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Abstract: In recent years, natural compounds have gained attention in many fields due to their
wide-range biological activity. In particular, essential oils and their associated hydrosols are being
screened to control plant pests, exerting antiviral, antimycotic and antiparasitic actions. They are more
quickly and cheaply produced and are generally considered safer for the environment and non-target
organisms than conventional pesticides. In this study, we report the evaluation of the biological
activity of two essential oils and their corresponding hydrosols obtained from Mentha suaveolens
and Foeniculum vulgare in the control of zucchini yellow mosaic virus and its vector, Aphis gossypii,
in Cucurbita pepo plants. The control of the virus was ascertained with treatments applied either
concurrently with or after virus infection; choice tests were performed to verify repellency activity
against the aphid vector. The results indicated that treatments could decrease virus titer as measured
using real-time RT-PCR, while the experiments on the vector showed that the compounds effectively
repelled aphids. The extracts were also chemically characterized using gas chromatography–mass
spectrometry. Mentha suaveolens and Foeniculum vulgare hydrosol extracts mainly comprised fenchone
and decanenitrile, respectively, while essential oils analysis returned a more complex composition,
as expected.

Keywords: essential oil; hydrosol; plant virus; aphid vector; antiphytoviral; repellency; defense response

1. Introduction

Essential oils (EOs) are volatile, complex mixtures of strong-scented natural com-
pounds synthesized through the specialized metabolism of aromatic plants typical of
temperate and tropical regions and stored in secretory cells, glands or trichomes [1]. They
are usually extracted by means of steam- or hydro-distillation (SD or HD) [2] and using
liquid or supercritical carbon dioxide [3]. EO chemical composition is analyzed using
gas chromatography–mass spectrometry (GC-MS); their main components are terpenes,
terpenoids, aromatic and aliphatic low-molecular-weight molecules and their oxygenated
derivatives. In nature, EOs are involved in plant defense systems as antibacterials, antivi-
rals, antifungals, insecticides and repellents [4].

Because of their wide-range biological activity [5–7], EOs are used in the pharmaceuti-
cal and food industry and are increasingly popular as antimicrobials in plant protection. In
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all these sectors, the rising concern towards synthetic molecules regarding drug resistance,
toxicity and environmental contamination has pushed researchers to test natural products
as alternatives or adjuvants to classical synthetic remedies. EOs provide low residue levels
and reduced risk of resistance development in target organisms, resulting in a safer profile
with respect to conventional pesticides [8].

Hydrosols (HSs) are the by-products of plant SD during EO production. HSs contain
small amounts of EO components solubilized in condensing water during the distillation
process and are mainly composed of polar, oxygenated and hydrophilic compounds able to
form hydrogen bonds [9]. As they are waste products, HSs are relatively cheaper and can be
produced in higher amounts than EOs; moreover, they are reported to be less detrimental
to human health.

Plant virus diseases represent a major concern for crops, causing considerable damage
and economic losses worth USD 60 billion worldwide [10]. No direct application of com-
pounds of either natural or synthetic origin is available for virus treatment in plants [11];
hence, control lies in prevention, e.g., the use of sanitarily certified propagation material and
resistant plant varieties, and control of insect vectors [12,13]. Recently, the antiphytoviral
activity of several EOs has been reported, mainly aiming at moderating symptomatol-
ogy and yield loss. Experimental trials have often involved plant–virus model systems
and have reported the inhibition of local lesions developed by virus infection due to EO
treatment [14–17]. Later, Abdel-Shafi and co-authors investigated the potential activity of
EOs in an actual pathosystem of agronomic interest, using Nigella sativa seed extract to
effectively control zucchini yellow mosaic virus (ZYMV) in Cucurbita pepo both in vitro
and in vivo [18]. The inhibition of cucumber mosaic virus (CMV) with associated satellite
RNA upon treatment with Micromeria croatica EO in Nicotiana megalosiphon was ascertained,
showing a decrease in virus concentration in systemically infected plants [19]. In a previous
paper, we assessed the antiphytoviral activity of EOs and HSs from Origanum vulgare,
Thymus vulgaris and Rosmarinus officinalis against ZYMV and tomato leaf curl New Delhi
virus in C. pepo [20]. The antimicrobial activity of HSs has been reported, mainly in the
post-harvest treatment of food products against biotic spoilage [21–24]; nonetheless, the
application to plant viruses is still poorly described and understood, and more investigation
is needed. The efficient delivery of compounds to plants for pathogen control is another
key issue for the applicability of such treatments; formulations and smart delivery systems,
which are mainly based on nanoparticles loaded with agrochemicals or other compounds,
have been proven to effectively provide correct penetration and transport of the active
molecule into plants, reducing damage to other plant tissues [25–30].

Arthropod vectors represent the other key target for controlling virus diseases world-
wide. Currently, the main control strategy is based on synthetic insecticides, but the
associated environmental and health risks, along with the development of resistant pop-
ulations, make the search for suitable alternatives necessary. The insecticide, repellent
and antifeedant activities of EOs against arthropods, including virus vectors, have been
extensively studied and reviewed [31,32]. In addition, HSs have been successfully tested
against hemipteran and mite vectors [33–35].

Among the aromatic plants used as a source of both EOs and HSs, the Lamiaceae and
Apiaceae families have been shown to have several biological activities. In the Lamiaceae,
both EOs and HSs extracted from Mentha spp. have been well characterized and reported
to have antiviral activity as well as toxic and repellent effects on insects [34,36]. In the
Apiaceae, Foeniculum vulgare provides EOs that have broad activity against several plant
pathogenic bacteria and fungi [37–39] and have been reported to have insecticide efficacy
against aphid vector Myzus persicae [40]. Based on these findings, we hypothesized that EOs
and HSs extracted from Mentha suaveolens and F. vulgare could effectively control ZYMV and
its vector, A. gossypii, in C. pepo. ZYMV (genus Potyvirus, family Potyviridae) is an ssRNA
(+) plant virus mainly infecting Cucurbitaceae, including major crops such as pumpkin,
squash, zucchini, melon, watermelon and cucumber [41]. The observed symptomatology
is severe mosaic and yellowing of leaves; stunting, twisting and deformation occur in
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fruits, negatively affecting their marketability. After infection, plants no longer provide
marketable production within 1–2 weeks. Such a rapid settlement of severe disease causes
a yield decrease of up to 90% and subsequent economic losses [42]. The use of resistant
varieties is currently a valid strategy for the control of ZYMV in C. pepo, but resistance-
breaking strains are increasingly widespread; hence, resistance should always be used
in combination with other control methods [43]. ZYMV is transmitted by several aphid
species in a non-persistent manner. Aphis gossypii Glover (Hemiptera: Aphididae) plays
a key role in ZYMV spread because it is widely distributed worldwide and has a high
transmission efficiency [44]. Moreover, it has been reported to rapidly develop resistance to
several synthetic insecticides [45].

Given the above-described data and hypothesis, and the urgent need for natural
compounds to treat plant diseases and pests, we investigated the antiphytoviral and aphid-
repellent activities of either EOs or HSs extracted from M. suaveolens and F. vulgare. Plants
were treated with EOs and HSs concurrently with virus inoculum to measure the EO or
HS effect on virus vitality and infectivity in vitro, and after virus inoculation, to test the
“curative” activity of extracts. The potential effects against ZYMV were assessed by com-
paring the relative virus titer as measured with real-time RT-PCR in systemically infected
leaves of treated and untreated plants of C. pepo. Moreover, the expression of the phenylala-
nine ammonia lyase (PAL) gene was quantified to explore a possible mode of action for
treatments in plants. PAL is the first enzyme of the phenylpropanoid pathway, which is
involved in plant defense mechanisms; the expression of the related gene is reported to be a
marker of plant response to biotic stress through transcriptional regulation [46,47]. Choice
tests of A. gossypii specimens between treated and untreated leaves were also performed
to measure the repellent action of EOs and HSs against the ZYMV vector; the toxicity of
treatments was also evaluated by measuring mortality and fecundity in adults. Our results
showed that the tested extracts displayed antiphytoviral and repellency activity against the
target virus and vector.

2. Results
2.1. Chemical Composition of Plant Extracts

The chemical classes identified using GC-MS in EOs and HSs are summarized in
Table 1, while the detailed chemical composition is provided in Table S1. A total of
60 molecules belonging to 9 classes of compounds and 19 molecules belonging to 6 classes
were identified in EOs and HSs, respectively; thus, EOs generally had a more complex
composition than HSs. The identified compounds accounted for 82.38–94.75% of EO or
HS composition. Monoterpene hydrocarbons and oxygenated monoterpenes were the
main components of EOs; HSs were generally rich in oxygenated monoterpenes. The
M. suaveolens EO composition was variegated, with 42 identified compounds showing
relative abundance above 0.1%; the main compounds were isomintlactone and menthene
(7.72 and 7.28%, respectively). Monoterpene hydrocarbons and oxygenated monoterpenes
accounted for about 40% of the composition, followed by minor amounts of esters (about
10%). In the corresponding HS, the main component of the ether extract was identified
to be decanenitrile (68.46%), which was not recognized in M. suaveolens EO. Oxygenated
monoterpenes were also present in fair abundance (about 16%). Regarding F. vulgare
extracts, EO contained monoterpene hydrocarbons and oxygenated monoterpenes for about
60%, while esters and aromatic compounds accounted for about 30%. Its HS displayed the
main component of the extract, i.e., fenchone, at 75.93% relative abundance; it was also
present in the corresponding EO but at a lower concentration (16.63%).

2.2. Effect of Plant Extracts on Virus Titer in ZYMV-Infected Plants
2.2.1. Treatments Applied at the Same Time as Inoculation

The evolution of the ZYMV relative titer in leaves of treated C. pepo plants over time
was investigated with repeated weekly sampling between 7 and 28 days post infection
(d.p.i.) as described in Section 4.4.1. In Figure 1, panel A reports the fold change (i.e.,
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2−∆∆Ct) values of the relative ZYMV titer obtained at the four sampling times with all
treatments. In the first sampling instance, 7 d.p.i., the results showed a 2–3-fold increase in
the virus relative titer with all treatments, including ribavirin. However, 14 d.p.i., the fold
change of relative virus titer was around zero with all treatments, indicating no effects of
applying EOs nor HSs on the control of ZYMV. Then, 21 d.p.i, all EO and HS treatments
consistently had fold changes of the order of magnitude of 10−1, suggesting an effect
of treatments on reducing the relative virus titer. Finally, 28 d.p.i., a major influence of
treatments was noticeable on the relative virus titer; with M. suaveolens HS and F. vulgare
extracts, fold changes of the order of magnitude of 10−3 were observed, while the relative
virus titers were decreased by 10−1 in M. suaveolens EO-treated plants and by 10−2 in
ribavirin-treated plants. In samples of all mock-inoculated plants in this and the following
sections, the virus was not detected at any time, and such samples were not included in the
graphs. Symptoms of phytotoxicity were not observed in any of the treated plants in this
and the following sections, with all EOs and HSs.

Table 1. Summary of chemical classes retrieved in EOs and HSs used in this study expressed as
percentage of the total ion current (TIC) as measured using GC-MS. Values are expressed as means of
three chromatographic replicate runs. MS EO = M. suaveolens essential oil; MS HS = M. suaveolens
hydrosol; FV EO = F. vulgare essential oil; FV HS = F. vulgare hydrosol.

Class of Components MS EO MS HS FV EO FV HS

Monoterpene hydrocarbons 21.13 - 26.91 6.02
Oxygenated monoterpenes 17.93 16.09 33.19 76.36

Sesquiterpene hydrocarbons 2.51 - 0.12 -
Phenolic compounds 4.11 3.94 0.10 -

Alcohols 7.55 1.52 - -
Esters 9.85 4.74 18.47 -

Aromatic compounds 1.21 - 11.93 -
Nitrogen compounds - 68.46 1.14 -

Oxygenated heterobicyclic 0.87 - - -
Total identified 83.00 94.75 92.45 82.38
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Figure 1. Fold changes of ZYMV in plants treated at the same time as inoculation (A) and treated
after inoculation of ZYMV (B) on leaves harvested 7, 14, 21 and 28 d.p.i. MS EO = M. suaveolens
essential oil; MS HS = M. suaveolens hydrosol; FV EO = F. vulgare essential oil; FV HS = F. vulgare
hydrosol; Rib= ribavirin. Values are expressed as means of 2 technical replicates on 3 pooled biological
replicates, and bars indicate standard error (±SE).

2.2.2. Treatments Applied after Inoculation

In Figure 1, panel B shows the evolution of the ZYMV relative titer over time when
treatments were applied after inoculation. An early decrease in relative virus titer was
observed 7 d.p.i. in treatments with M. suaveolens extracts of the orders of magnitude of
10−2 with EO and 10−1 with HS. With F. vulgare EO, the virus titer was around one half of
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the infected untreated control, while no changes were recorded with F. vulgare HS treatment.
Two weeks after inoculation, M. suaveolens extracts maintained the same levels of virus titer
observed in the first sampling instance, while F. vulgare extracts showed a decrease, reaching
one-tenth of the control with EO and one-third with HS. Only M. suaveolens EO-treated
plants showed a relative virus titer below the control 21 d.p.i., while all other treatments
were 2–3-fold higher. In the final sampling instance, 28 d.p.i., both EOs displayed a virus
titer decrease of the order of magnitude of 10−1, while in HS treatments, the virus was at
levels above the control. The positive-control treatment with ribavirin had the same trend
as most experimental treatments, showing a peak decrease in virus titer 14 d.p.i.

2.3. Effect of Plant Extracts on Phenylalanine Ammonia Lyase Gene Expression
2.3.1. Treatments Applied at the Same Time as Inoculation

The evolution of PAL expression (i.e., 2−∆∆Ct) in plants when treatments were ap-
plied at the same time as inoculation is shown in Figure 2, panel A. Initially, 7 d.p.i., all
treatments, including ribavirin and healthy plants (i.e., mock-inoculated plants), showed
underexpression of PAL (fold change of 0.08–0.59) compared with the infected untreated
control. In the second observation, 14 d.p.i., PAL was overexpressed in all treatments, with
fold changes between 1.96 with M. suaveolens HS and 4.39 with F. vulgare EO. In ribavirin-
treated plants, PAL was still slightly underexpressed compared with infected untreated
plants (fold change of 0.79). All treatments caused underexpression of PAL 21 d.p.i., of the
orders of magnitude of 10−2 with M. suaveolens extracts and 10−1 with F. vulgare extracts,
while ribavirin and healthy groups showed overexpression of PAL. At the final sampling
time, 28 d.p.i., all treatments consistently overexpressed PAL, with fold changes between
1.29 and 4.74. As observed 14 d.p.i., for F. vulgare EO we recorded the highest level and for
M. suaveolens HS the lowest level of overexpression.
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Figure 2. Relative expression of PAL in plants treated at the same time as inoculation (A) and treated
after inoculation of ZYMV (B) in leaves harvested 7, 14, 21 and 28 d.p.i. MS EO = M. suaveolens
essential oil; MS HS = M. suaveolens hydrosol; FV EO = F. vulgare essential oil; FV HS = F. vulgare
hydrosol; Rib = ribavirin; Healthy = mock-inoculated plants. Values are expressed as means of
2 technical replicates on 3 pooled biological replicates, and bars indicate standard error (±SE).

2.3.2. Treatments Applied after Inoculation

PAL relative expression in plants treated after inoculation is shown in Figure 2, panel
B. Overall, no significant changes in the expression levels of the gene were observed with
any experimental treatment at any sampling time. Ribavirin-treated plants had a peak PAL
expression 14 d.p.i.

2.4. Effect of Plant Extracts on Virus Vector Choice and Survival

Both EOs and HSs obtained from M. suaveolens and F. vulgare were tested to determine
their potential effects on the settling of A. gossypii adults on treated C. pepo leaves, and adult
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survival and fecundity. All the bioassays were performed using 300 µg/mL EO or 1:2 v/v
HS concentration, which were the same used for plant treatments (Sections 4.4.1 and 4.4.2).

2.4.1. Repellency

Choice tests between EO- or HS-treated and water-treated leaves showed that a
significantly higher proportion of aphids preferred to settle onto the control leaves rather
than the treated leaves with all the tested compounds (Figure 3). This repellency effect
started 1 h after treatment and persisted for 24 h. The repellency ascribable to M. suaveolens
was significantly stronger with EO than with HS in all the time intervals. F. vulgare EO and
HS had similar effects on aphid settlement 1 h and 2 h after treatment; then, HS repellency
significantly decreased at 4 h and 24 h. In general, M. suaveolens HS was less efficient than
the other compounds in inhibiting A. gossypii adults from settling on treated leaves.
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(N = 200). MS EO = M. suaveolens essential oil; MS HS = M. suaveolens hydrosol; FV EO = F. vulgare
essential oil; FV HS = F. vulgare hydrosol. Different letters indicate significant differences among
treatments at the same time of observation, based on Chi-square test.

2.4.2. Toxicity and Fecundity

Both the M. suaveolens and F. vulgare HS treatments significantly increased the mortality
rates of A. gossypii adults compared with the control water treatment in most of the observed
time intervals (Table 2). M. suaveolens HS was responsible for a highly significant toxic effect
early after treatment, causing 58.6 and 62.1% of mortality after 24 and 48 h, respectively.
The survival of F. vulgare HS-treated aphids was significantly reduced 24, 72 and 96 h after
treatment compared with the control, but this effect was not as sharp as the M. suaveolens
HS effect. Treatments with M. suaveolens and F. vulgare EOs showed lower levels of aphid
mortality, which often did not significantly differ from the water control, especially in the
earliest daily data collection instances.

M. suaveolens HS treatment was also responsible for significantly reducing offspring
production compared with the water control in the first three daily data collection instances
(Table 3). No significant differences in aphid fecundity were found between the other
treatments and the control.
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Table 2. Results of toxicity assay on M. suaveolens and F. vulgare essential oils and hydrosols against
A. gossypii adults. Twenty replicates were carried out, and 10 adults were used per replicate (N = 200).
MS EO = M. suaveolens essential oil; MS HS = M. suaveolens hydrosol; FV EO = F. vulgare essential oil; FV
HS = F. vulgare hydrosol. Toxicity is expressed as adult mortality percentage for each treatment; Chi-
square values and significance of differences reported are based on Chi-square tests for each treatment
vs. untreated control. Significance is expressed as ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001.

Time
MS EO MS HS FV EO FV HS

Mortality% Chi-Square Mortality% Chi-Square Mortality% Chi-Square Mortality% Chi-Square

24 h 4.0 1.72 58.6 **** 80.11 8.0 0.01 25.0 *** 13.36
48 h 5.2 ** 10.76 62.1 **** 34.57 15.2 1.08 26.7 1.10
72 h 11.0 ** 7.93 54.5 ** 7.64 7.7 *** 10.94 50.6 ** 9.74
96 h 16.0 0.05 40.0 3.61 27.8 2.02 48.1 *** 12.66

Table 3. Results of daily progeny production assessment of A. gossypii adults exposed to M. suaveolens
and F. vulgare EOs and HSs. Twenty replicates were carried out, and 10 adults were used per replicate
(N = 200). MS EO = M. suaveolens essential oil; MS HS = M. suaveolens hydrosol; FV EO = F. vulgare
essential oil; FV HS = F. vulgare hydrosol. Progeny is expressed as the number of offspring per
adult for each treatment; Chi-square values and significance of differences reported are based on
Chi-square tests for each treatment vs. untreated control. Significance is expressed as ** = p < 0.01;
**** = p < 0.0001.

Time
MS EO MS HS FV EO FV HS

Progeny Chi-Square Progeny Chi-Square Progeny Chi-Square Progeny Chi-Square

24 h 0.82 0.93 0.13 **** 66.10 0.55 ** 7.45 1.03 0.02
48 h 1.09 0.07 0.32 **** 23.56 0.88 1.62 1.48 1.31
72 h 1.30 0.18 0.48 ** 10.19 1.24 0.35 1.27 0.20
96 h 1.19 0.08 0.47 3.19 1.50 1.58 1.38 0.49

3. Discussion

The use of natural resources from plant species to control plant viral diseases and their
insect vectors has been broadly investigated in recent years. In particular, EOs and HSs
have gained interest due to the important role they play in nature in the protection of plants
as antibacterials, antivirals, antifungals, insecticides and repellents of undesirable insects.
A treatment based on a natural compound with safety characteristics favorable for human
health and the environment, and effective in controlling plant viruses and repelling their
insect vectors is highly necessary for modern agricultural systems worldwide. EOs and
HSs have been tested as antiphytovirals, insecticides and repellents, reporting promising
results [31,48–50]. During our previous study, we investigated the potential biological
activity of essential oils and hydrosols from O. vulgare, T. vulgaris and R. officinalis against
ZYMV and tomato leaf curl New Delhi virus (ToLCNDV) in C. pepo [20]. The results of our
study supported the feasibility of using such compounds to control ToLCNDV, whereas
poor biological activity was observed against ZYMV. The established experimental protocol,
involving inoculation, treatment, sampling, and measurement of virus titer and plant gene
expression, was considered reliable and reproducible for further use in similar studies.
Hence, in this study, we used the same system to test more EOs and HSs from two other
plant species, M. suaveolens and F. vulgare; we also report their repellent activity against
the aphid vector of ZYMV, A. gossypii, to potentially combine control of virus and vector
with the same treatment. The choice of the two plant sources of extracts was based on
the repellency activity against A. gossypii exerted by M. suaveolens and F. vulgare extracts,
which was ascertained in a preliminary broader screening involving different extracts from
five plant species. Given the above-mentioned activity, we hypothesized that M. suaveolens
and F. vulgare EOs and HSs could also effectively control ZYMV in C. pepo; the extracts
were first characterized using GC-MS and then tested as treatments on ZYMV-infected
C. pepo plants in vivo. The verification of our hypothesis was accomplished by means of
(i) the measurement of the relative virus titer in new leaves of systemically infected, treated
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plants and (ii) the evaluation of the relative expression of the PAL gene, to investigate a
potential mechanism of action of the extracts. In fact, the biological activity of natural
compounds is often ascribed to an indirect mode; rather than directly damaging the target
organism, they are assumed to stimulate plant defense response, reducing pathogen load
and symptomatology, making the host more tolerant to the pathogen, and ultimately
remaining productive [32].

A comprehensive evaluation of treatments with natural compounds necessarily im-
plies the chemical characterization of extracts, which can present broad variability of
composition due to many factors related to the plant material (harvesting season, plant
chemotype and cultivar, type of tissue and age of the plant) and the distillation method [51].
Hence, it is crucial to characterize the actual composition of the extract used in treatments,
to know the compounds applied to the plant and possibly to identify biologically active
molecules in the mixture. Given the variability of the extract composition, the knowledge
of active molecules is, therefore, of great importance; under certain restraints, the actual
performance of an extract can be assessed by verifying the presence of active molecules,
whatever the residual composition.

EO and HS dissolved organic compounds were chemically characterized using GC-
MS in terms of qualitative and quantitative relative composition. M. suaveolens EOs from
different sources and geographical origins were already studied in the literature [52,53],
and overall, all showed high percentages of oxides, which is confirmed by our results.
Decanenitrile, the main compound of M. suaveolens HS, was not reported in high concentra-
tion in previous literature studies on this extract; the significant presence of hydrophilic
oxygenated compounds previously observed, which is a typical feature of HSs, is instead
in accordance with our results. Regarding F. vulgare extracts, the fairly high concentrations
of fenchone and anethole observed in EO were already reported in the literature [54],
whereas pentanedioic acid (p-t-butylphenyl)ester was found in high concentration in our
experiments but was not previously reported in fennel extracts. As expected, F. vulgare HS
ether extract was enriched in fenchone, an oxygenated compound already present in EO
and accumulating in HS due to its polar moiety.

The characterization of both M. suaveolens HS and F. vulgare EO thus evidenced the
presence in high concentrations of a compound not previously reported in similar extracts.
This is quite common in the study of plant extracts, whose composition is strongly affected
by the numerous factors mentioned above and may vary significantly.

The experiments in which treatments were mixed with virus inoculum and then
applied to the plants (described in Section 4.4.1) were aimed to first assess the potential
effect of EOs or HSs on the vitality and infectivity of ZYMV in vitro. This procedure, well
reported in the literature as “inhibition activity” assay, is often performed as a preliminary
experiment to test the possible interaction of EOs or HSs and the virus under the simplest
conditions, involving in vitro contact between virus and treatment; then, the effect on a
plant inoculated with such mixture is observed [15,16,18,19]. This procedure is necessary,
because viruses are obligate parasites, so the mere in vitro inhibition test is not feasible. In
this situation, the mechanism of action of the treatment could be retrieved via interference
with coat proteins or the inhibition of the formation of capsid proteins, which are necessary
for adsorption or entry into the host plant.

In this assay, a late but effective response was observed in terms of a decrease in
viral titer. Fold change was substantially insignificant until 21 d.p.i. with all treatments,
whereas 28 d.p.i., a huge decrease was observed, outperforming ribavirin in the case of both
M. suaveolens HS and F. vulgare extracts. All these extracts have been previously described
for their biological activity [36,55–57], but they have never been tested for the control
of phytopathological viruses. Menthene, carvone, limonene and eucalyptol have been
described to be foremost responsible for most biological activities and were also detected
in our extracts.

The experiments in which treatments were applied after virus inoculation were per-
formed to assess the potential of treatments to reduce the damage of an established infection,
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i.e., “curative” activity, as it is referred to in the literature [16,18]. The evolution of the
ZYMV titer with time was very different when treatments were applied after inoculation;
this timing, even though in the frame of an experimental trial under controlled conditions,
is probably more adherent to the actual situation of infection/treatment in crop manage-
ment. In this experiment, the response to treatment was recorded earlier but to a smaller
extent. The most effective treatment was M. suaveolens EO, which maintained its activity at
all sampling times.

The evaluation of PAL expression levels in treated plants was performed to investigate
the likely mode of action of treatments involving plant defense response; in fact, PAL is a key
enzyme in the phenylpropanoid biosynthetic pathway, and such compounds play a role in
plant defense against many pathogens [58]. PAL is upregulated upon virus infection [47,59]
and is involved in resistance development [46]. In this work, the PAL gene was chosen
to first assess the hypothesis of an indirect mode of action of treatments, i.e., stimulating
plant response rather than directly damaging the target pathogen. The overexpression of
the PAL gene upon treatment indicates a plant response activating metabolic pathways to
produce defense compounds.

In treatments applied concurrently with inoculation, the upregulation of PAL was
observed to have a bimodal trend with most treatments, with two peaks 14 and 28 d.p.i.,
whereas ribavirin had a consistently increasing trend resembling an exponential curve.
The peak 14 d.p.i. was also confirmed when treatments were applied after inoculation for
most extracts, including ribavirin. In our previous work, the expression of PAL was also
measured in a similar experiment with EOs and HSs from other plant species; in such a
trial, HSs generally displayed better performance than EOs, while for M. suaveolens and
F. vulgare, a similar trend was not confirmed. Based on these results, we can speculate that
the activity of PAL regulation is probably more ascribable to the chemical composition of
single extracts than to the nature of the extract (EO or HS).

PAL upregulation was already observed upon treatment with EOs; when these extracts
were applied in the post-harvest treatment of fruits and vegetables to control molds,
overexpression of PAL occurred in the treated material [60].

Another option for assessing the activity of plant treatments is the application before
virus inoculation, i.e., “protective” activity, as referred to in the literature [16,19]; in such
assays, the ability of treatments to prevent the establishment of systemic infection is
evaluated. We did not perform this experiment, but to date, this application mode has been
successfully tested on different pathosystems.

Finally, EO and HS treatments also showed promising repellent activity against the
vector of ZYMV, A. gossypii. Many EOs are currently used as repellents against harmful
insects, and they are consistently considered good alternatives to synthetic molecules; some
of them are registered by environmental protection agencies for such use. This field is still
extensively studied [31] and has been recently extended to the use of hydrosols for the
same purposes [34,61]. Extracts from several species of the genus Mentha, such as EOs
from Mentha piperita and Mentha longifolia, and HSs from Mentha pulegium, are known to
actively repel aphids [34,62]. Our data showed that M. suaveolens extracts could also play
an important role in inhibiting A. gossypii settlement onto treated plants, and especially,
EOs repelled around 90% of the tested adults for at least 24 h after treatment. Regarding F.
vulgare extracts, few data are currently available on their potential repellent activity [63].
Our results show that both HSs and especially EOs were able to efficiently reduce the
settling of A. gossypii on treated zucchini leaves compared with the untreated control. As
expected, the F. vulgare extracts contained high concentrations of fenchone and anethol.
These compounds have already been targeted as bioinsecticides against aphids [40,64,65]
and are now also strongly suggested for their potential role as repellents.

M. suaveolens and F. vulgare EOs did not show significant toxic effects against A. gossypii
adults at the applied concentrations. HSs induced higher mortality levels than the control
at different time points, but only M. suaveolens HS showed to be highly effective within a
short time after treatment. Indeed, this compound halved the aphid population in just one
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day and significantly reduced the offspring production of the remaining adult specimens.
The promptness of the toxic effect is an essential requisite of aphicide compounds, which
should reduce the target population before the aphids start to actively suck the host’s sap.
In this way, the chance of virus acquisition/transmission, which naturally occurs through
rapid sucking punctures, would decrease. The early toxic effect of M. suaveolens HS has
already been assessed against another aphid species, Toxoptera aurantii, confirming the
potential of this hydrosol in aphid control [35].

4. Materials and Methods
4.1. Aromatic Plants

The source plants were obtained through an ongoing project aimed to investigate
how EO production and associated chemical composition can be influenced by different
cropping techniques; in the frame of this project, M. suaveolens and F. vulgare plants were
harvested and subjected to EO distillation and HS separation. M. suaveolens Ehrh and F.
vulgare Mill. plants were grown at Stazione di Base del Centro Appenninico del Terminillo
“Carlo Jucci” in Rieti (Italy). The initial transplant was performed in September 2016. The
plants were harvested in summer 2018; then, they were dried, sealed and stored in a closet.

4.2. Essential Oil and Hydrosol Production and Characterization
4.2.1. Essential Oils

EOs extracted in the frame of the project were obtained in low amounts to be used
for all activities; hence, additional amounts were purchased from Farmalabor srl (Assago,
Italy), and their chemical composition was analyzed using GC-MS (see Section 4.2.3).

4.2.2. Hydrosol Preparation

M. suaveolens and F. vulgare plants were subjected to 2 h HD extraction of aerial parts
using a Clevenger-type apparatus as previously described [66]. EOs were separated from
HSs and stored in tightly closed dark vials at −18 ◦C until further utilization in other
studies. Extractions were performed according to the protocol of European Pharmacopeia.
Fresh leaves (2 kg) of aerial parts from each plant species were used for distillation. HSs
were separated from EOs using decantation, avoiding the carryover of EOs. The HS organic
part was extracted twice with diethyl ether (Sigma-Aldrich, Milan, Italy) in a separation
funnel to eliminate water and was stored at 4 ◦C in brown glass vials in the dark until
further analysis or testing. The EO/diethyl ether phase was dried over anhydrous sodium
sulfate (Sigma-Aldrich, Milan, Italy), and diethyl ether was then evaporated.

4.2.3. Gas Chromatography–Mass Spectrometry Analysis

GC-MS analyses of EOs and HSs were performed using an Agilent Technologies gas
chromatograph (GC 7890A) coupled with a single quadrupole mass spectrometer (5975C
Inert XL MSD) and an autosampler (CTC analytics PAL system). A 5MS (30 m × 0.25 mm
× 0.25 µm + 10 m of pre-column; MEGA srl, Milan, Italy) column was used for sample
chromatography, and ultra-pure helium (6.0 BIP; SAPIO srl, Monza, Italy) at a flow rate
of 1 mL/min was used as the gas carrier. Injector, source and transfer line were settled at
280 ◦C, 280 ◦C and 250 ◦C, respectively.

Before injection, EOs were diluted to 1:10 v/v with n-hexane (97% purity; Sigma
Aldrich, Milan, Italy), while HSs were previously liquid–liquid-extracted in n-hexane at 1:1
v/v. The organic fraction was separated, dried with anhydrous sodium sulfate, concentrated
and directly injected. EOs were injected in split mode (split ratio of 1:50) at 50 mL/min
split flow, whereas HSs were injected in splitless mode.

Sample separation was achieved using the following temperature ramp: 5 min at
60 ◦C; from 60 ◦C to 220 ◦C at a rate of 4 ◦C/min; from 220 ◦C to 280 ◦C at a rate of
11 ◦C/min; isocratic for 15 min 280 ◦C; then, from 280 ◦C to 300 ◦C at a rate of 11 ◦C/min.

Mass spectra were recorded in electronic impact (EI) mode at 70 eV. The analysis
was conducted in full scan mode, from 30 to 450 m/z, with a solvent delay of 5 min. The
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retention index (RI) was calculated using a separately injected n-alkane standard mixture
(C8-C30; Sigma Aldrich, Milan, Italy).

The samples were injected three times, and the obtained chromatograms were aligned
and deconvoluted using the open-source software MS-DIAL 4.8 [67]. The area of each
compound was extracted and mediated. Peak annotation was achieved using the RI
and spectral similarity matching with a cosine score cut-off of 70% using an in-house
EI spectral library [68], following Metabolomics Standards Initiative of the International
Metabolomics Society. In particular, as suggested by [69], the annotations were considered
at level 2 (putative annotation based on spectral library similarity) or level 3 (putatively
characterized compound class based on spectral similarity to known compounds of a
chemical class). Moreover, the relative quantitation of these compounds was also calculated
as the mean of the relative percentage for each peak (peak area/total ion current (TIC) area)
over the three replicate injections (Table 1 and Table S1).

4.3. Experimental Plant Material
4.3.1. Plant Host

Seeds of C. pepo ”Tullio” were sown in 12 cm plastic pots with “Completo” soil (Vig-
orplant, Italy) and germinated in a greenhouse (23 ◦C, 16:8 hr (L:D) photoperiod). The
obtained plants were grown in an insect-proof greenhouse under the above-mentioned
conditions. Experimental plants were selected 3 weeks after sowing when they had
two fully expanded cotyledons. The selection was performed to ensure that the exper-
imental plants were as uniform in size as possible.

4.3.2. Virus Inoculum

ZYMV isolate 31 from the Research Centre for Plant Protection and Certification
(CREA-DC) collection was propagated in the plant host, C. pepo ”Tullio”, under the above-
mentioned greenhouse conditions. Systemically infected young leaves were ground with
cold 0.1 M pH 7.4 phosphate buffer (1:5 w/V) in an extraction bag (Bioreba, Switzerland)
to prepare the virus inoculum for the antiphytoviral activity experiments.

4.4. Experimental Trials
4.4.1. Treatments Applied at the Same Time as Inoculation

The ZYMV inoculum was mixed with EO or HS solution in 0.1 M pH 7.4 phosphate
buffer to obtain final concentrations of 1:10 v/v virus inoculum, 300 µg/mL EO or 1:2 v/v
HS and incubated on ice for 1 h. Then, host plants in the developmental stage of fully
expanded cotyledons were mechanically inoculated with the above-described solution of
inoculum + treatment, and 20 µL was smeared on each cotyledon. Each treatment was
applied on three biological replicates (i.e., plants), and the following controls were also in-
cluded: (i) ZYMV-infected treatment with ribavirin as positive control (final concentrations:
1:10 v/v virus inoculum and 300 µg/mL ribavirin); (ii) ZYMV-infected non-treatment as
negative control (final concentration: 10:10 v/v virus inoculum); and (iii) healthy control
(mock-inoculated with phosphate buffer). Treatments were only applied once. When
the first leaf was expanded, 7 d.p.i., plants were sampled by removing a disk from the
above-mentioned leaf. More sampling was performed with the same procedure 14, 21 and
28 d.p.i. on the second, third and fourth expanded leaves, respectively.

Biological replicates (3 plants per treatment) were pooled, and the pools were analyzed
as a single sample. Quantification of virus titer and expression of the PAL gene using
real-time RT-PCR were performed as described below. All the experimental procedures
reported in the present and the following sections are depicted as a flow diagram in
Supplementary Figure S1.

4.4.2. Treatments Applied after Inoculation

Host plants were inoculated under the same conditions described in the previous
section but with no treatment added to the inoculum (final concentration: 1:10 v/v virus
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inoculum). After 5 h, treatments of EOs or HSs were applied to the inoculated cotyle-
dons under the same conditions described in the previous section (final concentration:
300 µg/mL EO or 1:2 v/v HS). Application was performed by smearing inoculated leaves
with EO or HS solution; treatments were only applied once. Biological replicates, control
treatments and sampling procedures were the same as those described above.

4.4.3. RNA Extraction and Real-Time RT-PCR

Total RNA was extracted from collected samples using RNeasy Plant Mini Kit (Qiagen,
Milan, Italy) according to the manufacturer’s instructions. Extracts were checked for purity
and concentration with a NanoDrop™ spectrophotometer (ThermoFisher Scientific, Milan,
Italy). Up to 10 µg of RNA was exposed to 2 U TURBO DNase™ (TURBO DNA-free™ kit;
Life Technologies, Milan, Italy) in 10X TURBO DNase™ Buffer (total reaction volume of
50 µL) at 37 ◦C for 25 min. Then, 5 µL of DNase Inactivation Reagent from the kit was
added; the mix was incubated at room temperature for 5 min to stop the reaction and
centrifuged at 10,000 g for 90 s; then, the supernatant was recovered as DNA-depleted RNA
for downstream analyses.

TaqMan® real-time RT-PCR assay was used for the relative quantification of ZYMV
using primers and probe targeting the ZYMV coat protein (CP) gene [70]. The amplification
reaction had a final volume of 20 µL, containing 2X TaqMan® RT-PCR Master Mix, 40X
TaqMan® RT Enzyme Mix (TaqMan® RNA-to-CT 1-Step Kit; Life Technologies), 300 nM of
each primer, 50 nM probe, and 1 µL of DNA-depleted RNA.

The relative expression of PAL was analyzed with SYBR Green® real-time PCR assay;
first, RNA was reverse-transcribed to cDNA to convert plant transcriptome into DNA
substrate for real-time PCR. The reaction had a final volume of 20 µL, containing 5X first-
strand buffer (Invitrogen, Milan, Italy), 5 µM random hexamers (Promega, San Diego,
CA, USA), 10 µM dNTPs (Promega), 100 U M-MLV (Promega) and 2 µL of RNA. The
reaction was incubated for 45 min at 42 ◦C and 3 min at 94 ◦C in CFX96 Touch PCR System
(Bio-Rad, Milan, Italy); then, 1 µL of RNase cocktail mix (Life Technologies) was added to
remove traces of unreacted RNA. SYBR Green® real-time PCR assay for PAL expression
was performed using primers designed by Zhang et al. [71]. The reaction had a final volume
of 10 µL, containing 2X SsoAdvanced™ Universal SYBR Green® Supermix (Bio-Rad, Milan,
Italy), 150 nM of each primer and 1 µL of cDNA template. All real-time (RT-)PCR assays
were performed using CFX96 Touch RT-PCR System (Bio-Rad, Milan, Italy) with primers
and probes synthesized by Eurofins Genomics (Ebersberg, Germany). The instrument
automatically set the threshold. The virus relative titer and PAL expression levels were
calculated using the method of ∆∆Ct [72]. ZYMV-infected plants not exposed to treatments
as described in Section 4.4.1 were considered the control group; the housekeeping gene was
the elongation factor EF-1α gene of C. pepo, targeted with previously published primers
(for SYBR Green® assay) and probe (for TaqMan® assay) [73]. All samples represented a
pool of three biological replicates (i.e., plants subjected to the same treatment in the same
pot) and were assayed in two technical replicates. Relative virus titers and PAL expression
levels, defined as 2−∆∆Ct, were calculated with CFX Maestro Software ver. 2.2 (Bio-Rad,
Milan, Italy), and the results were expressed as means ± standard error (SE).

4.4.4. Insect Bioassays

A clonal colony of A. gossypii was reared on C. pepo ”Tullio” plants in insect cages
(nylon net, 150 × 150 mesh) and maintained under controlled conditions at 25 ± 1 ◦C,
65 ± 5% RH and 16:8 hr (L:D) photoperiod.

Choice tests to investigate potential EO and HS repellency effects were carried out
in 15 cm Ø Petri dishes, filled with moistened filter paper. In each dish, a zucchini leaf
sprayed with EO or HS using a hand sprayer and a leaf of the same age and size sprayed
with deionized water were placed onto filter paper with their lower surface facing upwards.
The two leaves were separated with wet cotton to avoid possible interference between
them, and the left/right position of the two leaves within the dish was inverted among
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the experimental replicates. An area of the dish equally far from the two leaves was kept
free to host the aphids. Ten apterous adults of A. gossypii were transferred from the rearing
cage to the free area of each dish using a fine brush and were allowed to spread and start
sucking on the leaves. Petri dishes were then sealed with parafilm. The number of aphids
that settled on each leaf was recorded 1, 2, 4 and 24 h after treatment. Twenty replicates
were performed for each EO or HS treatment. Repellency was calculated based on the
counts of adults on untreated and treated leaves using the following equation [62]:

R(%) =
A(untreated)− A(treated)
A(untreated) + A(treated)

Toxicity and fecundity assays were carried out in 9 cm Ø Petri dishes filled with
moistened filter paper. A C. pepo leaf was placed on filter paper with the lower surface
facing upwards, and ten apterous adults of A. gossypii were transferred onto it. The leaf
was sprayed with EO or HS before and after aphid transfer. Leaves of the same age and
size sprayed with deionized water provided the control treatment. The filter paper was
moistened from time to time to maintain leaf turgidity, and Petri dishes were sealed with
parafilm. The mortality rate of the aphids was recorded 24, 48, 72 and 96 h after treatment.
Aphids were considered dead when they did not respond to gentle prodding with a brush.
During each data collection instance, aphid offspring were also counted and removed.
Twenty replicates were performed per EO or HS treatment and water treatment. Data from
test choices, toxicity and fecundity assays were analyzed with Chi-square test to assess
statistically significant differences between each treatment and the untreated control. For
the test choice (repellency) assay, pairwise Chi-square test comparisons among treatments
were also performed.

5. Conclusions

The composition of EOs was very complex, due to the presence of tens of molecules
belonging to monoterpene hydrocarbons and oxygenated monoterpenes. On the other
hand, in the HS organic phase, a main compound was recognizable.

The results of experiments involving both plant treatments and insect assays indicated
good performance in reducing virus titer and repelling the aphid vector. M. suaveolens
HS also showed toxicity and offspring inhibition characteristics against A. gossypii. The
measured PAL expression levels in treated plants also suggested a mechanism of action
based on the stimulation of plant defense response through the phenylpropanoid pathway.
In the frame of envisaged integrated pest management to reduce the use of synthetic
pesticides, these treatments represent potential biopesticides for the concurrent control of
ZYMV and its vector in C. pepo crops with a single substance. Further studies are necessary
to achieve a formulation applicable for practical use in the greenhouse and possibly in
the field.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants12051078/s1, Figure S1: Flow diagram illustrat-
ing all treatments to plants and downstream analyses. Table S1: Detailed chemical composition of
EOs and HSs used in this study.
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