). (8)

Finally, we remark that in the case Dt = 0, t provides the natural
time-scale to evaluate the time t, while v0 determines the one
for the particle velocity. With this choice, it is straightforward to
recognize that the particle position can be rescaled by the
persistence length v0t of the case u(x) = v0. We conclude that
the dynamics is controlled by the parameters affecting the value
of u(x). Therefore, choosing the profile of u(x) as in eqn (3), we
can recognize S (i.e. the spatial period of u(x)) as the additional
spatial-scale to compare with v0t (or equivalently S/v0 as the
typical time to compare with t). Finally, we expect that ratio
between the amplitude of the u(x) oscillations and the typical
velocity, namely the parameter a, will play a crucial role. As a
consequence, in the case Dt = 0, the dynamics is affected by two
dimensionless parameters, k = v0t/S and a.

3 Steady-state properties

Hereafter, we restrict to the static case u(x,t) = u(x). From
the stochastic dynamics (5), it is straightforward to derive
the Fokker-Planck equation for the probability distribution
p = p(x,v,t):

@tp ¼ rv � p
v

t

h i
þ u2ðxÞ

t
rv2

2p

� v � rxp�
1

uðxÞrv � pv rxuðxÞ � vð Þ½ �;
(9)

whererx andrv are the spatial and velocity gradient, respectively.
In the steady-state, eqn (9) admits a local Gaussian solution of
the form:

psðx; vÞ ¼
Nffiffiffiffiffiffi

2p
p

u2ðxÞ
exp � v2

2u2ðxÞ

� �
; (10)

where N is a normalization constant. This result directly gener-
alizes the Gaussian solution obtained for a uniform swim
velocity.64,69,80 Considering the system on a box of size Ld with
periodic boundary conditions, N reads:

N�1 ¼
ð
Ld

dx

uðxÞ: (11)

Specifically, for the periodic one-dimensional profile of u(x),
eqn (3), the integral in eqn (11) can be analytically calculated

and reads N�1 ¼ L=v0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

; and is independent of S. In
this case, the stationary mean-squared velocity, hv2(x)i, depends
explicitly on x through the profile of u(x) and, therefore, has an
oscillatory shape. Fig. 2 shows ps(v,x) as a function of v for
different values of x. The distribution ps(v,x) becomes narrower
(smaller variance) as far as x is increased until it starts to become
broader for x 4 S/2 in agreement with the periodicity of u2(x).
When the amplitude, a, of u(x) is increased, the curves in Fig. 2
qualitatively maintain their Gaussian shape (10), but the

difference in their variances becomes more significant for the
shown values of x/S.

3.1 Spatial density and hydrodynamic approach

By integrating out the velocity in the solution (10), one can
straightforwardly derive the steady-state density function, r(x),
obtaining the profile:

rðxÞ ¼
ð
dvpsðv; xÞ ¼

N
uðxÞ; (12)

where the normalization constant N is given by eqn (11) for a
simulation in a box of size, Ld, with periodic boundary conditions.
This exact result is shown in Fig. 3(a), where we plot r(x), i.e. the
density distribution along x, by choosing the spatial profile of u(x)
as in eqn (3), i.e. varying only along one coordinate. The density
r(x) is reported for two different values of k which determines the
period of its oscillation.

To the best of our knowledge, eqn (12) is consistent with the
only analytical result obtained for an active particle with
spatial-dependent swim velocity. By resorting to a hydrody-
namic approach, the spatial profile of r(x) has been derived
first for run & tumble dynamics38,39 and, successively, for active
Brownian particles. To develop the ideal hydrodynamics of our
generalized AOUP, we adopt a strategy similar to that used in
ref. 39. We start by introducing the first two conditional
moments (i.e. at a fixed position) of the velocity distribution,
namely the momentum density field:

mðx; tÞ ¼ 1

rðx; tÞ

ð
dvpðv; x; tÞv; (13)

and the velocity tensor:

Qðx; tÞ ¼ 1

rðx; tÞ

ð
dvpðv; x; tÞvv: (14)

By integrating out the velocity in eqn (9), we obtain the

Fig. 2 Steady-state probability distribution function, ps(x,v), as a function
of the rescaled velocity, v/v0, calculated at different positions as shown
in the legend. Solid lines are obtained by plotting the prediction (10).
The curves are obtained by considering a box of length L/(v0t) = 10 and by
setting a = 2/5 (results are independent of k = 5/2).
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continuity equation for the density field which, after dropping
the explicit dependence on x and t, reads:

qtr = �rx�(mr), (15)

while, multiplying eqn (9) by v and, then, integrating on v, we
obtain the momentum balance equation:

@t mr½ � ¼ �mr
t
�rx � Qrð Þ þ r

u
Q � rxu: (16)

The steady-state solution admitted by eqn (15) and (16) is
consistent with the shape of r(x), given by eqn (12), upon
assuming a Gaussian closure of the moments hierarchy and,
specifically, upon recognizing that, in the steady-state, m = 0
and Q = Iu2, when I is the identity matrix. Of course, the
Gaussian closure is perfectly suitable to exactly close the
hydrodynamics hierarchy because of the Gaussian shape of
eqn (10).

3.2 Reduced velocity distribution

In the steady-state, one can integrate out the spatial coordinate x
in the expression (10) to obtain the marginal velocity distribution

f ðvÞ ¼
ð
Ld

dxpsðx; vÞ: (17)

Unfortunately, a general analytical expression as in the case of
the spatial density in eqn (12) cannot be easily derived, since the
final result for f (v) has a functional dependence on the shape of
u(x). We argue that the spatial average v0 of the swim velocity
affects the shape of f (v) in a trivial way, since f can depend only
on v/v0 as in the case u(x) = v0. To proceed further, we restrict to
the one-dimensional spatial modulation u(x) of the swim velocity
given by eqn (3). With this assumption, the velocity distribution
factorized between the different Cartesian components of v so
that, f (v) = fx(vx) fy(vy). This allows us to study directly the velocity
properties along a single component of the particle velocity
namely, vx. Below, we will drop the subscript x for convenience
of notation.

In Fig. 3(b), we show that the amplitude of the spatial
variation of u(x), determined by the parameter a, plays a crucial
role on the shape of the stationary velocity distribution f (v).
While for a = 0 (spatially uniform case) f (v) is given by a
Gaussian distribution, as known in the literature,64,69,80 non-
zero values of a induce a strong non-Gaussianity, reflected
in particular by the heavy symmetric tails of the distribution
(see the comparison between data and solid lines in Fig. 3(b)).
The non-Gaussian shape of f (v) is determined by the inhomo-
geneity of u(x), because f (v) is obtained by simply integrating
out the position from eqn (10). As a increases up to 1 (keeping
v0 fixed), the non-Gaussianity becomes more pronounced and
the distribution more concentrated around v = 0. To quantify
these effects, in Fig. 3(c), we study the velocity variance, hv2i,
and the velocity kurtosis, hv4i/hv2i2, as a function of a. We
underline that, in this case, the two averages are performed by
integrating out both x and v. As expected, hv2i decreases with
increasing a and vanishes in the limit a - 1, where f (v) - d(v),
since the active particle remains stuck in the minima of u(x).
Indeed, the larger a, the longer is the time spent in the regions
with the smallest velocity, namely v E v0(1 � a), which is
responsible for the lowering of hv2i. In the limiting case a - 1,
the variance vanishes, as the particle is not able to leave the
region with u(x) = 0, which means that we have f (v) - d(v).
On the other side, the growth of a induces the increase of the
kurtosis from 3, i.e. the value of the Gaussian distribution for a = 0,
to higher values, eventually diverging in the limit a - 1.

Although we do not know the analytical form of f (v) for 0 o
a o 1, we can derive an expression for hv2i by substituting the
result for ps(x,v), given by the one-dimensional version of
eqn (10), and first calculating the integral over v:

hv2i ¼
ð
dxrðxÞu2ðxÞ ¼

ðL
0

dxN uðxÞ

¼ LN v0 ¼ v0
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

:

(18)

Fig. 3 Reduced probability distributions. Panel (a): density, r(x), as a function of x/(v0t) (position over persistence length), for two different profiles of the
swim velocity u(x), i.e. varying k = tv0/S. Solid lines from the exact expression (12) with a = 2/5. Panel (b): marginal velocity distribution, f (v), as a function
of v/v0, for two different values of a, i.e. varying the amplitude of the oscillatory part of v0(x). In this case, the results does not depend on the value of k.
Points are obtained from numerical simulations while solid lines by fitting a Gaussian function of the form Ba exp(�x2/b) where a and b are two fitting
parameters (mind the logarithmic scale on the vertical axis). Panel (c) plots the variance and the kurtosis of the reduced velocity distribution, hv2i and hv4i/
hv2i2, respectively, as a function of a (also in this case, k does not play any role). Solid lines are obtained from eqn (18) and (19) for the variance and kurtosis,
respectively. Black dashed lines are guides for eyes. Finally, simulations are obtained considering a box of length L/(v0t) = 10 with periodic boundary
conditions.
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In the second line, we have used the explicit form of u(x) and
the corresponding N . A similar strategy, allows us to predict
the profile of the kurtosis:

hv4i
hv2i2 ¼

Ð
dxu3ðxÞ

N
Ð
dxuðxÞ

� �2 ¼ 3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p 1þ 3

2
a2

� �
: (19)

These exact predictions are shown in Fig. 3(c). From eqn (18), the
variance of the reduced velocity distribution monotonically
decreases to zero for a- 1. Likewise, the divergence of the kurtosis
can directly be inferred from the denominator in eqn (19).

4 Time-dependent properties

In this section, we focus on the steady-state temporal properties
of the system, such as the velocity autocorrelation function, the
mean-square displacement and, finally, the long-time diffusion.
To consider the diffusive properties of the system, In particular,
we numerically study eqn (4) with the swim velocity landscape
given by eqn (3), i.e. a swim velocity profile varying along one
coordinate only. This choice allows us to restrict the numerical
study to a single-coordinate only as in Section 3. The dynamics of
each spatial coordinate is integrated over an infinite line, i.e.
without periodic boundary conditions, in such a way that the
periodic and bounded shape of u(x) allows the system to perform
standard diffusion for long times.

4.1 Velocity autocorrelation function

The steady-state velocity autocorrelation function, Cvv(t) =
hv(t)v(0)i, plays a relevant role because Cvv(t) is related to the
mean-square displacement and the long-time diffusion via the
Green–Kubo relations. Hereafter, h�i again represents the average
over both position and velocity. The three panels of Fig. 4 show
Cvv(t) as a function of t/t for different values of the model
parameters. While the natural time-scale is provided by the persis-
tence time t, the amplitude of the Cvv(t) is trivially proportional
to v0

2. As already discussed, the dynamics is controlled by two

non-dimensional parameters, namely the amplitude a (which
affects also the steady-state properties of the system) and k =
v0t/S, i.e. the ratio between the average persistence length v0t of
an active particle with constant swim velocity and the spatial
period S of v0(x). This scaling is verified in Fig. 4(a), where Cvv(t)/
v0

2 is plotted as a function of t/t for different k, each obtained
with two distinct combinations of values of the parameters S, t
and v0. We first aim to understand the role of the ratio k between
the typical length scales of the system by keeping the value of a
fixed. Here, we distinguish between different regimes, large and
small k, shown in Fig. 4(a) and (b), respectively.

For large k, i.e. when the persistence length is larger than S and,
thus, u(x) varies fastly, we can distinguish between two time-
regimes: (i) for small t/t, the autocorrelation Cvv(t) decays exponen-
tially with a typical relaxation time which strongly depends on k
(see the inset of Fig. 4(a)). The typical time (vertical lines) for which
this first relaxation takes place increases as k is decreased.
Afterwards, a non-monotonic shape in the profile of Cvv(t) is
observed till Cvv(t) approaches another exponential relaxation
Be�t/t. This last relaxation is uniquely controlled by t/t and
resembles that of an active particle with the homogeneous swim
velocity v0.

Next, in Fig. 4(b), we study Cvv(t) for smaller values of k at fixed a.
Between k = 1/3 and k = 1/4, the curvature of the profile changes sign
and we only observe a single time-decay regime which is faster than
an exponential. When k is decreased further, the typical time of this
relaxation grows and the shape of Cvv(t) approaches to an exponen-
tial, Be�t/t, approximatively when k is smaller than k o 1/32.

To get further analytical insight, we multiply the one-
dimensional version of eqn (5) by v(0) and take the average
over x and v, obtaining an effective equation for Cvv(t):

gt _CvvðtÞ ¼ �gCvvðtÞ þ gt
v2ðtÞ
uðxðtÞÞ

@

@x
uðxðtÞÞvð0Þ

	 

: (20)

When the oscillations of v0(x) are very rapid, one can replace
@

@x
uðxÞ � sinðx2p=SÞ by its average, which vanishes. In this way,

Fig. 4 Velocity autocorrelation function, Cvv(t) = hv(t)v(0)i, as a function of the rescaled time, t/t. Panels (a) and (b): Cvv(t)/v0
2 by keeping fixed a = 4/5 for

different values of k. In addition, in panel (a), each k = v0t/S value is obtained by varying the parameters in two different ways, in particular, the dashed
lines are obtaining by doubling both v0, t and by taking S - 4S. The black dashed curve in panel (a) is obtained from the theoretical prediction (21)
(normalized by v0

2), valid beyond the vertical dashed lines, indicating the characteristic time scale t/k = S/(v0) according to the color legend. The inset in
panel (a) zooms on a small time-window to highlight the behavior for small time. Panel (c): Cvv(t)/Cvv(0) for different values of a keeping fixed k = v0t/S =
5/2. Finally, the black dashed lines in panels (b) and (c) are guides for the eyes, showing the exponential function, exp(�t/t), while the black dotted one in
panel (c) is obtained by fitting the exponential function, ae�t/b (a and b are two fitting parameters).
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for t c S/v0, one can easily obtain the profile

CvvðtÞ �
DLðaÞ

t
e�t=t; (21)

where DL(a) p v0
2t is a function of a which is constant in time

with DL(a = 0) = v0
2t. This function will later be specified and

interpreted as the long-time diffusion. As shown in Fig. 4(a), the
profile (21) fairly agrees with numerical simulations after a
transient time which depends on the value of k. Moreover, for
k { 1, the persistence length is much smaller than S and the
particle velocity relaxes before the spatial variation of the swim
velocity affects the dynamics of the system and we can again

neglect
@

@x
uðxÞ in eqn (20) to recover the approximation for

Cvv(t) given by eqn (21) (see the black dashed curve in Fig. 4(b)).
In other words, the system behaves as a passive system
with space-dependent diffusivity equivalent to that studied in
ref. 89: this is clear by considering eqn (4b) with _Z ¼ 0 so that

Z �
ffiffiffi
2
p

w.
From eqn (21), we also infer that the amplitude of the swim

velocity oscillations (controlled by a) cannot affect the relaxation
of Cvv(t), even if it determines the steady-state variance of the
distribution. To evaluate in detail the role of a on the velocity
relaxation, we study Cvv(t)/Cvv(0) for several values of a in
Fig. 4(c). We fix k = 5/4 to consider a regime of the persistence
length large if compared with the spatial period of u(x). The two
relaxation times, in the long-time regime and in the small-time
one, do not depend on a, in agreement with prediction (21).
However, a affects the survival time of the small time-regime, so
that larger values of a (close to the maximal value 1) mean that
Cvv(t) reaches very small values already in the first time regime,
approaching zero for a = 1. As a matter of fact, the second regime
almost coincides with that of homogeneous active particles so
that u(x) = v0 and a = 0, except for the numerical factor DL(a). This
means that for large times the structure of the velocity landscape
(through the parameters k and a) is almost irrelevant and the
relaxation of the velocity is mainly determined by the persistence t.
Nevertheless, the shape of u(x) is still relevant because it affects
the long-time diffusion DL(a) of the system through a. The first
decay regime, instead, accounts for the microscopic details
of the velocity landscape and indeed shows an explicit depen-
dence on both k and a. This quantifies the relaxation of the
velocity towards a single well of the energy landscape, i.e. near a
minimum of u(x), where the probability is large and the velocity
variance is small. The larger the value of a (which cannot exceed
1 by definition), the larger the time needed to escape from a
well of the energy landscape and to recover a diffusive behavior
till to the limiting case a = 1 where the particle remains stuck in
the minimum of the potential barrier. However, we remind that
the result for a = 1 is not physical because, when the swim
velocity u(x) - 0 locally, the effect of the viscous solvent can be
no longer neglected and the particle, instead of remaining
stuck, performs Brownian translational diffusion due to the
thermal agitation which here has been neglected.

4.2 Mean-square displacement

Applying the Green–Kubo formula to the steady-state prediction
(21), one can immediately obtain an analytic expression for the
mean-square-displacement, defined as MSD(t) = h(x(t) � x(0))2i,
which reads:

MSDðtÞ ¼
ðt
0

ds

ðs
0

ds0hvðsÞvðs0Þi

�DLðaÞ tþ t e�t=t � 1
� �h i

:

(22)

The resulting approximation for the MSD has the same range of
validity as eqn (21), i.e. it holds for large times and small k.
In addition, from eqn (22), the constant DL(a) can be easily
interpreted as the long-time diffusion coefficient, which will be
studied in detail as a function of the parameters of the model in
the following subsection.

In Fig. 5(a), the MSD(t) is numerically evaluated as a function
of t/t for several values of a and k = 5/4. The MSD(t) displays a
ballistic regime, i.e. pt2, for small times, a crossing regime, so
that ptb with 1 o b o 2, for intermediate times, and, finally, a
linear behavior pt typical of standard diffusion. As expected
from the shape of the velocity correlations, the small-time
regime of the MSD(t) is only strongly affected by the value of a
only if aC 1. Moreover, as shown in Fig. 5(b) and in its inset, the
MSD(t) is almost insensitive to the value of k, upon appropriately
rescaling the time as t/t and the amplitude of the MSD(t) with
v0

2t (i.e. the diffusion coefficient DL(0) of the active particle with
constant u(x) = v0). Finally, the diffusive (e.g. linear) regime of the
MSD(t) is purely determined by a and is independent of k, except
for the trivial dependence on the scaling factor v0

2t.
The analytic prediction (22) reproduces the small-time

regime only for small values of a while it fails for a - 1, as
explicitly shown in the inset of Fig. 5(a). In particular, the
t2-coefficient for a - 1 is much larger than DL(a)/(2t), i.e. the
t2-coefficient predicted by eqn (22). The transient regime
strongly depends on both k and a and, in particular, occurs
for a time that is larger as k is decreased. As usual, the value of b
is not well-defined being a continuous curve interpolating from
b = 1 and b = 2. The long-time behavior is generally well-
described by eqn (22), as we detail in the following.

4.3 Long time-diffusion coefficient

From each curve of MSD(t), we numerically extrapolate the
long-time diffusion coefficient, DL(a), by fitting the best linear
function. DL(a)/DL(0) is shown in Fig. 5(c) as a function of a for a
fixed value of k that is irrelevant in the long-time regime as
already shown in Fig. 5(b). Thereby, we verify that DL(a)
depends on t and v0 only via the global prefactor v0

2t which is
nothing but the long-time diffusion DL(0) in the homogeneous
case, while it decreases when a is increased. This dependence
has an intuitive physical interpretation: the larger the value of a,
the smaller is the minimal velocity (Bv0(1 � a)) that the particle
can assume during its motion. Due to the increased probability
r(x) to find a particle in the regions with smaller swim velocity
(cf. eqn (12)), we expect that these regions dominate the diffusion
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properties, leading to a consequent decrease of the long-time
diffusion coefficient with increasing a.

To predict the shape of DL(a), we resort to an argument
similar to that already used in ref. 90, where the long-time-
diffusion has been predicted for an active particle advected
in a two-dimensional laminar flow. At first, we calculate the
effective persistence length c of the active particle. By separating
the variables in the dynamics (4a) (with Dt = 0) and
integrating from t = 0 to t = t, or equivalently from x = 0 to
x = c, we obtain

ð‘
0

dx

uðxÞ ¼
ðt
0

dtZðtÞ � t; (23)

where, in the last approximation, we have used that the
active force is roughly constant in the time-window given by
the persistence time t. Plugging in the shape of u(x),
performing the integral and accounting for the periodicity of
u(x), we get:

‘ðaÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

v0t: (24)

As expected, we explicitly find that c(a) decreases as a increases,
in the same way as the hv2i-result in eqn (18). In analogy
to the well-known relations in the case u(x) = v0, the
long-time diffusion coefficient can be estimated as the ratio
between the square of the persistence length and the
persistence time:

DLðaÞ ¼
‘2ðaÞ
t
� v0

2tð1� a2Þ; (25)

This result reveals a fair agreement with data as shown in
Fig. 5(c). We mention that the prediction (25) has already been
put forward on the basis of symmetry arguments by Breoni
et al.89 in the case t = 0, keeping fixed DL(0) = v0

2t. Our
derivation applies also to that case because it holds for every
value of t, included t = 0 as a limiting case.

5 Conclusion

In this paper, we have studied the dynamical features of an
active particle with a periodic spatial dependent swim velocity.
The system is inspired by recent experiments obtained using
bacteria that respond to external stimuli24,25 or Janus particles
whose active force can be spatially modulated by a source of
external light.6,11,13 At first, we introduce a version of the active
Ornstein–Uhlenbeck model suitably generalized to account for
a spatial-dependent motility landscape. Our AOUP allows us to
recover a profile of the spatial density proportional to the
inverse of the swim velocity, consistently with other active
matter models. Describing the model in terms of particle
position and effective velocity, we analytically find the exact
steady-state solution of the Fokker-Planck equation: the density
is peaked in the regions characterized by small swim velocity
where the particles move slowly and the velocity distribution is
Gaussian with a space-dependent kinetic temperature. The
reduced probability distribution of the velocity (averaging over
the space) reveals a non-Gaussianity which becomes stronger as
the amplitude of the swim velocity oscillations increases. Then,
we characterize the dynamics focusing on the velocity auto-
correlation functions and mean-square displacement, which
are numerically evaluated as a function of the parameters of the
model. We also provide an accurate theoretical prediction
when the persistence length is larger than the period of the
oscillation, i.e. when the swim velocity varies slowly in space.
The small-time regime of both observables is strongly affected
by the details of the motility landscape, in agreement with
ref. 91. Instead, in the large-time regime, the spatial variation of the
swim velocity plays a less importnat role since the only relevant
time-scale is the persistence time. In this regime, we predict that
the long-time diffusion coefficient decreases as the amplitude of
the spatial oscillations of the swim velocity increases.

A final remark concerns the experimental technique of
‘‘painting with bacteria’’ by Arlt et al.9,24 and Frangipane
et al.25 mentioned in the introduction. Our results suggest

Fig. 5 Diffusive properties of the system. Panel (a) and (b): Mean-square-displacement rescaled by v0t, defined as MSD(t) = h(x(t) � x(0))2i, as a function
of the rescaled time, t/t. In panel (a), we vary a keeping fixed k = v0t/S = 5/4, while in the inset, we only focus on two curves to show the comparison with
the theoretical predictions (black dashed lines), obtained by eqn (22). Inset and main panel share the same axis. Black dashed-dotted lines in the main
panel are eye-guides for the ballistic (Bt2) and diffusive (Bt) behavior. in panel (b), we vary k keeping fixed a = 0.9, while, in the inset, we zoom on the
region of the graph embodied in the dashed dotted rectangle. Again, black dashed lines plot eqn (22). The insets of both panels (a) and (b) share the same
legend as the corresponding main panels. Panel (c): Long-time-diffusion coefficient, DL(a)/DL(0) as a function of a (yellow triangles) and theoretical
prediction (25) (solid black line). Here, the value of k does not affect DL(a)/DL(0) in agreement with eqn (25).
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not only that the active agents would sit preferentially in the
minima of the active force u(x), which can be tuned by light
fields, but also that the patterns so obtained are more stable in
time against diffusion for large values of a. In fact, the larger
the value of this parameter the smaller the diffusion. In this
case, we observe that our model could be more suitable to
describe the experiments than that developed in ref. 49,
because our AOUP model is consistent with the relation (12),
experimentally verified for engineered bacteria.

In future studies, we will focus on the interplay between
spatial dependent swim velocity and external confining force
due to an external potential. In the framework of active colloids,
the confining potential can be realized through acoustic92 or
optical traps.93–96 The introduction of a suitably generalized
AOUP model (4) for this situation paves the way to conveniently
study problems of interacting particles with a spatial depen-
dent swim velocity using generalizations of the unified colored
noise approximation62,70,97,98 or the Fox approach.62,99,100

This opens up the possibility of obtaining interesting results
concerning the probability distributions of position and velo-
city or analytical approximations for pressure and surface
tension. Next, it has been shown11,19,21 that Janus particles in
optical landscapes experience a significant torque that aligns
the particle along the intensity gradient. This torque needs to
be included in future treatments of the problem. Moreover, the
effect of inertia should be considered for the case where the
swim velocity depends on space.75,76,101 Finally, we mention a
recent experimental and theoretical study by Sprenger et al.,
who proposed an experimental method to modulate the
particle rotational diffusivity102,103 in systems of active mag-
netic dumbbells. The extension of our result to that case, i.e. by
requiring that the persistence time has a spatial profile, repre-
sents a promising future perspective that could be addressed by
employing similar theoretical methods.
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Appendix A: other version of AOUP
with spatial dependent swim velocity

In this appendix, we will briefly review the AOUP dynamics
proposed by Martin et al.68 and will show that it differs from the
AOUP model introduced in the present work. This explains why
we have obtained different results with respect to ref. 68,
concerning for instance the steady-state density profile and
the hydrodynamic approach.

Recently, Martin et al. have presented a generalization of the
AOUP model to describe active particles with a space-
dependent swim velocity, whose dynamics reads:

_x ¼
ffiffiffiffiffiffiffiffi
2Dt

p
wþ f (26a)

tðx; tÞ _f ¼ �fþDaðx; tÞ
ffiffiffi
2
p

v: (26b)

In their approach, the term f represents the active force, while
Da(x,t) 4 0 is a spatial (time) dependent diffusivity and t(x,t) 4
0 even includes the possibility that the persistence time
depends on space. To relate eqn (26) to the ABP dynamics (2),
one has to introduce the spatial-dependent swim velocity which
can be straightforwardly obtained from the variance of the
Ornstein–Uhlenbeck process:

uðx; tÞ2 ¼ Daðx; tÞ
tðx; tÞ ; (27)

so that the following relation holds:

fi = u(x,t)gi. (28)

Now, we show that eqn (26) does not coincide with the
dynamics (4a), introduced in this paper. By eliminating Da(x,t)
in favor of u(x,t) in eqn (26b), we obtain:

_xi ¼
ffiffiffiffiffiffiffiffi
2Dt

p
wi þ fi; (29a)

t _fi ¼ �fi þ uðx; tÞ
ffiffiffiffiffi
2t
p

vi; (29b)

upon assuming t(x,t) = t = const as in the case considered in the
present paper.

Dynamics (29) coincides with eqn (4) only in the case u(x,t) =
v0. Indeed, only in that case, the change of variables provided
by eqn (28) can be obtained without including additional terms
coming from the Jacobian of the change of variables. In other
words, if we plug expression (28) in eqn (29), the time-derivative
on the left-hand-side of eqn (29b) (in the static case, u(x,t) =
u(x)) reads:

t _fi ¼ t
d

dt
uðxÞgi ¼ t uðxÞd

dt
gi þ gi _x � ruðxÞ

� �
: (30)

The second term is not contained in eqn (4) and is responsible
for the differences between our model and the one introduced
by Martin et al.68
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New J. Phys., 2019, 21, 013023.
47 W.-J. Zhu, X.-Q. Huang and B.-Q. Ai, J. Phys. A: Math. Theor.,

2018, 51, 115101.
48 A. Geiseler, P. Hänggi and F. Marchesoni, Sci. Rep., 2017,

7, 41884.
49 D. Martin, J. O’Byrne, M. E. Cates, É. Fodor, C. Nardini,
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Phys. Rev. Lett., 2020, 125, 168001.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
0 

Ja
nu

ar
y 

20
22

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

' d
i R

om
a 

L
a 

Sa
pi

en
za

 o
n 

4/
3/

20
24

 1
:2

9:
21

 P
M

. 
View Article Online

https://doi.org/10.1039/d1sm01648b


1422 |  Soft Matter, 2022, 18, 1412–1422 This journal is © The Royal Society of Chemistry 2022

59 F. Turci and N. B. Wilding, Phys. Rev. Lett., 2021, 126, 038002.
60 K. Binder and P. Virnau, Soft Mater., 2021, 19, 263–266.
61 M. E. Cates and J. Tailleur, EPL, 2013, 101, 20010.
62 R. Wittmann, C. Maggi, A. Sharma, A. Scacchi, J. M. Brader

and U. M. B. Marconi, J. Stat. Mech.: Theory Exp., 2017,
2017, 113207.

63 L. Caprini, U. M. B. Marconi and A. Puglisi, Sci. Rep., 2019,
9, 1386.

64 U. M. B. Marconi, N. Gnan, M. Paoluzzi, C. Maggi and R. Di
Leonardo, Sci. Rep., 2016, 6, 23297.

65 L. Dabelow, S. Bo and R. Eichhorn, Phys. Rev. X, 2019,
9, 021009.

66 L. Berthier, E. Flenner and G. Szamel, J. Chem. Phys., 2019,
150, 200901.

67 E. Woillez, Y. Kafri and V. Lecomte, J. Stat. Mech.: Theory
Exp., 2020, 2020, 063204.

68 D. Martin, J. O’Byrne, M. E. Cates, É. Fodor, C. Nardini,
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