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“The Scientist must set in order.  

Science is built up with facts, as a house is with stones.  

But a collection of facts is no more a science than a heap of stones is a house.” 
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ABSTRACT 

 

This research work explores the intricate domain of geological multi-hazard risk assessment in urban 

environments, with a particular focus on the Municipality of Rome, Italy. By leveraging data-driven 

methodologies, advanced Machine Learning techniques, and open-access data, this study 

addresses the challenges posed by ground instability hazards, including landslides, subsidence, and 

sinkholes. The research offers valuable insights, innovative models, and practical applications, 

contributing to urban resilience enhancement and risk mitigation. 

As the global trend of urbanization continues to transform landscapes and increase population 

concentration in cities, the understanding and management of geological hazards in urban areas 

have never been more critical. This research encompasses three key articles published within the 

thesis, to delve into geological multi-hazard risk analysis in the urban context. 

In Chapter 2, we tackle the challenge of integrating fragmented, incomplete, and often unreliable 

data sources for landslide hazard assessment. Recognizing the crucial role of hazard evaluation in 

risk mitigation policies, we focused on making the most of available data. The methods employed 

include landslide inventory review, boosting the training dataset, and optimizing Machine Learning-

based susceptibility analysis. The research explores temporal recurrence by analysing multi-

temporal landslide inventories and historical rainfall databases, offering valuable insights into hazard 

probability. The integration of spatial and temporal attributes led to the creation of Rome's first large-

scale landslide hazard product. This product, designed for statutory purposes, represents a 

significant milestone in improving the resilience of urban areas. 

Chapter 3 delves into the world of Machine Learning techniques for landslide susceptibility mapping, 

emphasizing the significance of data quality. The study compared various models, with the 

ExtraTreesClassifier emerging as the most reliable choice. However, recognizing the rarity of high-

quality, site-specific landslide inventories, the research examines the reliability of open-source 

landslide susceptibility maps at different spatial scales. By conducting a thorough statistical and 

spatial analysis, the research highlights the impact of mapping unit and analysis scale on prediction 

accuracy. Furthermore, the fusion of multiple low-resolution susceptibility maps is introduced, 

offering a promising approach to overcome data limitations. This milestone not only improves our 

understanding of landslide susceptibility mapping but also provides practical tools for large-scale 

assessments in urban environments. 

The development of a novel model for multi-risk assessment takes centre stage in Chapter 4. The 

model's goal is to support decision-makers and risk managers in prioritizing buildings exposed to 
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ground instability hazards, including landslides, subsidence, and sinkholes. By integrating spatial 

hazard assessments, satellite interferometric data, building characteristics, and asset market values, 

the model calculates a multi-risk score, enabling the ranking of urban buildings. The research offers 

a detailed explanation of how each dataset contributes to the overall risk assessment, from spatial 

hazard to potential economic damage and activity rates. The data harmonization process leads to a 

practical, semi-quantitative approach for multi-risk assessment, fostering a more proactive stance in 

mitigating ground instability hazards. 

This Ph.D. work could bring relevant insights for geological multi-hazard risk assessment and urban 

resilience. Its findings lay the foundation for further research, fostering safer, more resilient cities 

worldwide. 

 

Keywords: Landslide Hazard, Multi–Risk, Urban Environment, Spatial Analysis, Machine 

Learning, Open Data, Satellite Interferometry, Data fusion. 
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RIASSUNTO 

 

Questo lavoro di ricerca esplora l'intricato campo della valutazione dei rischi geologici in contesti 

urbani, con particolare attenzione al Comune di Roma, Italia. Utilizzando metodologie guidate dai 

dati, avanzate tecniche di apprendimento automatico (Machine Learning) e dati in libero accesso, 

questo studio affronta le sfide poste dai pericoli legati all'instabilità del terreno, tra cui frane, 

subsidenza e sinkhole. La ricerca offre preziose intuizioni, modelli innovativi e applicazioni pratiche, 

contribuendo al potenziamento della resilienza urbana e alla mitigazione del rischio. 

Poiché la tendenza globale dell'urbanizzazione continua a trasformare i paesaggi e ad aumentare 

la concentrazione della popolazione nelle città, la comprensione e la gestione dei rischi geologici in 

aree urbane non sono mai state così critiche. Questa ricerca comprende tre articoli chiave pubblicati 

all'interno della tesi, per approfondire la valutazione dei rischi geologici multipli nel contesto urbano. 

Nel Capitolo 2 affrontiamo la sfida di integrare fonti di dati frammentate, incomplete e spesso non 

affidabili per la valutazione del rischio da frana. Riconoscendo il ruolo cruciale della valutazione della 

pericolosità nelle politiche di mitigazione del rischio, ci siamo concentrati sull'ottimizzazione dei dati 

disponibili. I metodi impiegati includono la revisione degli inventari di frana, il potenziamento del 

dataset di addestramento dei modelli e l'ottimizzazione dell'analisi di suscettibilità basata sul 

Machine Learning supervisionato. La ricerca esplora la ricorrenza temporale attraverso l'analisi degli 

inventari di frana multi-temporali ed archivi storici delle precipitazioni, offrendo preziose informazioni 

sulla probabilità di innesco delle frane. L'integrazione degli attributi spaziali e temporali ha portato 

alla creazione del primo prodotto locale della pericolosità da frana di Roma. Questo prodotto, 

progettato per scopi statutari, rappresenta una tappa significativa nel migliorare la resilienza delle 

aree urbane. 

Il Capitolo 3 si addentra nel mondo delle tecniche di Machine Learning supervisionate per la 

mappatura della suscettibilità di frana, sottolineando l'importanza della qualità dei dati. Lo studio ha 

confrontato vari modelli, con l'ExtraTreesClassifier che emerge come la scelta più affidabile. 

Tuttavia, riconoscendo la rarità degli inventari di frana di alta qualità sito-specifici, la ricerca esamina 

l'affidabilità delle mappe di suscettibilità ad accesso libero esistenti a diverse scale spaziali. 

Attraverso una dettagliata analisi statistica e spaziale, la ricerca evidenzia l'impatto dell'unità di 

mappatura e della scala di analisi sulla precisione delle previsioni. Inoltre, viene introdotta la fusione 

di diverse mappe di suscettibilità a bassa risoluzione, offrendo un approccio promettente per 

superare le limitazioni dei singoli prodotti. Ciò non solo migliora la comprensione della mappatura 

della suscettibilità di frana, ma fornisce anche strumenti pratici per valutazioni su larga scala in 

contesti urbani. 
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Lo sviluppo di un nuovo modello per la valutazione del rischio multiplo è al centro del Capitolo 4. 

L'obiettivo del modello è quello di supportare i decisori e i gestori del rischio nella priorizzazione degli 

edifici esposti ai rischi legati all'instabilità del terreno, tra cui frane, subsidenza e sinkhole. Integrando 

valutazioni della pericolosità spaziale, dati interferometrici satellitari, caratteristiche degli edifici e 

valori di mercato degli asset, il modello calcola un punteggio di rischio multiplo, consentendo la 

classificazione degli edifici urbani. La ricerca offre una spiegazione dettagliata di come ciascun 

dataset contribuisca alla valutazione complessiva del rischio, dalla valutazione della pericolosità 

spaziale al danno economico potenziale e allo stato di attività dei processi. Il processo di 

integrazione dei dati porta a un approccio semiquantitativo pratico per la valutazione del rischio 

multiplo, promuovendo una posizione più proattiva nella mitigazione dei rischi legati all'instabilità del 

terreno. 

Questo lavoro di dottorato potrebbe portare rilevanti intuizioni per la valutazione dei rischi geologici 

e la resilienza urbana. I suoi risultati pongono le basi per ulteriori ricerche, favorendo la creazione di 

città più sicure e resilienti in tutto il mondo. 

 

Parole chiave: Pericolosità da frana; Multi-Rischio; Contesto Urbano; Analisi Spaziale; 

Machine Learning; Dati Aperti; Interferometria Satellitare; Fusione dei Dati. 
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CHAPTER 1 

1. Introduction 

1.1. The value of Open Science 

Open science is a movement to make publicly funded scientific research transparent, inclusive, 

accessible, and reproducible. It is based on the principles of openness, transparency, and 

reproducibility, which will increase the pace and quality of scientific progress. Open science practices 

can be applied to all aspects of the research process, from data collection and analysis to publication 

and dissemination (Vicente-Saez and Martinez-Fuentes 2018). Open science is important for several 

reasons. First, it helps to ensure the quality and reliability of scientific research. By making research 

more transparent and reproducible, open science makes it easier for other scientists to identify and 

correct errors (Open Science Collaboration 2015). Second, it makes scientific research more 

accessible to the public. This can help to promote public understanding of science and build trust in 

the scientific community. Third, it fosters collaboration among scientists. By sharing data and code, 

scientists can work together to solve problems more quickly and efficiently. Among the several open 

science practices, some valuable examples include open access publishing, open research data, 

and open source software (Figure 1.1). To help build a culture of open science, NASA is championing 

a new initiative: the Transform to Open Science (TOPS), which is part of the Open-Source Science 

Initiative (OSSI), making open science a reality on a large scale. 

 

Figure 1.1: The value of open science. Open data can be defined simply as data that anyone can access, 
use, and share. Open access literature is digital, online, free of charge, and mostly free of copyright and 
licensing restrictions. Open source is software with source code that anyone can view, copy, modify, and share. 
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Open data is essential for conducting reliable scientific research. By making research data openly 

available, scientists can: 

 Improve the transparency and reproducibility of research. When research data is open, other 

scientists can review and analyse the data to verify the findings of the original study. This can 

help to identify errors and biases, and to ensure that the findings are robust and reproducible. 

 Foster collaboration and innovation. Open data makes it easier for scientists to collaborate 

on research projects and to share their findings. This can lead to new insights and discoveries 

that would not be possible if scientists were working in isolation (Hicks et al. 2015). 

 Accelerate scientific progress. Open data can help to accelerate scientific progress by 

making it easier for scientists to build on the work of others. When scientists have access to 

a large body of open data, they can use it to develop new hypotheses and design new 

experiments. 

In addition to the benefits listed above, open data can also help to: 

 Increase public trust in science. When scientific data is open and transparent, the public can 

have more confidence in the findings of scientific research. This is important for building 

public support for science and for making science-informed policy decisions. 

 Promote public education and awareness of natural hazards. Open data can be used to 

develop educational resources and tools that can help the public to learn about natural 

hazards and how to reduce risk. 

In the geosciences, open data plays a crucial role in improving our understanding of geological 

processes and their consequences, as well as in advancing new technologies and applications. In 

the context of geohazard research, the prominence of open data assumes a pivotal role in the 

formulation and refinement of dependable hazard and risk assessment models, which constitute the 

pillar for identifying hazardous areas and evaluating the potential losses resulting from these natural 

phenomena, thus helping to protect people and property. This not only bolsters the resilience of 

communities but also contributes to the broader scientific understanding of geodynamics and their 

evolving impacts on our environment. In essence, open data transcends being merely useful; it 

stands as an imperative cornerstone for the safeguarding of lives and the preservation of societal 

assets in the face of geological hazards. 

Among several strategies to share geoscientific data openly, a prominent avenue involves the 

publication of data in open access repositories, thereby granting unrestricted access to users. These 

repositories can store and share diverse datasets and geodatabases, ranging from geological maps 

to disaster occurrences, urban assets, and satellite imagery. In essence, they serve as dynamic 

hubs for the exchange of critical information. A complementary method involves the dissemination 
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of data and associated code through online platforms like GitHub, distinguished by their collaborative 

and interactive functionality, including pull-request support and user engagement features. 

Leveraging these and other online resources, efforts have been undertaken by the author to retrieve 

and categorise an extensive array of geodatabases encompassing a wide spectrum of critical 

domains. These endeavours, motivated by the concern to advance our understanding and 

preparedness in the face of natural hazards have culminated in the compilation of a comprehensive 

repository containing more than 110 geospatial resources (Table A1 in Appendix A). A 

summarisation of the repository is thoughtfully presented through a series of donut charts crafted to 

show the proportion between categories, covered area, data type, and access type (Figure 1.2). 

These plots unveil the breadth and diversity of information accessible online, as well as the 

accessibility and availability of the data, a fundamental consideration for researchers and 

stakeholders seeking to leverage open geospatial resources. 

In the following sections, we delve further into the utilization of some of these resources and their 

impact on geohazards modelling and risk assessment. 

 

Figure 1.2: Proportion of categories, covered area, data type, and access type of the retrieved array of 
geodatabases.  
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1.2. Multi-hazard risk in urban areas 

Urban areas, characterised by their concentration of infrastructure, human populations, and 

economic activities, face unique challenges when it comes to geohazard assessment and risk 

mitigation. The burgeoning urbanization trend worldwide necessitates a comprehensive 

understanding of geological phenomena that pose a threat to these environments. Urbanization 

alters natural terrain, disrupts hydrological cycles, and introduces new geotechnical challenges. 

Consequently, this transformation often leads to an increased susceptibility to geohazards, posing 

substantial risks to infrastructure, property, and population. The Sendai Framework for Disaster Risk 

Reduction (DRR) 2015 – 2030 (United Nations 2015) clearly highlights the need of actions in the 

following 4 priority areas: (1) understanding disaster risk; (2) strengthening disaster risk governance; 

(3) investing in disaster risk reduction for resilience; and (4) enhancing preparation for disaster and 

an effective response. To this purpose geohazard risk assessments are of paramount importance to 

defining prioritisation schemes for the design, implementation and optimisation of DRR and 

resilience-enhancing strategies (Sevieri et al. 2020). In geosciences, risk (𝑅𝑅) refers to the outcome 

arising from potential phenomena that could impact a specific area (hazard, 𝐻𝐻), the extent, value, or 

nature of the elements exposed to this impact (exposure, 𝐸𝐸), and their vulnerability to damage 

(vulnerability, 𝑉𝑉). Consequently, when a generic event occurs, the resulting effects on the elements 

at risk are determined by the combination of the inherent structural attributes and the magnitude of 

the hazardous phenomenon. 

𝑅𝑅 = 𝑓𝑓(𝐻𝐻,𝐸𝐸,𝑉𝑉) 

Regarding the hazard factor, it can be described as the probability of a specific adverse event, 

resulting in a phenomenon of a given magnitude, happening within a defined area and during a 

specific time frame. Hence, the hazard is described by three variables: the event’s intensity, its 

spatial distribution, and the probability of its occurrence over time. 

Among the array of geohazards that urban areas contend with, ground instabilities hold a prominent 

position. Landslides pose a prevalent threat in hilly or steep terrain regions. Sinkholes can emerge 

unexpectedly and result in substantial damage. Subsidence can lead to structural damage and 

infrastructure issues. The influence of climate change on European precipitation patterns is expected 

to bring about shifts in the occurrence and distribution of landslides and floods. In areas where 

heightened rainfall frequency and intensity are projected, the likelihood of landslides triggering and 

the exposure to landslide risk are anticipated to increase. In general, the impact of changing climate 

on rapid, shallow slope instabilities is forecasted to intensify and spread throughout the 21st century 

(Mateos et al. 2020). From 1903 to 2020, 185,753 fatalities were reported from 37,946 landslide 
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worldwide. Countries such as Colombia, Nepal, Costa Rica, India, USA, and China stand out, 

registering the highest incidence of landslides (Figure 1.3). On the European continent, the 

Geological Survey of Europe has aggregated data on 849,543 landslides from various databases 

spanning 24 countries. Remarkably, over 60% of these landslides are concentrated in Italy (Mateos 

et al. 2020). Recognizing the distribution and concentration of geohazards in urban areas is crucial 

in determining where and how preventive and corrective measures can effectively reduce 

vulnerability and exposure among urban populations (Johnson et al. 2016). However, despite the 

pronounced exposure of human assets to risk, most countries lack legislative measures within their 

National Land Bills to mandate the consideration of landslides and other hazards in urban planning 

practices (Martino et al. 2019; Mateos et al. 2020). 

 

Figure 1.3: Spatial distribution of landslides worldwide. From Gómez et al. 2023. 

The concept that natural hazards almost never occur individually is of great importance: this leads 

to the concept of multi-hazard (Carpignano et al. 2009; Gill et al. 2022). Multi-hazard analysis is the 

implementation of methodologies and approaches aimed at assessing and mapping the potential 

occurrence of different types of natural hazards in a specific area. It must consider the selection of 

multiple hazards that the country faces, and the specific contexts where hazardous events may occur 

simultaneously, cascadingly over time, and taking into account the potential interrelated effects (Gill 

et al. 2022; Hochrainer-Stigler et al. 2023). To date, multi-(hazard-)risk assessment still lacks a 

standard glossary among different communities (Gallina et al. 2016; De Angeli et al. 2022). Table 

1.1 clarifies the terminology adopted in this thesis, including the definitions for damage, exposure, 

impact, loss, risk, vulnerability, multi-hazard, multi-hazard risk, and multi-risk. 

The spatial (area that the hazard impacts) and temporal (the time duration) scales over which natural 

hazards impact upon the natural environment cover many orders of magnitude (Gill and Malamud 
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2014). Figure 1.4 presents the spatial versus temporal scales over which 16 selected hazards are 

reported. These hazards, are divided into five groups: 

(1) Geophysical (earthquake, tsunami, volcanic eruption, landslide, and snow avalanche). 

(2) Hydrological (flood and drought) 

(3) Shallow Earth Processes (regional subsidence and uplift, local subsidence and heave, and 

ground collapse). 

(4) Atmospheric (tropical cyclone, tornado, hail, snow, lightning and thunderstorm, long-term 

climatic change, and short-term climatic change. 

(5) Biophysical (wildfire). 

The analysis of the potential spatio-temporal overlaps of two or more natural hazards, led to the 

definition of various interrelations, which can be grouped into four main groups (Tilloy et al. 2019; 

Gill et al. 2020; Claassen et al. 2023). 

(1) Compound hazards: two or more hazards may impact the same region and/or time period 

with impacts different than their sum. 

(2) Consecutive hazards: two or more hazard that occur in succession, and whose direct impacts 

overlap spatially before recovery from a previous event is completed. 

(3) Triggering hazards: one hazard causes another hazard to occur, which can result in hazard 

chains, networks, or cascades. 

(4) Amplifying hazards: one hazard changes the probability or magnitude of another hazard by 

changing environmental conditions for the occurrence of another hazard. 

Gill and Malamud (2014) identified and ranked 90 instances of linkages between 21 natural hazards 

(Figure 1.5). This revealed that volcanic eruptions, earthquakes, and storms are the primary hazard 

most linked to secondary hazards, with each having nine identified connections. In contrast, when 

examining secondary hazards arising from primary hazards, landslides emerged as the most linked 

secondary hazard, with 13 links, followed by volcanic eruptions with 11 links, and floods with 10 links. 

Among the 13 landslide linkages, two are associated with local subsidence and ground collapses. 

Consequently, landslides can either be triggered or fostered (i.e., increased probability) by ground 

collapse and local subsidence. These phenomena collectively fall within the category of ground 

instability hazards, which pose a substantial threat in urban areas. Addressing this threat 

necessitates a comprehensive multi-(hazard-)risk analysis and assessment to enable the 

implementation of preventive and corrective measures aimed at reducing future losses. 
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Table 1.1: Key terms and definitions related to multi-(hazard-)risk as used in this thesis. Modified from De 
Angeli et al. (2022); Ward et al. (2022). 

Term Definition 

Damage Negative impacts, i.e., impacts that result in negative effects on assets, people, 
socioeconomic and environmental systems. 

Exposure 

The situation of people, infrastructure, housing, production capacities and other 
tangible human assets located in hazard-prone areas. Exposure is described 
through a series of characteristics of the exposed assets, such as material, 
occupancy, economic value of a building or number of people. 

Loss A measure (usually in monetary terms) of a certain damage. 

Vulnerability 

The totality of the conditions determined by physical, social, economic, and 
environmental factors or processes which increase the susceptibility of an individual, 
or a community, assets, or systems to the impacts of hazards. In this thesis, specific 
reference is made to the physical vulnerability, which is the propensity of territorial 
elements to suffer physical damages from hazardous events. Vulnerability is 
represented by curves or functions, which measure the expected damage as a 
function of the hazard magnitude. 

Risk 
The potential loss of life, injury, or destroyed or damaged assets which could occur 
to a system, society, or a community in a specific period, determined as a function 
of hazard, exposure, and vulnerability. 

Multi-hazard 
The selection of multiple major hazards that the country faces, and the specific 
contexts where hazardous events may occur simultaneously, cascadingly, or 
cumulatively over time, and considering the potential interrelated effects. 

Multi-hazard risk Risk generated from multiple hazards and the interrelationships between these 
hazards (but not considering interrelationships on the vulnerability level) 

Multi-risk Risk generated from multiple hazards and the interrelationships between these 
hazards (and considering interrelationships on the vulnerability level). 

Multi-(hazard-)risk Used in this thesis when collectively referring to all the above. 
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Figure 1.4: Spatial and temporal scales (on logarithmic axes) of 16 selected natural hazards and grouped into 
geophysical, hydrological, shallow Earth processes, atmospheric, and biophysical. From Gill and Malamud 
(2014). 

 

Figure 1.5: Hazard type linkages. A network diagram showing the potential hazard type linkages between 21 
natural hazards. EQ = earthquake, TS = tsunami, VO = volcanic eruption, LA = landslide, AV = snow 
avalanche, RS = regional subsidence, GC = ground collapse, SS = soil (local) subsidence, GH = ground heave, 
FL = flood, DR = drought, ST = storm, TO = tornado, HA = hailstorm, SN = snowstorm, LN = lightning, ET(H) 
= extreme high temperature, ET(C) = extreme cold temperature, WF = wildfires, GS = geomagnetic storm, and 
IM = impact events. From Gill and Malamud (2014).  
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Similarly to multi-hazard, multi-risk is generated from multiple hazards that may also be correlated, 

affecting the same exposed elements. The interrelationships between these hazards and the 

vulnerability level (i.e., vulnerability changes because of different hazards affect a vulnerable 

element) should be considered. A multi-risk approach encompasses both multi-hazard and multi-

vulnerability perspectives (Terzi et al. 2019). However, a clear framework and guidelines for multi-

risk assessment and management for natural hazards is still lacking, which is currently 

acknowledged as the main challenge in multi risk management (Ward et al. 2022; Hochrainer-Stigler 

et al. 2023). Quantifying multi-risk presents further significant basic challenges, including defining 

the underlying concepts, acquiring extensive data, developing tailored analytical approaches, and 

utilizing valid modelling techniques. Moreover, the wide differences in terms of nature of the events, 

intensity, return periods, and potential damage to exposed assets make the comparability of natural 

hazards even more complicated (Carpignano et al. 2009). Kappes et al. 2012b, outline four key 

challenges associated with compiling a multi-(hazard-)risk assessment. These include (1) allowing 

different hazards to be compared, (2) interrelationships between hazards to be noted, (3) physical 

vulnerability assessments to be validly contrasted, and (4) the synthesis, communication, and 

visualization of a broad array of information from multiple disciplines and methods.  

Assessing the risks and vulnerabilities of a large set of urban assets is an arduous task, demanding 

extensive technical expertise and financial resources that are usually not available (Kappes et al. 

2012b; Julià and Ferreira 2021). However, the management of multi-risk even in highly developed 

countries remains a necessity, as exemplified by the 2021 flood events in Germany (Thiebes and 

Winkhardt-Enz 2023). A comprehensive multi-(hazard-)risk approach, which considers hazard 

interactions, coincidences, and dynamic vulnerabilities, would be time consuming, data and resource 

intensive, and necessitate the utilization and development of multiple methodologies drawn from 

diverse disciplines. Consequently, a prevalent practice within the natural hazards community leans 

toward a multi-layer single-hazard approach (Zschau 2017). While this approach may overlook 

interrelationships between hazards, potentially diminishing its reliability, it offers simplicity, allows for 

the consideration of numerous hazards, and produces easily comprehensible results. Nevertheless, 

conducting such multi-risk modelling can be challenging, especially on a large geographic scale and 

a high-resolution mapping unit, as it may not be evident how to aggregate or combine the 

quantification of each individual underlying hazard or risk (Tocchi et al. 2023). 
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1.2.1. The impact of mapping unit and scale 

Geohazards analysis inherently operates across varying spatial scales and employ diverse 

methodologies, which range in sophistication and serve different zoning purposes. These purposes 

can span from providing informative or advisory guidance to serving statutory and regulatory 

compliance requirements, or even to engineering design (Flentje et al. 2007; Cascini 2008; 

Corominas et al. 2014). The reliability and effectiveness of these approaches hinge profoundly on 

the quality and comprehensiveness of available geospatial data and catalogues. At the core of this 

multifaceted process lies the pivotal decision regarding the mapping unit employed in predictive 

modelling. Whether constructing a susceptibility, hazard, or risk map, the choice of mapping unit is 

foundational. Among the mapping units routinely utilized, three prominent options have gained 

recognition: pixels, slope units (SU), and unique condition units. In recent years, there has been a 

discernible uptick in interest surrounding the implementation of SU as a mapping unit of choice for 

landslide hazard (Moreno et al. 2023). Understanding the implications of this choice with respect to 

the spatial scale and precision of hazard assessments is paramount. Mapping units exert a profound 

influence on the granularity of analysis and the subsequent zoning outcomes. Pixel, for instance, 

offer a fine-grained resolution but may become computationally intensive for large-scale 

assessments. On the other hand, SU strike a balance between granularity and computational 

efficiency, making them particularly appealing for medium to small-scale modelling. 

Chapter 3 of the thesis endeavours to delve deeper into the ramifications of spatial scale of analysis 

and mapping unit selection in landslide susceptibility modelling. It explores how the choice of 

mapping unit influences the accuracy and applicability of landslide assessments across various 

spatial scales. By shedding light on this critical aspect, we aim to enhance our understanding of the 

nuanced interplay between mapping units, spatial scales, and the efficacy of landslide susceptibility 

modelling, ultimately contributing to more informed landslide risk management strategies. 

1.2.2. The potential of Spatial Data Science 

In a world where decision-making is increasingly influenced by data, it is important to understand 

how Spatial Data Science (SDS) can help. SDS is a subset of generic data science that focuses on 

the characteristics of spatial data, i.e., the importance of “where”. Data science is often referred to 

as the science of extracting meaningful information from data. In this context, SDS treats location, 

distance, and spatial interaction as core aspects of the data and employs specialized methods and 

software to store, retrieve, explore, analyse, visualise, and learn from geospatial data. In this sense, 

SDS relates to data science as spatial statistics to statistics, spatial databases to databases, and 

geocomputation to computation (Anselin 2020). At its core, it combines Geographic Information 

Systems (GIS) with advanced analytical techniques, helping us better understand the relationship 

between location and phenomena. In geohazards risk, this means understanding not just the 
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occurrence of hazards but their spatial context, evolution, and impact on our environment and 

society. SDS transforms how we assess natural hazards and risks. It enables us to grasp the spatial 

patterns of hazards by understanding “where” the risks occur. Thus, we can identify high-risk areas, 

improve preparedness, and develop targeted mitigation strategies. It allows us to perform the 

analyses at various scales, from local to global, providing a comprehensive understanding of their 

spatial and temporal dynamics. 

One of the key strengths of SDS lies in its capacity for modelling and scripting. Spatial modelling 

consists of the analysis of spatial data to make inferences about the model parameters, to predict at 

unsampled locations, or for downscaling/upscaling applications (Banerjee 2003). It enables the 

development of advanced geospatial models and scripts, automating data processing, analysis, and 

visualization. This automation allows for timely responses and informed decision-making. It also 

allows continuous monitoring of dynamic conditions, early threat detection, and resource 

optimization, thereby bolstering resilience in the face of evolving challenges. SDS finds synergy with 

Machine Learning, fostering a potent partnership that enhances geohazards analysis. Machine 

Learning algorithms, when integrated into spatial data analysis, empower us to extract patterns, 

make predictions, and gain insights that may otherwise remain hidden. This integration enables the 

creation of predictive models that factor in complex geospatial variables, leading to more accurate 

hazard assessments, early warning systems, and risk mitigation strategies. By leveraging the 

capabilities of Machine Learning, SDS can take multi-(hazard-)risk analysis to unprecedented 

heights of precision and efficacy. 

In the pursuit of spatial data insights, various tools have been developed (Figure 1.6). These tools 

empower to navigate the intricate terrain of spatial analysis. Some of the main tools include: 

 Geographic Information Systems (GIS): GIS software forms the foundation of spatial data 

analysis. It allows for the creation, visualization, and analysis of geographic data, enabling 

the generation of informative maps and spatial models. 

 Remote Sensing: Remote sensing technology, including satellite and aerial imagery, 

provides a wealth of data for monitoring and assessing changes in the Earth's surface over 

time. 

 Spatial Databases: Robust spatial databases, such as PostGIS and PostgreSQL, organize 

and manage large geospatial datasets, facilitating efficient data retrieval and analysis. 

 Geospatial Libraries and Frameworks: Open-source geospatial libraries and frameworks, 

such as GDAL, GeoPandas, and PySAL, offer powerful tools for data manipulation, analysis, 

and modelling. 
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 Machine Learning Libraries: Libraries like scikit-learn and TensorFlow integrate seamlessly 

with spatial data analysis, allowing for the application of machine learning algorithms to 

geospatial challenges. 

In essence, SDS represents a pivotal paradigm shift in geospatial data analyses, such as geohazard 

risk assessment. It equips us with the tools to navigate our dynamic world, uncover hidden patterns, 

and make informed decisions that safeguard lives, assets, and the environment. As we delve further 

into this thesis, we will explore the practical applications, methodologies, and real-world impact of 

SDS applied to geological multi-(hazard-)risk assessment. 

These concepts of multi-(hazard-)risk analysis relying on open source spatial data science will be 

the core focus of the research work, as they are applied to assess ground instability hazards and 

risk affecting the Municipality of Rome (Italy), with a specific emphasis on landslide hazard. 

 

Figure 1.6: Existing tools for the pursuit of Spatial Data Science.  
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1.3. Objectives of the thesis 

In the context of enhancing urban resilience, it is of paramount significance to comprehend and 

assess the array of threats that major cities confront. The evaluation of hazards plays a pivotal role 

in the implementation of policies aimed at mitigating risks. While numerous hazard and risk maps 

exist on national, European, and global scales, their precision may not suffice for effectively 

pinpointing potential hazard sources at the urban scale. This underscores the necessity of 

developing solutions tailored to urban settings. To achieve this objective, the gathering of as much 

information as possible regarding historical events, asset characteristics, environmental factors, and 

other relevant ancillary data is essential. Consequently, it becomes imperative to explore the physical 

risks posed by multiple natural hazards, that may overlap in space and time, by aggregating available 

data and integrating them with advanced modelling techniques, such as Spatial Data Science and 

Machine Learning. This modelling facilitates the generation of precise predictions regarding future 

hazard occurrences and physical risk of existing assets. 

In the present doctoral thesis, we delve into the topics of shallow landslides hazard and multi-risk 

assessment related to ground instabilities at the urban scale. Our primary objective is to turn data 

into information that can guide risk managers and infrastructure stakeholders in implementing 

preventive mitigation measures to enhance resilience, thus contributing to the priority areas 

highlighted by the Sendai Framework for Disaster Risk Reduction. We focus on the Municipality of 

Rome as our case study, examining both the spatial and temporal components of shallow landslide 

hazard in large urban regions. Our study explores the potential of open-source catalogues, e.g., 

landslide inventories, to be cross-validated and optimised for training accurate Machine Learning 

models. These models aim to predict high-probability landslide zones with statutory purposes. To 

assess the impact of analysis scale and mapping units on prediction accuracy, we compared 

susceptibility levels for shallow landslides with available open-source multi-scale maps. We also 

explored the benefits of merging these maps to harness their full potential. Furthermore, we 

developed a robust, replicable, and scalable model which combines spatial hazard assessments, 

satellite-based interferometric data, and physical features of exposed assets. This model computes 

a multi-risk score to rank buildings associated with ground instability hazards, including landslides, 

subsidence, and sinkholes. 

In this doctoral work, the following research questions will be explored: 

(1) How can official open data be exploited to develop reliable landslide hazard models valuable 

for statutory purposes? 

(2) What is the impact of mapping unit and analysis scale on the accuracy of Landslide 

Susceptibility Zoning (LSZ)? 
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(3) Can the fusion of multiple low-resolution LSZ overcome the lack of site-specific studies? 

(4) How can susceptibility maps, census data, and satellite interferometry contribute to multi-risk 

assessment in the urban environment? 

(5) How can single- and multi-risk analyses inform strategies for enhancing urban resilience and 

minimizing economic losses? 

1.4. Outline of the thesis 

The thesis includes published and unpublished works by the Author, and they are incorporated in 

five different chapters. The main chapters (Chapters 2 – 4) must be considered as separate 

manuscripts. I collected, analysed, and interpreted the data and wrote the manuscripts under the 

supervision of Prof. Paolo Mazzanti and Prof. Carlo Esposito (Dep. of Earth Sciences, Sapienza 

University of Rome, Italy). Prof. Carmine Galasso (Dep. of Civil Engineering, University College of 

London, UK) introduced me to multi-hazard vulnerability studies during my period abroad. 

Chapter 2 focuses on research question 1 through the statistical analysis of fragmented and 

incomplete data related to landslides and rainfall records. This chapter has been published as 

Original Paper in Landslides journal in June 2023 (DOI: 10.1007/s10346-023-02095-7), with the 

following citation: 

 Esposito C., Mastrantoni G., Marmoni G.M., Antonielli B., Caprari P., Pica A., Schilirò L., 

Mazzanti P., and Bozzano F. (2023). From theory to practice: optimisation of available 

information for landslide hazard assessment in Rome relying on official, fragmented data 

sources. Landslides 20, 2055-2073 (2023). https://doi.org/10.1007/s10346-023-02095-7. 

Chapter 3 focuses on research questions 1, 2, and 3, through an extensive examination of open-

source multiscale landslide susceptibility maps with spatial data science methods. This chapter has 

been published as Original Paper in Georisk: Assessment and Management of Risk for Engineered 

Systems and Geohazards in August 2023 (DOI: 10.1080/17499518.2023.2251139), with the 

following citation: 

 Mastrantoni G., Marmoni G.M., Esposito C., Bozzano F., Scarascia Mugnozza G., and 

Mazzanti P. Reliability assessment of open-source multiscale landslide susceptibility maps 

and effects of their fusion. Georisk: Assessment and Management of Risk for Engineered 

Systems and Geohazards (2023). https://doi.org/10.1080/17499518.2023.2251139. 

Chapter 4 focuses on research questions 4 and 5, through the development of a novel multi-risk 

analysis method aimed at addressing and prioritising buildings exposed to ground instability hazards. 

https://doi.org/10.1007/s10346-023-02095-7
https://doi.org/10.1080/17499518.2023.2251139
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This chapter has been published as Original Paper in Geomatics, Natural Hazards and Risk in 

November 2023 (DOI: 10.1080/19475705.2023.2275541), with the following citation: 

 Mastrantoni G., Masciulli C., Marini R., Esposito C., Scarascia Mugnozza G., and Mazzanti 

P. A novel model for multi-risk ranking of buildings at city level based on open data: the test 

site of Rome, Italy. Geomatics, Natural Hazards and Risk (2023).  

https://doi.org/10.1080/19475705.2023.2275541 

Chapter 5 corresponds to the Conclusions of the thesis. This chapter summarizes the main findings, 

answering the research questions of this thesis and presents possibilities for future development of 

the work presented. 

  

https://doi.org/10.1080/19475705.2023.2275541
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Abstract 

The definition of landslide hazard is a step-like procedure that encompasses the quantification 

of its spatial and temporal attributes, i.e., a reliable definition of landslide susceptibility and a 

detailed analysis of landslide recurrence. However, available information is often incomplete, 

fragmented, and unsuitable for reliable quantitative analysis. Nevertheless, landslide hazard 

evaluation has a key role in the implementation of risk mitigation policies and an effort should 

be done to retrieve information and make it useful for this purpose. In this research, we go 

through this topic optimising the information available in catalogues, starting from landslide 

inventory review and constitution of a boosted training dataset, propaedeutic for susceptibility 

analysis based on machine learning methods. The temporal recurrence of landslide events has 

been approached here either through the definitions of large-scale quantitative hazard 

descriptors or by analysis of historical rainfall (i.e., the main triggering factor for the considered 

shallow earth slope failures) databases through the definition of rainfall probability curves. 

Spatial and temporal attributes were integrated, selecting potential landslide source areas ranked 

in terms of hazard. Data integration was also pursued through Persistent Scatterer Interferometry 

analysis which pointed out areas of interest within potential landslide source areas featured by 
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ongoing ground movement. The consequential approach led to the definition of the first hazard 

product of the city of Rome at a local scale functional for advisory purposes or the statutory 

level, representing a thematic layer able to orient the risk managers and infrastructure 

stakeholders. 

Keywords: Susceptibility; Machine Learning; Rainfall Probability; Landslide Hazard; 

Landslide Inventories; Interferometry. 

2.1. Introduction 

A shift from the ideal scientific framework to its actual applicability is required when dealing with risk-

oriented hazard analyses related to land-use-planning purposes (Thiery et al., 2020). Such a task 

can be particularly challenging, as the application of rigorous and reliable scientific approaches can 

be data demanding, in terms of quality and quantity of information needed to fully exploit their 

potential (Corominas et al., 2014; Glade, 2001). On the contrary, in some cases the quality and 

quantity of available data do not match the optimal (and sometimes even fair) requirements to ensure 

reliable results for regulatory purposes (Cascini, 2008). Furthermore, the possibility of acquiring 

additional or higher resolution data can be limited at times, especially for large-scale prevention and 

mitigation activities (i.e., land-use planning and the propaedeutic hazard zoning), being related to 

available financial resources as well as time constraints. Nevertheless, local or national 

administrations in charge of risk prevention and mitigation could optimize the available information 

to fit as much as possible scientific standards. For this purpose, data-driven and knowledge-based 

methods can be implemented to integrate and boost available data sources. 

In this perspective, we detailly report and discuss an integrated approach devoted to a reliable 

assessment of landslide hazards in one of the more challenging contexts exposed to risk: the urban 

area of Rome. The scenario of gravitational instabilities and related damage resulting from an intense 

rainfall event occurred in 2014 (Alessi et al. 2014) highlighted how the landslide risk is not negligible 

in the city of Rome. This statement is justified by the occurrence of recurring, usually small-size 

landslide events (both as single slope failures and multiple phenomena over large areas), and the 

high exposure as regards the number and value of the exposed elements. The landslide conditions 

are known (Amanti et al., 2013; Del Monte et al., 2016) and taken into due consideration in the official 

planning tools, such as the Hydro-geological Structure Plan (https://www.autoritadistrettoac. 

it/planning/hydrographic-basin-planning/documentation-of-the-tiber-basin-plan) and the municipal 

land-use plan (http://www.urbanistica.comune.roma.it/prg-2008-vigente/). Collaborations between 

research and government institutions (Amanti et al., 2014, Esposito et al., 2019) show a growing 

awareness and interest on this issue. However, a proper hazard analysis and the relative zoning of 

the territory has not been carried out so far. The knowledge of the hazard, from the temporal point 

http://www.urbanistica.comune.roma.it/prg-2008-vigente/
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of view, is instead a fundamental requirement for a correct and exhaustive definition of the risk and 

subsequent actions for risk mitigation (Corominas et al., 2014). Although this task is pursued by the 

municipal administration, at least as Civil Protection plans (https://www.comune.roma.it/web-

resources/cms/documents/Fasc3_RischioFrane_2021.pdf),the fragmentariness of landslide 

inventories available for Rome, together with the frequent lack of information regarding the date of 

occurrence of the surveyed landslide (re)activations, severely limits the possibility of evaluating the 

temporal probability of occurrence. On the other hand, a hazard assessment as detailed as possible 

can be useful at least for advisory purposes.  

In this study we present a first attempt to quantify the landslide hazard by exploiting the existing 

databases reporting relevant information for the investigated phenomenon, such as landslide 

inventories and other predisposing, preparatory and triggering factors. First, we performed a full 

review of the landslide databases by means of a geomorphological review of the known and mapped 

landslides and a check of the available dated landslide events. We then produced an integrated and 

edited landslide inventory; on this basis it has been possible to perform a spatial hazard assessment 

that required additional efforts (i.e., “inventory boosting”) to make such an information fit the 

requirements needed for a reliable analysis. Furthermore, a statistical analysis of historical rainfall 

data was performed through the Generalised Extreme Values (GEV; Jenkinson, 1955) method for 

both daily and hourly rainfall. Such an analysis allowed us to infer quantitative rainfall thresholds and 

assess the return period of rainfall events capable of inducing landslides. 

In addition, a preliminary overview of the slopes potentially susceptible to landslides was derived 

through the Persistent Scatterer Interferometry (PSI) based on the Sentinel-1 SAR images. The 

presence of movement or changes in the state of activity of already-catalogued phenomena were 

detected by analysing InSAR data, and the results have been integrated with the susceptibility 

analysis, to add information on the ongoing slope deformations to the intrinsic characteristics of the 

slope, prone to landslide. For the same level of susceptibility, this integration allowed to rank the 

actual critical situations by highlighting areas with ongoing deformation, then providing a cognitive 

dynamic information of practical use for local administrators involved in the management of urban 

areas. 

2.2. A Brief Introduction to Geohazards in Rome 

The city of Rome lies in a hilly area where the present geological and morphological setting is mainly 

related to deposition and erosion in marine (late Pliocene – lower Pleistocene) and continental 

(middle Pleistocene – Holocene) environments. 

https://www.comune.roma.it/web-resources/cms/documents/Fasc3_RischioFrane_2021.pdf
https://www.comune.roma.it/web-resources/cms/documents/Fasc3_RischioFrane_2021.pdf


CHAPTER 2: LANDSLIDE HAZARD ASSESSMENT 

25 

The geological context is featured by a succession of Pliocene marine clays (Monte Vaticano 

Formation), silt and silty sands (Monte Mario Formation) in Lower Pleistocene which turn into littoral, 

transitional and continental sediments (Ponte Galeria Formation) during lower-middle Pleistocene. 

These deposits largely outcrop on the hills on the right bank of the Tiber (Funiciello e Giordano, 

2008). Over these terms, a succession of alternating volcanic deposits (resulting from the activity, 

about 600 ka ago, of the surrounding Colli Albani and Sabatini Volcanic Districts) and continental 

(mainly alluvial and palustrine) sediments deposited in the area during middle-upper Pleistocene. 

The present landscape is strongly influenced by valleys and slopes carved by the Tiber River and its 

tributaries, and only partially filled by alluvial deposits whose thickness can reach tens of meters 

(Bozzano et al., 2000; Figure 2.1). 

The hydraulic circulation is governed by the superimposition of medium to high permeability volcanic 

deposits over the regional aquiclude made up of the blue clays of the Monte Vaticano Fm. and the 

silty and clayey horizons of the Monte Mario Fm. (La Vigna et al., 2015). Ephemeral and perched 

water tables develop in the weathered soil covers, that transiently over impose as a surficial seepage 

within unsaturated soils. 

 

Figure 2.1: Lithological units in the study area of the municipality of Rome with the location of the occurred 
landslides. Thiessen polygons adopted considering the available pluviometric stations are also reported in the 
map. Key to legend: 1) Anthropic deposits; 3) Recent and terraced sandy-gravelly alluvial deposits, eluvio-
colluvial deposits; 6) silty-sandy alluvial deposits, fluvio-lacustrine deposits; 7) travertines; 10) Plio-pleistocene 
clayey and silty deposits; 11) Marine Pliocene clays; 12) Debris and talus slope deposits, Conglomerates and 
cemented breccias; 14) Marls, Marly limestones and calcarenites; 41) Leucititic/trachytic lavas; 43) Lithoid 
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Tuffs, Pomiceous ignimbritic and phreatomagmatic facies; 45) Welded tuffs, tufites; 46) Pozzolanic sequence; 
55) Alternance of loose and welded ignimbrites. 

The different geological units outcropping on the left and right embankment of the Tiber River valley 

control the different responses to natural and anthropogenic hazard processes that affect the urban 

area (Funiciello et al., 2008), including subsidence, sinkholes, floods, and landslides (Table 2.1). In 

particular, the landslide response is closely related to the outcrop distribution of Plio-Pleistocene 

sedimentary units, which are frequently involved in shallow and translational landslides (Amanti et 

al., 2008; Alessi et al., 2014). Ground instabilities are often localised within unsaturated, shallow soil 

covers resulting from the chemical and physical weathering of the underlying deposits (Schilirò et 

al., 2019). Ephemeral hydraulic circulation develops along permeability contrasts between volcanic, 

or debris covers over less permeable sedimentary deposits, can influence the local hydraulic 

circulation and, thus, the slope stability. Furthermore, falls and topples sometimes involve rocky 

slopes, mainly made up of volcanic tuffs (Amanti et al., 2008; Alessi et al., 2014). 

Landslides with volumes of tens up to hundreds of cubic meters (Amanti et al., 2013; Bozzano et al., 

2006) as well as natural or anthropogenic sinkholes (Esposito et al., 2021,) are the most frequent 

and impacting processes in the urban area. Based on the 2014 event (Alessi et al., 2014) and other 

information collected from a subset of the known landslides (e.g., 

http://sgi2.isprambiente.it/franeroma/), most of the slope failures have been triggered by intense or 

prolonged rainfalls. Such events can cause significant damages specially to pipelines, aqueducts, 

and road infrastructure. 

Table 2.1: Summary of the main geological hazards involving the Municipality of Rome. 

 Involved areas Latest 
significan
t event 

Event 
References 

Hazard/ 
Suscept
ibility 
Maps  

Inventori
es and 
maps 

Intensi
ty 

Retur
n 
Period 
(yrs) 

Subsidence Alluvial plain of Tiber 
River and its main 
tributaries 

 Campolunghi 
et al., 2008; 
Bozzano et al., 
2015; 2018; 
Delgado 
Blasco, 2019;  

n.a. - Low Continu
ous  

Sinkhole Widespread over the 
urban area, mainly 
concentrated in 
areas with relevant 
thicknesses of 
volcanic deposits 
(left bank of Tiber 
River);  

Via 
Zenodossio
;  

Esposito et al., 
2021 

Ciotoli et 
al., 2015, 
2016; 
Esposito 
et al., 
2021; 

Ciotoli et 
al., 2013 

High 2-5 

http://sgi2.isprambiente.it/franeroma/
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Flood Alluvial plain of Tiber 
River and its main 
tributaries 

Cremera 
Creek 
Flood 
(2014) 

Remedia et al., 
1998;  

PAI Flood 
Hazard 
Map; Di 
Salvo et 
al., 2017 

Bersani & 
Benciveng
a 2001; 

High 20-50 

Landslides Spread over the 
urban area, mainly 
concentrated in 
areas featured by 
sedimentary 
deposits (right bank 
of Tiber River)  

Diffuse 
landslides 
in 2014 
following 
intense 
rainfall 

This study, 

Alessi et al., 
2014; Amanti 
et al. 2012; 
2013; 

Bozzano et al., 
2006 

n.a. 

 

IFFI 
catalogue; 
Del Monte 
et al., 2016 

Medium 5-10 

2.3. Material And Methods 

Beyond the general goal of providing a first comprehensive landslide hazard analysis in Rome, the 

main specific objectives of this research can be summarized in: i) dataset preparation; ii) 

susceptibility assessment, iii) in-depth check of multi-temporal information about landslide 

(re)activations and hydrological analysis with the purpose of evaluating a temporal probability of 

occurrence, iv) testing the integration of remotely-sensed displacement data and susceptibility 

zoning to provide refined information about critical areas (i.e., those prone to landslide and 

experiencing an actual deformation). 

Basically, whatever the analysis approach chosen among the large variety of those available 

(Reichenbach et al., 2018), all the methods for susceptibility assessment are based on landslide 

inventories, that is the fundamental element of input and/or validation of the analysis (Corominas et 

al., 2014). Furthermore, the quantification of relationships among causative factors and landslide 

occurrence requires the acquisition of as many datasets and related information as the number of 

variables (usually of environmental type, such as geo-thematic and morphometric data) related to 

predisposing/preparatory and, sometimes, triggering factors (Reichenbach et al., 2018; Fell et al., 

2008). 

In order to predict the location of potential slope failures (i.e., landslide susceptibility), and to evaluate 

their intensity and temporal probability of occurrence, the landslide inventories must include 

information about the exact timing, size and mechanism of the slope movements. The definition of 

landslide recurrence thus requires at least a raw dating of the events (monthly and yearly precision) 

to get a reliable statistical assessment of the return period. In case of availability of more precise 

information (i.e., day and hour), for rainfall-induced landslides it could be possible to assess the 

landslide frequency as the recurrence interval of the causative factors which, in turn, can be 

assessed by hydrological analyses. 
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Since the precise and complete timing of a landslide in a database is the most valuable but often 

lacking attribute, the full hazard definition represents the most challenging task for both scientific 

community and local administrators (Corominas et al., 2014). 

2.3.1. Inventory review and dataset preparation 

Our study started from the acquisition and review of the available data sources, including landslide 

inventory, as well as rainfall time series available in the urban area of Rome. The available landslide 

inventories in the Rome municipality area include: 

The Official inventories covering the national territory, among which the Aree Vulnerate Italiane (AVI) 

project (1996), the Italian Inventory of landslide phenomena (IFFI, 2007) now distributed as open 

access in the IDROGEO Platform (Iadanza et al., 2021), the Tiber River basin hydrogeological risk 

mitigation plan (PAI, 2012) and Rome's regulatory plan for the urban area (PRG, 2007). The IFFI 

project inventory is the national DB of landslides that collects information from different sources. The 

DB architecture is designed to provide a wide range of information for each landslide, but often lacks 

or has incomplete data. Mapping criteria and landslide geometries are inconsistent, with some 

landslides identified as points and others as polygons. Additional processing is required to extract 

the detachment areas, which are necessary for susceptibility assessments. In addition, key 

information such as the date of (re)activation, volume assessment, geotechnical parameters, 

landslide type, and state of activity are not always available in the area. The ISPRA's "Frane Roma" 

Project is a database of landslides in Rome, providing location, source of information, and description 

of the event based on Amanti et al., 1995, 2008, 2013; ISPRA, 2014; Ventriglia, 1990, 2002. The 

CERI provides a database of landslides triggered by rainfall in 2014, surveyed on the field (Alessi et 

al., 2014). The Geomorphological Map of Rome by Del Monte et alii (2016) covers the downtown 

area and integrates previous studies with remote analysis and field surveys. 

During the collection and review of the available sources, database completeness and homogeneity 

analyses were approached, analysing the documental sources, and comparing the different 

elements of the ancillary catalogues to get a unique, coherent, and corrected data source for 

subsequent analyses. 

Such an integration has been achieved by a sequence of actions: 

1. Merging of available data to i) check and erase duplicates, ii) if needed, correct the 

location and/or attribute a type of movement, by means of DTM- and orthophoto-based 

interpretations. Specifically, to check for duplicates between the various DBs, buffers of 20 

m were created around each landslide: their intersection, if present, could mean a duplicate 

of the same process and, thus, all the redundant records by a supervised procedure were 



CHAPTER 2: LANDSLIDE HAZARD ASSESSMENT 

29 

deleted. The selection was made starting from those most reliable in terms of precision and 

checking the quality in the geolocation of the surveyed landslide phenomena. 

2. Reviewing and standardizing the classification in terms of type of movement, since 

different descriptions for the same typology have been adopted in the native DBs. 

3. Ensuring a geometrical homogeneity by associating at each landslide the minimal 

informative geometry, i.e., a point (Landslide Initiation Point - LIP), which is located in the 

topmost part of the corresponding line (main scarp edge), or polygon (whole instability or 

accumulation) lends itself better to susceptibility analyses for shallow landslides. 

The so-defined inventory includes (where available) both landslide polygon and LIPs, despite only 

points having been adopted to train the susceptibility model. Given the landslide population and the 

different landslide types available in the catalogues, shallow landslides and earth slide mechanisms 

have been considered. 

2.3.2. Spatial component of the landslide hazard 

From the information contained in the landslide catalogues and their related attributes, the definition 

of rainfall-induced landslide hazard was attempted, starting from the definition of the spatial attribute 

of landslide hazard (i.e., the landslide susceptibility). 

To analyse the relationship between causative factors and landslide presence/absence, we relied 

on a data-driven approach featured by Machine Learning (ML) techniques aimed at inferring the 

multivariate combination of causative and predisposing factors over stable and unstable sectors of 

the investigated area. As Machine Learning algorithms strongly rely on quality and amount of input 

data, we decided to boost (i.e., modify and make it reliable for a proper hazard assessment) the 

landslide database. Specifically, we developed a methodology to assess the extent of the 

detachment areas and to maximize the amount of information for each landslide generating 

additional “synthetic” LIPs to better catch the variability of predisposing factors within a given 

detachment area. This solution adopts a bounding box enveloping landslide crowns or create half-

circle buffers around point elements indicating non-mappable landslides. This workflow allows the 

reconstruction of detachment areas that were used to sample the synthetic LIPs randomly over areas 

located at elevation lower than the crown and thus within the potential landslide source area. Once 

obtained, the synthetic LIPs were validated by testing the similarity between the distribution of their 

features with that of the original LIPs. Chi-squared (CS test) and Inverted Kolmogorov-Smirnov D 

statistic (KS test). As regards the factors predisposing landslide initiation, the most important and 

adopted variables were considered based on the available products. All the DEMs available in the 

municipality of Rome were evaluated to extract morphometric and hydrological derived variables. A 

new and more reliable DTM was defined starting from the extraction of the numeric 1:5,000 
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topographic map of contour lines and quoted points referred to the terrain. The DTM was generated 

by means of the ANUDEM algorithm implemented in the TopoToRaster tool by ArcGIS. Lithological 

and Land use maps available in open access by the Lazio Region (https://geoportale.regione.lazio 

.it/) were collected to derive litotechnical and land cover classes at a scale of 1:25’000. Given the 

scarcity and inhomogeneity of the available geotechnical data, additional informative variables about 

the mechanical parameters of soil cover and bedrock were not considered. 

Then, some of the most important and used predisposing variables (Reichenbach, 2018) were 

adopted. These variables and parameters include: 

Table 3.2: Summary of the explanatory variables adopted in the analysis. 

Category Variable Acronym Scale/Resolution Source/Reference 

Lithological and 
hydrogeological 

factors 

Lithotechnical units litotec 1:25,000 Lazio Region 

Distance to boundary of 
permeability contrasts dist_lim_k 

10x10m 

(Map 1:100’000) 

Hydrogeological Map of 
Lazio Region (Capelli et al. 

2012) 

Distance to main river 
dist_idro 

10x10m 

(Map 1:100’000) 
ISPRA 

Primary and 
derived 

Morphometric 
variables 

Elevation 
dtm 

5x5m 

(Map 1:5000) 
CTR Lazio Region  

Slope slope 5x5m - 

Aspect aspect_8 5x5m - 

Relative Relief Index rrelief100 5x5m Hesse, 2010 

Total, Planar and Profile 
Curvature 

cur_tot; 
cur_prof; 
cur_plan 

5x5m 
- 

Flow Direction flow_dir 5x5m - 

Flow Accumulation flow_acc 5x5m - 

Topographic Position Index TPI 5x5m Jenness, 2006 
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(Neighbourhood 
100m) 

Topographic Wetness Index TWI 5x5m Beven & Kirkby, 1979 

Anthropogenic 
factors 

Land use cus 10x10m Lazio Region Land Use 
Map DGR n.953/2000 

Distance to Road dist_road 10x10m Open Street Map (OSM) 
consortium 

Soil consumption soil_cons 10x10m Municipality of Rome 

To include preparatory factors (sensu Julian and Anthony, 1996) ed as proxies of middle-term 

“hydraulic stress” and weathering efficiency which, in turn, can be related to the material strength 

decrease. The mean annual rainfall (ord_rain) was defined for each rain gauge and then attributed 

to the related Thiessen polygon. 

In pre-processing stages, correlations between features, or multicollinearities, were calculated and 

variables were systematically removed if a pairwise correlation exceed 75% (Mastrantoni et al., 

2023). 

Explanatory variables were sampled in landslide initiation points (LIPs) and random stable points 

after pre-processing. Stable areas were defined as non-landslide areas, which were used to train 

the statistical model. The LIPs and stable point datasets were balanced with a 35-65% ratio of 

unstable and stable points, respectively based on the need of maximising predictive ability on 

Positives but at the same time avoiding an excessive distance between the actual statistical 

population (i.e., actual proportion of unstable and stable areas in the whole territory) and the sampled 

training datasets, thus limiting an excessive False Positive Rate. The datasets were then split into 

80% for training and 20% for validation. The susceptibility function was trained and tested on 10 K-

fold random partitions of the dataset to estimate the accuracy of the predictive model and avoid 

selection bias. 

Given the spatial concentration of landslide effects in the Monte Mario area caused by many 

landslides occurred during the 31 January - 2 February 2014 meteorological event, the landslide 

LIPs training dataset was split into two different portions, where the first represents the generic 

catalogue of instabilities that happened before and after this intense event and the second “nested” 

subset composed by the 2014 event-inventory. Since previous studies remark the exceptionality of 

this rainfall event in the NW sector of the city (Alessi et al., 2014), the above-mentioned subsets 

represent the result of ordinary (on an average basis) and rare rainfall events, respectively. On the 

generic landslide database, a single predictive susceptibility function was trained. To derive the most 
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appropriate predictive function, we tested several ML models, among which the Extra Trees 

Classifier (Guerts et al., 2006) implemented in the Scikit-learn package (Pedegrosa et al., 2011) 

outperformed the other ones in the study area (Mastrantoni et al., submitted). The Extra Trees 

(abbreviation for extremely randomised trees) is an ensemble supervised machine learning method 

that fits many randomised decision trees on various sub-samples of the dataset and uses averaging 

to improve the predictive accuracy and control over-fitting. In Extra Trees, randomness goes one 

step further in the way splits are computed. It does not come from bootstrapping of data but rather 

comes from the random splits of all observations. 

The Extra Trees algorithm creates many decision trees, but the sampling for each tree is random, 

without replacement. This creates a dataset for each tree with unique samples. A random subset of 

candidate features is used for each tree. The most important and unique characteristic of the Extra 

Trees is the random selection of a splitting value for a feature. Instead of calculating a locally optimal 

value using Gini or entropy to split the data, thresholds are drawn randomly for each candidate 

feature, and the best of these randomly generated thresholds is picked as the splitting rule. This 

makes the trees diversified and uncorrelated. With this approach, both bias and variance are 

handled. The former is reduced by using the whole original sample instead of a bootstrap replica. 

The latter is dwindled by randomly choosing the split point of each node. Since splits are selected at 

random for each feature in the Extra Trees Classifier, it is less computationally expensive than a 

Random Forest (Breiman, 2001). 

Validation of susceptibility product was also performed on training and test datasets expressing the 

predictive capability of the model by Confusion Matrixes and resulting Receiver Operating 

Characteristic (ROC) curves as well as other metric performance indicators. 

Furthermore, considering the value that the susceptibility prediction assumes in correspondence with 

the LIPs, detection rate curves (DRCs) were constructed, which represent the cumulative percentage 

of LIPs correctly predicted for increasing susceptibility values, regarded as the separation threshold 

between the true and false positive condition of each LIP. This method allows setting susceptibility 

thresholds corresponding to predetermined detection rates, driving the discrete classification of the 

susceptibility values. In this paper, to avoid coarse “expert” choice on landslide susceptibility value, 

fixed thresholds on landslide detection rate were chosen, adopting percentile values of landslide 

detection equal to 50, 75, 95 and 97.5% to divide very low, low, moderate, high, and very high 

susceptibility classes. Specifically, two DRCs were built: one using only the LIPs of the 2014 event 

(recognized as extraordinary) and the other with the remaining dataset (which mainly includes events 

triggered by ordinary rainfall). To attribute temporal recurrence to such scenarios and transpose 

them into hazard, approaches of data integration have been adopted looking for the best definition 
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of the landslide hazard with the available data, shifting from its theoretical definition to operative 

practices of use for stakeholders. 

2.3.3. Temporal component of the landslide hazard 

Once defined the landslide susceptibility from the generic catalogue of landslide effects, further steps 

in the definition of the landslides hazard have been addressed, facing it through a multi-stage and 

multi-level approach, consistent with the quality and quantity of available data. 

The analysis of landslide frequency has been addressed by means of i) a preliminary evaluation of 

landslide event recurrency on the few dated landslides; ii) quantification of large-scale hazard 

descriptors (Corominas et al., 2014); iii) detailed quantitative attribution of Return Periods (RPs) of 

the rainfall events that caused landslide triggering basing on a hydrological analysis, hereafter 

discussed. 

Given the composition of the above-mentioned landslide database with both generic and event-

based inventories, the here-defined resulting landslide susceptibility product can be referred to as 

much as common “ordinary” scenarios as to the severe and non-ordinary conditions experienced in 

2014. 

2.3.3.1. Preliminary estimation of landslide recurrence 

Temporal hazard was preliminary approached by exploiting the available dating’s information 

retrieved in the catalogues. Selecting landslides of same type featured by multiple reactivations, a 

gross estimation of the RP was attempted, defining the temporal range between the first and the last 

(re)activation. Because of the reduced number of dated landslides events and the presence of 

replicas, the number of effects that experienced multiple reactivations was defined in 17 out of the 

471 total landslides. 

2.3.3.2. Large-scale quantitative hazard description 

Since we face off with large-scale analysis for advisory purposes, low-resolution hazard descriptors 

at a regional scale can be defined according to Corominas et alii (2014) based on indices defined as 

landslide density and frequency or landslides/year/km2. For this purpose, Thiessen polygons were 

delineated for rain gauges featured by a decades-wide time series, to spatialise the area of interest 

of each weather station (Figure 2.1). Hence, dated landslides of the same mechanism were 

considered to evaluate temporal recurrence within Thiessen polygon and to relate it to the spatial 

landslide density.  

Landslide effects with multiple reactivations, i.e., effects were more than one date of rainfall 

associated, give us the opportunity to calculate the period ΔT between the first and the last rainfall-
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induced landslide and the number of reactivations of landslides (n) within each Thiessen polygon, 

so the ratio n/ΔT provides the minimum landslides temporal frequency. From these results, a 

synthetic hazard descriptor (Hd) for each Thiessen polygons was calculated as the ratio of number 

of landslides activations over ten years. 

2.3.3.3. Evaluation of RPs of landslide trigger rainfall events 

The most advanced insights on landslide hazard were retrieved from the analysis of the recurrence 

of the landslide triggering factors by analysing the intensity and RPs of the main rainfall events that 

caused ground instabilities by proper hydrological analysis.  

To this aim, a hydrological analysis on rainfall regime was performed by choosing reference 

pluviometric stations considering the time span of the historical record and the time sampling of the 

rainfall series (daily or hourly data). An overall time period of 70 years was considered, despite the 

analysis of rain gauge stations data revealing a reduced continuity in data logging and a time 

coverage often reduced to several years, thus not sufficient to perform rigorous hydrological analysis. 

For this reason, only weather stations with a dataset equal to or broader than ten years were 

adopted, despite at least 20 years should be considered in the analysis for reliable results (Serrano, 

2010). The available pluviometric stations are reported in Appendix B.  

A statistical analysis of maximum rainfall intensity data was performed on daily and hourly data, to 

evaluate the return period of heavy rainfalls for different durations. The hydrological–statistical 

analysis of the maximum values requires the cumulative rainfall at different time intervals to calculate 

the rainfall probability curves. Daily and hourly rainfall data were used to calculate cumulative 

rainfalls over the territory of the municipality of Rome for time stages of 1, 2, 5, 10, 20, 30, 60, 90,120 

and 180 days, and 1, 3, 6, 12, and 24-hours, respectively. The generalised extreme value (GEV) 

distribution (Jenkinson, 1955) was adopted, which follows the following function: 

  [Eq. 2.1] 

Where μ, σ, and ξ are referred to as the location, scale, and shape parameters, respectively. These 

parameters have been defined by applying the probability-weighted moments (PWM) method 

(Hosking et al., 1985) based on the maximum values of the above-mentioned rainfall time periods 

available from the dataset. First, the RPs of each considered variable were obtained by inverting the 

probability function. Then the obtained cumulative rainfall value was fitted by a power law distribution 

to build the rainfall probability curves. 
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For every certified landslide (i.e., with a defined date), the daily rainfall value recorded at the closest 

rain gauge was attributed to infer the range of potential RPs of the intense rainfall causing instabilities 

and, indirectly, the RPs of the landslide event.  

We used the cumulative rainfall values recorded at the relevant rain gauge in correspondence of the 

date of landslide occurrence, and then we compared these values with both hourly and daily 

probability curves. Where the hourly rainfall data or timing of landslide occurrence lacks, we referred 

to the total cumulative daily rainfall, inferring a posteriori the possible range of admissible RPs if 

concentrated rainfalls (within 3 hours) or distributed precipitations (over 24 hours) are considered. 

Such an inference is needed due to the absence of the time of occurrence of the landslide events, 

which makes the precise attribution of RP impractical. Based on the rainfall linked to the dated 

landslides with respect to the rainfall probability curves, it was possible to establish the order of 

magnitude of the RPs of each landslide available in the record.  

Despite the effort to gain quantitative information about the temporal recurrence of landslides and 

face off with the definition of landslide hazard, this method is threatened by the scarcity of dated 

landslides and the intermittent recordings of several rain gauges. 

2.3.4. Persistent Scatterer Interferometry 

The landslide hazard quantification in Rome was completed by evaluating the areas where 

probability can be considered unitary, since they are experiencing slope movements to date and 

should be prioritised in the risk analyses. Such areas of interest have been identified using satellite 

remote sensing technique, and the InSAR (Interferometric Synthetic Aperture Radar) technique 

(Massonnet & Feigl, 1998; Hanssen, 2005). Such analyses provided information on the distribution 

of ground movement, giving valuable insights into assessing the state of activity of the detected land 

movements and additional information on possible landslide reactivations of pre-existing landslides. 

Furthermore, the contribution of such relevant data can integrate the static landslide susceptibility 

assessment, providing dynamic information on landslide activity. For these purposes, the Advanced 

Differential SAR Interferometry (A-DInSAR) approach (Ferretti et al., 2001; Kampes, 2006) was 

applied to the study area, by the processing of C-band Sentinel-1 (European Space Agency, ESA) 

SAR images, in ascending and descending orbital geometries, covering the Rome municipality area. 

The acquired images cover a time span of about five years (from October 2014 to April 2019) and 

have been processed through the Persistent Scatterers Interferometry analysis (Ferretti et al., 2000; 

2001; Kampes, 2006; Crosetto et al., 2016), that is optimal for detecting deformations in an urban 

environment, where the density of permanent scatterers (PS) is generally high.  

The resulting PSs have been filtered after by applying a high temporal coherence threshold (> 0.6). 

The results are represented by the velocity of displacement maps (mm/yr) for both ascending and 



CHAPTER 2: LANDSLIDE HAZARD ASSESSMENT 

36 

descending datasets, where the movement velocity is measured along the satellite line of sight 

(LOS). These results were post-processed by setting specific and reliable thresholds to identify areas 

experiencing slope movement and select the “landslide candidates” in the PSs velocity maps. Such 

thresholds were fixed on velocity values of PSs (velocity < -2.5 or > +2.5 mm/yr) and PSs location, 

considering only PSs in areas with slope > 5°. 

2.3.5. Data Integration 

In order to perform an accurate and reliable landslide hazard analysis for the city of Rome and shed 

lights on the most critical sectors in terms of first-generation landslides and state of activity of existing 

ones, approaches of data integration can be used, combining the results of spatial and temporal 

hazard, adding on its evidence of slope movements derived by PSI analysis. 

The raw attribution of landslide recurrence in each Thyssen polygon has been combined with its 

landslide susceptibility, thus attributing it to the highest susceptible areas, zoning the territory by 

landslide hazard indicators. Specifically, from the above-described susceptibility analysis, a landslide 

Hazard Index (Hi) was defined combining, cell-by-cell, the susceptibility level with the classes values 

of the large-scale hazard descriptors (Hd) expressing the mean landslide temporal recurrence in 

every Thiessen area. Hi has been thus defined as: 

Hi = Susceptibility / (1 – Hd) 

The results of Hi has been after reclassified to rank the hazard in view of final user requirements. In 

this paper a 5-classes reclassification based on Natural Breaks was adopted. Then, potential 

landslide source areas have been extracted within the high and very high susceptibility classes 

defined considering the intensity-based DRC classification. 

Hence, if two intensity scenarios are considered and two DRC-based classification adopted, it is 

possible to obtain hazard maps concerning different intensity levels, delineating potential landslide 

source areas reactivable under different ranges of RPs, achieving a first robust landslide hazard 

assessment in Rome. 

2.4. Results 

2.4.1. Inventory review and dataset preparation 

From the collection and comparison of the available databases, we noticed a certain degree of 

fragmentation of information, such as lack of heterogeneity and consistency, record repetition and 

different attributes related to landslide effects. The differences are evident also about number of 

elements, publication date (from 1995 to 2018), description of the type of movement (if present), 
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updating, purposes and scale of observation (from national to local). Moreover, the data associated 

with the landslides are not homogeneous for what concerns temporal information. Certified (i.e., 

dated) landslides are available only in the "Frane Roma" ISPRA Project. After the data collection, 

the geometry of the databases also appears heterogeneous: within the same database, shapefiles 

can vary from points or polygons to points-lines-polygonal vectors. However, many inventories use 

a single geometry as a comprehensive outline for source transit– and deposit areas. 

According to all the available sources, the uniformed DB is composed by as many points as the 

filtered landslides (566), including earth slope instabilities (earth slides and shallow i.e., soil slip) 

movements, rockfalls and remaining n.d. effects. Most of the landslides in the city of Rome occurred 

in the last decades (Figure. 2.2), with slope failures that have almost always been associated with 

heavy rainfall between 2008 and 2014 (67 landslides out of the total occurred during the storm of 31 

January 2014; Alessi et al., 2014). 

 

Figure 2.2: a) Distribution of landslide effects available in the catalogues over the territory of Rome. b) 
Distribution of LIPs and Stable Points vs Slope angle adopted in the susceptibility model. 

Based on the reviewed catalogue, the dataset of LIPs to be considered for the susceptibility analysis 

was defined, accounting for shallow earth failure mechanisms only, hereafter considered as a unique 

ensemble. Test of validation of the synthetic vs original LIPs was performed through the evaluation 

of similarity of the slope angle distribution between synthetic and original LIPs (Figure 2.2). CS and 

KS tests resulted in scores of 0.666 and 0.923, respectively. 

Hence, the final point-based landslide database is represented by 1099 LIPs (289 original and 810 

synthetic), excluding the 67 related to the January 2014 extreme rainfalls. 

2.4.2. Spatial component of the landslide hazard 

The here conducted analysis allowed us to point out the landslide susceptibility to earth slide and 

shallow failures in the municipal area or Rome. The continuous landslide susceptibility map shown 
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in Figure 2.3 reveals local maxima in the right embankment of the Tiber River, in the Monte Mario 

and Monte Ciocci ridges, where the M. Vaticano and M. Mario sedimentary units crop out. The 

portion of Rome west of the Tiber River shows higher susceptibility with respect to the eastern one 

because of the presence of tuffs and pyroclastic deposits of Sacrofano and La Storta unit from the 

Sabatini Volcanic District (Sottili et al., 2004). 

 

Figure 2.3: Continuous map of landslide initiation susceptibility of Rome area according to the adopted ML 
model. 

The most important predisposing and preparatory variables can be identified in the Feature 

Importance permutation graph in Figure 2.4, where slope angle and relative relief (rrelief100) are the 

most conditioning features, which showed a Pearson correlation coefficient equal to 0.7, thus 

acceptable since lower than the threshold of 0.75 recommended by Kuhn and Johnson (2013). 

Relevant importance can be attributed to lithology and land use types as well as to the distances to 

rivers and permeability limits, which can be considered a proxy of hydraulic circulation and the 

presence of temporary water tables. A marked preparatory role was played by the predictive variable 

of the annual rainfall, whose distribution can be considered a factor capable of controlling soil 

moisture and a stressor for slope stability. 
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Figure 2.4: Feature importance resulting from the Extra Trees Classifier model. 

The quantification of susceptibility performance revealed on the test dataset by the confusion matrix 

and resulting ROC curves highlighted the very high quality of the function in predicting both stability 

and instability (Figure 2.5), especially after the definition of the hyperparameters. An Area Under 

Curve (AUC) value of 0.96 was found, with excellent specificity and sensitivity. 

Afterwards, the susceptibility map was the reclassified according to the DRCs extracted with respect 

to subsets of landslides available in the catalogue and referrable to the 2014 event and the rest of 

the catalogue. From this point, two different scenarios were considered adopting the two 

reclassification criteria, that account for the different susceptibility conditions referrable to events of 

different intensity.  

Two different detection rate curves were thus extracted from the dataset, including LIPs of the 2014 

event and the other antecedent 2014 (pre-2014 in Figure 2.6), to fix susceptibility thresholds under 

fixed detection rates. Such thresholds drove the discrete classification of the susceptibility in five 

classes. For example, moderate to very-high susceptibility classes moved from susceptibility equal 

to 0.27 to values greater than 0.65 if the rare scenarios are considered (Figure 2.6). 

The spatialisation of the so-defined susceptibility classes points out how Monte Mario and Monte 

Ciocci hills face a limited increase in landslide susceptibility when moving from the ordinary to the 

rare scenario, that reflected in limited variations of the areal extension of the high and very high 

susceptibility classes (Figure 2.7). Larger differences can be found in the right embankment of the 

Tiber River, where wide areas fall into the moderate and high classes given the reduction of the class 

breaks from 0.65 to 0.27 (Figure 2.7). 
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Figure 2.5: ROC curve defined by the confusion matrix on the testing dataset. AUC, Precision, and Recall are 
also reported. 

 

Figure 2.6: Detection rate curves obtained on the susceptibility results considering LIPs before the 2014 
meteorological event and dated 31/01/2014 drive the discrete classification of the susceptibility. 

 

Figure 2.7: Classification of landslide susceptibility for earth failure mechanism in the municipal area of Rome 
according to detection rate thresholds defined for ordinary scenarios (left) and rare events (right) like the one 
that occurred in 2014. 
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The moderate, high, and very high classes in the ordinary cover a percentage of the area of 3.73%, 

0.32%, and 0.10%, respectively, which increase up to 10.50%, 1.64%, and 0.37% in the rare 

scenarios. Adopting the two different classifications, it is possible to consider two different landslide 

intensities (intrinsic in the event-based inventory) and refer to the susceptibility analysis to 

pluviometric events with increasing RPs. 

From the obtained results it is possible to state that limited differences among the two intensity 

scenarios can be found. This similarity relies on the common average size of the landslides 

inventoried in the generic and 2014-event catalogues, as well as on the similarity of landslide 

triggering pluviometric inputs. For these reasons, a univocal landslide scenario and a resulting map 

can be considered valid for depicting landslide hazard in Rome. 

2.4.3. Temporal component of the landslide hazard 

With the aim of associating RPs to the different zones of the territory, a preliminary definition of 

landslide recurrency was approached by the analysis of temporal range among subsequent 

occurrences of landslide-triggering meteorological events; first evidence from the few reactivated 

landslides came out by the preliminary attempts: on the 17 reactivated effect, the return period 

ranges between 1 and 25 years with a mean value of 5 years. 

The large-scale analysis on dated landslides, which uses hazard descriptors, pointed out the higher 

landslide density in the W and NW sector of Rome for shallow and earth slide failure mechanisms. 

The landslide density is in a strict relationship with the mean annual and maximum daily rainfall 

(Figure 2.8). 

The resulting landslide frequency fairly matches the one obtained by the preliminary analysis on 

return periods of reactivated (and multi-dated) landslide, whose values range from 2 to 10 years. 

In-depth information on temporal hazard has been also derived from the hydrological analysis of 

daily and hourly rainfall data, resulting in a series of rainfall probability curves enclosed in the 

Appendix B. Some of these curves are also reported in Figure 2.9. The here-conducted analysis 

allows to evaluate the cumulative rainfall for every pluviometric station assuming different RPs, 

updating the analysis carried out by Alessi et al. (2014) to the end of March 2021, and confirming 

that the January 2014 storm is characterised by RPs up to 100 years. 

Based on the few landslides featured by a certain date and assuming as critical rainfall the 

cumulative, daily rainfall fallen until the landslide date, it is possible to qualitatively evaluate the range 

of RPs of the triggering rainfall by comparing the daily and hourly cumulative rainfall obtained from 

the GEV analysis (Figure 2.10). 
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Figure 2.8: a) Mean annual rainfall in Rome according to rain gauges with a minimum time coverage of 20yrs. 
b) spatial density (landslide/km2) of shallow landslides and earth slides over the total area of Rome. c) landslide 
temporal return period (n. of activations/10 years) of shallow landslides and earth slides over the period from 
first to last dated landslides. d) synthetic descriptors of hazard (Hd – n. activations/10 years/km2). 
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Figure 2.9: Exemplary rainfall probability curves obtained in the Municipality of Rome by the GEV analysis on 
daily rainfalls. The total of the processed weather station is provided in Appendix B. 
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Figure 2.10: Extraction of range of RPs from the comparison between daily rainfall and results of the GEV 
analysis derived from daily and hourly rainfall records. 

It is possible to note that in the municipality of Rome, the pluviometric events responsible for landslide 

triggering are featured by RPs below 2 years for most of the rainfall-induced effects. On the contrary, 

RPs for January 2014 and December 2008 rainfall events that, resulted in RPs always above 10 

years.  

In detail, the graphs in Figure 2.11 show the results of the rainfall data processing plotted on the 

rainfall probability curves. It is evident that TR < 2 values prevail for rainfall-induced effects that 

occurred before January 2014, as well as the large amount of "No Data" testifies the lack of rainfall 

record (Figure 2.11b). For ordinary rainfalls, instead, the comparison with rainfall probability curves 

obtained by GEV highlighted that more than 60% of dated landslides are associated with RPs among 

2 and 10 years (Figure 2.11b). The landslide that occurred on 31/01/2014 significantly show the 

exceptionality of the event, with more than 25% of the landslides with RP values between 10-50 

years and complementary ones ranging between 50 and 100 years (Figure 2.11c).  

This confirms the exceptionality of the 2014 rainfall event, as stated by Alessi et al. (2014), that, 

however, reflects in average sized landslides. Furthermore, they retrieved its uneven areal 

distribution and the peak of rainfall in the NW sector of Rome, which is the most susceptible and 

where the higher landslide density and frequency exist (Figures 2.1, 2.3, 2.8). 

Given the results of preliminary evaluation, hazard descriptors at large scale and detailed 

hydrological analysis, site specific landslide scenarios can be defined, attributing an average 

landslide intensity, and associating temporal attributes to the static susceptibility. 
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Figure 2.11: Pie chart showing the percentage of landslides with different RPs considering the entire database 
(left), before the 2014 event (centre), and during January 2014 (right) meteorological event. 

 

2.4.4. Persistent Scatterer Interferometry 

The complementary interferometric analysis carried out and the resulting A-DInSAR velocity maps 

referred to the period October 2014 - April 2019 (Figure 2.12), represents the first steps in the 

dynamic update of the static landslide susceptibility map. 

The detected clusters of PSs affected by displacement allowed us to identify a total of 19 moving 

areas featured by slope angle >5° (only 3 clusters are in areas with slope < 10°). It is worth noting 

that the most significant part of the urban slopes, where the highest slope angles and susceptibility 

values were found, such as those of Monte Mario, are generally covered by vegetation that limits the 

possibility of retrieving PSs. 

A-DInSAR analysis identifies the areas where a slope movement is taking place during the analysed 

time span (landslide candidates) and reveals the active deformation phenomena. The comparison 

of the results of the PSI analysis with the landslide susceptibility map highlights the convergence of 

the landslide candidates and the area more susceptible to landslides, as well as potential source 

areas in the very high susceptibility classes (Figure 2.13). The PSI results were also compared with 

the lithology outcropping in the study area (scale of 1:5000). Different clusters of PSs in motion are 

found in correspondence with tuffaceous and clayey lithologies or generally in high susceptibility 

areas (Table 2.3). 
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Figure 2.12: PSs map and moving on slopes clusters extracted from PSI analyses on Sentinel-1 images from 
October 2014 to April 2019. Ascending orbital geometry is taken as an example. 

Table 2.3: List of the areas of interest resulting by combination of susceptibility analysis and Persistent 
Scatterer Interferometry. 

Area of Interest PS Velocity (mm/year) Susceptibility Class 

Via Simone Simoni 3-5 5 

Via Fedro 3-5 5 

Viale Platone 5-10 5 

Passeggiata del 

Gianicolo 

3-5 5 

Via Misurina 5-10 4 

Via F. Scaduto – Villa 

Veschi 

5-10 5 

Via Trionfale – Via Igea 3-5 2 

 

2.4.5. Data Integration 

Thanks to the integration of spatial susceptibility with temporal attributes resulting from the definition 

of hazard descriptors or hydrological analysis, a first landslide hazard quantification results from the 

reclassification and hierarchization of susceptibility, according to their intensity scenario and mean 

recurrency of the triggering input.  
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Landslide susceptibility results were combined and integrated with temporal attributes derived from 

hazard analysis on the subset of dated landslides. Hazard Index (Hi) Map pointed out the maximum 

hazard in the ridges of Mt. Mario and Mt. Ciocci, where the maximum value of hazard was derived, 

strengthening the results of spatial hazard analysis. Similar impact can be assessed in the 

susceptible slopes falling in the Roma Flaminio, Acqua Acetosa and Roma Nord areas, where 

relatively higher Hd were found. The Hazard Index classification obtained and compared with the 

reclassified susceptibility map was reported in Figure 2.13. 

 

Figure 2.13: Susceptibility (left) and Hazard Index Map (right) resulting from the hazard analysis in the 
Municipality of Rome. 

2.5. Discussions 

Multivariate statistical analysis, including machine learning models, can identify landslide patterns 

by analysing various input data, such as an ancillary landslide database. However, data quality is 

often inadequate due to incomplete, heterogeneous, and erroneous data, leading to biased 

susceptibility maps (Steger et al., 2017). Spatial heterogeneity in DBs has proved to cause bias in 

landslide susceptibility maps (Loche et al., 2022). Open-source landslide inventories may have 

erroneous geometries and positional errors, resulting in sparse and unreliable data (Steger et al., 

2016). To improve reliability, low-accuracy datasets must be integrated adequately in terms of quality 

and quantity (Mastrantoni et al., 2022; Titti et al., 2021). 

The study involved a GIS- and ML-based combined approach to collect, check, cross-validate, and 

integrate open-source landslide inventories into a single database. However, the number of LIPs 

was too low to train reliable ML models, so we developed a methodology to derive synthetic LIPs. 

This helped to improve the overall consistency of the original database and allowed for more 

accurate ML model training. 
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Spatial hazard was resolved by means of ML approaches, providing the first advanced landslide 

susceptibility zoning useful at a statutory level. From the continuous landslide susceptibility map, a 

discrete reclassification was performed by means of DRCs to encompass the different intensity and 

account for different intensity scenarios. Results pointed out how similar is the areal extension of the 

two classifications within high and very high susceptibility classes. These outcomes rely on the most 

common type of landslides in Rome, which are mainly shallow (soil slips and translational slides) 

and comparable in volumes (from some cubic meters to several tens of cubic meters). On these 

assumptions, we can consider the obtained hazard maps as landslide scenarios of a specific 

intensity and a certain pluviometric event (i.e., a certain number of landslides simultaneously 

triggered during a rainfall event) rather than a uniform hazard analysis. Landslide scenarios 

associated to ordinary and rarer pluviometric input were evaluated, assuming the temporal 

information either from preliminary evaluation on landslide reactivation recurrency or from large scale 

hazard analysis or detailed hydrological analysis. These data help us to integrate the spatial hazard, 

by attributing to the different areas of the municipality of Rome average RPs and Hazard descriptors. 

Given the low number of dated landslides, more detailed analysis on landslide triggering conditions 

was not approached.  

In this study, we constrained order of magnitudes for ordinary landslide frequency, as the estimations 

are based only on the RPs of the recurrent landslides in which multiple dates are available. To 

overcome such limitations and provide RP and critical rainfall intensity ranges for the few dated 

landslides, the antecedent rainfall registered before the event was compared with the standard 

rainfall probability curves obtained for every pluviometric station. Despite the scarcity of data, 

landslide frequency in Thiessen polygons and comparison between dated landslides and rainfall 

probability curves provided similar results.  

Despite the effort to gain quantitative information about the temporal recurrence of landslides and 

face off with the definition of landslide hazard, this method is intrinsic limited by the scarcity of dated 

landslides and the intermittent recordings by some of the rain gauges. The lack of detailed 

information from DBs mainly affects the temporal hazard and minorly the spatial hazard.  

Afterwards, potential landslide source areas were extracted from high susceptibility pixels, 

associating temporal attributes, and ranking the hazard zones (Figure 2.14).  

For landslide risk management purposes and prevention of landslide risk in a highly urbanised area 

like Rome (Italy), the definition of spatial and temporal hazards and their variations over time can be 

crucial, however detailed multi-annual landslide inventories are a necessary and essential fact 

(Zieher et al., 2016; Fang et al., 2022). 
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The here-released product can be hence integrated either in case of availability of updated landslide 

inventories (e.g., insertion of new events and/or refinement of thematic maps), or additional and/or 

higher-resolution ancillary data become available. This updating process can be followed by 

adopting defined protocols, aimed at testing the validity of susceptibility models or training new ones. 

In this sense, cloud-based solutions, tools, or routines can be of help to both geoscientists and 

administrators (e.g., Titti et al., 2022). 

By the proposed approach we provide a way to distinguish different landslide hazard scenarios in 

Rome based on the fragmented and incomplete data. The reclassification of susceptibility by DRCs 

also pointed out as landslides in Rome are featured by common intensity (i.e., basically given by 

landslide size). Furthermore, the spatial susceptibility was joined with the outcomes of the 

hydrological analysis, which allow linking such scenarios to RPs of 5-10 years for an ordinary rainfall, 

and of 20-50 years for rarer events (like the 2014 event).  

In the hazard map so defined, it is possible to locate on map and extract potential source areas for 

first-time landslides according to their spatial probability, that increase in intensity (i.e., area) the 

lower is their associated hazard. On these source areas, an additional classification can be 

performed to differentiate with hazard attributes the proneness to landslides of specific areas of 

interest (Figure 2.14). 

 

Figure 2.14: Ranking of Hazard in the potential source areas extracted by High and Very High Susceptibility 
classes. Locations of landslides sites are also reported. 
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The extraction of potential source areas can be done by an arbitrary choice or supervised procedures 

from high to very high susceptibility classes, or, precautionarily, considering a high rate of landslide 

detection (e.g., assuming as potential source areas also lower susceptibility values). Alternatively, 

potential source areas for shallow or translational sliding can be identified over portions of the slope 

not yet failed and extracted by fixing a defined percentile in the distribution of susceptibility values 

within class 5 (max susceptibility). For a complete overview of the hazard condition in the urban area 

of Rome, first time occurrence hazard map must be overlayed with location of existing landslides, 

where the hazard in unitary and landslide reactivations must be expected (Figure 2.14). In these 

hazardous areas, the static landslide susceptibility was linked to the PSI analysis: such an integration 

allowed to locate and update, in a dynamic way, zones of ground deformations potentially related to 

landslides. This analysis consists in a second order check on the current state of activity that allowed 

to quantify the rate of activity within potential landslide source areas. Thus, the multitemporal 

analysis allowed to convert the static product into dynamic thematic layers, able to steer the risk 

managers and infrastructure stakeholders towards the most hazardous sectors in the urban area 

and size the intensity of the gravitational processes (Esposito et al., 2021). According to the location, 

distribution and displacement characteristics of the observed PSs, some interesting evidence of 

slope movements were collected, at least where the PSs coverage allowed it (not in vegetated 

slopes). Data deriving from the European Ground Motion Service (EGMS) platform by Copernicus, 

will also allow a dynamic update on an annual time scale of the state of activity to rank the most 

critical situations (i.e., slopes with actual ongoing deformations) among the landslide-prone areas, 

as suggested for Sinkholes in Esposito et alii, 2021. Furthermore, advances in PSI analysis can 

availing of COSMO Sky-Med (ASI) images that ensure higher resolution and spatial coverage to 

catch in detail landslide process. For these purposes, approaches that integrate different 

constellations can be adopted by data fusion algorithms or by adopting advanced photo-monitoring 

approaches (Caporossi et al., 2018). 

2.6. Conclusions 

This paper presents the results of a study aimed at defining the landslide hazard in the municipal 

territory of Rome, with the dual objective of: i) providing a first "integrated" product useful for the 

prediction - at least in terms of spatial hazard - of first-generation landslides, through the 

systematization of all the knowledge available for the area, ii) identifying methods which, starting 

from an available database that is not optimal in terms of quality and quantity, would allow to obtain 

reliable results for implementation on an operational level, e.g. land management by policy making 

institutions. 

As for the first objective, this study made it possible to highlight and quantify the potentially critical 

conditions for landslides affecting the Roman area. This geohazard factor, although considered in 
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the official planning documents, has always been strongly underestimated with respect to the actual 

risk conditions: in this sense, only 27, already existing landslides are officially "certified" as situations 

of potential risk. 

At the same time, the work carried out allowed us to develop a methodological approach capable of 

exploiting the available data. The review of the DB and inventory boosting made it possible to 

optimize the input information, while the application of ML techniques and the comparison between 

the results allowed us to select high performance susceptibility functions. The integration of 

historical-statistical analyses on the few dated landslides and on the recurrence of triggering factors 

has also made it possible to define the temporal hazard, at least in terms of average frequency of 

occurrence. The result of the above-mentioned workflow is an integrated map which identifies areas 

of concern classified based on the combination of spatial hazard with high reliability and expressed 

in quantitative terms and an expected temporal frequency with lower reliability and measured in 

terms of "qualitative-quantitative" estimates. The here-defined components of the landslide hazard 

fulfil the requirements of advisory purposes, thus providing non-binding strategic advice to the 

management of the territory to address further (and focused) detailed studies in areas where the 

River Basin Authority could place impeding or prescriptive constraints, based on the severity of the 

instability. As a matter of fact, the results of this study have already been presented to and shared 

with local decision-makers and the River Basin Authority of the Central Apennines, starting dedicated 

interlocutions aimed at its operative transposition. Furthermore, in the frame of an ongoing research 

contract with the municipal Civil Protection this research represents the basis for the identification of 

sub-areas of high susceptibility where to evaluate rainfall thresholds for landslide initiation useful for 

Civil Protection Duties. The reported products point out the state of activity and the framework of 

landslide proneness for shallow and earth slide failure mechanisms, representing the operative 

products supporting decision-makers in the management of criticalities in the territory for an aware 

setup of monitoring solutions and/or prioritization of investments for prevention and mitigation. 
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Abstract 

Several landslide susceptibility (LS) maps at various scales of analysis have been performed 

with specific zoning purposes and techniques. Supervised machine learning algorithms (ML) 

have become one of the most diffused techniques for landslide prediction, whose reliability is 

firmly based on the quality of input data. Site-specific landslide inventories are often more 

accurate and complete than national or worldwide databases. For these reasons, detailed 

landslide inventory and predisposing variables must be collected to derive reliable LS products. 

However, high-quality data are often rare, and risk managers must consider lower-resolution 

available products with no more than informative purposes. In this work, we compared different 

ML models to select the most accurate for large-scale LS assessment within the Municipality of 

Rome. The ExtraTreesClassifier outperformed the others reaching an average F1-score of 0.896. 

Thereafter, we addressed the reliability of open-source LS maps at different scales of analysis 

(global to regional) by means of statistical and spatial analysis. The obtained results shed light 

on the difference in hazard zoning depending on the scale and mapping unit. An approach for 

low-resolution LS data fusion was attempted, assessing the importance of the adopted criteria, 

which increased the ability to detect occurred landslides while maintaining precision. 

Keywords: Landslide Susceptibility; Machine Learning; Map Scale; Data Fusion; Rome. 
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3.1. Introduction 

Shallow landslides are slope instabilities which involve the most superficial deposits, mainly 

colluvium, rather than bedrock formations (Baeza and Corominas 2001; Bordoni et al. 2021). They 

are most frequently triggered by extreme rainfall and can be densely distributed across small 

catchments (Hungr, Leroueil, and Picarelli 2014).In urban areas, even in case of small-sized, shallow 

slope failures, their occurrence as spatially distributed clusters as frequent as their triggering rainfall 

event is capable of tearing the physical structure as well as the network of socio-economic, cultural, 

material, and immaterial relations that make up the life of cities (Iadanza et al. 2009; Salvati et al. 

2010; Trigila, Iadanza, and Spizzichino 2010; Iadanza et al. 2013; Trigila, Iadanza, Munafò, et al. 

2015). This is due to their rapid or extremely rapid movement and intrinsic damage potential both in 

terms of human and economic losses (Trigila, Iadanza, Esposito, et al. 2015). The recent expansion 

of urban areas entails a significant soil cover consumption and demands correct and sustainable 

urban planning to face off with the delineation of landslide-prone areas. Human pressure has 

modified geological, geomorphological, and hydrological features of original terrains through 

centuries, acting on topography, stratigraphy, and even geotechnical properties of the subsurface, 

by developing networks of superficial and underground structures, modifying or obliterating water 

streams (Luberti et al. 2018). Therefore, the importance of the analysis and evaluation of hazard 

sources for risk mitigation actions in urban areas is evident. Since the 1980s, the role of urban 

planning in the knowledge and prevention of landslides has expanded considerably. Nowadays, 

landslide hazard analysis is usually mandatory to approach proper land use planning and 

management (Mateos et al. 2020). Nevertheless, in some cases regulatory plans lack detailed 

thematic mapping of geohazard-related data (Cui et al. 2019) despite cities are frequently affected 

by landslides and exposed to high risk (Kiersch 1964; Crosta et al. 2005; Mazzanti and Bozzano 

2011; Martino et al. 2019; Tonini et al. 2022). 

Landslide hazard management can be developed at different spatial scales and with different 

methods with increasing degrees of sophistication and different zoning purposes (Fell et al. 2008), 

which can be informative or advisory up to statutory and regulatory or devoted to engineering design 

(Flentje et al. 2007; Cascini 2008; Corominas et al. 2013), whose reliability is strongly based on 

quality and completeness of the available landslide catalogues. 

Several open-source landslide inventories exist worldwide; however, the amount and quality of 

available data may be inadequate to build accurate large-scale predictive models. Open-source 

landslide inventories may have incomplete spatial and temporal information and heterogeneous 

features, which affirms the need to integrate them to gain reliability (Mastrantoni et al. 2022). 

Alternatively, recent developments have shown the potential of SAR satellite imagery for 

multitemporal mapping of landslides (Bhuyan et al. 2023). 
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To achieve a proper prediction of landslide susceptibility (LS), landslide inventory data must be 

processed together with predisposing and preparatory factors to model hidden patterns, thus 

suggesting new potentially unstable slopes (van Westen, Castellanos, and Kuriakose 2008; 

Corominas et al. 2013; Vijith et al. 2014; Basu and Pal 2018). In the past decades, various 

approaches to determine the degree of LS have been proposed and applied by employing heuristic, 

data-driven and physically based methods for various types of landslides at different observation 

scales (Brabb 1984; Soeters and Van Westen 1996; Guzzetti et al. 1999; Fell et al. 2008; Ngadisih 

et al. 2014; Günther et al. 2014; Kainthura and Sharma 2022; Luo et al. 2022). Among data-driven 

approaches, multivariate analysis is one of the most sophisticated techniques for LS assessment. 

The spatial distribution of landslides is predicted through the estimation of the relationship between 

several independent predisposing factors and response variables, relying on the information on 

previous landslide and non-landslide samples (Persichillo et al. 2017; Su et al. 2022). A recent and 

important statistical improvement for LS studies is the advance in machine learning algorithms (ML). 

During the past two decades several models have been developed (e.g., random forest, support 

vector machines, artificial neural networks etc.). Although some methods performed better than 

others, no single method proved to be superior under all conditions (Reichenbach et al. 2018). 

Hence, it is not recommended to select the model in advance, but as many models as possible 

should be built and compared. Once obtained, the best-performing one is selected and used for 

landslide zoning purposes. 

Since several LS maps at medium to small scale are available, understanding their potentiality and 

that of their integration for the prediction of stable and unstable areas may become relevant when 

detailed products are not yet available. Therefore, two main topics were investigated in the following: 

i) the achievement of a reliable urban-scale assessment of landslide susceptibility in the Municipality 

of Rome and, ii) the comparison with each available map and with the products derived by their 

fusion.  

The exploiting of geospatial information through Machine Learning algorithms allowed us to estimate 

an urban-scale landslide susceptibility zoning (LSZ) for the Municipality of Rome, weighting and 

validating the different models adopted, selecting the most accurate one for the area of interest.  The 

obtained result is then compared with open-source, regional, national, European, and global scale 

susceptibility maps to quantitatively assess their similarity and accuracy, and therefore the overall 

reliability. The fusion of LSZ products based on different analysis unit and resolution was addressed 

to evaluate the information gain or loss of the obtained output. By merging the LSZ maps we wanted 

to assess whether the adopted data fusion criteria can lead to a significant increase in accuracy and 

reliability of small-scale maps (i.e., global to national) generally available worldwide, thus potentially 

rising their applicability from informative to at least advisory. 
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3.2. Case Study 

The study area corresponds to the Municipality of Rome, extending to about 1287 km2. The area 

within the city of Rome has experienced a series of geological processes over the last hundreds of 

thousands of years that encompass volcanic activity and relative sea-level changes that have 

influenced the erosional and depositional stages of the lower part of the Tiber River catchment. 

Sedimentary complexes deposited during the Plio-Pleistocene are constituted by both marine and 

continental deposits (e.g., clays, sands, and conglomerates of alluvial deposits) outcropping the hills 

on the right bank of the Tiber River. They are superimposed by an alternating succession of volcanic 

products and continental sediments. Volcanic products erupted about 600k years ago by monogenic 

and polygenic complexes of the Alban Hills and the Sabatini volcanic district. Recent alluvial deposits 

of the Tiber River and its tributaries have filled the valley reaching thicknesses of tens of meters 

(Bozzano et al. 2000; Funiciello and Giordano 2008; Parotto 2008). The left and right embankments 

of the Tiber River valley have distinct geological units, thus resulting in different responses to natural 

and anthropogenic hazard processes, including subsidence (Bozzano et al. 2015), sinkholes (Ciotoli 

et al. 2014; Esposito et al. 2021), urban and fluvial floods, and landslides (Amanti, Chiessi, and 

Guarino 2012; Del Monte et al. 2016), that affected the area over the years.  

Landslides in Rome are mainly represented by shallow landslides (soil slips and translational slides) 

with reduced and comparable volumes. Recently occurred landslides in Rome are characterized by 

an average area of 2.1x103 m2, that due to the shallow position of the sliding surfaces (2 to 5 meters) 

correspond to an average volume of 5x103 m3 as order of magnitude (Alessi et al. 2014; Del Monte 

et al. 2016). Additionally, ephemeral hydraulic circulation built up along permeability contrasts 

between volcanic, or debris covers overlying sedimentary deposits, may induce transient seeping 

that reduces slope stability. The Monte Mario and Monte Ciocci hills are the areas where most of the 

recorded landslides have occurred (Figure 3.1). Their proneness to landsliding might be related to 

high slope angles formed of the Monte Vaticano and Monte Mario Formations, which consist of a 

thick succession of clays, silty-clays, and silty-sands highly sensitive to shallow and translational 

landslides. The weathering of these deposits produced unsaturated shallow soil covers, which have 

been proven to host ground instabilities (Schilirò et al. 2019). 

According to Esposito et al. (2023), the city of Rome has experienced at least 566 landslide events 

over the last century, 356 of which are reported as translational, flow or shallow landslides (Figure 

3.1b, c). These landslides have almost always been associated with heavy rainfall, among which 

sixty-seven occurred during the exceptional rainfall event registered from January 31 to February 2, 

2014 (Alessi et al. 2014). This event and the landslide related damages declare Rome’s susceptibility 

to geological hazards, which can interact with socio-economic activities, posing relevant risk 

conditions, and causing a significant impact, as documented by the service and road infrastructure 
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interruption after the event, whose consequences lasted for months. Although landslide hazard in 

Rome, as well as in other major cities in Italy, is widely known, it still lacks urban-scale regulatory or 

advisory landslide susceptibility zonation, except for national scale susceptibility or hazard indicators 

(Trigila et al. 2013; Iadanza et al. 2021). 

 

Figure 3.1: Number of landslide events per geomorphological slope unit (Alvioli, Guzzetti, and Marchesini 
2020) within the Municipality of Rome (a); percentage of landslides by type of failure, as defined by Hungr, 
Leroueil, and Picarelli, 2014 (b); slope angle distribution of landslide events by type (c). Slope units are shown 
for non-flat areas only. 

3.3. Material And Methods 

3.3.1. Urban-scale assessment of landslide susceptibility 

Analysis based on ML methods needs reliable data on which the model is based. The main 

prerequisite is information on the spatial occurrence of landslide events (van Westen, Castellanos, 

and Kuriakose 2008) together with conditioning factors picked because of their expected relationship 

with the occurrence of slope failures. Although landslide inventories are often incomplete in spatial 

and temporal terms, integration, cross-validation, and processing of open-source databases 

produced at different scales of observation are required to reduce bias before training the predictive 

models to be compared. In this study, the standardised and boosted landslide database of Rome 

was used to train different supervised ML algorithms. 

The database contains both Landslide Initiation Points (LIP) with the related polygons representing 

the area involved. The best performing model was then employed to estimate the LS level for the 
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whole area, thus resulting in the urban-scale LSZ which in this study is referred to as “URGENT 

Rome”. It is developed within the PRIN project entitle “URGENT - URban Geology and geohazards: 

Engineering geology for safer, resilieNt and smart ciTies”. 

Figure 3.2a describes the pipeline implemented in this study to achieve the urban-scale shallow 

landslide susceptibility map of Rome. 

 

Figure 3.2: Workflow developed to obtain an urban-scale landslide susceptibility zoning of Rome territory (a), 
and reliability assessment of open-source LS maps at different scales of observation (b). 
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3.3.1.1. Data pre-processing 

All ML algorithms use some input data to create outputs. Input data comprise features, which are 

usually in the form of structured columns. Algorithms require features with some specific 

characteristics to work properly. Here, the need to feature engineering arises. Feature engineering 

was performed with two main goals: 1) preparing the proper input dataset, compatible with the ML 

algorithm requirements (i.e., tidy structure), and 2) improving the performance of the models. 

Data about terrain, lithological, hydrological, soil, roads and streams were selected as potential 

predictor variables (Table 3.1). A total of 20 variables are included, of which 14 represent terrain 

features derived from the 5m resolution DTM. Distances from roads, hydraulic permeability limits 

(i.e., hydrogeological units that cause significant contrast in hydraulic conductivity) and water 

streams were also computed. The remaining are categorical variables representing litho-technical 

units and urban land characteristics. 

We derived litho-technical units from the official lithological map of Rome by grouping geological 

formations with similar geotechnical characteristics. We did not include the individual formations as 

a predictor variable due to the large number of categories, which would result in a high-cardinality 

feature. According to Maxwell et al. (2020), this allows embedding expert knowledge into the 

prediction. We also included land cover and soil consumption information to account for urban assets 

and activities. Thereafter we encoded categorical variables by replacing the original value of the 

feature with the frequency distribution, thus converting the feature into a numeric. Since we are 

dealing with rainfall-triggered shallow landslides, we took advantage of 33 distributed rain gauge 

records (from 1951 to 2021) to derive Thiessen polygons and their amount of ordinary annual rainfall. 

All raster-based variables were then extracted at the mapped LIP and stable point locations using 

the Point sampling tool plugin (Jurgiel 2013) of QGIS 3 to generate tables from which to extract train, 

validation, and test data. 

Table 3.1: List of variables deemed predictors of landslide susceptibility in Rome. 

Variable Abbreviation Description 

Digital Terrain Model DTM 
5x5 m DTM model derived by points and contour lines 
of elevation with Anudem algorithm (Hutchinson, Xu, 
and Stein 2011). 

Slope Angle slope 5x5 m slope angle map 

Relative Relief rrelief100 Difference between max and min altitude within a cell of 
100 m (Oguchi 1997) 

Topographic Position Index tpi TPI with a neighbourhood equal to 300 m 
Dissection Ratio dess_ratio Topographic dissection within 100 m grid. 
Drop drop Relative height within a radius of 50 m. 
Aspect aspect Topographic aspect as degrees from north. 
Aspect classes aspect_8 Topographic aspect reclassified in 8 dials. 

Curvatures curv_plan, curv_prof, 
curv_tot 

Planar, parallel, and total curvature based on 5x5 m 
DTM 

Flow Accumulation flow_acc Amount of upstream area draining into a cell. 



CHAPTER 3: RELIABILITY AND FUSION OF LANDSLIDE SUSCEPTIBILITY MAPS 

63 

Topographic Wetness Index twi Steady state wetness index map. 

Ordinary annual rain ord_rain Based on rainfall analysis of 33 distributed rain gauges 
records (from 1951 to 2021)  

Soil thickness soil_thickness Soil thickness based on Saulnier’s equation (Saulnier, 
Beven, and Obled 1997) 

Land use land_use 
Regione Lazio land cover map 
https://dati.lazio.it/catalog/it/dataset/carta-uso-suolo-
2016  

Litho-technical units litho 
Based on 1:25000 lithological map of the Regione Lazio 
https://dati.lazio.it/catalog/it/dataset/carta-geologica-
informatizzata-regione-lazio-25000 

Distance to streams dist_idro Euclidean distance to nearest stream 
Distance to roads dist_road Euclidean distance to nearest road. 

Distance to permeability limit dist_lim_k Based on hydrogeological complex defined in the 
Hydrogeological map of Rome (La Vigna et al. 2015). 

 

Input data consist of LIPs and stable points with a ratio of 35-65%, for an overall amount of 2992 

records stored as geo-dataframe. The few dated landslide records (i.e., those triggered by the heavy 

rainfall of January 31, 2014) were formerly split from the database and treated as event-based test 

samples to assess the capability of the six LSZs to correctly detect landslide occurrences. 

The importance of features in ML algorithms plays a very crucial role in prediction analysis in any 

field. First, we explored the data to select a subset of input features that would be relevant to the 

prediction, thus avoiding the issue of dimensionality, as some algorithms perform badly when in high 

dimensionality. Correlations between features, or multicollinearities, were calculated and variables 

were systematically removed if a pairwise correlation exceed 75%, as recommended by Kuhn and 

Johnson (2013). The algorithm used to filter out multicollinearity calculated a correlation matrix and 

the highest pairwise correlation was found (Figure 3.3). The variable within this pair with the lower 

correlation with the target variable was removed from the dataset. This was repeated until no 

pairwise correlation exceeded 75%. Sixteen out of 20 variables remained to be used in model 

training after verifying that there was no missing or redundant information. 

https://dati.lazio.it/catalog/it/dataset/carta-uso-suolo-2016
https://dati.lazio.it/catalog/it/dataset/carta-uso-suolo-2016
https://dati.lazio.it/catalog/it/dataset/carta-geologica-informatizzata-regione-lazio-25000
https://dati.lazio.it/catalog/it/dataset/carta-geologica-informatizzata-regione-lazio-25000
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Figure 3.3: Pairwise correlation of all continuous numerical features originally included in the study. 

3.3.1.2. Machine Learning modelling 

Candidate models include Naïve Bayes, logistic regression, k-nearest neighbours, and decision 

trees-based methods. The complete list of trained models can be found in Table 3.2. The data were 

split into two subsets. The former being the training set containing 80% of the data, whereas the 

latter being the hold-out set containing the remaining 20%. Stratified random sampling was used to 

account for the imbalanced binary outcome (Kotsiantis, Kanellopoulos, and Pintelas 2006). K-fold 

cross validation was performed on the training set to train and validate the model with ten subsets 

validation data. 

Cross-validation results were then used to compute ten confusion matrices for each model. Given a 

confusion matrix (Figure 3.4), the distribution of the overall accuracy (Eq. 3.1), recall (Eq. 3.2), 

precision (Eq. 3.3), F1-Score (Eq. 3.4) and ROC-AUC (Fawcett 2006) was derived. Score metrics 

were then used to select the best performing model to be further optimised with hyperparameters 

tuning. Since F1-score considers not only the number of prediction errors that the model makes, but 

also looks at the type of errors that are made, it works well on imbalanced data. For this reason, we 

chose the F1-score to select the most suitable model to predict susceptibility levels in the whole 

area. GridSearchCV function of the Scikit-learn library (Pedregosa et al. 2011) was exploited to 

determine the optimal set of hyperparameter values, thus minimizing both variance and bias. To 
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better understand and explain how the model works, we implemented the permutation feature 

importance method to assess feature relevance avoiding bias from categorical variables (Altmann 

et al. 2010). 

Table 3.2: Caption. 

ML model Abbreviation Type of algorithm 

Extra Trees Classifier ET Ensemble of decision trees 

Light Gradient Boosted Machine LightGBM Ensemble of decision trees 

Random Forest RF Ensemble of decision trees 

Gradient Boosting Classifier GBC Ensemble of decision trees 

Ada Boost Classifier ADA Ensemble of decision trees 

Decision Tree DT Single tree structure 

Logistic Regression LR Sigmoid function  

Naïve Bayes NB Bayes theorem 

Linear Discriminant Analysis LDA Linear decision boundary 

K Nearest Neighbours KNN k-nearest neighbours vote 

 

Once tested, the trained model was applied to predict the probability of each raster cell being a 

landslide initiation point, thus resulting in the LS map with values ranging from 0 to 1, representing 

minimum and maximum susceptibility respectively. 

All the machine learning model development and deployment were coded in Python 3 taking 

advantage of Scikit-learn and PyCaret libraries among others (Pedregosa et al. 2011; Ali 2020). 

 

Figure 3.4: Confusion matrix for binary classification where TP and TN denote the number of positive and 
negative examples that are classified correctly, while FN and FP denote the number of misclassified positive 
and negative examples respectively. 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+ 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇

 ,   (3.1) 

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+ 𝐹𝐹𝑇𝑇

 ,   (3.2) 

𝑃𝑃𝐴𝐴𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

 ,   (3.3) 

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑅𝑅 = 2 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 ,   (3.4) 

3.3.2. Accuracy assessment and data fusion 

This section focuses on evaluating and merging the available open-source LS maps originally 

produced at different scales of analysis to boost their performance. To this aim, the assessment of 

both similarity and accuracy of open-source LSZ with reference to the urban-scale map produced in 

this study was required. According to Cascini (2008), different scales of analysis denote different 

purposes. However, regional- to urban- scale susceptibility maps are often lacking. Therefore, there 

is a need to assess the reliability and potentials of small- to medium- scale LSZ in case more detailed 

studies have not yet been conducted. For that purpose, five LS maps at different scales and mapping 

units, including regional, national, European, and global scale products, were collected and 

compared with the one produced in this study. Figure 3.2b illustrates maps and workflow 

implemented to carry out the performance assessment and to achieve multiscale-based LSZ 

products. 

FranaRisk LSZ (Argentieri et al. 2018) covers the entire province of Rome with a cell size of 20 m. 

ISPRA 2013 (Trigila et al. 2013) and CNR-IRPI 2022 shallow LSZ (Loche et al. 2022) both cover the 

whole Italian territory but adopting different mapping units. The first is grid-based (500 m resolution) 

while the latter relies on geomorphological slope units (hereafter named SU). ELSUSv2 represents 

the official European LSZ (Wilde et al. 2018); it has a pixel size of 200 m. Lastly, NASA LSZ covers 

the entire globe with a grid size of 1 km (Stanley and Kirschbaum 2017). 

Out of the six LS maps, two are already categorized in five classes (i.e., NASA, ELSUSv2), while 

the others have continuous numerical susceptibility values. Regarding the ISPRA 2013 LS map, we 

rescaled it in the range of 0-1 to make it comparable. The vector-based map utilizing SU was 

rasterized to the resolution of URGENT Rome LSZ (5m grid cell). Among the methods reported by 

the literature to select class thresholds (Baeza, Lantada, and Amorim 2016), we decided to focus on 

the capacity of the model to detect true landslides (i.e., true positives). Empirical cumulative 

distribution functions (ECDF) were computed specifically from the predictions made on the event-

based test samples as well as on the overall landslides polygons stored in the database. Class 
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thresholds were defined by detection rates of 10%, 15%, 25% and 50% to classify the probabilities 

as ‘very low’, ‘low’, ‘moderate’, ‘high’, and ‘very high’ landslide susceptibility. The detection rate 

percentiles were chosen following the same values adopted for ELSUSv2 Pan-European LSZ (Wilde 

et al. 2018). This step was necessary to standardize the LSZs and make them quantitatively 

comparable. 

Following the LSZ reclassification, a similarity evaluation process was implemented by means of 

Wasserstein distance metric together with spatialized accuracy assessment. We exploited recorded 

landslides polygons to evaluate the ability of each LSZ to predict landslide hazardous areas by 

quantifying the difference between the ECDF. Furthermore, we also compared the distributions of 

the event-based test samples, i.e., the January 2014 rainfall-triggered landslides, related to non-

ordinary conditions (Alessi et al. 2014). This was achieved by means of the Wasserstein distance 

metric (Piccoli and Rossi 2016). The Wasserstein Distance represents the area between the curves 

of the cumulative distribution of the two groups. It tells how much, on average, you should move 

each point of one group to get the other group, while maintaining the quantile of the points; for 

categorical features, it expresses the difference in classes between the tested LSZ map and a 

benchmark, here assumed in the URGENT Rome, which is the most detailed and updated one. 

Even though these statistical approaches allow us to determine quantitatively which is the closest 

LS map, spatial data also needs spatial analysis to reveal trends and patterns, thus visualizing the 

spatial location of differences and similarities. To do so, we achieved a spatialized accuracy 

assessment for each collected LSZ with the benchmark map (i.e., URGENT Rome). For this 

purpose, the respective excerpts of the categorized LSZ were binarized by merging the two highest 

susceptibility classes (“high” and “very high”) as susceptible areas with the rest as non-susceptible 

terrain in each case (Günther et al. 2014). Overlying binarized maps allow incorrectly classified 

terrains to be derived in terms of false positives and false negatives. This results in a new raster map 

for each comparison showing true/false positives and true/false negatives in the space, i.e., an 

accurate or inaccurate prediction. We also report the overall confusion matrix together with metrics 

scores, thus allowing a performance analysis of each open-source LSZ compared to URGENT 

Rome. The analysis ended up with an F1-score value for each LSZ which has been considered an 

indicator of its reliability in Rome. F1-scores were then used as weighting parameters when fusing 

the LS maps. Two approaches were tested (Figure 3.2b) with the aim to evaluate the improvement 

of predictive performance by data fusion approaches: firstly, a cumulative fusion of all LSZ was 

implemented from smallest to largest scale, assessing the performance at each step; then, a 

pairwise fusion was performed between the two maps built at closer scale. Eq. 3.5 represents the 

adopted criteria to merge the maps, rounding decimals to the ceil value. Where LSI is the fused 

landslide susceptibility index; F1 and LS denote the F1-score and landslide susceptibility class 

relative to the i-th LSZ, respectively. 
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𝐿𝐿𝐿𝐿𝐿𝐿 = 1
∑ 𝐹𝐹1𝑖𝑖𝑖𝑖

 × ∑ (𝐹𝐹1𝑃𝑃 × 𝐿𝐿𝐿𝐿𝑃𝑃)𝑃𝑃 ,   (3.5) 

3.4. Results 

3.4.1. Urban-scale LSZ 

F1 scores calculated from the validation folds of cross-validation phase for each separate model are 

provided in Figure 3.5. Table 3.3 represents performance scores based on the 10 independent 

validation sets of candidate models. The best four models (i.e., ET, LightGBM, RF, and GBC) are 

characterised by a distribution of F1 scores always greater than 0.8, with the ET model standing out 

better in the mean and maximum value, and throughout the overall distribution (i.e., lower variance). 

The other models have lower scores both in terms of mean values and whisker length, with KNN 

being the worst. By considering also other metrics the ET model remains the best among candidates. 

 

Figure 3.5: Distribution of cross-validation F1 scores obtained during model training. 

Table 3.3: The mean and standard deviation (SD) of scoring metrics resulting from K-fold cross validation 
analysis for candidate models. Data are sorted by F1-score. 

Model 
Accuracy AUC Recall Precision F1 

Mean SD Mean SD Mean SD Mean SD Mean SD 
et 0.933 0.018 0.979 0.007 0.906 0.034 0.886 0.034 0.896 0.028 

lightgbm 0.928 0.019 0.977 0.006 0.903 0.033 0.876 0.043 0.889 0.029 
rf 0.915 0.019 0.970 0.009 0.875 0.032 0.861 0.034 0.868 0.029 

gbc 0.904 0.017 0.964 0.007 0.856 0.046 0.843 0.027 0.849 0.042 
ada 0.088 0.009 0.953 0.008 0.836 0.030 0.810 0.025 0.817 0.014 
dt 0.869 0.019 0.854 0.019 0.814 0.034 0.783 0.041 0.797 0.026 
lr 0.857 0.020 0.931 0.013 0.732 0.059 0.799 0.031 0.661 0.054 
nb 0.828 0.022 0.907 0.021 0.873 0.030 0.679 0.036 0.763 0.028 
lda 0.859 0.014 0.935 0.011 0.705 0.055 0.826 0.030 0.759 0.032 
knn 0.808 0.025 0.879 0.021 0.699 0.052 0.698 0.046 0.558 0.057 
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Figure 3.6 shows an instance of ET decision regions pre- and post-optimisation by finding the best 

combination of hyperparameter values to minimize both variance and bias. The pre-optimization 

decision regions (Figure 3.6a) highlight some overfitting represented by small regions that split only 

a few isolated samples of one class embedded in the other. Those erroneous regions suggest 

overfitting and need to be removed to allow the model to better generalize to new data. Among other 

hyperparams (e.g., max depth, number of estimators, etc.), the tuned ET model was set to not split 

below a minimum number of samples, thus removing those isolated regions as shown in Figure 3.6b. 

 

Figure 3.6: Decision regions between slope angle and relative relief computed by the ExtraTreesClassifier 
before (A) and after (B) the optimization process achieved with hyperparameters tuning, which returned optimal 
parameter values, including number of trees, minimum number of samples to split and maximum depth equal 
to 60, 2, and 25 respectively. 

To understand how the model works, the importance of each variable was sorted from the most to 

least predictive (Figure 3.7). The higher the slope and relative relief the higher the landslide 

susceptibility, as also shown by the decision regions plot. Land use results as the third most 

important variable. Ordinary annual rainfall, distance to streams, litho-technical units, distance to 

permeability limits as well as TWI follow respectively. It should be noted the high consistency of 

variable importance given the slight standard deviation displayed. Permutation features importance 

results also denote the positive contribution of almost all the predictor variables to model 

performance, thus indicating that the selected variables should be kept. Flow accumulation is the 

only feature that appears irrelevant to the model. 

To represent the ability of the model to generalise to never seen data, the confusion matrix together 

with kernel density of probabilities (Figure 3.8) have been computed on the 20% of the data we held 

before creating the model (i.e., out-of-sample test set). The tabular confusion matrix denotes the 

number of predictions made by the model where it classified the classes correctly or incorrectly. 

Using a probability threshold of 0.5, we have almost 90% of correctly classified data for both 0s (i.e., 

stable points) and 1s (i.e., LIP). The reliability of the model is also certified by the overall precision, 

recall and F1-score which have values of 0.88 or 0.89. The kernel density plot represents the 



CHAPTER 3: RELIABILITY AND FUSION OF LANDSLIDE SUSCEPTIBILITY MAPS 

70 

distribution of predicted probabilities for the withheld test data. This plot suggests a strong separation 

between LIP samples and stable points data. LIP samples are almost never getting a probability 

below 0.4. The median probabilities stand close to 0 and 0.9 for stable and LIP samples respectively 

(Figure 3.8). 

The resulting prediction across the whole mapped extent and some example areas at a larger scale 

is provided in Figure 3.9. Red areas are those that are predicted to have a high likelihood of slope 

failure occurrence while green areas are predicted as having a low likelihood. 

 

Figure 3.7: Average permutation feature importance with standard deviations derived by repeating the 
shuffling process 15 times. 

 

Figure 3.8: Confusion matrix plot (left) and classification report (right) of predicted labels for the test dataset. 
Kernel density plot of predicted probabilities for the test samples. 
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Figure 3.9: Urban-scale landslide susceptibility of Rome (namely URGENT Rome) derived with the tuned 
Extra Trees Classifier (left). A detailed example of Monte Mario hill with superimposed the event-based test 
samples (right). 

3.4.2. Multiscale LSZ reliability assessment 

Figure 3.10 shows the empirical cumulative distribution of susceptibility values in the overall landslide 

polygons for each quantitative LSZ. The distributions appear significantly different among all scales 

of analysis. The national scale maps (i.e., ISPRA 2013 and CNR-IRPI 2022) have a totality of values 

below 0.2. It should be noted that the distribution of URGENT Rome predictions is typically greater 

than the others, with FranaRisk close behind. The FranaRisk LSZ performs better than others until 

the 15th percentile and then decreases with respect to the URGENT Rome values. 

 

Figure 3.10: ECDF of mean susceptibilities predicted to landslides stored in the database as polygons. Black 
dots represent the percentile thresholds employed to derive the five classes. 
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Once reclassified, similarity analysis of the pair of LSZ for the event-based test samples LIP (Figure 

3.11) and the overall landslide polygons (Figure 3.12) allowed us to compute a mean distance in 

susceptibility class distribution between the existing maps and URGENT Rome LSZ (i.e., the 

Wasserstein distance). Regarding the event-based test samples, the NASA Global LSZ as well as 

the ELSUSv2 Pan-European map are the furthest from URGENT Rome with an average distance of 

1.84 and 1.82 classes respectively. CNR-IRPI 2022 and ISPRA 2013 maps gained much more 

predictive capacity as reported by the Wasserstein distance results of 0.33 and 1.12. FranaRisk 

confirms to be the closest to URGENT Rome with only 0.12 classes of distance. 

 

Figure 3.11: Wasserstein distance as the area between cumulative distributions of 2014 event-based LIPs as 
predicted by LSZ. The Wasserstein Distance of categorical features expresses the difference in landslide 
susceptibility classes between the tested map and the benchmark (i.e., URGENT Rome). 

 

Figure 3.12: Wasserstein distance as the area between cumulative distributions of the overall landslides as 
predicted by LSZ. The Wasserstein Distance of categorical features expresses the difference in landslide 
susceptibility classes between the tested map and the benchmark (i.e., URGENT Rome). 
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As regards landslide polygons, the NASA Global LS map and ELSUSv2 still remain the furthest, 

while ISPRA 2013 and CNR-IRPI 2022 got even closer than FranaRisk, with the CNR-IRPI 2022 

being almost identical (0.05 classes). 

Spatialized accuracy assessment confirms the low capacity of LSZ at European and global scales 

to detect true landslides since 97% and 89% of false negatives were recorded by NASA LSZ and 

ELSUSv2 respectively (Figure 3.13). The national scale LSZ (i.e., ISPRA 2013 and CNR-IRPI 2022) 

improve the ability to detect true landslides. However, they report a high landslide susceptibility level 

even in areas not prone to landslides (i.e., false positives). Whereas FranaRisk LSZ keeps the 

predictive capabilities for true landslides but improves the detection of true negatives compared to 

the nationwide maps. As a result, the spatial accuracy assessment returned scoring metrics (e.g., 

F1-score) that increase proportionally with the scale of the LSZ (Figure 3.14). 

 

Figure 3.13: Spatialized performance assessment of each open-source LSZ with reference to URGENT Rome 
LSZ. 



CHAPTER 3: RELIABILITY AND FUSION OF LANDSLIDE SUSCEPTIBILITY MAPS 

74 

 

Figure 3.14: Line plot of evaluation metrics obtained from the spatialized accuracy assessment of open-source 
LSZ at different scales of investigation. 

Performance metrics relative to original and merged LS maps (both cumulative and pairwise) are 

summarized in Figure 3.15. Precision scores (Figure 3.15c) highlight low performance of all the 

considered maps. Among the others, the original LSZ at regional scale (i.e., FranaRisk) stands as 

the closer to the reference, and it is closely followed by its integration with the national scale map 

(i.e., ISPRA 2013). Eventually, precision values of multiscale maps remain close to the original ones. 

On the other hand, recall scores (Figure 3.15b) are always higher than original maps, with the fusion 

of the two nationwide maps (i.e., ISPRA 2013 and CNR-IRPI 2022) producing the highest 

performance (0.75). Anyway, the cumulative fusion of all LSZ is only 0.02 away.  

By bringing together recall and precision, the resulting F1 scores (Figure 3.15a) provided an overall 

picture of the performance. As a result, the map that comes closest to URGENT Rome LSZ is 

provided by the fusion of FranaRisk and ISPRA 2013 maps (F1-score of 0.39), improving the 

performance of the best original map. 
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Figure 3.15: Comparison of F1-score (a), Recall (b), and Precision (c) scores for both original and multiscale 
landslide susceptibility maps with reference to URGENT Rome LSZ. 

3.5. Discussion 

The several supervised machine learning classifiers individually trained and validated by means of 

the K-fold cross validation technique allowed us to identify the ET model as the best performing one 

among others. Generally, all the trained models perform well, but the ET outperform the others in 

any calculated metric. We stress the importance of model optimization by tuning its 

hyperparameters, thus finding the optimal minimum between bias and variance. Moreover, tree-

based models have a strong tendency to overestimate the importance of continuous numerical or 

high cardinality categorical features because they provide more opportunity for the models to split 

the data in half than the discrete features. Therefore, the default feature importance function of tree-

based models returns biased results. Indeed, to overcome this problem we recommend using the 

permutation feature importance method, which also lists the features that worsen the model 

performance. In urban areas like the city of Rome, morphological variables such as slope angle and 

relative relief play the most important role in the prediction of the landslide susceptibility value, which 

is consistent with previous studies (Maxwell et al. 2020; Titti et al. 2022; Baeza, Lantada, and Amorim 

2016). This is probably due to urbanization activities which generate man-made steep slopes close 

to the almost flat urban network. Nevertheless, cumulated annual rainfall, land use and litho-technical 

units play an important role as preparatory and predisposing factors for shallow landslides. 
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The final optimized model tested with the held 20% of the samples correctly classified almost 90% 

of both positive and negative samples, thus confirming its generalization capabilities and allowing its 

deployment to predict landslide susceptibility for the whole area of the Municipality of Rome. Indeed, 

incorrectly classified samples never get susceptibility further than 0.1 from the binary classification 

threshold (i.e., 0.5). 

The urban-scale LS map (i.e., URGENT Rome) highlights the hotspots of Monte Mario and Monte 

Ciocci hills. This was indeed confirmed by considering the event-based test samples related to the 

landslides of January 2014 that occurred mostly along the south-eastern slope of the hill. We stress 

that the rainfall-triggered landslides in winter 2014 represent an out-of-sample set that the model has 

never seen. Other high susceptibility areas are represented by steep slopes near the streams, 

especially in the northern sector of the municipality, where volcanic deposits have been strongly 

eroded. 

Once obtained the urban-scale URGENT Rome LSZ has been compared to other available open-

source LSZ built at different scales of investigation. Firstly, we applied the empirical cumulative 

distribution function to reclassify quantitative maps in 5 hazard classes. This allowed us to make 

them comparable with the already qualitative maps (i.e., NASA and ELSUSv2 LSZ). Since the ECDF 

curve shows the probability of local landslides to be predicted, we stress that this reclassification 

method may strongly increase the predictive performance of hazard products made at small and 

medium scales. However, percentiles values to be used as classes thresholds are not standardised 

and they rely on expert judgment. This is proved by the similarity analysis, in which the national scale 

maps show reduced differences with the URGENT Rome LSZ. The similarity analysis carried out on 

both 2014 event-based LIPs and landslide polygons highlighted the effect of mapping unit as well as 

pixel size, and therefore the overall scale of analysis. Among the maps that were compared, grid-

based ones perform better when predicting landslide initiation points, and the larger the scale the 

closest the map with respect to the reference. The SU-based LSZ turns out to be the closest to 

URGENT Rome when predicting the entire area potentially affected. This is because it assigns a 

uniform hazard level to the whole slope. Although the similarity analysis carried out with the 

Wasserstein distance metric concerns true positives only, the ability of hazard products to detect 

stable areas (i.e., true negatives) must be also evaluated. With this purpose, we carried out a 

spatialized accuracy assessment which returned the number of true/false positives and true/false 

negatives throughout the map. The results confirm the low capacity of global and European scale 

maps to detect true landslides, thus resulting in a significant underestimation of landslide hazard in 

Rome. As suggested by the similarity analysis, national scale maps may be adequate to detect areas 

susceptible to landsliding, but they overestimate them, thus resulting in high false positive rates (i.e., 

low precision). The regional scale map has the most high and balanced scores. It’s worth noting that 

landslide inventory is partially overlapped with the one considered in URGENT urban susceptibility 
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zoning. Although it has the biggest F1-score, it is still far from URGENT Rome. According to Cascini 

(2008) and Corominas et al. (2013), the larger the scale the most reliable the zoning is, thus changing 

its purposes. Hereby, we spotted the linear increment of F1-scores with the scale of analysis. We 

stress that this is probably due to the resolution and distribution of input data which inevitably are 

biased and incomplete when very large areas must be considered. Landslide hazard assessment at 

a large or detailed scale is often lacking. However, the proposed method for merging a variety of low 

accuracy products represents an attempt to improve the predictive performance of the single ones 

and gaining reliability. The several LSZ were integrated cumulatively and pairwise to evaluate the 

accuracy at each integration. The closest reliability and classification scores can be achieved by 

merging the FranaRisk and ISPRA 2013 maps (i.e., regional, and national scale). Despite a general 

limited improvement reached by merging the multiple scale maps, the implemented method can 

enhance the proportion of actual landslides correctly classified (i.e., the recall metric). With this 

perspective, the adopted data fusion criteria increased the ability to detect occurred landslides while 

maintaining precision. However, the number of false positives remains high as for original maps, 

thus affecting the overall F1 scores. 

As an example, Figure 3.16 shows how the Monte Mario hill is classified by the different LS maps. 

In contrast to URGENT Rome (Figure 3.16a), the fusion of lower resolution original LSZ (Figure 

3.16g, h, i), although they properly classify all LIPs, also misclassify some terrains surrounding the 

slopes that may not be prone to landslide. This reflects on the number of buildings that would be 

exposed to landslide risk within the municipality. In fact, it goes from a truthful 3% of the urban-scale 

URGENT Rome map up to about 25% recorded with the fusion of the two nationwide maps. With 

this perspective, site-specific urban scale landslide susceptibility analyses are always required for a 

balanced assessment of landslide hazard when detailed risk analysis and/or land-use plannings are 

carried out. 
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Figure 3.16: Details of predicted landslide susceptibility at Monte Mario hill and overall percentage of exposed 
buildings within the municipality of Rome according to each product. The URGENT Rome map (a) compared 
with the original open-source LS products built at different scales of analysis (b – f) and with the top performing 
products obtained with the fusion criteria: regional and national scale (b), all available maps (c), and the two 
nationwide maps based on different mapping unit (d). Landslide Initiation Points (LIP) and the Roman urban 
network are plotted on each map. 

3.6. Conclusion 

This study reports the complete and comprehensive workflow that should be implemented to obtain 

urban-scale LS maps when dealing with data-driven methods as supervised machine learning (ML) 

algorithms. Thorough pre-processing stages are fundamental to prepare data for machine learning. 

In this research, we tested various ML models to select the optimal and most performing one for 

landslide and stability classification in the urban area of Rome (Italy). Through empirical cumulative 

distribution functions applied to the out-of-samples landslides we selected susceptibility class 

thresholds based on model performance to correctly classify landslides. Once validated, the largest 

scale LSZ available in Rome was compared with regional, national, European and global scale LS 

products.  
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ECDF were used to standardize the reclassification of continuous LS maps once values of 

percentiles are determined. Comparisons between LSZ reveal differences in the ability to predict 

instability and stability with respect to the reference. The main outcomes revealed how the pixel size 

as well as the adopted mapping unit play a crucial role in the result. Specifically, wide grids fail to 

accurately localise potential landslides and stable areas. Whereas LSZ based on slope unit may give 

comprehensive information about the overall area potentially affected by the landslide evolution, they 

do not allow the direct definition of the source areas, which can be improved by merging grid and 

SU-based products. The implemented multiscale zoning method assigns a specific accuracy value 

to individual maps, which is appropriately accounted for when merging. 

In a general perspective, the fusion of multiple low-resolution maps increased the ability to correctly 

classify occurred landslides; however, with the adopted method, the improvement in general 

performance is not enough to justify its deployment due to the high number of false positives. 

Nevertheless, when both urban and regional scale products are lacking, the fusion of national, 

European, and global maps might significantly help in better predict landslides occurrence in urban 

areas. 
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Abstract 

In the context of population concentration in large cities, assessing the risks posed by geological 

hazards to enhance urban resilience is becoming increasingly important. This study introduces 

a robust and replicable procedure for assessing ground instability hazards and associated 

physical risks. Specifically, our comprehensive model integrates spatial hazard assessments, 

multi-satellite InSAR data, and physical features of the built environment to rank and prioritise 

assets facing multiple risks, with a focus on ground instabilities. The model generates risk scores 

based on hazard probability, potential damage, and displacement rates, aiding decision-makers 

in identifying high-risk buildings and implementing appropriate mitigation measures to reduce 

economic losses. The procedure was tested in Rome, Italy, where the analysis revealed that 60% 

of the examined buildings (90×103) are at risk of ground instability. Specifically, 33%, 22%, 

and 5% exhibit the highest multi-risk score for sinkholes, landslides, and subsidence, 

respectively. Landslide risk prevails among residential structures, while retail and office 

buildings face a higher risk of subsidence and sinkholes. Notably, our study identified a positive 

correlation between mitigation expenses and the multi-risk scores of nearby buildings, 

highlighting the practical implications of our findings for urban planning and risk management 

strategies. 

Keywords: Multi-risk; Ground Instability Hazards; Urban Resilience; InSAR; Open Data. 
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4.1. Introduction 

Large cities often face natural and geological hazards, engineering geological, and technological 

threats. The importance of the analysis and evaluation of geo-hazards for effective risk mitigation 

measures is evident in view of implementing effective strategies to make our cities and communities 

more resilient to natural disasters (Frankenberg et al. 2013). Due to the increased incidence of 

extreme weather events and human-made hazards related to accelerated urban growth (UNISDR 

2012), built-up areas are specifically threatened and should therefore be the priority target of the 

action. Identifying the spatial distribution and concentration of risks in urban areas helps determine 

where and how preventive and corrective actions can reduce levels of vulnerability and exposure of 

urban populations (Johnson et al. 2016). Therefore, simplified vulnerability and risk assessment 

methodologies have been gaining space and importance (Liu et al. 2015; Romão et al. 2016; Liu 

and Chen 2019; Wei et al. 2022; Kappes et al. 2012a). Geo-hazards risk assessment provides 

strategic input for enhancing city resilience through mitigation design (McGlade et al. 2019). 

Nevertheless, losses from natural disasters continue to grow (White et al. 2001; Annual report 2022 

| Munich Re). According to Kappes et al. (2012b), this may be due to a lack of interaction between 

science and practice in terms of knowledge transfer and applicability of results. To fill this gap, multi-

risk assessment must support decision-makers by providing them with valuable information 

regarding the types and probabilities of hazards and their physical impacts, which will guide 

mitigation measures (Komendantova et al. 2014). 

The statement that natural hazards almost never occur individually is of great importance: this leads 

to the notion of multi-risk (Gill et al. 2022). Multi-risk is generated from the presence of multiple 

hazards that may also be correlated, affecting the same elements exposed (Terzi et al. 2019). The 

interrelationships between these hazards and vulnerability level should be considered. A necessary 

condition for risk prevention, mitigation and reduction is its analysis, quantification, and assessment 

(Ward et al. 2020; Hochrainer-Stigler et al. 2023). However, assessing the risks and vulnerabilities 

of an entire city is a very demanding task, requiring considerable amount of data, technical 

knowledge and financial resources that are usually not available (van Westen et al. 2014; Julià and 

Ferreira 2021; Kappes et al. 2012b). Different temporal and spatial scales of hazardous events, and 

the potential interactions between hazards and socio-economic fragilities make multi-risk 

assessment problematic (Bell and Glade 2004; Kappes et al. 2012a). Existing risk assessment 

methods integrate large volumes of data and sophisticated analyses, as well as different approaches 

to risk quantification. In multi-risk assessment, three different approaches are commonly used to 

calculate compound risk: the first approach combines hazard, vulnerability, and exposure indexes 

through qualitative analysis or computation indices (Dilley 2005; Greiving 2006). The second 

approach combines quantitative single-hazard risk analysis methods to assess multiple hazards 
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(Bell and Glade 2004). These approaches often disregard hazard interactions and amplified risks. 

To address this, the third approach incorporates advanced modelling techniques that consider 

interdependencies and cascading effects (Terzi et al. 2019). Nowadays, a universally accepted 

procedure for multi-risk assessment has yet to be established. 

This paper seeks to contribute to the field of urban resilience by providing a robust and replicable 

method for evaluating ground instability hazards (i.e., landslides, sinkholes, and subsidence) and 

associated building risks, ultimately leading to an effective framework for decision-makers in order 

to address the most appropriate mitigation measures, thus enhancing the resilience of urban 

environments. Risk assessment for landslides, subsidence, and sinkholes have been exploited by 

several researchers both qualitative and quantitative (Brabb 1984; Guzzetti 2000; Fell et al. 2008; 

Zisman 2012; Huang et al. 2012; Corominas et al. 2014; Chang and Hanssen 2014; Giampaolo et 

al. 2016; Shi et al. 2019; Mohebbi Tafreshi et al. 2021). However, in the existing literature, these 

ground instability processes have not yet been integrated with each other into a unified multi-risk 

assessment. In this study, we present a novel score-based approach which ranks assets exposed 

at multiple risks through the integration of multiple spatial hazard maps with multi-satellite and multi-

frequency InSAR data and physical features of the urban built environment, thus guiding mitigation 

measures aimed at preventing future losses. The risk scores rely on three components, namely 

hazard, activity, and potential damage score engineered using data retrieved from susceptibility 

analyses, building displacement rates, census tracts and real estate market observatory. 

Consequently, each individual building is ranked according to its single- and multi-risk score, and 

the elements with the maximum values are the most relevant ones, as these are the geographic 

areas which are most affected by ground instabilities and potential economic losses. 

4.2. Area Of Application 

The area of interest (AOI) includes the Metropolitan City of Rome, extending from the historical 

centre to about the A90 highway (Figure 4.1). The city of Rome is situated in a hilly region 

characterized by a diverse geological and geomorphological setting. The geological formations 

consist of marine deposits (late Pliocene to lower Pleistocene), and continental sediments (middle 

Pleistocene – Holocene). These deposits, including marine clays, silt, silty sands, and transitional 

sediments, are prominently exposed on the hills along the right bank of the Tiber River. Additionally, 

volcanic deposits from the Colli Albani and Sabatini Volcanic Districts alternate with continental 

sediments, such as alluvial and palustrine deposits (middle to upper Pleistocene) (Figure 4.1). 

The present-day landscape is shaped by the Tiber River and its tributaries, which have carved 

valleys and slopes. The river valleys are partially filled with alluvial deposits, reaching considerable 

thicknesses (Bozzano et al. 2000). The groundwater circulation is controlled by the superimposition 
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of permeable volcanic deposits over less permeable clayey and silty horizons, resulting in the 

development of ephemeral and perched water tables, such as those forming within the weathered 

soil covers and contributing to surface seepage in unsaturated soils. The different geological units 

on the left and right embankments of the Tiber River valley play a significant role in the response to 

natural and anthropogenic hazards affecting the urban area. Hazards such as subsidence, sinkholes, 

landslides, and floods have been previously experienced and assessed by several studies (Alessi et 

al. 2014; Bozzano et al. 2015a; Delgado Blasco et al. 2019; Esposito et al. 2021; Esposito et al. 

2023). 

Landslides are often localized within unsaturated soil covers originated from Plio-Pleistocene 

sedimentary units. Intense and prolonged rainfall events have been identified as triggering factors 

for many slope failures, causing significant damage to infrastructure such as pipelines, aqueducts, 

and roads (Amanti et al. 2008; Alessi et al. 2014; Esposito et al. 2023). 

Landslides and natural or anthropogenic sinkholes are the most common and impactful processes 

in the urban area. Sinkholes concentrate primarily in sectors characterized by the presence of 

volcanic deposits that were extensively exploited as a mineral resource since ancient Roman times. 

Consequently, a dense network of underground cavities exists, the majority of which remain 

undiscovered (Ciotoli et al. 2014; Ciotoli et al. 2016; Esposito et al. 2021). According to Bianchi 

Fasani et al. (2011), these cavities experience an upward migration of the tunnel crown within the 

volcanic subsoil, eventually leading to the formation of sinkholes. Due to the predominantly brittle 

behaviour of cap rocks, particularly tuffs, abrupt failures following minimal deformations may occur, 

thus affecting effective monitoring for early-warning purposes (Esposito et al. 2021). 

Numerous instances of land subsidence in Rome have been identified and quantified using multi-

temporal InSAR techniques (Campolunghi et al. 2007; Cigna et al. 2014; Bozzano et al. 2015b; 

Delgado Blasco et al. 2019). The subsidence processes primarily occur in the alluvial sediments 

along the Tiber River and are mainly attributed to the load imposed by relatively recent urban 

development on the unconsolidated alluvial deposits. The subsidence rate in the region varies 

depending on the age of the constructed structures and the geological characteristics of the 

underlying formations (Bozzano et al. 2018; Delgado Blasco et al. 2019). 
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Figure 4.1: Lithological units in the Municipality of Rome with the municipal districts, the study area, and the 
A90 highway outlined. Key to legend: 1- Anthropic deposits; 3- recent and terraced sandy-gravelly alluvial 
deposits; 6- silty-sandy alluvial deposits, fluvio-lacustrine deposits; 7- travertines; 10- Plio-Pleistocene clayey 
and silty deposits; 11- marine Pliocene clays; 12- debris and talus slope deposits, conglomerates and 
cemented breccias; 14- marls, marly limestones and calcarenites; 41- leucitic/trachytic lavas; 43- lithoid tuffs, 
pomiceous ignimbritic and phreatomagmatic facies; 45- welded tuffs, tufites; 46- pozzolanic sequence; 55- 
alternance of loose and welded ignimbrites. EPSG:4326. 

4.3. Material And Methods 

In this work, multi-risk assessment is conceived as the process of assessing different independent 

hazards threatening individual buildings. We assume landslides, sinkholes, and subsidence as 

compound threats with no interrelationships between them (Tilloy et al. 2019; Hochrainer-Stigler et 

al. 2023; Kappes et al. 2012b). 

In this framework, a new workflow to identify and rank urban assets at risk (e.g., buildings) integrating 

hazard maps, multi-frequency PS-InSAR data and building features was developed. We underline 

that cultural heritage and religious structures were neglected in the present study due to the 

complexity of estimating their economic and vulnerability value. The workflow of the proposed 

methodology is reported in Figure 4.2. It consists of three main sections where geo-hazards 

probability for ground instabilities (a), building features (b), and multi-frequency InSAR displacement 

rates (c) are analysed and integrated to achieve both single- and multi-risk values. Each section 
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results in a score that makes up the specific risk and subsequently the multi-risk ranking of analysed 

buildings. 

A detailed description of the implemented workflow and methods of achieving risk components is 

discussed in the following chapters. The entire data analysis process was automated via an 

implemented Python code freely available on the author’s GitHub page 

(https://github.com/gmastrantoni/mhr) together with the input data (Table 4.1). 

 

Figure 4.2: Flowchart of the adopted methodology to compute buildings’ single- and multi-risk scores. 
Coloured subplots report the workflow to derive the hazard (a), potential damage (b) and activity (c) 
components of the multi-risk equation. In bold the main inputs and outputs data. 

Table 4.1: Input data with features and role in the multi-risk ranking. ISTAT (Istituto nazionale di STATistica) 
stands for “National Institute of Statistics”. DBSN (DataBase di Sintesi Nazionale) stands for “national synthesis 
database”. OMI (Osservatorio Mercato Immobiliare) stands for “real estate market observatory”. ReNDiS 
(Repertorio Nazionale degli interventi per la Difesa del Suolo) stands for “national inventory of soil protection 
interventions. 

Input data Description Risk component Format Website/Referen
ce 

Landslide 
susceptibility map 

Spatial probability of 
landslides 
occurrence 

Hazard Raster (5x5m) 

Esposito et al., 
2023, 

Mastrantoni et al., 
2023. 

Subsidence 
susceptibility map 

Spatial probability of 
subsidence 
occurrence 

Hazard Raster (5x5m) 

Research contract 
CERI – ACEA 

“Development of a 
monitoring and 

prevention plan of 
the geo-hydrological 
instability of the city 

of Rome” 

https://github.com/gmastrantoni/mhr
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Sinkhole 
susceptibility map 

Spatial probability of 
sinkhole occurrence Hazard Raster (5x5m) 

Esposito et al., 
2021, and Research 

contract CERI – 
ACEA. 

ISTAT census 
tracts 

Spatial distribution 
of building features Vulnerability Vector (Polygons) https://www.istat.it/ 

 

DBSN database Building footprints 
and features 

Building type and 
footprint Vector (Polygons) 

https://www.igmi.org
/ 
 

OMI database Asset market 
value Exposure Vector (Polygons) 

https://www.agenz
iaentrate.gov.it/po

rtale/ 
 

Sentinel-1 PS time 
series 

Spatial distribution 
of ground motion 

rate 
Activity Vector (Points) 

https://land.copernic
us.eu/pan-

european/european-
ground-motion-

service 
 

Cosmo-SkyMed PS 
time series 

Spatial distribution 
of ground motion 

rate 
Activity Vector (Points) 

https://www.asi.it/en/
earth-

science/cosmo-
skymed/ 

 

DTM Elevation Topography Raster (5x5m) Esposito et al., 2023 

ReNDiS Mitigation Measures Validation Vector (Points) 
http://www.rendis.is
prambiente.it/rendis

web/ 

 

4.3.1. Spatial multi-hazard assessment 

This section describes the materials and methods applied for the assessment of multiple single 

hazard scores related to elements exposed to ground instabilities, as depicted in Figure 4.2a. 

4.3.1.1. Hazard Score 

In this work, we considered the spatial component of the hazard, which is the susceptibility, since 

the analysed ground instabilities are based on completely different processes with peculiar 

characteristics. Hence, the need to standardise the data to common information arises. Among the 

three geohazards considered in the present study, the temporal component of the hazard factor is 

conceptually definable for landslides only. Given the nature of subsidence, it occurs as a continuous 

(and non-linear) process that may be triggered by overloads and/or vary its intensity with time (e.g., 

velocity of settlements) up to the end of the process, thus preventing the assignment of return time 

values, as for landslides. A similar reasoning applies to sinkholes. A sinkhole can be interpreted as 

a unique shock event occurring in a confined place, which will no longer experience it. For this 

reason, sinkholes do not have a return time, nor have significant relationship with recurrent triggers 

pointed out so far. Given that, we decide to use high-resolution susceptibility maps as the hazard 

component of risk. Susceptibility maps report the spatial probability of occurrence of a certain event 

without considering the temporal dimension. They represent one of the products that lead to a 

https://www.istat.it/
https://www.igmi.org/
https://www.igmi.org/
https://www.agenziaentrate.gov.it/portale/
https://www.agenziaentrate.gov.it/portale/
https://www.agenziaentrate.gov.it/portale/
https://land.copernicus.eu/pan-european/european-ground-motion-service
https://land.copernicus.eu/pan-european/european-ground-motion-service
https://land.copernicus.eu/pan-european/european-ground-motion-service
https://land.copernicus.eu/pan-european/european-ground-motion-service
https://land.copernicus.eu/pan-european/european-ground-motion-service
https://www.asi.it/en/earth-science/cosmo-skymed/
https://www.asi.it/en/earth-science/cosmo-skymed/
https://www.asi.it/en/earth-science/cosmo-skymed/
https://www.asi.it/en/earth-science/cosmo-skymed/
http://www.rendis.isprambiente.it/rendisweb/
http://www.rendis.isprambiente.it/rendisweb/
http://www.rendis.isprambiente.it/rendisweb/
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comprehensive hazard assessment (Cascini 2008; Fell et al. 2008; Corominas et al. 2014). 

According to Corominas et al. (2014), susceptibility assessment can be considered an end product 

that can be used in land-use planning and environmental impact assessment. As demonstrated by 

(Mastrantoni et al. 2023), a measurable loss in accuracy, and thus in reliability for specific purposes 

(Cascini 2008), is proportional to the decrease in zoning scale. 

Susceptibility maps are represented in raster format with a resolution of 5 metres and cover the 

entire centre of Rome (Figure 4.3). Each raster cell gives the level of probability of being affected by 

a landslide (Figure 4.3a), a sinkhole (Figure 4.3b), and a subsidence (Figure 4.3c). The value of 

susceptibility ranges from 1 to 5, where 1 stands for negligible and 5 for very high probability. The 

employed landslide and sinkhole susceptibility maps derive from already published studies (Esposito 

et al. 2021; Mastrantoni et al. 2023; Esposito et al. 2023). Susceptibility to subsidence was 

commissioned to Sapienza University of Rome by ACEA ATO2 Spa that funded a project for a better 

knowledge of hazards aimed at safeguarding the underground service network in Rome. 

The landslide susceptibility map was obtained by applying the extra trees classifier (Pedregosa et 

al. 2011), a supervised machine learning model that has proved to outperform several other 

algorithms (Mastrantoni et al. 2023). The model was trained and tested with a database of about 

3000 landslide initiation and stable points distributed throughout the Municipality of Rome. 

The sinkhole susceptibility map refers to anthropogenic sinkholes of Rome mainly due to the 

presence of underground cavity networks in areas featured by relevant thickness of volcanic deposits 

(Bianchi Fasani et al. 2011) and to “piping-like” processes due to shallow groundwater circulation 

and related erosion of silty fraction of layers in area dominated by sedimentary sequences. The 

assessment was carried out through the logistic regression multivariate statistical technique taking 

advantage of a database containing about 1000 sinkholes that occurred in the period 1875-2018. 

Lastly, the subsidence susceptibility map was realised by reconstructing the extent and thickness of 

recent alluvial deposits. This process was based on the interpolation of available stratigraphic logs 

throughout the valley of the Tiber River. The derived thickness map of recent alluvial deposits was 

then weighted based on their type, thickness, and depth within the stratigraphic sequence, 

considered as proxies of compressibility, and thus proneness to develop consolidation settlements. 

To derive the multiple single-hazard scores, the built environment was analysed with the zonal 

statistics method, thus retrieving the maximum value of hazard class within the perimeter of 

individual buildings. Elements with a hazard score above 2 were considered exposed to a specific 

single risk. We stress that to account for landslide run-outs, a buffer of 20m was drawn around the 

buildings. The buffer size was calibrated on the mapped landslides within the territory of Rome, as 

reported by Alessi et al. 2014; and Del Monte et al. 2016. 
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Figure 4.3: Susceptibility map for landslides (a), sinkholes (b), and subsidence (c) within the area of interest 
(AOI). 

4.3.1.2. Impact Ratio 

Since susceptibility maps do not directly provide magnitude information in terms of dimension and 

volume of the process, a strategy to overcome this limitation and define a proxy for hazard intensities 

was needed. Consequently, it was assumed that the potential magnitude of the hazards impacting 

the built environment is directly related to the percentage of the building’s area exposed to the threat. 

To achieve this information, building footprints were overlaid on susceptibility maps and a categorical 

zonal statistic was computed, thus counting, and weighting the hazard classes within the polygons. 

By setting the threshold for the hazard class equal to 2 (i.e., low susceptibility) the weighted area of 

the element exposed to risk was derived, and consequently the ratio of the total area. Such 

information, hereafter called impact ratio (Ib), is then coupled in the following phases with structural 

resistance for the assignment of physical vulnerability values to the specific ground instability hazard. 

The values of the impact ratio were classified into four classes using equal intervals. I0 is defined by 

an impact ratio equal to 0, I1 for 0<Ib≤0.25; I2 for 0.25<Ib≤0.5; I3 for 0.5<Ib≤0.75 and I4 for Ib>0.75. 

Therefore, each element within the area of interest has one or more impact ratio classes following 

the threats to which it is exposed. 

4.3.2. Multi-hazard consequence analysis 

This section describes the materials and methods applied for quantifying the potential multi-hazard 

damage scores of the built environment, as depicted in Figure 4.2b. 
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4.3.2.1. Vulnerability 

Building vulnerability was defined according to the impact ratio of the i-th hazard and the structural 

resistance of buildings. The definition of structural resistance relies on the approach proposed by Li 

et al. 2010 for landslide hazards and modified by Caleca et al. 2022. In this study, we assume that 

structural resistance to landslides can also be considered valid for sinkhole and subsidence hazards. 

The applied approach exploits census tract data produced by ISTAT in 2011 (Table 4.1) and impact 

ratio data. It consists of three phases. First, the estimation of the structural resistance for each 

census tract within the area of interest was made by using a modified equation proposed by Li et al. 

2010; Caleca et al. 2022: 

𝑅𝑅𝑃𝑃𝑠𝑠𝑃𝑃  = �𝜀𝜀𝑃𝑃𝑠𝑠𝑠𝑠 × 𝜀𝜀𝑃𝑃𝑠𝑠𝑃𝑃 × 𝜀𝜀𝑃𝑃ℎ𝑠𝑠�
1/3    (4.1) 

where 𝜀𝜀𝑃𝑃𝑠𝑠𝑠𝑠, 𝜀𝜀𝑃𝑃𝑠𝑠𝑃𝑃, and 𝜀𝜀𝑃𝑃ℎ𝑠𝑠 are resistance factors of structure type, maintenance state and number of 

floors, respectively. These parameters are derived from census tract data (Table 4.2). The Italian 

census tracts are delineated as geographically contiguous areas within the country’s territory that 

demonstrate a notable degree of homogeneity. Each census tract represents either an entire 

municipality, a specific portion thereof, or a cluster of municipalities characterized by comparable 

environmental and socioeconomic features. They provide comprehensive information pertaining to 

the characteristics of buildings within the area, encompassing factors such as typology, quantity, 

materials, and other relevant attributes. Furthermore, census tracts offer valuable insights into 

population distribution. Values of resistance factors are set according to that suggested by previous 

studies (Li et al. 2010; Caleca et al. 2022) (Table 4.2), and combined with impact ratio values to 

retrieve the vulnerability level. 

Table 4.2: Values of resistance factors employed in the structural resistance assessment (from Caleca et al. 
2022). 

Resistance Factor Parameter Typology Value 

Structure type ɛsty 

Productive and commercial 0.1 

Residential with light structure 0.2 

Residential with brick walls 0.8 

Residential reinforced concrete 1.5 

Maintenance state ɛsmn Productive and commercial 0.1 
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Residential in very poor condition 0.1 

Residential in a medium condition 0.6 

Residential in a good condition 1.2 

Residential in a very good condition 1.5 

Number of floors ɛsht 

Productive and commercial 0.1 

Single-storey residential 0.1 

Two-storey residential 0.4 

Three-storey residential 0.9 

Number of floors ≥4 1.5 

 

The second step of the procedure consists of the attribution of the structural resistance values (Rstr) 

computed from the census tracts to the corresponding building depending on its position and type 

(i.e., residential/not residential). Following that, a classification was conducted, categorizing the built 

environment into six distinct classes based on their respective level of structural resistance (Table 

4.3). Footprints and categories of use of the built environment were extracted from the DBSN 

database (Database di Sintesi Nazionale) (Table 4.1). It is freely available under the Open Data 

Commons Open Database License (ODbL). The DBSN database is a geographic database 

containing territorial information primarily derived from regional geo-topographic data. These data 

have been harmonized and standardized within the structure to ensure national homogeneity while 

preserving the original level of detail. Administrative boundaries are derived from cadastral data, 

ensuring congruence with municipal and state administrative borders. The built environment is 

classified into detailed categories of use. 

The third phase of the applied approach involved the quantification of the multi-hazard vulnerability 

values for each element at risk. These values were obtained using the contingency matrix proposed 

by Caleca et al. 2022 and tailored to this study, to established a link between the classes of the 

impact ratio for the i-th hazard type and the classes of structural resistance (Table 4.3). The 

contingency matrix defines five distinct vulnerability classes: V0 (null vulnerability), V1 (low 

vulnerability), V2 (medium vulnerability), V3 (high vulnerability), and V4 (very high vulnerability). To 

calculate quantitative values for vulnerability, which were necessary for assessing the economic 

potential damage, numerical values ranging from 0 to 1 were assigned to each vulnerability class as 



CHAPTER 4: BUILDING MULTI-RISK MODELLING 

96 

follows: V0 = 0, V1 = 0.25, V2 = 0.5, V3 = 0.75, V4 = 1. Hence, each building has been assigned one or 

more vulnerability values depending on the number and type of hazards to which it is exposed. 

Table 4.3: Contingency matrix for the assessment of building vulnerability by means of impact ratio and 
structural resistance classes (modified from Caleca et al. 2022). 

Resistance 
Impact Ratio 

I0 I1 I2 I3 I4 

R4 0 0 0.25 0.25 0.50 

R3 0 0.25 0.25 0.50 0.50 

R2 0 0.25 0.50 0.50 0.75 

R1 0 0.25 0.50 0.75 0.75 

R0 0 0.25 0.75 0.75 1 

N.A. 0 0 0 0 0 

 

4.3.2.2. Exposure 

In this study, exposure of elements at risk (Eb) is deemed as the economic value per square meter, 

taking the real estate’s market value as a reference. To obtain this information, we exploited the OMI 

national-scale open access database (which stands for Osservatorio Mercato Immobiliare – real 

estate market observatory) (Table 4.1). It is managed and updated every 6 months by the National 

Revenue Agency under the Italian Ministry of Economy and Finance. The OMI dataset encompasses 

comprehensive information regarding the minimum and maximum market values for various building 

typologies, expressed in euros per square meter (€/m2). This data is aggregated at the municipality 

level and further stratified into smaller subdivisions, known as “OMI zones”, within the respective 

municipality. The study area includes 186 zones. Market data related to the first semester of 2022 

were downloaded and pre-processed to define for each OMI zone the average market value of six 

peculiar building typologies: economic, retail, residential, office, and industrial (Figure C1 in Appendix 

C). Thereafter, categories of use from the DBSN database were linked to typologies from OMI zones, 

and the respective economic values were associated according to location and type of buildings. 

4.3.2.3. Potential Damage Score 

To quantify the potential damage, multi-hazard vulnerabilities were combined with the previously 

derived exposure values (Marzocchi et al. 2012), thus obtaining the expected economic loss per 

square meter (LOSSb): 
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏(ℎ)  = 𝑉𝑉𝑏𝑏(ℎ) × 𝐸𝐸𝑏𝑏     (4.2) 

where Vb(h) is the vulnerability value of building exposed to the hazard h, and Eb represents its 

economic value expressed in euros per square meter. 

Once the potential multi-hazard loss data were derived, the empirical cumulative distribution function 

(eCDF) was applied to them. With this approach, we sorted and ranked the damage data without 

making assumptions about the underlying probability distribution. The eCDF quantifies the 

proportion of data points that are less or equal to a given value. By exploiting the cumulative 

distribution of potential economic losses, class thresholds were set following Equation 3 and potential 

damage scores (Db) ranging from 1 to 5 were defined. 

𝐷𝐷𝑏𝑏(ℎ) = 𝑅𝑅𝑒𝑒𝐷𝐷𝐹𝐹−1�𝑝𝑝, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑏𝑏|ℎ)�, 𝑝𝑝 = (20,40,60,80)    (4.3) 

where 𝑅𝑅𝑒𝑒𝐷𝐷𝐹𝐹−1 denotes the inverse of the empirical cumulative distribution function, 𝑝𝑝 is the specific 

value of the proportion or percentile for which the damage score Db was calculated. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑏𝑏|ℎ) 

represents the distribution of economic loss values of buildings (𝑏𝑏) considering only those exposed 

to the hazard ℎ. These class thresholds assist in delineating the severity levels of the potential 

economic loss associated with multiple hazards. We acknowledge that the ranking will be sensitive 

to the threshold values chosen to delimit the classes. However, the strength of it lies in being able to 

customize and optimize class thresholds according to the proportion of items to be contained in each 

class. 

4.3.3. Multi-satellite SAR interferometry 

This section describes the materials and methods applied for assessing the multi-hazard activity 

scores of the built environment, as depicted in Figure 4.2c. 

4.3.3.1. Interferometric analysis 

In this study, the Advanced-DInSAR (A-DInSAR) technique (Hanssen 2001) was employed to derive 

displacement rates throughout the area of interest. The A-DInSAR method is increasingly applied to 

study the temporal evolution (by means of time series) of ground displacements for objects with long-

term stability in terms of reflectivity, known as Persistent Scatterers (PS) (Ferretti et al. 2001). The 

PS-InSAR technique extracts this information from a huge collection of SAR images, forming an 

interferometric stack that enables the derivation of displacement patterns over the desired time span. 

The dataset accessed in this study was acquired from two currently active satellite SAR missions 

that provide freely available historical archive data for scientific research: Sentinel-1 (by ESA) and 

Cosmo-SkyMed (by ASI). The main differences between these images lie in the resolution, both 

temporal and geometrical, and in the acquisition bandwidth (C- and X-band respectively). Sentinel-
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1 (S1) has a pixel resolution of 5x20 m on the ground, while Cosmo-SkyMed (CSK) has a resolution 

of 3×3 m (for the Interferometric Wide images used and available from the archive). The revisit time 

of the S1 constellation is higher than CSK. The former being approximately 6 days (until December 

23, 2021, end date of the Sentinel-1B mission), whereas the latter being 16 days on average. This 

is due to its dual-purpose mission for both civilian and military applications. Moreover, it may have 

sparse missing data. 

The S1 PSs derive from the European Ground Motion Service products (EGMS). The EGMS is part 

of the Copernicus Land Monitoring Service and applies the PS-InSAR technology to monitor ground 

deformations over most of Europe (Costantini et al. 2021). The data employed in this study refers to 

Level 2a, which is the first of three product levels (Crosetto et al. 2021; Costantini et al. 2021). This 

level is also called Basic Product, it includes displacement rates and time series measured along the 

Line of Sight (LOS) for both the ascending and descending orbital geometries. According to Crosetto 

et al. 2021, these data are suitable to study local deformation phenomena such as subsidence, 

landslides, tectonic effects, and earthquakes, which impact the stability of slopes, buildings and 

infrastructures. The resultant PS time series data covers a period of 7 years (from 10/02/2015 to 

23/12/2021), with a temporal sampling of one image every 6 days. 

The CSK dataset, not yet available from the EGMS project, was elaborated using the PS approach 

starting from a total of 358 SAR images retrieved from the archives of the Italian Space Agency 

(ASI), which provides free of charge data for academic purposes. The selected time span ranges 

from 2010 to 2022 for both orbital geometries: 

 Ascending orbital geometry: 196 images in Single Look Complex (SLC) format acquired by 

the CSK satellites from 04 July 2010 to 19 July 2022. 

 Descending orbital geometry: 162 images in Single Look Complex (SLC) format acquired by 

the CSK satellites from 27 July 2010 to 19 June 2022. 

For each geometry in each dataset, a master image was selected as the reference for the calculation 

of phase differences in other images within the dataset. The master image for the descending 

dataset was captured on December 17, 2017, and for the ascending dataset on May 28, 2014. The 

displacement rate values (here expressed in mm/year) estimated by the A-DInSAR analysis for all 

the PS are relative to the selected reference point. The reference point for the ascending dataset 

was located at LAT=41.8868, LON=12.4914 and for the descending dataset at LAT=41.8879, 

LON=12.4405 (EPSG:4326). Finally, the analyses were calibrated and validated with displacement 

data acquired from GNSS stations (Ferretti et al. 2022). The greater ground resolution of the CSK 

SAR images provided a denser PS coverage than the S1 products. Indeed, the total number of PS 

within the area of interest is about 4.65×106 and 1.46×106 for CSK and S1 descending geometry 

respectively. 
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Displacement time series can be divided into three parts that include seasonal, trend, and remainder 

components. The latter containing random fluctuations and noise (Hyndman and Athanasopoulos 

2018; Costantini et al. 2018). Hence, the need to decompose PS time series to extract the long-term 

trend arises. To this purpose, we applied a Seasonal-Trend Decomposition (STL) technique 

(Cleveland et al. 1990) based on a LOcally wEighted regreSsion Smoother (LOESS) (Figure 4.4), 

which is implemented within the PS-ToolBox plugin for QGIS developed by Nhazca 

(https://www.sarinterferometry.com/ps-toolbox/). 

 

Figure 4.4: PSs map of average velocity along LOS computed from long-term trends extracted from Sentinel-
1 and Cosmo-SkyMed for ascending and descending orbits. EPSG:3857. 

4.3.3.2. Data fusion 

S1 and CSK PS time series were then merged for cross-validation and to gain reliability, as well as 

to increase spatial coverage of displacement information. The implemented data fusion method 

within the PS-ToolBox allows the integration of multi-mission PS data. The combination of multiple 

sources measurements, with different orbital geometries, exploits the strain tensor (Guglielmino et 

al. 2011) through the ESISTEM (Extended Simultaneous and Integrated Strain Tensor Estimation 
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from Geodetic and Satellite Deformation Measurements) (Luo and Chen 2016) method to generate 

synthetic datasets that incorporate multi-band information. The estimated displacement (𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 (X),

𝑘𝑘 = 1, … ,𝐾𝐾) of each synthetic data point (X = (𝑥𝑥,𝐴𝐴)) along the k LOS is determined by combining the 

ground deformation components (i.e., the vertical Up-Down and horizontal East-West displacement, 

𝑓𝑓𝑃𝑃(𝑋𝑋), 𝑃𝑃 = (1,2)) and the direction cosine (𝐿𝐿𝑃𝑃𝑘𝑘, i = (1,2)) of the k LOS: 

 𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 (𝑋𝑋) =  𝐿𝐿1𝑘𝑘𝑓𝑓1(𝑋𝑋) + 𝐿𝐿2𝑘𝑘 𝑓𝑓2(𝑋𝑋), 𝑘𝑘 = 1, … ,𝐾𝐾    (4.4) 

The deformation components are estimated using the known N neighbour PS points (𝑋𝑋𝑃𝑃 = (𝑥𝑥𝑃𝑃,𝐴𝐴𝑃𝑃), 

n=1, …, N) along each k LOS through the formulation of a first order Taylor polynomial: 

 𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 (𝑋𝑋𝑃𝑃) =  𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 (𝑋𝑋) + ∇𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 (𝑋𝑋)∆𝑋𝑋𝑃𝑃     (4.5) 

where ∆𝑋𝑋𝑃𝑃 contains the relative distances between the 𝑋𝑋𝑃𝑃 point components and the synthetic point 

𝑋𝑋. The displacement map along the multi-satellite LOS is found by solving the Taylor system for the 

K LOS. The data fusion formulation considers two parameters: the maximum distance within which 

nearby PS measurements are selected to estimate deformations, and the locality factor that weights 

the contribution of each measurement based on its distance from the point estimation. The synthetic 

datasets of Up-Down and East-West components are derived into a regular grid of squared cells 

from the vector decomposition of the displacement map along the multi-satellite LOS. 

4.3.3.3. Activity score 

The vertical and horizontal components of ground displacement achieved by the fusion of S1 and 

CSK PS data were further processed with building footprints. Points contained within each polygon 

were interpolated to produce a raster with mean velocity values over the time span at 10 meters grid 

resolution. This procedure results in a series of velocity values for each element within the area of 

interest. With the aim of quantifying the state of activity of each element in reference to the hazard 

to which it is exposed, three specific values of velocity were retrieved from individual building 

statistics and assigned to the whole element at risk. For the landslide hazard, the maximum absolute 

velocity between the vertical and horizontal components was selected. Regarding the subsidence 

hazard, we computed the range between minimum and maximum vertical velocity, thus focusing on 

buildings experiencing distortion; and concerning the sinkhole hazard, the maximum negative 

velocity of the vertical component was preferred. 

Once the specific hazard velocities were assigned to the entire built environment, we applied the 

same approach employed to rank potential damage. Therefore, Equation 4.6 was applied to derive 

class thresholds of the building velocity. According to the eCDF in Eq. 4.6, class thresholds were set 

at the respective percentile (𝑝𝑝) value, and activity scores (𝐴𝐴𝑏𝑏) ranging from 1 to 5 were defined.  
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 𝐴𝐴𝑏𝑏(ℎ) = 𝑅𝑅𝑒𝑒𝐷𝐷𝐹𝐹−1�𝑝𝑝, 𝑉𝑉𝐸𝐸𝐿𝐿(𝑏𝑏|ℎ)�, 𝑝𝑝 = (50, 82, 95, 97.5)   (4.6) 

4.3.4. Multi-risk ranking 

To derive multi-risk scores, we firstly ranked the specific risk of single hazards by combining the 

three risk components described above. Equation 4.7 defines the convolution of the hazard (𝐻𝐻𝑏𝑏(ℎ)), 

activity (𝐴𝐴𝑏𝑏(ℎ)), and potential damage (𝐷𝐷𝑏𝑏(ℎ)) that compose the single-risk score (𝑅𝑅 ) of each 

exposed building (𝑏𝑏). 

 𝑅𝑅𝑏𝑏 = 𝐻𝐻𝑏𝑏(ℎ) × 𝐴𝐴𝑏𝑏(ℎ) × 𝐷𝐷𝑏𝑏(ℎ)      (4.7) 

Secondly, starting from the single-risk evaluations (𝑅𝑅𝑏𝑏), the multi-risk score at building level (𝑀𝑀𝑅𝑅𝑏𝑏) is 

defined as their summation corrected by a multiplication factor (𝐹𝐹ℎ) (Equation 4.8). This coefficient 

weights the risk score by the corresponding hazard type, depending on whether it is a shock or a 

stress process. This is because stress phenomena usually cause fewer losses than shock ones and 

are also harder to mitigate. Regarding shock events such as landslides and sinkholes, the 𝐹𝐹ℎ 

coefficient is set equal to 1, thus keeping the risk score unchanged. Whereas, in the case of stress 

processes (e.g., subsidence) we decided to fix the 𝐹𝐹ℎ coefficient equal to 0.5. 

 𝑀𝑀𝑅𝑅𝑏𝑏 = ∑ (𝑅𝑅𝑏𝑏 × 𝐹𝐹ℎ)𝐴𝐴𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑃𝑃       (4.8) 

Finally, a spatial distribution of dominant risk among the built environment was retrieved by selecting 

the maximum value across single risk scores and assigning the corresponding hazard to it. 

Once obtained, both the single- and multi-risk scores were rescaled to five classes using the eCDF 

based method and percentiles described above, thus clustering assets with risk level in the top 2.5%, 

5%, 18%, 50%, and lower than median into scores ranging from 5 to 1, respectively. 

Finally, to validate the results, financial data related to expenses incurred for remediation and 

mitigation measures within the AOI were retrieved from the ReNDiS database (Table 4.1) and 

compared with the multi-risk scores of nearby buildings. 

4.4. Results 

4.4.1. Hazard 

The exposure analysis to ground instabilities of urban assets within the area of interest assigned a 

binary classification (i.e., exposed/not exposed) to each individual building. As a result, the threat to 

which most buildings are exposed proves to be the sinkhole hazard (Figure 4.5), as more than half 

of the elements were found to be at risk. Additionally, about 10% of the built-up area might be 
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affected by subsidence processes, while landslides pose a potential risk to about one-third of the 

buildings. 

Further investigation into the specific elements exposed to each threat revealed their hazard score, 

which was subsequently mapped (Figure 4.6). Figure 4.6d reports the statistical distribution of the 

elements at risk across assigned hazard scores. Landslide-prone buildings are mainly ranked with 

a hazard score of 3, with just a few having the maximum hazard. Spatially, they spread throughout 

the northwestern and southern slopes (Figure 4.6a). The sinkhole hazard score seems to distribute 

almost equally, and the same applies to subsidence hazard. However, subsidence hazard spread 

along the valleys and paleo-valleys of the Tiber and Aniene Rivers (Figure 4.6b), whereas the highest 

sinkhole hazard scores concentrate among the S-E part of the city (Figure 4.6c). 

 

Figure 4.5: Overall number of buildings exposed (true) and unexposed (false) for each type of hazard 
investigated. 
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Figure 4.6: Hazard score of buildings for landslides (a), subsidence (b), and sinkholes (c). Statistical 
distribution of hazard score for elements at risk by hazard type (d). EPSG:3857. 

4.4.2. Potential damage 

Figure 4.7a illustrates the probability density function (PDF) of impact ratio values by different ground 

instability types. The distributions of impact ratios exhibit similarities between landslide and 

subsidence, with values spread over the range. A slight deviation towards higher values is observed 

for subsidence. Conversely, the impact ratio values for sinkholes tend to concentrate around 0.8. 
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Structural resistance values were obtained for both residential and non-residential buildings (i.e., 

productive, and commercial). In Table 4.2, the reported parameters reveal that resistance values for 

non-residential constructions consistently equate to 0.1, as no structural characteristics are included 

in the census tract data. Contrarily, for residential buildings, the resistance values can vary between 

0 and 1.5. Figure 4.7b displays the histograms along with the PDF of computed structural resistance 

values specifically for residential buildings, which have a mean value of 0.9 and a standard deviation 

of 0.28. 

Once reclassified, impact ratio and structural resistance were merged to form vulnerability classes 

using the contingency matrix presented in Table 4.3. The pairs of impact ratio and resistance values 

are illustrated in Figure 4.8a, with distinct colours indicating the assigned vulnerability value. This 

graphical representation effectively shows the boundaries of the vulnerability classes. The resultant 

multi-hazard physical vulnerability values (Figure 4.8b) exhibit a tendency to concentrate at 0 and 

0.5 for landslides, with about 75% of the structures within the two classes. In the case of sinkhole 

events, about 55% of the buildings demonstrate a vulnerability value of 0.5 and 20% of 0.75. 

However, vulnerability to subsidence appears to be evenly distributed among values of 0, 0.5, and 

0.75 for 80% of the buildings. Furthermore, it should be noted that among the others, subsidence 

hazard has the highest percentage of elements with vulnerability of 0.75 and 1.0, about 25% and 

10% respectively. 

 

Figure 4.7: Probability density functions of impact ratio values by hazard type (a), and of structural resistance 
values for residential buildings. 
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Figure 4.8: Graphical representation of the vulnerability value (V) assignment based on the contingency matrix 
reported in Table 3 (a). Distribution of vulnerability value of elements at risk by hazard type (b). 

The analysis of real estate market data enabled the determination of economic value per square 

metre for each urban asset. Figure 4.9 presents the exposure of the built environment in the 

designated area of interest. Notably, there is a distinctive radial distribution pattern observed, with 

the highest values concentrated within the historic centre. These peak values exceed 7000 euro/m2 

and gradually decrease as one moves towards the suburbs. In suburban areas, the exposed value 

can be as low as 1000 euro/m2. This applies particularly to the eastern sector, where a significant 

number of industrial activities are located. 

The integration of multi-hazard vulnerability and exposure values enabled the computation of 

potential economic losses per square meter. Subsequently, these losses were reclassified into 

potential damage scores, as depicted in Figure 4.10. Each element at risk was assigned a damage 

score based on the specific threats it is exposed to. The mapped damage scores for landslide, 

subsidence, and sinkhole can be observed in Figure 4.10a, b, and c, respectively. Furthermore, 

Figure 4.10d presents the eCDF of resultant potential economic losses. These eCDF were utilized 

to identify the score class thresholds, which are indicated by markers along the curves. 
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Figure 4.9: Real estate market values of buildings per square meter (€/m2) within the study area according to 
their category of use and position. EPSG:3857. 
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Figure 4.10: Potential damage score of buildings for landslides (a), subsidence (b), and sinkholes (c). 
Empirical cumulative distribution of economic losses per square metre selected according to hazard type (d). 
The coloured diamonds define percentile thresholds used to derive the five score classes. EPSG:3857. 

4.4.3. State of activity 

The synthetic datasets of vertical and horizontal components derived from the data fusion process 

of S1, and CSK PS time series are reported in Figure C2 (see Appendix C). The resulting 

displacement rates of the built environment are reported in Figure 4.11. A comparison between the 

two components reveals that displacements predominantly occur along the vertical axis (Figure 

4.11a). The horizontal displacements exhibit minimal rates, peaking at a few mm per year (Figure 

4.11b). Notably, the largest rates can be observed for assets situated along the Tiber River valley. 
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Based on the hazard-specific value distribution, activity scores were assigned to the building 

displacement rates. Figure 4.12a, b, and c depict the resulting activity scores for landslide, 

subsidence, and sinkhole, respectively. Figure 4.12d presents the eCDF of the quantitative absolute 

velocity values, which were assigned to individual assets based on the hazard under consideration. 

 

Figure 4.11: Buildings’ vertical (a) and horizontal (b) displacement rates (i.e., velocity) derived from the grid-
based synthetic datasets (Figure A2) and assigned to the entire built-environment under investigation. 
EPSG:4326. 
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Figure 4.12: Activity score of buildings for landslides (a), subsidence (b), and sinkholes (c). Empirical 
cumulative distribution of absolute velocities values selected according to hazard type (d) employed to set up 
class thresholds. EPSG:3857. 

4.4.4. Multi-risk 

The rankings of landslide, subsidence, and sinkhole risks for individual buildings, derived from the 

combination of the corresponding hazard, damage, and activity scores, are illustrated in Figure 

4.13a, b, and c, respectively. Moreover, the aggregation of single-risk scores using the appropriate 

weighting factor produced a multi-risk map, as shown in Figure 4.13d. Examining the building use 

categories alongside their associated risk scores reveals that retail and economic structures exhibit 
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the highest proportion of buildings with elevated risk scores, closely followed by offices (Figure C3 

in Appendix C). In the case of residential buildings, they are distributed relatively evenly across the 

risk classes, although there is a slightly higher concentration within risk score 1. The dominant risk 

type of each element at risk is depicted in Figure 4.14a. Out of the approximately 90×103 urban 

assets analysed, it was determined that 60% of them are at risk. Within this group, 33% exhibit the 

highest risk score attributed to sinkhole phenomena, while 22% and 5% possess the highest score 

related to landslides and subsidence processes, respectively (Figure 4.14b). Delving into buildings’ 

use categories, it results that the dominant risk type is not evenly distributed among them, thus 

landslide risk prevails for residential buildings, while subsidence and sinkhole risks predominate for 

retail and offices, respectively (Figure 4.14c). 

 

Figure 4.13: Risk score of buildings for landslides (a), subsidence (b), sinkholes (c) and multi-hazard (d). 
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Figure 4.14: Spatial distribution of dominant risk threatening individual buildings (a) with a focus on the hazard 
type ratio among the overall elements (b), and among the buildings use categories (c). 

4.5. Discussion 

Risk assessment of natural hazards can guide preventive and corrective actions to reduce levels of 

vulnerability and hazard exposure of urban assets and populations. In this study, a semiquantitative 

multi-risk assessment was developed to provide a replicable and customisable framework for ranking 

and prioritising elements at risk based on official open-source data. The approach relies on three 

factors (i.e., hazard, potential damage, and state of activity) that are combined to compute the 

specific- and multi-risk score of urban buildings. Albeit both temporal and spatial information should 

be considered to perform a proper hazard assessment (Fell et al. 2008), data on the recurrence and 

magnitude of ground instabilities in Rome are lacking, except for landslides (Esposito et al. 2023). 

The investigated ground instabilities rely on completely different geological processes that affect the 

possibility of estimating return periods. Moreover, they don’t seem to be triggered by any 

environmental variables. Hence, the hazard related score factors are only based on the spatial 

component (i.e., susceptibility) which was engineered to derive i) the probability of individual 

elements being involved in an event in the near future (hazard score), and ii) the building’s area 

potentially affected and weighted by susceptibility levels, as a proxy for the expected magnitude, and 

thus for the destructiveness of the event (impact ratio). The potential damage score is built upon 

building’s physical vulnerability and its economic value, which provide valuable results to quantify 

the potential economic losses. With respect to others (Papathoma-Köhle et al. 2007; Kappes et al. 



CHAPTER 4: BUILDING MULTI-RISK MODELLING 

112 

2012a; Romão et al. 2016; Bianchini et al. 2017; Huang et al. 2023) deriving the physical vulnerability 

from structural resistance values and hazard intensity facilitated the computation at large scale, since 

it exploits features of the built environment based on open-source official census tracts of Italy. 

Moreover, structural resistance parameters can be easily modified to suit specific hazards. The last 

risk component, i.e., activity score, provides a dynamic layer that relies on displacement rates of the 

elements within hazardous area. It employs the distribution of building velocity values retrieved from 

multi-satellite PS time series. The activity score is based on the fusion of S1 and CSK PSs, thus 

exploiting the strengths and overcoming the weaknesses of each dataset. According to Costantini et 

al. 2017, PS density from CSK images (X-band) is higher by one order of magnitude respect to C-

band SAR (e.g., S1), especially for surfaces with reduced radar backscattering coefficient and 

without strong point-like scatterers, thus helping to better detect ground deformation phenomena 

affecting small areas (Esposito et al. 2021; Festa et al. 2022). Moreover, CSK sensor has higher 

sensitivity in detecting small movements. Conversely, S1 has significantly higher frequency and 

regularity, thus increasing the applicability for early detection of failure precursors. Hence, the fusion 

of PSs retrieved from both satellites ensured higher resolution and spatial coverage to catch ground 

instability processes in detail. Both potential damage and activity scores derive from the exploitation 

of the empirical cumulative distribution function, which allows the selection of threshold values equal 

to the specified fraction of observations (e.g., percentile). According to Mastrantoni et al. (2023), 

percentiles must be chosen based on values distribution and expert judgment. Therefore, class 

thresholds can be easily adapted to other cities. For the city of Rome, the top 2.5% of buildings at 

multi-risk were selected as the highest class. However, the number of elements in the highest priority 

class may be set depending on the availability of funds for mitigation measures. The ReNDiS 

database states a total amount of expenses financed for mitigation measures within the area of 

interest of approximately 97 million euros, encompassing 71 projects. This data enables us to 

compare and validate the multi-risk outcomes using official financial records (Figure 4.15). The 

average cost of mitigation rises progressively as the multi-risk class of the nearby buildings 

increases, thus revealing a significant correlation between mitigation expenses and calculated multi-

risk score that ensure the reliability of the proposed method. 
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Figure 4.15: Average expenses (M€) and standard deviations of incurred mitigation measures within the study 
area compared with the multi-risk score of nearby buildings as computed in this work. 

Multi-risk scores can also be analysed prior to reclassification, thus retrieving the buildings with the 

absolute highest indices (Figure 4.16). As expected, the most at-risk buildings may face all three 

ground instabilities investigated, although landslide and sinkhole risk generally overwhelm 

subsidence risk. This is mainly related to the Fh coefficient halving the risk of subsidence, since 

stress phenomena, such as subsidence, are hereby considered less urgent and impactful in terms 

of mitigation measures and expected economic losses respectively. 

 

Figure 4.16: Ranking of the top 10 buildings with the highest absolute risk within the study area. 
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The developed model is intended as an alternative to other risk assessment approaches requiring 

very demanding tasks, such as quantitative probabilistic hazard scenarios and fragility curves. The 

workflow is completely automated and customisable. More hazards related to ground deformations 

can be easily added, albeit not considering potential interrelationships. Structural resistance 

parameters can be adapted to suit the hazard characteristics and percentile thresholds defining the 

scores can be modified to fit stakeholders needs. The data availability at national scale unlocks its 

replicability throughout Italy, thus enhancing the scalability of the approach. Moreover, by exploiting 

individual urban assets and their features allowed us to perform the analyses at the real scale (i.e., 

1:1). Further advantages of the multi-risk ranking approach presented in this study are i) its complete 

objectivity in conducting the analyses without any assumption on the input data, ii) its site-specific 

risk prioritisation of structures for natural hazards mitigation, and iii) the possibility of updating the 

results using up-to-date satellite InSAR monitoring data. However, it has some limitations. Hazards 

interactions, and therefore amplified vulnerability and risk, are not evaluated due to the challenges 

of performing multi-hazard scenarios modelling for ground instabilities. The hazard component of 

the risk equation is derived from spatial probability without considering the temporal factor, thus static 

risk and multi-risk scores are defined. Although the application in the selected case study did not 

account for structural resistance parameters variations depending on hazard type, the optimization 

of such parameters based on historical data and expert judgement may improve the quality of results. 

Thus, future research and development will focus on the integration of additional geohazards, such 

as earthquakes and floods, and the optimization of building data, with the aim of also assessing 

cultural heritage, currently omitted due to the lack of official data on economic value and vulnerability. 

A huge effort will also be devoted to multi-hazard scenario modelling aimed at correlating the three 

components of the hazard (i.e., space, time, and intensity) and evaluating potential hazard 

interactions, which will unlock a quantitative multi-risk assessment. A key point is represented by the 

expected costs of mitigation actions. Their estimation will have a significant impact on stakeholders 

involved in risk management for large cities. Nowadays, ever more accurate data is being collected 

and released through databases often with open access. The new census tracts of Italy from ISTAT 

will contain data about hospitals, schools and other non-residential structures that may allow to better 

constrain their vulnerability to natural hazards. Eventually, knowing the heights of buildings will also 

be crucial to better model the physical vulnerability of buildings and therefore quantify the potential 

losses. 

4.6. Conclusion 

A novel semiquantitative model for multi-risk ranking of buildings exposed to ground instability 

hazards is presented and tested in this study. The developed approach, which is replicable on a 

national scale, was tested and validated in the centre of Rome, where it assessed approximately 
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90×103 buildings at a 1:1 scale. The integration of hazard, vulnerability, and activity score maps has 

yielded the first comprehensive multi-risk assessment for ground instability in Rome. Notably, 60% 

of the city’s assets were found to be at risk, with residential buildings, offices, and retail primarily 

associated with landslide, sinkhole, and subsidence risk, respectively. The proposed procedure 

offers valuable support to risk managers and decision-makers by providing objective prioritization of 

elements at risk and identifying the dominant threats. This guidance can inform mitigation strategies, 

ultimately enhancing urban resilience and minimizing future economic losses. We achieved this by 

integrating and fusing various official databases and monitoring data accessible at the national scale, 

allowing for scalability and reproducibility of the analysis in Italian cities and potentially beyond. Our 

incorporation of activity rate data into the risk equation, as proposed by Varnes (1984), introduces a 

dynamic dimension to the multi-risk assessment, enabling regular updates over time. Empirical 

cumulative distribution functions and score classes based on percentile thresholds were applied to 

each risk component, facilitating the ranking of urban assets by single- and multi-risk levels. Financial 

data of incurred mitigation measures were exploited to validate the results. The findings of our study 

provide crucial insights into the potential hazards facing urban communities, enabling the 

identification of vulnerable assets and prioritization of mitigation measures. As urbanization 

continues to drive population concentration in large cities, our research carries significant 

implications for infrastructure management, disaster preparedness, and urban planning. By applying 

the developed multi-risk ranking model, city planners and policymakers can better adapt to the 

challenges posed by ground instabilities, enhancing urban resilience and safeguarding lives and 

critical infrastructure. Moreover, the methodology presented here can serve as a model for 

conducting similar assessments globally, fostering a collaborative effort to address geological multi-

hazard risks and promote sustainable urban development. Ultimately, the integration of scientific 

research and geospatial data science methodologies, as demonstrated in this work, plays a vital role 

in building resilient societies prepared to face natural hazards. 
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CHAPTER 5 

5. Conclusions and Perspectives 

Throughout this doctoral thesis, we embarked on a comprehensive exploration of ground instability 

hazards in urban areas, with a particular focus on the Municipality of Rome, Italy. Ground instability 

hazards pose a significant threat to urban environments, and our research provided a replicable and 

customizable framework to address this challenge. We aimed to offer practical guidance for decision-

makers and risk managers by providing a thorough understanding of shallow landslide hazard and 

building multi-risk. We have investigated the synergistic power of machine learning, historical-

statistical pluviometric analysis, and official open data for the purpose of shallow landslide hazard 

assessment. Recognizing the importance of the temporal component of the hazard, we introduced 

temporal attributes and ranked hazard zones. Additionally, we explored the impact of mapping units 

and analysis scale on prediction accuracy, and the potential of merging multiscale maps. Lastly, we 

developed a novel semi-quantitative multi-risk model that harnesses the power of open data 

integration to rank and prioritise elements at risk from landslide, sinkhole, and subsidence processes. 

Below I summarized the main findings related to the research questions posed in Chapter 1.3. 

(1) HOW CAN OFFICIAL OPEN DATA BE EXPLOITED TO DEVELOP RELIABLE LANDSLIDE 
HAZARD MODELS VALUABLE FOR STATUTORY PURPOSES? 

Open data can serve as a foundation for developing landslide hazard models at the urban scale. 

In Chapter 2 we acknowledged the intrinsic challenges of data quality, including incompleteness, 

heterogeneity, and errors in open-source landslide inventories. Thus, we initiated a 

comprehensive approach to address these issues. We recognised that improving reliability 

necessitated the integration of low-accuracy datasets in terms of both quality and quantity. 

However, this may still not be sufficient to obtain an appropriate geodatabase. Hence, we 

developed innovative methodologies to derive synthetic landslide initiation points (LIPs), thereby 

enhancing the overall consistency of the database and facilitating more accurate modelling 

(Figure 5.1). Machine learning algorithms represent a solution to resolve spatial hazard, enabling 

the creation of accurate landslide susceptibility zoning. Multi-annual landslide inventories and 

historical-statistical analysis of pluviometric records complements these approaches by providing 

insights into hazard recurrence and temporal patterns (Figure 5.2). By integrating these 

components, it becomes possible to create valuable landslide hazard maps that capture 

landslide scenarios of specific intensities and pluviometric events, thus informing statutory 

decision-making and risk management. 
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Figure 5.1: Distribution of Landslide Initiation Points (LIPs) and stable points vs slope angle adopted in the 
susceptibility model. 

 

 

Figure 5.2: Pie chart showing the percentage of landslides with different Return Periods (RPs) considering 
the entire database (a), before the 2014 event (b), and during January 2014 meteorological event (c). 
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(2) WHAT IS THE IMPACT OF MAPPING UNIT AND ANALYSIS SCALE ON THE ACCURACY 
OF LANDSLIDE SUSCEPTIBILITY ZONING (LSZ)? 

In Chapter 3 we extended beyond model development and incorporated a comparative analysis 

of our urban-scale landslide susceptibility zoning (LSZ) with other available open-source maps 

at varying spatial scales. By employing empirical cumulative distribution functions, statistical and 

spatial similarity analyses, we assessed the predictive performance of these maps. Figure 5.3 

shows the proportional increasement of the F1-score with the scale of analysis ranging from 

global to regional. Therefore, the employed scale plays a crucial role in accurately localizing 

potential landslide sources and stable areas. Among the mapping units investigated, grid based 

LSZ perform better when predicting landslide initiation points, and the larger the scale the higher 

the accuracy of predictions. The slope unit LSZ turns out to be the closest to the benchmark 

when predicting the entire area potentially affected, represented by landslide polygons, and this 

is due to the uniform hazard level assigned to the whole slope. However, all the investigated 

maps struggled when it comes to detect stable areas, thus resulting in high false positive rates 

(i.e., low precision) and a significant overestimation of landslide hazard. This is probably due to 

the resolution and distribution of input data which inevitably are biased and incomplete when 

very large areas must be considered. 

 

 

Figure 5.3: Evaluation metrics obtained from the spatialized accuracy assessment of open-source LSZ at 
different scales of analysis.  
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(3) CAN THE FUSION OF MULTIPLE LOW-RESOLUTION LSZ OVERCOME THE LACK OF 
SITE-SPECIFIC STUDIES? 

In Chapter 3, we have observed the poor performance of low-resolution landslide susceptibility 

maps when applied to urban environments. Hence, we introduced a data fusion approach for 

merging a variety of low accuracy products with the purpose of improving their predictive 

performance and thus gaining reliability. The retrieved F1-scores provided an overall picture of 

the performance (Figure 5.4). This approach has the potential to improve the classification of 

landslide occurrences (i.e., recall) while maintaining precision. As a result, the map that comes 

closest to the benchmark is provided by the fusion of regional and national grid based maps, 

improving the performance of the best original map. However, false positive rate remains as high 

as for original maps, thus affecting the overall performance. Hence, the effectiveness of LSZ 

data fusion may vary depending on the specific maps being fused and the criteria used for fusion. 

Therefore, the achieved performance gains, although promising, are not sufficient to justify the 

deployment of the developed criteria, due to the high number of false positives. Nevertheless, in 

the absence of urban and regional scale products, the fusion of national, European, and global 

maps can contribute to better predicting landslide occurrence in urban areas. 

 

 

Figure 5.4: Performance achieved by original and multiscale landslide susceptibility maps expressed as F1-
score (a), Recall (b), and Precision (c), computed with reference to the urban scale zonation carried out in this 
research.  
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(4) HOW CAN SUSCEPTIBILITY MAPS, CENSUS DATA, AND SATELLITE INTERFEROMETRY 
CONTRIBUTE TO MULTI-RISK ASSESSMENT IN THE URBAN ENVIRONMENT? 

In chapter 4, we have developed a novel semi-quantitative model for multi-risk assessment of 

individual buildings which takes as input hazard maps of ground instabilities, building 

characteristics, assets market values, and satellite InSAR PS time series of displacement. Each 

dataset was processed to compute the respective factor within the risk equation. The factors are 

spatial hazard, potential damage, and the state of activity, respectively, that are combined to 

compute the specific- and multi-risk level of urban buildings (Figure 5.5). With these data at hand, 

an automated and scalable score-based approach was designed to obtain a multi-risk ranking of 

urban assets. By taking advantage of empirical cumulative distribution functions, percentile 

thresholds were set to specific fraction of observation to retrieve the respective priority score. 

Recognizing the limitations in data availability related to ground instability hazards, we focused 

on the spatial component of the hazard. Hence, the hazard score is based on susceptibility, 

allowing us to estimate the probability of individual buildings being involved in an event in the 

near future, and its potential magnitude. Potential economic losses are based on vulnerability 

and exposure values, which are derived from structural resistance parameters, hazard intensity, 

and real estate market values, respectively. This process was allowed from data contained within 

Italian census tracts, which facilitated the computation at large scale. Displacement time series 

were processed to retrieve the mean velocities of buildings along the horizontal and vertical axis, 

which generated hazard-specific activity scores. Incorporating the activity score contributes a 

dynamic dimension, enabling regular updates over time, thus capturing real-time changes in 

hazard activity. Therefore, by computing and integrating semi-quantitative scores, various types 

of open data, such as the ones used in this research, can be harmonized to create a multi-risk 

priority index valuable to guide mitigation strategies. 

 

Figure 5.5: Framework for the semi-quantitative multi-risk modelling of buildings at city level based on the 
integration of three risk factors namely hazard, potential damage, and activity score.  
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(5) HOW CAN SINGLE- AND MULTI-RISK ANALYSIS INFORM STRATEGIES FOR ENHANCING 
URBAN RESILIENCE AND MINIMIZING ECONOMIC LOSSES? 

In order to be implemented on the operational level by policy making institutions, multi-risk 

assessment must provide easily interpretable outcomes informing new solutions and 

prioritization of investments for prevention and mitigation measures aimed at reducing future 

economic losses. To this purpose, semi-quantitative approaches may be the best choice for 

combining rigorous data-driven analysis and comprehensible results. The presented model for 

ranking urban assets exposed to multiple risks offers a valuable support to risk managers and 

decision-makers by identifying the dominant threats affecting vulnerable assets and providing 

objective prioritization to multi-risk mitigation measures. This means that risk managers can 

allocate resources effectively, develop targeted resilience strategies, and safeguard both human 

lives and infrastructures from the impact of ground instability hazards. A further advantage of the 

presented approach includes the scalability and reproducibility throughout Italy thanks to the 

availability of input data and to the automated processing. Moreover, the introduction of the 

activity rate into the risk equation introduces a dynamic dimension given by satellite remote 

sensing monitoring data, thus enabling regular updates of the ranking over time. Hence, the 

model’s scalability, customizability, and objectivity make it a practical tool for urban risk 

assessment, representing a practical alternative to other risk assessment approaches that 

require extensive data and complex probabilistic hazard scenarios. Eventually, by adopting this 

approach, similar assessments can be carried out globally, fostering collaboration in addressing 

natural hazards and promoting a safer and more sustainable urban future. 

The insights garnered from this doctoral research have far-reaching implications for the field of 

geological risk analysis and assessment. Chapter 2 underscores the importance of integrating 

fragmented data sources for hazard assessment. This approach can be extended to various 

geological phenomena, enhancing data quality and reliability for geoscientific research. Chapter 3 

has demonstrated the efficacy of machine learning techniques in landslide susceptibility mapping. 

The optimization and fusion of predictive maps can enhance overall accuracy, providing valuable 

tools for landslide hazard assessment in urban areas and beyond. Chapter 4 introduces a pioneering 

model for multi-risk assessment of urban buildings. By prioritizing elements at risk, this model 

empowers decision-makers and urban planners to proactively address ground instability hazards, 

ultimately enhancing urban resilience. In conclusion, this thesis represents a comprehensive 

exploration of geological multi-hazard risk at urban scale, highlighting the potential of data-driven 

approaches, open data integration, and advanced risk assessment models to address geological 

hazards in urban environments. The insights generated from these studies contribute to our 

understanding of the field and offer practical solutions for mitigating risks associated with ground 

instability, promoting a closer collaboration between scientific research, operative civil protection, 
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and political decision-making. As we continue to grapple with urbanization and the challenges it 

poses, the knowledge and methodologies presented here pave the way for more informed decision-

making and safer, more resilient cities worldwide. 

5.1. Future Research 

While this study has made significant advancements in addressing multi-risk assessment for 

ground instability hazards in urban areas, several limitations and avenues for future research 

should be acknowledged. These include the need to consider interactions between 

different hazards, incorporate temporal factors into hazard assessment, and optimise structural 

vulnerability through expert judgement and fragility curves. Hence, future research and 

development efforts will centre on integrating additional geohazards within the data-driven model, 

such as earthquakes and floods, and refining building data, with the goal of including 

assessments for cultural heritage. Currently, this aspect is omitted due to the unavailability of 

official data on economic value and vulnerability. We will also dedicate considerable effort to 

multi-hazard scenario modelling, aiming to establish correlations between the three 

components of the hazard (space, time, and intensity) and assess potential interactions, 

ultimately enabling a quantitative multi-risk assessment. Of outmost importance is the 

estimation of mitigation costs in various scenarios, as this will significantly impact stakeholders 

involved in risk management for large cities. In light of the growing availability of accurate 

data through open-access databases, we anticipate that the upcoming census tracts from ISTAT 

in Italy will provide valuable data about hospitals, schools, and other non-residential assets, 

allowing for a more comprehensive assessment of their vulnerability to natural hazards. 

Additionally, having access to building height data will be crucial for enhancing the 

modelling of physical vulnerability, ultimately leading to better quantification of potential economic 

losses.

A further addition would be the integration of population factors. Key aspects to consider include: i) 

social vulnerability, and ii) population density dynamics. The former can be assessed by examining 

demographic factors like age, socioeconomic status, and ethnicity. This involves understanding 

how different social groups are differently affected by hazards, considering factors such as access 

to resources, health status, and resilience to disaster impacts. The latter is crucial as it affects 

exposure levels to various hazards at different times. For instance, a commercial area may have a 

high population density during the day but low at night, altering the risk profile significantly. This 

could involve developing models that predict population movement and density at different times of 

the day or in different scenarios, thereby providing a more accurate assessment of exposure to 

hazards. By understanding where and when the population is most vulnerable, resources can be 

allocated more effectively, and response plans can be more precisely targeted.
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Appendix A 

Supplementary material from Chapter 1. 

Table A1: Repository of geospatial resources collected on the web during the research work. 

DB Reference Category Covered 
Area Type Access 

Type Key Words 

Agenzia Entrate. 
Quotazioni 
immobiliari 

https://www.agen
ziaentrate.gov.it 

Buildings Italy Inventory Open Real estate 
market 

DBSN 

https://www.igmi.
org/it/dbsn-
database-di-

sintesi-nazionale/ 

Cartography Italy Inventory No 

geodatabase, 
cartography, 

topography, aerial 
photos 

Global 
Administrative 

Units 
https://gadm.org/ Cartography Global Inventory Open 

Global 
Administrative 

Units 

ISTAT- basi 
territoriali 

https://www.istat.
it 

Cartography Italy Inventory Open 

Administrative 
limits, census, 

Italian localities, 
toponymy 

OpenStreet Map https://www.ope
nstreetmap.org 

Cartography Global Inventory Open buildings, street 
map 

C3S https://climate.co
pernicus.eu/ 

Climate Global Inventory + 
hazard + risk Open 

atmosphere, land, 
ocean, climate 

indices, forecast 

MISTRAL 
https://www.cine
ca.it/news/mistral

-portale 

Climate Italy Inventory 
Open 

(Account 
needed) 

meteorological 
dataset,  

Catalogo 
parametrico dei 
terremoti italiani 

https://emidius.m
i.ingv.it/CPTI15-

DBMI15/ 

Earthquakes Italy Inventory Open Italian Historical 
Earthquakes 

Classificazione 
Sismica 

aggiornata al 
2022 

https://rischi.prot
ezionecivile.gov.it

/ 

Earthquakes Italy Hazard Open 
Seismic 

classification, 
Seismic zones 

https://www.agenziaentrate.gov.it/
https://www.agenziaentrate.gov.it/
https://www.igmi.org/it/dbsn-database-di-sintesi-nazionale/
https://www.igmi.org/it/dbsn-database-di-sintesi-nazionale/
https://www.igmi.org/it/dbsn-database-di-sintesi-nazionale/
https://www.igmi.org/it/dbsn-database-di-sintesi-nazionale/
https://gadm.org/
https://www.istat.it/
https://www.istat.it/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://climate.copernicus.eu/
https://climate.copernicus.eu/
https://www.cineca.it/news/mistral-portale
https://www.cineca.it/news/mistral-portale
https://www.cineca.it/news/mistral-portale
https://emidius.mi.ingv.it/CPTI15-DBMI15/
https://emidius.mi.ingv.it/CPTI15-DBMI15/
https://emidius.mi.ingv.it/CPTI15-DBMI15/
https://rischi.protezionecivile.gov.it/
https://rischi.protezionecivile.gov.it/
https://rischi.protezionecivile.gov.it/
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Database 
Macrosismico 

Italiano 

https://emidius.m
i.ingv.it/CPTI15-

DBMI15/ 

Earthquakes Italy Inventory Open 

Italian 
Earthquakes, 
macroseismic 

intensity 

DISS https://diss.ingv.it
/ 

Earthquakes Italy Inventory Open 
seismogenic 

sources, active 
faults, subduction 

ESM database https://esm-
db.eu/ 

Earthquakes Europe Inventory Open 
waveforms, 

ground-motion 
data 

ESM database https://esm-
db.eu/ 

Earthquakes Middle 
East Inventory Open 

waveforms, 
ground-motion 

data 

Europe 
Earthquake 

Hazard 

https://datacatalo
g.worldbank.org/ 

Earthquakes Europe Hazard Open 

earthquake 
hazard, Europe, 
seismic hazard 

model 

European 
Database of 
Seismogenic 

Faults (EDSF) 

https://data.ingv.i
t/ 

Earthquakes Europe Inventory Open seismogenic 
faults, Europe,  

European Fault-
Source Model 

2020 

https://seismofaul
ts.eu/ 

Earthquakes Europe Inventory Open 

seismogenic 
sources, active 
faulting, fault 

geometry 

FRA.SI https://frasi-
project.irpi.cnr.it/ 

Earthquakes Italy Inventory Open seismic-triggered 
landslides, Italy 

GEM - Global 
Active Faults 

https://github.co
m/GEMScienceTo
ols/gem-global-

active-faults 

Earthquakes Global Inventory Open active faults 
dataset 

GEM - 
OpenQuake 

Engine 

https://github.co
m/gem/oq-engine 

Earthquakes Global Inventory + 
Hazard Open 

seismic hazard, 
seismic risk, 

global 
earthquakes 

GEM - 
OpenQuake 

Explore 

https://platform.o
penquake.org/ 

Earthquakes Global Inventory + 
Hazard 

Open 
(Account 
needed) 

global, earthquake 

https://emidius.mi.ingv.it/CPTI15-DBMI15/
https://emidius.mi.ingv.it/CPTI15-DBMI15/
https://emidius.mi.ingv.it/CPTI15-DBMI15/
https://diss.ingv.it/
https://diss.ingv.it/
https://esm-db.eu/
https://esm-db.eu/
https://esm-db.eu/
https://esm-db.eu/
https://datacatalog.worldbank.org/
https://datacatalog.worldbank.org/
https://data.ingv.it/
https://data.ingv.it/
https://seismofaults.eu/
https://seismofaults.eu/
https://frasi-project.irpi.cnr.it/
https://frasi-project.irpi.cnr.it/
https://github.com/GEMScienceTools/gem-global-active-faults
https://github.com/GEMScienceTools/gem-global-active-faults
https://github.com/GEMScienceTools/gem-global-active-faults
https://github.com/GEMScienceTools/gem-global-active-faults
https://github.com/gem/oq-engine
https://github.com/gem/oq-engine
https://platform.openquake.org/
https://platform.openquake.org/
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GEM- Global 
Earthquake 

Maps 

https://www.glob
alquakemodel.org

/ 

Earthquakes Global Inventory + 
Hazard Partially global earthquake 

GEM- Global 
Seismic Hazard 

Map 

https://maps.ope
nquake.org/ 

Earthquakes Global Hazard Open 
earthquake 

hazard, global 
earthquake map 

Global 
Earthquake 

Hazard 
Distribution 

https://sedac.ciesi
n.columbia.edu/ 

Earthquakes Global Hazard Open 

global earthquake 
hazard, peak 

ground 
acceleration 

Hazard. FEHR http://hazard.efeh
r.org/ 

Earthquakes Europe Hazard Open 

seismic hazard, 
seismic risk, 

hazard spectra, 
curves, maps 

HIKE European 
Fault Database 

https://geoera.eu
/ 

Earthquakes Europe Inventory Open 
tectonics, faults 

system, fault data 
database 

ITACA https://itaca.mi.in
gv.it/ItacaNet_32/ 

Earthquakes Italy Inventory 
Open 

(Account 
needed) 

accelerometric 
waveforms, 

seismic motion 

Italy Vs30 https://data.mend
eley.com/ 

Earthquakes Italy Inventory Open 

Geotechnical 
Engineering, 

Seismic Hazard 
Assessment, 

Building Safety 
Risk Assessment 

MPS04-S1 http://esse1-
gis.mi.ingv.it/ 

Earthquakes Italy Hazard Open 
Seismic hazard, 

Exceedance 
probability 

Global 
Significant 
Earthquake 
Database 

https://www.ngdc
.noaa.gov/hazel/ 

Earthquakes Global Inventory Open global significant 
earthquakes 

NOAA Natural 
Hazards 

https://www.ncei.
noaa.gov/ 

Earthquakes Global Inventory Open 

Global database, 
Natural Hazard, 

Historical 
Earthquakes, 

Tsunamis, 
Volcanoes 

Risk.EFEHR http://risk.efehr.o
rg/ 

Earthquakes Europe Hazard + risk Open 
seismic risk, 
earthquake 
scenarios, 
exposure, 

https://www.globalquakemodel.org/
https://www.globalquakemodel.org/
https://www.globalquakemodel.org/
https://maps.openquake.org/
https://maps.openquake.org/
https://sedac.ciesin.columbia.edu/
https://sedac.ciesin.columbia.edu/
http://hazard.efehr.org/
http://hazard.efehr.org/
https://geoera.eu/
https://geoera.eu/
https://itaca.mi.ingv.it/ItacaNet_32/
https://itaca.mi.ingv.it/ItacaNet_32/
https://data.mendeley.com/
https://data.mendeley.com/
http://esse1-gis.mi.ingv.it/
http://esse1-gis.mi.ingv.it/
https://www.ngdc.noaa.gov/hazel/
https://www.ngdc.noaa.gov/hazel/
https://www.ncei.noaa.gov/
https://www.ncei.noaa.gov/
http://risk.efehr.org/
http://risk.efehr.org/
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vulnerability, 
fragility 

USGS-Latest 
Earthquake 

https://earthquak
e.usgs.gov/ 

Earthquakes Global Inventory Open 

 Earthquakes 
Map, World, 
Seismicity, 

Seismotectonic 

USGS-
Earthquake 

Catalog 

https://earthquak
e.usgs.gov/ 

Earthquakes Global Inventory Open 
earthquake 

catalogue, global 
earthquake map 

Zone Sismiche 
INGV 

http://zonesismic
he.mi.ingv.it/ 

Earthquakes Italy Hazard Open 

Seismic zones, 
hazard, maximum 

ground 
acceleration 

European 
Ground Motion 

Service 

https://land.coper
nicus.eu/ 

EO data Europe Inventory Open 
interferometric 
data, ground 

motion 

Geoportale 
Nazionale 

http://www.pcn.
minambiente.it/ 

EO data Italy Inventory 
Open 

(Account 
needed) 

lidar, 
interferometry, 
satellite data 

Regione 
Toscana - PS 

https://geoportale
.lamma.rete.tosca
na.it/difesa_suolo

/ 

EO data Italy Inventory Open 
Satellite 

monitoring, 
ground motion 

Regione Valle 
D'Aosta - 

PSInSAR dati 

http://geologiavd
a.partout.it/ 

EO data Italy Inventory 
Open 

(Account 
needed) 

Persistent scatter, 
deformation map 

Regione Veneto 
- PS 

https://idt2.region
e.veneto.it/ 

EO data Italy Inventory Open 

Satellite 
interferometry, 
deformation 

maps, Persistent 
Scatter 

Global Rainfall 
Erosivity 

https://esdac.jrc.e
c.europa.eu/ 

Erosion Global Inventory Open 
rainfall erosivity, 

R-factor map, land 
use 

Global Soil 
Erosion Map 

https://data.jrc.ec
.europa.eu/ 

Erosion Global Inventory Open land use, soil 
erosion 

Soil erosion by 
water 

https://esdac.jrc.e
c.europa.eu/ 

Erosion Europe Inventory Open soil erodibility, rain 
erosivity 

https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
http://zonesismiche.mi.ingv.it/
http://zonesismiche.mi.ingv.it/
https://land.copernicus.eu/
https://land.copernicus.eu/
http://www.pcn.minambiente.it/
http://www.pcn.minambiente.it/
https://geoportale.lamma.rete.toscana.it/difesa_suolo/
https://geoportale.lamma.rete.toscana.it/difesa_suolo/
https://geoportale.lamma.rete.toscana.it/difesa_suolo/
https://geoportale.lamma.rete.toscana.it/difesa_suolo/
http://geologiavda.partout.it/
http://geologiavda.partout.it/
https://idt2.regione.veneto.it/
https://idt2.regione.veneto.it/
https://esdac.jrc.ec.europa.eu/
https://esdac.jrc.ec.europa.eu/
https://data.jrc.ec.europa.eu/
https://data.jrc.ec.europa.eu/
https://esdac.jrc.ec.europa.eu/
https://esdac.jrc.ec.europa.eu/


APPENDIX A 

132 

Fire Danger 
Forecast 

https://effis.jrc.ec.
europa.eu/ 

Fires Europe Inventory Open fire hazard, fire 
danger 

GEOPORTALE 
INCENDI 

BOSCHIVI 

https://geoportale
.incendiboschivi.it

/ 

Fires Italy Inventory 
Open 

(Account 
needed) 

fire hazard, Italian 
fire catalogue 

ISTAT- 
STATISTICHE 

GEOGRAFICHE 
SUI COMUNI 

https://www.istat.
it/ 

Geography Italy Inventory Open 

Census, 
population, 
municipality, 

territory 

Global 
Lithological Map 
Database v1.0 

https://doi.panga
ea.de/ 

Geology Global Inventory Open lithological map,  

One Geology http://www.oneg
eology.org 

Geology Global Inventory Open geological maps, 
geoscience data 

Slope Unit https://geomorph
ology.irpi.cnr.it/ 

Geomorphol
ogy Italy Inventory Open 

slope unit, 
geomorphology, 

terrain 
classification 

Catasto frane 
alpi 

https://geoclimalp
.irpi.cnr.it 

Hydrogeolog
ical 

instabilities 
Italy Inventory Open Landslide 

European Flood 
Awareness 

System 

https://www.efas.
eu/ 

Hydrogeolog
ical 

instabilities 
Europe Inventory + 

Hazard Partially flood hazard, 
rainfalls 

European 
Landslide 

Susceptibility 
Map version 2 

ELSUS 

https://esdac.jrc.e
c.europa.eu/ 

Hydrogeolog
ical 

instabilities 
Europe Inventory + 

Hazard Open 
ELSUS, landslide 

susceptibility 
mapping, Europe 

Global Active 
Archive of Large 

Flood Events 

https://data.ameri
geoss.org/ 

Hydrogeolog
ical 

instabilities 
Global Inventory Open flood events, flood 

hazard 

Global Flood 
Database v1 

https://global-
flood-

database.cloudtos
treet.ai 

Hydrogeolog
ical 

instabilities 
Global Inventory Open 

global, flood 
database, flood 

events 

Global Flood 
Map 

https://www.ambi
entalrisk.com/ 

Hydrogeolog
ical 

instabilities 
Global Hazard No 

flood hazard, flood 
map, potential 

flood risk 

https://effis.jrc.ec.europa.eu/
https://effis.jrc.ec.europa.eu/
https://geoportale.incendiboschivi.it/
https://geoportale.incendiboschivi.it/
https://geoportale.incendiboschivi.it/
https://www.istat.it/
https://www.istat.it/
https://doi.pangaea.de/
https://doi.pangaea.de/
http://www.onegeology.org/
http://www.onegeology.org/
https://geomorphology.irpi.cnr.it/
https://geomorphology.irpi.cnr.it/
https://geoclimalp.irpi.cnr.it/
https://geoclimalp.irpi.cnr.it/
https://www.efas.eu/
https://www.efas.eu/
https://esdac.jrc.ec.europa.eu/
https://esdac.jrc.ec.europa.eu/
https://data.amerigeoss.org/
https://data.amerigeoss.org/
https://global-flood-database.cloudtostreet.ai/
https://global-flood-database.cloudtostreet.ai/
https://global-flood-database.cloudtostreet.ai/
https://global-flood-database.cloudtostreet.ai/
https://www.ambientalrisk.com/
https://www.ambientalrisk.com/
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HydroSHEDS https://www.hydr
osheds.org/ 

Hydrogeolog
ical 

instabilities 
Global Inventory Open 

hydro-
environmental 

model,  

IdroGEO https://idrogeo.is
prambiente.it/ 

Hydrogeolog
ical 

instabilities 
Italy Inventory + 

Hazard Open Landslides, 
Floods 

ITALICA https://zenodo.or
g/ 

Hydrogeolog
ical 

instabilities 
Italy Inventory Open Landslide, 

Rainfall, Italy 

Landslide 
Hazard Program 

https://www.usgs.
gov/ 

Hydrogeolog
ical 

instabilities 
USA Inventory Open 

Landslide hazard, 
ground failure, 

landslide 
inventory 

NASA - Global 
Landslide 
Catalog 

https://maps.nccs.
nasa.gov/ 

Hydrogeolog
ical 

instabilities 
Global Inventory Open 

Landslide hazard, 
global landslide 

map 

NASA- LHASA https://github.co
m/nasa/lhasa 

Hydrogeolog
ical 

instabilities 
Global Hazard Open 

Landslide hazard, 
real time, 

probability of 
occurrence, 

potential exposure 

PAI ABDAC https://www.auto
ritadistrettoac.it/ 

Hydrogeolog
ical 

instabilities 
Italy Inventory + 

Hazard Open 
Hydrogeological 
plan, landslides, 

hydraulic risk 

River Flood 
Hazard 

https://data.jrc.ec
.europa.eu/ 

Hydrogeolog
ical 

instabilities 
Europe Inventory Open flood hazard, flood 

map 

SaferPlaces 
Global Platform 

https://saferplace
s.co/ 

Hydrogeolog
ical 

instabilities 
Global Inventory + 

Hazard No 

flood events, flood 
hazard, climate 
resilience, flood 
risk intelligence 

Sistema 
Informativo sulle 

Catastrofi 
Idrogeologiche 

http://sici.irpi.cnr.
it 

Hydrogeolog
ical 

instabilities 
Italy Inventory Open 

Hydrogeological 
instability, 

Landslides, 
floods, archives 

Agri Nimbo Earth https://agri.nimbo
.earth 

Land cover 
and use Europe Inventory Open land cover, land 

use, crop map 

Copernicus Land 
Monitoring 

Service 

https://land.coper
nicus.eu/ 

Land cover 
and use Global Inventory Open 

land use, land 
cover, hot spot 

monitoring, 
EGMS, 

https://www.hydrosheds.org/
https://www.hydrosheds.org/
https://idrogeo.isprambiente.it/
https://idrogeo.isprambiente.it/
https://zenodo.org/
https://zenodo.org/
https://www.usgs.gov/
https://www.usgs.gov/
https://maps.nccs.nasa.gov/
https://maps.nccs.nasa.gov/
https://github.com/nasa/lhasa
https://github.com/nasa/lhasa
https://www.autoritadistrettoac.it/
https://www.autoritadistrettoac.it/
https://data.jrc.ec.europa.eu/
https://data.jrc.ec.europa.eu/
https://saferplaces.co/
https://saferplaces.co/
http://sici.irpi.cnr.it/
http://sici.irpi.cnr.it/
https://agri.nimbo.earth/
https://agri.nimbo.earth/
https://land.copernicus.eu/
https://land.copernicus.eu/
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biophysical 
parameters 

Copernicus Land 
Monitoring 

Service (local) 

https://land.coper
nicus.eu/ 

Land cover 
and use Europe Inventory Open 

hotspot areas, 
urban zones, 
coastal areas, 

nature 
conservation 

Copernicus Land 
Monitoring 

Service (pan) 

https://land.coper
nicus.eu/ 

Land cover 
and use Europe Inventory Open 

Corine land cover, 
biophysical 
parameters 

Corine Land 
Cover 

https://land.coper
nicus.eu/ 

Land cover 
and use Europe Inventory Open 

Copernicus, Land,
 Satellite Image, 

Corine Land 
Cover 

DRYAD https://datadryad.
org/ 

Land cover 
and use USA Inventory Open land value, market 

value 

I-COLT https://sites.googl
e.com/arpae.it/ 

Land cover 
and use Italy Inventory Open Crops 

classification, Italy 

INFC 
https://www.inve
ntarioforestale.or

g/it/ 

Land cover 
and use Italy Inventory 

Open 
(Account 
needed) 

Forest cover, Italy 

ISPRA- Dati 
consumo suolo 

https://www.ispra
mbiente.gov.it/ 

Land cover 
and use Italy Inventory Open land use, Italy, 

indicators 

Land Cover 
Products 

https://www.esa-
landcover-cci.org/ 

Land cover 
and use Global Inventory Open 

land cover, land 
use, climate 

change initiative 

Sentinel 2 LULC https://www.arcgi
s.com/ 

Land cover 
and use Global Inventory Open land cover, land 

use, sentinel data 

SINA 
https://groupware
.sinanet.isprambie

nte.it/ 

Land cover 
and use Italy Inventory Open land use, Italy 

Urban Atlas https://land.coper
nicus.eu/ 

Land cover 
and use Europe Inventory Open 

Copernicus, Land 
Cover. Land Use, 
Functional Urban 

Areas 

Geoportale 
regionale 
Piemonte 

https://www.geop
ortale.piemonte.it

/ 

Multiple Italy Inventory Open  

https://land.copernicus.eu/
https://land.copernicus.eu/
https://land.copernicus.eu/
https://land.copernicus.eu/
https://land.copernicus.eu/
https://land.copernicus.eu/
https://datadryad.org/
https://datadryad.org/
https://sites.google.com/arpae.it/
https://sites.google.com/arpae.it/
https://www.inventarioforestale.org/it/
https://www.inventarioforestale.org/it/
https://www.inventarioforestale.org/it/
https://www.isprambiente.gov.it/
https://www.isprambiente.gov.it/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
https://www.arcgis.com/
https://www.arcgis.com/
https://groupware.sinanet.isprambiente.it/
https://groupware.sinanet.isprambiente.it/
https://groupware.sinanet.isprambiente.it/
https://land.copernicus.eu/
https://land.copernicus.eu/
https://www.geoportale.piemonte.it/
https://www.geoportale.piemonte.it/
https://www.geoportale.piemonte.it/
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CEDIT https://gdb.ceri.u
niroma1.it/ 

Multiple Italy Inventory Open 

earthquake 
induced ground 

failures, 
earthquake 

hazard 

DisasterAWARE https://disasteraw
are.com/ 

Multiple Global Hazard Early 
Warning No 

early warning 
system, global 

hazards 

EU - Risk Data 
Hub 

https://drmkc.jrc.
ec.europa.eu/ 

Multiple Europe Inventory + 
hazard + risk Open 

disaster risk 
assessment, 

qualitative 
assessment, 

decision support 
system 

European 
Geological Data 

Infrastracture 

http://www.europ
e-geology.eu/ 

Multiple Europe Inventory Open 

Pan-European 
and national 
geological 
datasets 

GAPMINDER https://www.gap
minder.org/data/ 

Multiple Global Exposure 
Indicators Open  

Geoportale 
Liguria 

https://geoportal.
regione.liguria.it/ 

Multiple Italy Inventory Open  

Geoportale 
Lombardia 

https://www.geop
ortale.regione.lom

bardia.it 

Multiple Italy Inventory Open  

Geoportale 
Nazionale 

http://www.pcn.
minambiente.it/ 

Multiple Italy Inventory Open Environment, 
Territory 

Geoportale 
Regionale Valle 

D'Aosta 

https://mappe.reg
ione.vda.it/ 

Multiple Italy Inventory Open  

Global Risk Data 
Platform 

https://wesr.unep
grid.ch/ 

Multiple Global Inventory + 
hazard + risk Open global risk, 

multiple hazards 

ISTAT- mappa 
rischi comuni 

https://www.istat.
it/it/mappa-rischi 

Multiple Italy Inventory + 
hazard + risk Open 

Italy, geological 
risks, elements at 

risk 

Munich Re’s 
NatCatSERVICE 

https://www.mun
ichre.com/ 

Multiple Global Hazard No digital catalogue, 
natural disasters 

https://gdb.ceri.uniroma1.it/
https://gdb.ceri.uniroma1.it/
https://disasteraware.com/
https://disasteraware.com/
https://drmkc.jrc.ec.europa.eu/
https://drmkc.jrc.ec.europa.eu/
http://www.europe-geology.eu/
http://www.europe-geology.eu/
https://www.gapminder.org/data/
https://www.gapminder.org/data/
https://geoportal.regione.liguria.it/
https://geoportal.regione.liguria.it/
https://www.geoportale.regione.lombardia.it/
https://www.geoportale.regione.lombardia.it/
https://www.geoportale.regione.lombardia.it/
http://www.pcn.minambiente.it/
http://www.pcn.minambiente.it/
https://mappe.regione.vda.it/
https://mappe.regione.vda.it/
https://wesr.unepgrid.ch/
https://wesr.unepgrid.ch/
https://www.istat.it/it/mappa-rischi
https://www.istat.it/it/mappa-rischi
https://www.munichre.com/
https://www.munichre.com/
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NASA Disaster 
Mapping Portal 

https://maps.disas
ters.nasa.gov/ 

Multiple Global Inventory Open disaster portal, 
multiple hazards 

Portale Servizio 
Geologico Italia 

http://portalesgi.i
sprambiente.it/ 

Multiple Italy Inventory Open 

geological service 
portal, natural 

hazard, geology, 
land use and 

cover, 
hydrogeology, 
infrastructure 

SEDAC https://sedac.ciesi
n.columbia.edu/ 

Multiple Global Inventory Open 
socioeconomic 

and earth science 
data 

Think Hazard! https://www.thin
khazard.org/ 

Multiple Global Hazard Open global hazard, 
hazard levels 

Sinkhole 
http://sgi.ispramb
iente.it/sinkholew

eb/ 

Sinkhole Italy Inventory Open sinkhole dataset 

ALOS Global 
Digital Surface 

Model 

https://www.eorc.
jaxa.jp/ 

Topography Global Inventory Open DSM, digital 
surface model 

EarthEnv-
DEM90 

https://www.eart
henv.org/ 

Topography Global Inventory Open DEM, digital 
elevation model 

ETOPO 2022 https://data.noaa.
gov/ 

Topography Global Inventory Open elevation dataset, 
surface elevation 

European Digital 
Elevation Model 

https://land.coper
nicus.eu/ 

Topography Europe Inventory Open DEM, digital 
elevation model 

FABDEM https://data.bris.a
c.uk/ 

Topography Global Inventory Open 

elevation map, 
Forests and 

buildings removed 
Copernicus DEM 

GMRT https://www.gmrt
.org/ 

Topography Global Inventory Open 
DEM, digital 

elevation mode, 
grid 

NASADEM https://lpdaac.usg
s.gov/ 

Topography Global Inventory Open DEM, digital 
elevation model 

NEXTMap® https://www.inter
map.com/ 

Topography Global Inventory No 3D terrain dataset, 
DTM, DSM 

https://maps.disasters.nasa.gov/
https://maps.disasters.nasa.gov/
http://portalesgi.isprambiente.it/
http://portalesgi.isprambiente.it/
https://sedac.ciesin.columbia.edu/
https://sedac.ciesin.columbia.edu/
https://www.thinkhazard.org/
https://www.thinkhazard.org/
http://sgi.isprambiente.it/sinkholeweb/
http://sgi.isprambiente.it/sinkholeweb/
http://sgi.isprambiente.it/sinkholeweb/
https://www.eorc.jaxa.jp/
https://www.eorc.jaxa.jp/
https://www.earthenv.org/
https://www.earthenv.org/
https://data.noaa.gov/
https://data.noaa.gov/
https://land.copernicus.eu/
https://land.copernicus.eu/
https://data.bris.ac.uk/
https://data.bris.ac.uk/
https://www.gmrt.org/
https://www.gmrt.org/
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
https://www.intermap.com/
https://www.intermap.com/
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SRTM https://dwtkns.co
m/ 

Topography Global Inventory Open DEM, digital 
elevation data 

Tinitaly https://tinitaly.pi.i
ngv.it 

Topography Italy Inventory Open DEM, digital 
elevation model 

Tsunami Map 
Viewer 

http://sgi2.ispram
biente.it/tsunami

map/ 

Tsunami Italy Inventory Open tsunami, early 
warning 

Africa 
Groundwater 

Atlas 

https://www2.bgs
.ac.uk/ 

Water 
resources Africa Inventory Open 

groundwater, 
African 

hydrogeology  

BIGBANG https://www.ispra
mbiente.gov.it/ 

Water 
resources Italy Inventory Open hydrology, basin 

Bollettino siccità 
ISPRA 

https://www.ispra
mbiente.gov.it/ 

Water 
resources Europe Bulletin Open drought, 

precipitation index 

HIS Central 
platform 

http://www.hisce
ntral.isprambiente

.gov.it/ 

Water 
resources Italy Inventory 

Open 
(Account 
needed) 

 

Severità idrica 
ISPRA 

https://www.ispra
mbiente.gov.it/ 

Water 
resources Italy Bulletin Open drought 

 

https://dwtkns.com/
https://dwtkns.com/
https://tinitaly.pi.ingv.it/
https://tinitaly.pi.ingv.it/
http://sgi2.isprambiente.it/tsunamimap/
http://sgi2.isprambiente.it/tsunamimap/
http://sgi2.isprambiente.it/tsunamimap/
https://www2.bgs.ac.uk/
https://www2.bgs.ac.uk/
https://www.isprambiente.gov.it/
https://www.isprambiente.gov.it/
https://www.isprambiente.gov.it/
https://www.isprambiente.gov.it/
http://www.hiscentral.isprambiente.gov.it/
http://www.hiscentral.isprambiente.gov.it/
http://www.hiscentral.isprambiente.gov.it/
https://www.isprambiente.gov.it/
https://www.isprambiente.gov.it/
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Appendix B 

Supplementary material from Chapter 2. 

Table B1: Rainfall stations used for the definition of mean annual rainfall and the analysis of severe rainfall 
events. Time sampling of first and last data in the studied period (*) and coverage period (years) of the 
pluviometric data are also reported. 

Rain Gage First Record 
(dd/mm/yyyy) 

Last Record* 
(dd/mm/yyyy) 

Daily rainfall Time 
Coverage(yrs) 

Hourly rainfall 
Time 

Coverage(yrs) 

Acqua Acetosa 25/09/1992 31/03/2021 25.6 14 

Aniene a Lunghezza 01/03/1992 31/03/2021 27.5 19 

Aniene a Ponte 
Salario 

01/01/1992 31/03/2021 29.0 21 

Aurelio 25/09/1992 31/03/2021 25.5 14 

Capannacce 25/09/1992 31/03/2021 16.7 5 

Casilino 26/11/1991 31/03/2021 26.8 12 

Cassiodoro 25/09/1992 31/03/2021 25.7 15 

Collegio Romano 01/01/1951 31/03/2021 69.3 31 

Eleniano 25/09/1992 31/03/2021 24.6 12 

EUR 25/09/1992 31/03/2021 23.5 12 

Flaminio 01/01/2005 31/03/2021 14.4 4 

Fosso di Pratolungo 01/01/1981 31/03/2021 36.8 17 

Monte Mario 25/09/1992 31/03/2021 25.2 9 

Ostiense 25/09/1992 31/03/2021 24.4 11 
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Ottavia 25/09/1992 31/03/2021 25.7 13 

Regillo 25/09/1992 31/03/2021 17.7 10 

Roma Bufalotta 01/01/1987 31/03/2021 24.0 13 

Roma est 25/09/1992 31/03/2021 25.6 0 

Roma EUR 01/01/1951 31/03/2021 58.6 30 

Roma Flaminio 01/01/1956 31/03/2021 49.2 29 

Roma Macao 01/01/1952 31/03/2021 67.1 45 

Roma Monte Mario 01/01/2008 31/03/2021 13.2 1 

Roma Monte Mario 
(Villa Millerose) 

01/01/1965 31/12/1999 35.0 11 

Roma Nord 25/09/1992 31/03/2021 24.3 11 

Roma sud 25/09/1992 31/03/2021 25.7 10 

Rosolino Pilo 01/01/1987 31/03/2021 19.9 5 

Salone 01/01/1951 31/03/2021 28.7 3 

Tevere a Castel 
Giubileo 

01/01/1951 31/03/2021 52.8 24 

Tevere a Fidene 01/01/2007 31/03/2021 14.0 8 

Tevere a Porta 
Portese 

01/01/1994 31/03/2021 23.6 10 

Tor Marancia 01/01/1991 31/03/2021 15.3 5 

Tor Vergata 21/04/1994 31/03/2021 25.9 9 

Via Marchi 01/01/1995 31/03/2021 21.4 3 
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Appendix C 

Supplementary material from Chapter 4. 

 

Figure C1: OMI macro-zones (a) and distribution of real-estate market values of buildings in Rome according 
to category of use and zone. 

 

Figure C2: Synthetic datasets of Up-Down (a) and East-West (b) ground displacement rates derived from the 
data fusion of PSs resulting from A-DInSAR analyses of S1 and CSK SAR images. 
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Figure C3: Distribution of building use categories according to single- and multi-risk scores. 
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