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The standard approach to modeling the human brain as a complex system is with
a network, where the basic unit of interaction is a pairwise link between two brain
regions. While powerful, this approach is limited by the inability to assess higher-
order interactions involving three or more elements directly. In this work, we explore
a method for capturing higher-order dependencies in multivariate data: the partial
entropy decomposition (PED). Our approach decomposes the joint entropy of the
whole system into a set of nonnegative atoms that describe the redundant, unique, and
synergistic interactions that compose the system’s structure. PED gives insight into the
mathematics of functional connectivity and its limitation. When applied to resting-state
fMRI data, we find robust evidence of higher-order synergies that are largely invisible
to standard functional connectivity analyses. Our approach can also be localized in
time, allowing a frame-by-frame analysis of how the distributions of redundancies and
synergies change over the course of a recording. We find that different ensembles
of regions can transiently change from being redundancy-dominated to synergy-
dominated and that the temporal pattern is structured in time. These results provide
strong evidence that there exists a large space of unexplored structures in human brain
data that have been largely missed by a focus on bivariate network connectivity models.
This synergistic structure is dynamic in time and likely will illuminate interesting links
between brain and behavior. Beyond brain-specific application, the PED provides a
very general approach for understanding higher-order structures in a variety of complex
systems.

information theory | synergy | higher-order network | fMRI | neuroscience

Since the notion of the connectome was first formalized in neuroscience (1), network
models of the nervous system have become ubiquitous in the field (2, 3). In a network
model, elements of a complex system (typically neurons or brain regions) are modeled
as a graph composed of vertices (or nodes) connected by edges, which denote some kind
of connectivity or statistical dependency between them. Arguably, the most ubiquitous
application of network models to the brain is the functional connectivity (FC) framework
(3–5). In whole-brain neuroimaging, FC networks generally define connections as
correlations between the associated regional time series (e.g., fMRI BOLD signals, EEG
waves, etc). The correlation matrix is then cast as the adjacency matrix of a weighted
network, on which a wide number of network measures can be computed (6).

Despite the widespread adoption of functional connectivity analyses, there remains a
little-discussed, but profound, limitation inherent to the entire methodology: The only
statistical dependencies directly visible to pairwise correlation are bivariate, and in the
most commonly performed network analyses, every edge between pairs Xi and Xj is
treated as independent of any other edge. There are no direct ways to infer statistical
dependencies between three or more variables. Higher-order interactions are constructed
by aggregating bivariate couplings in analyses such as motifs (7) or community detection
(8). One of the largest issues holding back the direct study of higher-order interactions
has been the lack of effective, accessible mathematical tools with which such interactions
can be recognized (9). Recently, however, work in the field of multivariate information
theory has enabled the development of a plethora of different measures and frameworks
for capturing statistical dependencies beyond the pairwise correlation (10).

The few applications of these techniques to brain data have suggested that higher-order
dependencies can encode meaningful biomarkers such as discriminating between health
and pathological states induced by anesthesia or brain injury (11) and reflect changes
associated with age (12). Since the space of possible higher-order structures is so much
vaster than the space of pairwise dependencies, the development of tools that make these
structures accessible opens the doors to a large number of possible studies linking brain
activity to cognition and behavior.
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One of the most well-developed tools is the partial information
decomposition (13, 14) (PID), which reveals that multiple
interacting variables can participate in a variety of distinct
information-sharing relationships, including redundant, unique,
and synergistic modes. Redundant and synergistic information
sharing represent two distinct but related types of higher-order
interaction: Redundancy refers to information that is duplicated
over many elements, so that the same information could be
learned by observing X1 ∨ X2,∨, . . . ,∨XN . In contrast, synergy
refers to information that is only accessible when considering the
joint states of multiple elements and no simpler combinations of
sources. Synergistic information can only be learned by observing
X1 ∧ . . . ∧ XN .

Redundant and synergistic information-sharing modes can be
combined to create more complex relationships. For example,
given three variables X1, X2, and X3, information can be
redundantly common to all three, which could be learned by
observing X1 ∨ X2 ∨ X3. We can also consider the information
redundantly shared by joint states: For example, the information
that could be learned by observing X1∨(X2∧X3) (i.e., observing
X1 or the joint state of X2 and X3). For a finite set of interacting
variables, it is possible to enumerate all possible information-
sharing modes, and given a formal definition of redundancy,
they can be calculated (for details see below).

The identification of redundancy and synergy as possible
families of statistical dependence raises questions about how such
relationships might be reflected (or missed) by the standard,
pairwise correlation-based approach for inferring networks. We
propose two criteria by which we might assess the performance
of bivariate functional connectivity. The first we call specificity:
the degree to which a pairwise correlation between some Xi
and Xj reports dependencies that are unique to Xi and Xj
alone and not shared with any other edges. In a sense, it
reflects how appropriate the ubiquitous assumption that edges
are independent is. The second criterion we call completeness:
whether all of the statistical dependencies present in a dataset are
accounted for and incorporated into the model.

We hypothesized that classical functional connectivity would
prove to be both nonspecific (due to the presence of multivariate
redundancies that get repeatedly seen by many pairwise corre-
lations) and incomplete (due to the presence of synergies). To
test this hypothesis, we used a framework derived from the PID:
the partial entropy decomposition (PED) (15) (PED, explained
in detail below) to fully retrieve all components of statistical
dependencies in sets of three and four brain regions.

By computing the full PED for all triads of 200 brain regions,
and a subset of approximately two million tetrads, we can provide
a rich and detailed picture of beyond-pairwise dependencies in
the brain. Furthermore, by separately considering redundancy
and synergy instead of assessing just which one is dominant as
is commonly done (12, 16), we can reveal previously unseen
structures in resting-state brain activity.

1. Theory

A Note on Notation. In this paper, we will be making reference
to multiple different kinds of random variables. In general, we
will use uppercase italics to refer to single variables (e.g., X ).
Sets of multiple variables will be denoted in boldface (e.g.,
X = {X1, . . . , XN }, with subscript indexing). Specific instances of
a variable will be denoted with lowercase font: X = x. Functions
(such as the probability, entropy, and mutual information) will
be denoted using calligraphic font. Finally, when referring to
the partial entropy function H∂ (described below), we will use

superscript index notation to indicate the full set of variables
that contextualizes the individual atom (this notation was first
introduced by Ince in ref. 15). For example,H123

∂ ({1}{2}) refers
to the information redundantly shared by X1 and X2, when
both are considered as part of the triad X = {X1, X2, X3}, while
H12

∂ ({1}{2}) refers to the information redundantly shared by X1
and X2 qua themselves.

A. Partial Entropy Decomposition. The PED provides a frame-
work with which we can extract all of the meaningful structure in
a system of interacting random variables (15). By structure, we are
referring to the (possibly higher-order) patterns of information-
sharing between elements. For a detailed, mathematical deriva-
tion of the PED, see SI Appendix, but we will briefly review the
main concept here. We begin with the Shannon entropy of a
multidimensional random variable:

H(X) := −
∑
x∈X

P(x) log2 P(x), [1]

where x indicates a particular configuration of X, and X is
the support set of X. This joint entropy quantifies, on average,
how much it is possible to know about X (i.e., how many bits
of information would be required, on average, to reduce our
uncertainty about the state of X to zero). The measure H(X)
is a very crude one: It gives us a single summary statistic that
describes the behavior of the whole without making reference
to the structure of the relationships between X’s constituent
elements. If X has some nontrivial structure that integrates
multiple elements (or ensembles of elements), then we propose
that those elements must share entropy. This notion of shared
entropy forms the cornerstone of the PED: By “share entropy,”
we mean how much uncertainty about the state of the whole
could be resolved by learning information about the states of the
constituent parts.

For example, consider the bivariate system X = {X1, X2}. We
can decompose the joint entropy:

H(X) = H12
∂ ({1}{2}) +H12

∂ ({1}) [2]

+H12
∂ ({2}) +H12

∂ ({1, 2}).

We can understand these four values in terms of redundant,
unique, and synergistic information-sharing modes. The first
term H12

∂ ({1}{2}) is the uncertainty about the state of X that
would be resolved if we learned either X1 alone or X2 alone
(redundancy). The term H12

∂ ({1}) is the information about X
that can only be learned by observing X1, and likewise for
H12

∂ ({2}). The final term,H12
∂ ({1, 2}) is the information aboutX

that can only be learned whenX1 andX2 are learned together. Said
otherwise, it is the irreducible information that the whole X that
can only be learned by observing the wholeX itself. Furthermore,
we can decompose the associated marginal entropies in a manner
consistent with the partial information decomposition (13):

H(X1) = H12
∂ ({1}{2}) +H12

∂ ({1}) [3]

H(X2) = H12
∂ ({1}{2}) +H12

∂ ({2}). [4]

The result is a set of three known variables (the joint and
marginal entropies) and four unknown variables), resulting in an
underdetermined system of equations. By defining a redundant
entropy function that solves H12

∂ ({1}{2}), it is possible to solve
the remaining three terms with simple algebra. Here, we opt

2 of 12 https://doi.org/10.1073/pnas.2300888120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

R
O

M
A

 L
A

 S
A

PI
E

N
Z

A
 o

n 
Ju

ly
 2

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
15

1.
10

0.
20

0.
23

3.

https://www.pnas.org/lookup/doi/10.1073/pnas.2300888120#supplementary-materials


to use the Hsx measure first proposed by Makkeh et al. (17),
discussed in more detail below.

These decompositions can be done for larger ensembles or
more statistical dependencies (see below) and can reveal how
higher-order interactions can complicate (and in some cases,
compromise) the standard bivariate approaches to functional
connectivity.
A.1. Analytic vs. empirical PED analysis. The PED reveals a rich
and complex structure of statistical dependencies even in small
systems. Like the PID, it is unusual in that it reveals the structure
of multivariate information, but computing the value of any atom
requires the additional step of proposing an operational measure
of redundant entropy. Consequently, there are two lenses with
which we can use PED to assess the relationship between
higher-order information and functional connectivity. The first
approach is analytic: considering the structure of multivariate
entropy qua itself without defining a redundancy function. The
second approach is empirical: After choosing a function, we
can compute values of redundancy and synergy from real data
and compare them numerically to other measures, such as the
Pearson correlation coefficient. Both approaches have strengths
and weaknesses: The strength of the analytic approach is in its
universality. The results do not hinge on a particular definition of
redundancy and reflect the fundamental mathematical structure
of multivariate information. The primary weakness, however, is
that the high level of abstraction makes analysis of real-world
data impossible. In contrast, the empirical approach does require
making an ad hoc choice of redundancy function. In the context
of PID, different redundancy functions can lead to strikingly
different results (18), and it is conceivable that similar effects
may be inherited by the PED. Consequently, any particular set of
results must be understood as reflecting the particular definition
of redundancy chosen. The benefit of this approach is that, given
a suitable redundancy function, it is possible to use PED to
explore the information structure of real systems, rather than just
the abstract structure of information itself.

In this paper, we apply both lenses. In Section A.2, we explore
the analytic properties of the PED and discuss their implications
for bivariate, FC network analysis, as well as existing information-
theoretic measures of higher-order dependency, such as the
O-information (19). In Section B, we empirically analyze resting-
state fMRI data using the PED coupled with theHsx redundancy
function (17), to compare the empirical distribution of higher-
order redundancies and synergies with the structure of bivariate
FC networks.
A.2. Mathematical analysis of the PED. Before considering the
empirical results (which requires operationalizing a method of
redundancy), it is worth discussing how the PED analytically
relates to classic measures from information theory and what
it reveals about the limitations of bivariate FC measures. These
results are agnostic to the specific definition of redundancy chosen
are expected to hold for any viable redundant entropy function.

The first key finding is that the PED provides interesting in-
sights into the nature of bivariate mutual information. Typically,
mutual information is conflated with redundancy at the outset
(for example, in Venn diagrams); however, when considering the
PED of two variables X1 and X2, it becomes clear that:

I(X1;X2) = H12
∂ ({1}{2})−H12

∂ ({1, 2}). [5]

This relationship was originally noted by Ince (15) and later
rederived by Finn and Lizier (20). In a sense, the higher-
order information present in the joint state of (X1 and X2)
obscures the lower-order structure. We conjecture that this issue

is also inherited by parametric correlation measures based on the
Pearson correlation coefficient, since the mutual information is a
deterministic function of Pearson’s r for Gaussian variables (21).
A deeper mathematical exploration of the relationship between
partial entropy and other correlation measures beyond mutual
information remains an area for future work.

We can do a similar analysis extracting the bivariate mutual
information from the trivariate PED (also first derived in ref. 15),
which reveals that the bivariate correlation is not specific:

I(X1;X2) = H123
∂ ({1}{2}{3}) +H123

∂ ({1}{2}) [6]

−H123
∂ ({3}{1, 2})−H123

∂ ({1, 2}{1, 3}{2, 3})

−H123
∂ ({1, 2}{1, 3})−H123

∂ ({1, 2}{2, 3})

−H123
∂ ({1, 2}).

It is clear from Eq. 6 that the bivariate mutual information
incorporates information that is triple-redundant across three
variables (H123

∂ ({1}{2}{3})), and if one were to take the standard
FC approach to a triad (pairwise correlation between all three
pairs of elements), that the triple redundancy would be triple
counted:H123

∂ ({1}{2}{3}) will contribute positively to I(X1;X2),
I(X1;X3), and I(X2;X3). Furthermore, not only does bivariate
mutual information double-count redundancy, but it also penal-
izes higher-order synergies. Any higher-order atom that includes
the joint state of X1 ∧ X2 counts against I(X1;X2). We should
stress that the above results do not mean that pairwise mutual
information is “wrong” in any sense (the triple redundancy is
part of the pairwise dependency), but it does complicate the
interpretation of functional connectivity, particularly when the
change in the value of a particular edge is of scientific interest. For
example, many neuroimaging studies report results of the form
“FC between region A and region B was greater in condition
1 than in condition 2”. These results are typically interpreted
as revealing something specific about the computations regions
A and B perform; however, the above results show that we
cannot be confident that a change in pairwise connectivity is
specific to those two nodes, but may be driven by higher-order,
nonlocal redundancies (or alternately, suppressed by synergies).
Consequently, while the FC network itself is mathematically well
described, the interpretation and ability to appropriately assign
dependencies to particular sets of regions is surprisingly complex
and subtle.

Having established that the presence of higher-order redun-
dancies precludes bivariate correlation from being specific, we
now ask the following: Can we improve the specificity using
common statistical methods? One approach aimed at controlling
for the context of additional variables in a bivariate correlation
analysis is using conditioning or partial correlation. Typically,
these analyses are assumed to improve the specificity of a pairwise
dependency by removing the influence of confounders; however,
by decomposing the conditional mutual information between
three variables, we can see that conditioning does not ensure
specificity:

I(X1;X2|X3) = H123
∂ ({1}{2}) [7]

+H123
∂ ({1}{2, 3}) +H123

∂ ({2}{1, 3})

+H123
∂ ({1, 2}{1, 3}{2, 3})

+H123
∂ ({1, 3}{2, 3})

−H123
∂ ({1, 2})−H123

∂ ({1, 2, 3}).
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The decomposition of I(X1;X2|X3) conflates the true pairwise
redundancy (H123

∂ ({1}{2})) with the a higher-order redundancy
involving the joint state ofX1∧X3 andX2∧X3:H123

∂ ({1, 3}{2, 3})
(15). Furthermore, the conditional mutual information penal-
izes synergistic entropy shared in the joint state of all three
variables (H123

∂ ({1, 2, 3})). Consequently, we can conclude that
the specificity of bivariate functional connectivity cannot be
salvaged using conditioning or partial correlation. Not only does
controlling fail to provide specificity, it also actively compromises
completeness, since it brings in higher-order interactions. Given
that conditional mutual information and partial correlation are
equivalent for Gaussian variables (22), we conjecture that this
issue also affects standard, parametric approaches to conditional
connectivity, just as with bivariate mutual information/Pearson
correlation.

It is important to understand that these analytic results are
not a consequence of the particular form of hsx : Any shared
entropy function that allows for the formation of a partial entropy
lattice will produce these same results many of these analytic
relationships were first derived by Ince (15).
A.3. Higher-order dependency measures. In addition, revealing
the structure of commonly used correlations (bivariate and partial
correlations), the PED can also be used to develop intuitions
about multivariate generalizations of the mutual information.
Many of these generalizations exist, and here, we will focus on
four: the total correlation (23), the dual total correlation (24),
the O-information, and the S-information (19). While useful,
these measures are often difficult to intuitively understand and
can display surprising behavior. Since they can all be written in
terms of sums and differences of joint and marginal entropies,
we can use the PED framework to more completely understand
them.

The oldest measure is the total correlation, defined as

T (X) :=
|X|∑
i=1

H(Xi)−H(X), [8]

which is equivalent to the Kullback–Leibler divergence between
the true joint distributionP(X) and the product of the marginals:

T (X) = DKL(P(X)||
|X|∏
i=1
P(Xi). [9]

Based on Eq. 9, we can understand the total correlation as the
divergence from the maximum entropy distribution to the true
distribution, implying that it might be something like a measure
of the total structure of the system (as its name would suggest).
We can decompose the 3-variable case to get a full picture of the
structure of the TC:

T (X1, X2, X3)

= (2×H123
∂ ({1}{2}{3})) [10]

+H123
∂ ({1}{2}) +H123

∂ ({1}{3})

+H123
∂ ({2}{3})−H123

∂ ({1, 2}{1, 3}{2, 3})

−H123
∂ ({1, 2}{1, 3})−H123

∂ ({1, 2}{2, 3})

−H123
∂ ({1, 3}{2, 3})−H123

∂ ({1, 2})

−H123
∂ ({1, 3})−H123

∂ ({2, 3})−H123
∂ ({1, 2, 3}).

For a step-by-step walkthrough of this derivation, see SI
Appendix, SI 5: Derivations. We can see that the total correlation

is largely a measure of redundancy, sensitive to information
shared between single elements, but penalizing higher-order
information present in joint states. This can be understood by
considering the lattice in SI Appendix Fig. S2: Each of theH(Xi)
terms will only incorporate atoms preceding (or equal to) the
unique entropy term H123

∂ (i)—anything that can only be seen
by considering the joint state of X will be negative.

The second generalization of mutual information is the dual
total correlation (24). Defined in terms of entropies by

D(X) := H(X)−
|X|∑
i=1

H(Xi|X−i), [11]

where X−i refers to the set of every element of X excluding the
ith. The dual total correlation can be understood as the difference
between the total entropy of X and all of the entropy in each
element of X that is intrinsic to it and not shared with any other
part. When we decompose the three-variable case, we find

D(X1, X2, X3)

= H123
∂ ({1}{2}{3}) [12]

+H123
∂ ({1){2}) +H123

∂ ({1}{3}) +H123
∂ ({2}{3})

+H123
∂ ({1}{23}) +H123

∂ ({2}{1, 3}) +H123
∂ ({3}{1, 2})

+H123
∂ ({1, 2}{1, 3}{2, 3})

−H123
∂ ({1, 2})−H123

∂ ({1, 3})−H123
∂ ({2, 3})

− (2×H123
∂ ({1, 2, 3})).

This shows that dual total correlation is a much more complete
picture of the structure of a system than total correlation.
It is sensitive to both shared redundancies and synergies,
penalizing only the unshared, higher-order synergy terms such as
H123

∂ ({1, 2}).
The sum of the total correlation and the dual total correlation is

the exogenous information (25), also called by the S-information.

E(X) := T (X) +D(X). [13]

Prior work has shown the exogenous entropy to be very
tightly correlated with the Tononi–Sporns–Edelman complexity
(16, 19, 26), a measure of global integration/segregation balance.
James also showed that the S-information quantified the total
information that every element shares with every other element
(25). We can see that

E(X1, X2, X3)

= (3×H123
∂ ({1}{2}{3}))

+ 2× (H123
∂ ({1}{2}) +H123

∂ ({1}{3})

+H123
∂ ({2}{3}))

+H123
∂ ({1}{2, 3}) +H123

∂ ({2}{1, 3})

+H123
∂ ({3}{1, 2})

−H123
∂ ({1, 2}{1, 3})−H123

∂ ({1, 2}{2, 3})

−H123
∂ ({1, 3}{2, 3})

− 2× (H123
∂ ({1, 2}) +H123

∂ ({1, 3}) +H123
∂ ({2, 3}))

− (3×H123
∂ ({1, 2, 3})).

This reveals that S-information to be an unusual measure, in
that it counts each redundancy term multiple times (i.e., in the
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case of three variables, the triple redundancy term appears three
times, each double-redundancy term appears twice, etc.) and
penalizes them likewise when considering unshared synergies.

The final, and arguably most interesting, measure is the
difference between the total correlation, and the dual total
correlation is often referred to as the O-information (19) and
has been hypothesized to give a heuristic measure of the extent to
which a given system is dominated by redundant or synergistic
interactions:

O(X) := T (X)−D(X), [14]

whereO(X) > 0 implies a redundancy-dominated structure and
O(X) < 0 implies a synergy dominated one. PED analysis reveals

O(X1, X2, X3)

= H123
∂ ({1}{2}{3}) [15]

−H123
∂ ({1}{2, 3})−H123

∂ ({2}{1, 3})−H123
∂ ({3}{1, 2})

− (2×H123
∂ ({1, 2}{1, 3}{2, 3}))

−H123
∂ ({1, 2}{1, 3})

−H123
∂ ({2, 3}{1, 3})−H123

∂ ({1, 2}{2, 3})

+H123
∂ ({1, 2, 3}).

This shows that the O-information generally satisfies the
intuitions proposed by Rosas et al., as it is positively sensitive to
the nonpairwise redundancy (in this case just H123

∂ ({1}{2}{3}))
and negatively sensitive to any higher-order shared information.
Curiously,O(X1, X2, X3) positively counts the highest, unshared
synergy atom (H123

∂ ({1, 2, 3}). Conceivably, it may be possible
for a set of three variables with no redundancy to return a positive
O-information, although whether this can actually occur is an
area of future research.

For three-element systems, the O-information is also equiv-
alent to the coinformation (19), which forms the base of the
original redundant entropy function Hcs proposed by Ince
(15). From this, we can see that, at least for three variables,
coinformation is not a pure measure of redundancy, conflating
the true redundancy and the highest synergy term, as well as
penalizing other higher-order modes of information-sharing. A
similar argument was made by Williams and Beer using the
mutual information-based interpretation of coinformation (13).
While the O-information and coinformation diverge for N > 3,
we anticipate that the behavior of the coinformation will remain
similarly complex at higher N . These results reveal how the
PED framework can provide clarity to the often-murky world of
multivariate information theory.
A.4. Novel Higher-order measures. From these PED atoms, we
can construct a measure of higher-order dependence that extends
beyond TC, DTC, O-Information, and S-Information.

When considering higher-order redundancy, we are interested
in all of those atoms that duplicate information over three or more
individual elements. We define this as the redundant structure.
For a three-element system,

SR(X1, X2, X3) = H123
∂ ({1}{2}{3}). [16]

For a four-element system,

SR(X1, X2, X3, X4) = H1−4
∂ ({1}{2}{3}{4}) [17]

+H1−4
∂ ({1}{2}{3}) +H1−4

∂ ({1}{2}{4})

+H1−4
∂ ({1}{3}{4}) +H1−4

∂ ({2}{3}{4}).

And so on for larger systems.
We can also define an analogous measure of synergistic

structure: All those atoms representing information duplicated
over the joint state of two or more elements. The requirement
that higher-order synergies must also be shared reflects the idea
that the structure of a system refers to dependencies between
elements or groups of elements. For example, for a three-element
system,

SS(X1, X2, X3) = H123
∂ ({1}{2, 3}) +H123

∂ ({2}{1, 3})

+H123
∂ ({3}{1, 2})

+H123
∂ ({1, 2}{1, 3}{2, 3})

+H123
∂ ({1, 2}{1, 3}) +H123

∂ ({2, 3}{1, 3})

+H123
∂ ({1, 2}{2, 3}). [18]

Note that the atom H123
∂ ({1, 2, 3}) is not included in the

synergistic structure, as it does not refer to information duplicated
over (shared between) groups of elements. Instead, it refers to
the intrinsic uncertainty the whole X that can only resolved by
observing the whole.

For three-element systems, the difference SR − SS
is analogous to a “corrected” O-information: The atom
H123

∂ ({1, 2}{1, 3}{2, 3}) is counted only once, and the confound-
ing triple synergyH123

∂ ({1, 2, 3}) is not included. Finally, we can
define a measure of total (integrated) structure (i.e., all shared
information) as the sum of all atoms composed of multiple
sources:

S =
∑
�∈A

� ⇐⇒ |�| > 1. [19]

B. Applications to the Brain. The mathematical structure of the
PED is domain agnostic: Any complex system composed of
discrete random variables is amenable to this kind of information-
theoretic analysis. In this paper, we focus on data collected from
the human brain with functional magnetic resonance imaging
(fMRI). For detailed methods, see the Materials & Methods, but
in brief, data from ninety-five human subjects resting quietly were
recorded as part of the Human Connectome Project (27). All of
the scans were concatenated and each channel binarized about
the mean (28) to create multidimensional, binary time series. We
then computed the full PED for all triads, and approximately two
million tetrads, to compare to the standard, bivariate functional
connectivity network (computed with mutual information).

By looking at the redundant and synergistic structures, and
relating them to the standard FC, we can explore how higher-
order dependencies are represented in bivariate networks as well
as what brain regions participate in more redundancy- or synergy-
dominated ensembles.
B.1. TheHsx redundancy function. As previously mentioned, the
application of the PED to empirical data requires making a choice
about the best way to operationalize the notion of redundant
entropy. Here, we used theHsx measure first proposed by Makkeh
et al. (17), due to its intuitive interpretations in terms of logical
conjunctions and disjunctions. For a set, �, of k, potentially
overlapping, subsets of a variable X (referred to as sources), the
redundant entropy shared by all sources is given by

HX
sx(�) = log2

1
P(a1 ∪ . . . ∪ ak)

. [20]

For example, if � = {{X1, X2}, {X1, X3}, {X2, X3}}, then
HX

sx(�) is interpreted as the information about the state of the
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whole X that could be learned by observing (X1 and X2) or (X1
and X3) or (X2 and X3). For a more detailed discussion of Hsx ,
see SI Appendix.

2. Results

A. PED Reveals the Limitations of Bivariate Networks. We now
discuss how the PED relates to multivariate measures of bivariate
network structure commonly used in the functional connectiv-
ity literature. These measures describe statistical dependencies
between ensembles of regions but mediated by the topology of
bivariate connections. We hypothesized that this emergence from
bivariate dependencies would render them largely insensitive to
synergies, which in turn would mean that such measures do not
solve the issue of incompleteness in functional connectivity.

Following (29), we compared the redundant and synergistic
structure of triads and tetrads to a measure of subgraph strength:
the arithmetic mean of all edges in the subgraph. We found
that the arithmetic mean FC density was positively correlated
with redundancy for triads (Pearson’s r = 0.999, P < 10−20)
and tetrads (Pearson’s r = 0.995, P < 10−20), indicating
that information duplicated over many brain regions contributes
to multiple edges, leading to double-counting. In contrast, for
triads, arithmetic mean FC density was largely independent of
synergistic structure (Pearson’s r = −0.05, P < 10−20), but for
tetrads, they were strongly anticorrelated (Pearson’s r = −0.988,
P < 10−20). For visualization, see Fig. 1 A–D.

In addition to subgraph structure, another common method
of assessing polyadic interactions in networks is via community
detection (8). Using the multiresolution consensus clustering
algorithm (30), we clustered the bivariate functional connectivity
matrix into nonoverlapping communities. We then looked at the
distributions of higher-order redundant and synergistic structure
for triads and tetrads that spanned different numbers of consensus
communities. We found that triads where all nodes were mem-
bers of one community had significantly less synergy than triads
that spanned two or three communities (Kolmogorov–Smirnov
two sample test, D = 0.44, P < 10−20). The pattern was more
pronounced when considering tetrads: tetrads that all belonged to
one community had lower synergy than those that spanned two
communities (D = 0.45, P < 10−20), who in turn had lower
synergy than those that spanned three communities (D = 0.37,
P < 10−20). In Fig. 1 (Top row), we show cumulative probability
density plots for the distribution of synergies for triads and tetrads
that spanned one, two, three, and four FC communities, where
it is clear that participation in increasingly diverse communities
is associated with a greater synergistic structure. In contrast, a
redundant structure was higher in triads that were all members
of a small number of communities. Triads that spanned three
communities had lower redundancy than triads that spanned two
communities (D = 0.48, P < 10−20), which in turn had lower
redundancy than those that were all members of one community
(D = 0.47, P < 10−20) (Fig. 1G andH ). These results, coupled
with the mathematical analysis of the PED discussed in Section 1,
provide strong theoretical and empirical evidence that bivariate,
correlation-based FC measures are largely sensitive to redundant
information duplicated over many individual brain regions but
largely insensitive to (or even anticorrelated with) higher-order
synergies involving the joint state of multiple regions. These
results imply the possibility that there is a vast space of neural
dynamics and structures that have not previously been captured
in FC analyses.

A.1. PED with Hsx is consistent with O-information. To test
whether the PED using theHsx redundancy function was consis-
tent with other, information-theoretic measures of redundancy
and synergy, we compared the average redundant and synergistic
structures (as revealed by PED) to the O-information. We
hypothesized that redundant structure would be positively
correlated with O-information (as O > 0 implies redundancy
dominance) and that synergistic structure would be negatively
correlated, for the same reason.

For both triads and tetrads, our hypothesis was bourne out.
The Pearson correlation between O-information and redundant
structure was significantly positive for both triads (Pearson’s r =
0.72, P < 10−20) and tetrads (Pearson’s r = 0.82, P < 10−20).
Conversely, the Pearson correlation between the O-information
and the synergistic structure was significantly negative (triads:
Pearson’s r = −0.7, P < 10−20, tetrads: Pearson’s r = −0.72,
P < 10−20). These results show that the structures revealed
by the PED are consistent with other, nondecomposition-based
inference methods and serve to validate the overall framework.

Interestingly, when comparing the triadic O-information to
the corrected triadic O-information (which does not double-
countH123

∂ ({1, 2}{1, 3}{2, 3}) and does not add back in the atom
H123

∂ ({1, 2, 3})), we can see that the addition of H123
∂ ({1, 2, 3})

can lead to erroneous conclusions. Of all those triads that
had a negative corrected O-information (i.e., had a greater
synergistic structure than redundant structure), 61.7% had a
positive O-information, which could only be attributable to
the presence of the triple-synergy being (mis)interpreted as
redundancy and overwhelming the true difference. This suggests
that, for small systems, the O-information may not provide an
unbiased estimator of redundancy/synergy balance.

B. Characterizing Higher-Order Brain Structures. Having es-
tablished the presence of beyond-pairwise redundancies and
synergies in brain data and shown that standard, network-
based approaches show an incomplete picture of the overall
architecture, we now describe the distribution of redundancies
and synergies across the human brain.

We began by applying a higher-order generalization of the
standard community detection approach using a hypergraph
modularity maximization algorithm (31). This algorithm par-
titions collections of (potentially overlapping) sets of nodes
called hyperedges into communities that have a high degree of
internal integration and a lower degree of between-community
integration. We selected all those triads that had a greater
synergistic structure than any of the one million maximum
entropy null triads (Materials andMethods), which yielded a set of
3,746 unique triads. From these, we constructed an unweighted
hypergraph with 200 nodes and 3,746 hyperedges (casting each
triad as a hyperedge incident on three nodes). We then performed
1,000 trials of the hypergraph clustering algorithm proposed by
Kumar et al. (31), from which we built a consensus matrix that
tracked how frequently two brain regions Xi and Xj were assigned
to the same hypercommunity. We repeated the process for the
3,746 maximally redundant triads to create two partitions: a
synergistic structure and a redundant structure.

In Fig. 2A, we show surface plots of the resulting communities
computed from the concatenated time series comprising all
ninety-five subjects and all 4 runs. The redundant structure (Left)
is very similar to the canonical seven Yeo systems (32): We can
see a well-developed DMN (orange), a distinct visual system
(sky blue), a somato-motor strip (violet), and a fronto-parietal
network (dark blue). In contrast, when considering the synergistic
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BA C D

HGFE

Fig. 1. The limits of bivariate functional connectivity. (A) In triads, bivariate functional connectivity is largely independent of synergistic structure (all correlations
computed with the Pearson correlation coefficient) and (B) is very positively correlated with redundant structure. (C) In tetrads, bivariate functional connectivity
is strongly negatively correlated with synergistic structure and (D) is strongly correlated with redundant structure. (E and F ) Triads that have all elements within
one FC community have significantly less synergistic structure than those that have elements with two communities, while for redundant structure, there was a
clear pattern that the more FC communities a triad straddled, the lower its overall redundant structure. (G and H) The same pattern was even more pronounced
in tetrads: As the number of FC communities a tetrad straddled increased, the expected synergistic structure climbed, while expected redundant structure fell.

structure (Right), a strikingly different pattern is apparent. When
we computed the normalized mutual information of all the
subject-level redundancy partitions to the canonical Yeo systems,
we found a high degree of correlation (NMI = 0.6196± 0.0117,
P < 10−20). The same analysis with the subject-level synergy
partitions found a much lower degree of concordance (NMI =
0.2290 ± 0.0117, P < 10−20). See Fig. 2C for visualization.
Synergistic connectivity appears more lateralized over Left and
Right hemispheres (orange and violet communities respectively),
although there is a high degree of symmetry along the cortical
midline composed of apparently novel communities. These
include a synergistic coupling between visual and limbic regions
(sky blue) as well as an occipital subset of the DMN (green) and
a curious, symmetrical set of regions combining somato-motor
and DMN regions (red). See Fig. 2D for visualization.

These results show two things: The first is further confirmation
that the canonical structures studied in an FC framework
can be interpreted as reflecting primarily patterns of redun-
dant information. The second is that higher-order synergies
are structured in nonrandom ways, combining multiple brain
regions into integrated systems that are usually thought to be
independent when considering just correlation-based analyses.
If the synergistic structure were reflecting mere noise, then we
would not expect the high degree of symmetry and structure we
observe.

To test whether the patterns we observed were consistent
across individuals, we reran the entire pipeline (PED of all
triads, hypergraph clustering of redundant and synergistic triads,
etc) for each of the 95 subjects separately. Then, for each
subject, we computed the normalized mutual information (NMI)
(6) between the subject-level partition and the relevant master
partition (redundancy or synergy) created from the concatenated
time series of all four scans from each of the ninety-five subjects.

We significance-tested each comparison with a permutation null
model. For each null, we permuted the subject-level community
assignment vector of nodes, recomputing the NMI between the
master partition and a shuffled subject-level partition (1,000
permutations). In the case of the redundant partition, we found
that no subjects ever had a shuffled null that was greater than
the empirical NMI: All had significant NMI (0.52 ± 0.07).
In the case of the synergistic partition, 91 of the 95 subjects
showed significant NMI (0.1 ± 0.03, P < 0.05, Benjamini–
Hochberg FDR corrected). These results (visualized in Fig. 2E)
suggest that both structures (redundant and synergistic) are
broadly conserved across individuals; however, it appears that
the synergistic partitions are generally more variable between
subjects than the redundant partition (which hews closer to the
master partition constructed by combining the data from all
subjects).
B.1. Redundancy-synergy gradient & time-resolved analysis. Thus
far, we have analyzed higher-order redundancy and synergy
separately. To understand how they interact, we began by
replicating the analysis of Luppi et al. (33). We counted how
many times each brain region appeared in the set of 3,746 most
synergistic and 3,746 most redundant triads. We then ranked
each node to create two vectors which rank how frequently
each region participates in high-redundancy and high-synergy
configurations. By subtracting those two rank vectors, we get
a measure of relative redundancy/synergy dominance. A value
greater than zero indicates that a region’s relative redundancy
(compared to all other regions) is greater than its relative synergy
(compared to all other regions), and vice versa.

By projecting the rank-differences onto the cortical surface
(Fig. 3A), we recover the same gradient-like pattern first reported
by Luppi et al., with relatively redundant regions located in
the primary sensory and motor cortex and relatively synergistic
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A B

C D

E

Fig. 2. Redundant and synergistic hypergraph community structure. (A and B) Surface plots of the two communities structures: On the Left is the redundant
structure and on the Right is the synergistic structure. We can see that both patterns are largely symmetrical for both information-sharing modes, although
the synergistic structure has two large, lateralized communities. (C and D) The coclassification matrices for redundant structure (Left) and the synergistic
structure (Right). The higher the value of a pair, the more frequently the hypergraph modularity maximization (31) assigns those two regions to the same
hypercommunity. The yellow squares indicate the seven canonical Yeo functional networks (32), and we can see that the higher-order redundant structure
matches the bivariate Yeo systems well (despite consisting of information shared redundantly across three nodes). In contrast, the synergistic structure largely
fails to match the canonical network structure at all. (E) For each of the 95 subjects and for each of the 1,000 permutation nulls used to significance test the NMI
between subject-level community structure and the master level structure, we computed the log-ratio of the empirical NMI to the null NMI. For redundancy,
there was not a single null, over any subject, that was greater than the associated empirical NMI. For the case of the synergy, only 0.6% of nulls were greater
than their associated empirical NMI.

regions located in the multimodal and executive cortex. This
replication is noteworthy, as Luppi et al., used an entirely different
method of computing synergy (based on the information flow
from past to future in pairs of brain regions), while we are looking
at generalizations of static FC for which dynamic order does not
matter. The fact that the same gradient appears when using both
analytical methods strongly suggests that it is a robust feature of
brain activity.

A limitation of the analysis by Luppi et al. is the restriction
that only average values of synergy and redundancy are accessible:
The results describe expected values over all TRs and obscure
any local variability. The PED analysis using hsx can be localized
(Section 1) to individual frames. This allows us to see how the
redundant and synergistic structures fluctuate over the course
of a resting-state scan and how the distributions of relative
synergies and redundancies vary over the cortex. Fig. 3B shows
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A B

C D E

F G

H

Fig. 3. Time-resolved analysis. (A) Surface plots for the distributions of relative synergies and relative redundancies across the human brain. These results
match prior work by Luppi et al. (33), with the primary sensory and motor cortex being relatively redundant, while multimodal association areas being relatively
synergistic. (B) Over the course of one subject’s scan (1100 TRs), the total redundant and synergistic structure varies over time, although never so much that
the curves cross (i.e., there is never more redundant structure than synergistic structure present). (C) Instantaneous redundant and synergistic structures are
anticorrelated (r = −0.83, P < 10−50). (D) Redundancy is positively correlated with the amplitude of bivariate cofluctuations (Pearson’s Pearson’s r = 0.6,
P < 10−50), and (E) synergy is negatively correlated with cofluctuation amplitude (Pearson’s r = −0.43, P < 10−50). (F ) For each TR, we show the difference
in the rank-redundancy and rank-synergy for each node (red indicates a higher rank-redundancy than rank-synergy and vice versa for blue). When nodes are
stratified by Yeo system (32) (gray, horizontal lines), it is clear that different systems alternate between high-redundancy and high-synergy configurations in
different ways. (G) For every pair of columns in Panel F. we compute the Pearson correlation between them to construct a time × time similarity matrix, which
we then clustered using the MRCC algorithm (30). Note that rows and columns are not in time order, but rather, reordered to reveal the state-structure of
the time series. (H) Five example states (centroids of each community shown in Panel G) projected onto the cortical surface. It is clear that the instantaneous
pattern of relative synergies and redundancies varies from the average structure presented in Panel A. For example, in states 3 and 4, the visual system is
highly redundant (as in the average); however, in state 5, the visual system is synergistic.

how the redundant and synergistic structure fluctuate over the
course of 1100 TRs taken from a single subject (for scans
concatenated). This allows us to probe the information structure
of previously identified patterns in-frame-wise dynamics. Analysis
of instantaneous pairwise cofluctuations (also called edge time
series) reveals a highly structured pattern, with periods of
relative disintegration interspersed with high cofluctuation events
(34, 35). The distribution of these cofluctuations reflect various
factors of cognition (36), generative structure (37), functional
network organization (28), and individual differences (38). By
correlating the instantaneous average whole-brain redundant and
synergistic structures with instantaneous whole-brain cofluctu-
ation amplitude (RSS), we can get an understanding of the
informational structure of high-RSS events (Fig. 3 C and E). We
found that redundancy is positively correlated with cofluctuation

RSS (Pearson’s r = 0.6, P < 10−50) and synergy is negatively
correlated with cofluctuation amplitude (Pearson’s r = −0.43,
P < 10−50). Given that synergy is known to drive bivariate
functional connectivity (34), this is again consistent with the
hypothesis that FC patterns largely reflect redundancy and are
insensitive to higher-order synergies.

With full PED analysis completed for every frame, it is
possible to compute the instantaneous distribution of relative
redundancies and synergies across the cortex for every TR. The
resulting multidimensional time-series can be seen in Fig. 3F.
When sorted by Yeo systems (32), we can see that different
systems show distinct relative redundancy/synergy profiles. The
nodes in the somato-motor system had the highest median
value (22.0 ± 73), followed by the visual system (14.0 ± 80),
indicating that they were on-average relatively more redundant
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than synergistic. In contrast, the ventral attentional system had
the lowest median value (−11.0 ± 66), indicating a relatively
synergistic dynamic. Other systems seemed largely balanced:
with median values near zero but a wide spread between them,
such as the dorsal attention network (1.0 ± 70), fronto-parietal
control system (−5.0 ± 56), and the DMN (−2.0 ± 67).
These are systems that transiently shift from largely redundancy-
dominated to synergy-dominated regimes in equal measure.
Finally, the limbic system had small values and relatively little
spread (−5.0 ± 18), indicating a system that never achieved
either extreme.

We then correlated every TR against every other frame to
construct a weighted, signed recurrence network (39), which
we could then cluster using the MRCC algorithm (30) (Fig.
3G). This allowed us to assign every TR to one of nine discrete
states, each of which can be represented by its centroid (for
five examples see Fig. 3H ). We can see that these states are
generally symmetrical but show markedly different patterns
relative redundancy and synergy across the cortex, and some
systems can change valance entirely. For example, in states three
and four, the visual system is highly redundant (consistent with
the average behavior), while in state five, the same regions are
more synergy dominated. In the same vein, the somato-motor
strip is highly redundant in state 4, but slightly synergy-biased in
state 3. This shows that the dynamics of information processing
are variable in time, with different areas of the cortex transiently
becoming more redundant or more synergistic in concert.

The sequence of states occupied at each TR is a discrete
time series which we can analyze as a finite-state machine
(for visualization, see SI Appendix Fig. S1). Shannon temporal
mutual information found that the present state was significantly
predictive of the future state (1.59 bit, P < 10−50) and that the
transitions between states were generally more deterministic (40)
(2.29 bit P < 10−50) than would be expected by chance. While
the sample size is small (1,099 transitions), these results suggest
that the transition between states is structured in nonrandom
ways.

3. Discussion

In this paper, we have explored a framework for extracting higher-
order dependencies from data and applied it to fMRI recordings.
We found that the human brain is rich in beyond-pairwise,
synergistic structures, as well as redundant information copied
over many brain regions. The PED-based approach provides two
complementary approaches to assessing higher-order interactions
in complex systems. The first approach is analytic (Section A.2)
and reveals how higher-order dependencies contribute to (and
complicate) bivariate correlations between elements of a complex
systems. Prior work on the PED has analytically shown that the
bivariate mutual information between two elements incorporates
nonlocal information that is redundantly present over more than
two elements (15, 20). This means that classic approaches to
functional connectivity are nonspecific: The link between two
elements does not reflect information uniquely shared by those
two but double (or triple-counts) higher-order redundancies
distributed over the system. We verified this empirically by
comparing the distribution of higher-order (beyond pairwise)
redundancies to a bivariate correlation network and found that
the redundancies closely matched the classic network structure.

These nonlocal redundancies shed light on a well-documented
feature of bivariate functional connectivity networks: the tran-
sitivity of correlation (41). In functional connectivity networks,
if Xi and Xj are correlated, as well as Xj and Xk, then there

is a much higher than expected chance that Xi and Xk are
correlated even though this is not theoretically necessary (42).
Since the Pearson correlation related the mutual information
under Gaussian assumptions (21), we claim that the observed
transitivity of functional connectivity is a consequence of
previously unrecognized, nonlocal redundancies copied over
ensembles of nodes. This hypothesis is consistent with our find-
ings that redundancies correlate with key features of functional
network topology, including subgraph density and community
structure.

The second approach to PED analysis is empirical (Section B).
This approach requires operationalizing a definition of redundant
entropy that can be used to estimate the values of the redundant
and synergistic structures in bits. Here, we use the Hsx measure
(17), which defines the entropy shared by a set of elements
as the information that could be learned by observing any
element alone. When analyzing resting state, fMRI data from
ninety five individuals, we found strong evidence of higher-order
synergies: information present in the joint states of multiple
brain regions and only accessible when considering wholes rather
than just parts. These synergies appear to be structured in part
by the physical brain (for example, being largely symmetric
across hemispheres) but also do not readily correspond to the
standard functional connectivity networks previously explored
in the literature. Since synergistic structures appear to be largely
anticorrelated with the standard bivariate network structures, it is
plausible that these synergistic systems represent an organization
of human brain activity.

These higher-order interactions represent a vast space of largely
unexplored but potentially significant aspects of brain activity.
The finding that the synergistic community structure was more
variable across subjects than the redundant structure suggests
that synergistic dependencies may reflect more unique, indi-
vidualized differences, while the redundant structure (reflected
in the functional connectivity) represents a more conserved
architecture. The ability to expand beyond pairwise network
models of the brain into the much richer space of beyond-
pairwise structures offers the opportunity to explore previously
inaccessible relationships between brain activity, cognition, and
behavior.

Since normal cognitive functioning requires the coordination
of many different brain regions (43–45), and pathological
states are associated with disintegrated dynamics (46–48), it is
reasonable to assume that alterations to higher-order, synergistic
coordination may also reflect clinically significant changes in
cognition and health. Recent work has already indicated that
changes in bivariate synergy track loss of consciousness under
anesthesia and following traumatic and anoxic brain injury
(11) suggesting that higher-order dependencies can encode
clinically significant biomarkers. We hypothesize that beyond-
pairwise synergies in particular may be worth exploring in the
context of recognizing early signs of Alzheimer’s and other
neurodegenerative diseases, as synergy requires the coordination
of many regions simultaneously and may begin to show signs
of fragmentation earlier than standard, functional connectivity-
based patterns (which are dominated by nonlocal redundancies
may obscure early fragmentation of the system).

Finally, the localizable nature of the Hsx partial entropy
function allows us a high degree of temporal precision when
analyzing brain dynamics. The standard approach to time-
varying connectivity is using a sliding-windows analysis; however,
this approach blurs temporal features and obscures higher-
frequency events (49). By being able to localize the redundancies
and synergies in time, we can see that there is a complex
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interplay between both types of integration. When considering
expected values, we find a distribution of redundancies and
synergies that replicates the findings of Luppi et al. (33);
however, when we localize the analysis in time, we find a
high degree of variability between frames. It appears that there
are not consistently redundant or synergistic brain regions (or
ensembles), but rather, various brain regions can transiently
participate in highly synergistic or highly redundant behaviors
at different times. The structure of these dynamics appears to
be nonrandom (based on the structure of the state-transition
matrix); however, the significance of the various combinations
of redundancy and synergy remains a topic for much future
work. The fact that some systems (such as the visual system) can
be either redundancy- or synergy-dominated at different times
complicates the notion of a synergistic core. Instead, there may be
a synergistic landscape of configurations that the system traverses,
with different configurations of brain regions transiently serving
as the core and providing a flexible architecture for neural
computation in response to different demands.

So far, all of the empirical results that we have discussed have
hinged on very particular definitions of redundancy and synergy,
which come from the underlying Hsx measure and a different
measure of redundant entropy such as Hccs (15) or Hmin
(20) will bring with it different interpretations, and possibly
different results. As future definitions of redundant entropy are
inevitably developed, it will be of interest to see how the apparent
distribution of redundancies and synergies in the brain changes.
Different definitions of redundancy may produce different kinds
of synergies, with their own distributions across the cortex.
While this has been described as a fault with the information
decomposition framework, we feel that it may be as much a
feature as a bug: different definitions of redundancy and synergy
may reveal different facets of structure in complex systems.
Analogy may be made to the many different formal definitions of
“complexity” that have been proposed over the years. There may
not be a single, universally satisfying definition of complexity
that is appropriate in all cases: Instead, different measures are
understood to reveal different aspects of dynamics that may be
more or less useful in particular circumstances for discussion,
see refs. 50 and 51. Here, we make an argument for “pragmatic
pluralism” (52): many different approaches may together reveal
aspects of the brain that single approaches can not.

This analysis does have some limitations, however. The most
significant is that the size of the partial entropy lattice grows
explosively as the size of the system increases: A system with only
eight elements will have a lattice with 5.6 × 1022 unique partial
entropy atoms. While our aggregated measures of redundant
and synergistic structure can summarize the dependencies in a
principled way, simply computing that many atoms is computa-
tionally prohibitive. In this paper, we took a large system of 200
nodes and calculated every triad and a large number of tetrads;
however, this also quickly runs into combinatorial difficulties, as
the number of possible groups of size k one can make from N
elements grows with the binomial coefficient. Heuristic measures
such as the O-information can help, although as we have seen,
this measure can conflate redundancy and synergy in sometimes
surprising ways. One possible avenue of future work could be to
leverage optimization algorithms to find small, tractable subsets of
systems that show interesting redundant or synergistic structure,
as was done in refs. 53, 54 and 16. Alternately, coarse-graining
approaches that can reduce the dimensionality of the system
while preserving the informational or causal structure may allow
the analysis of a compressed version of the system small enough
to be tractable (40, 55).

The choice of hypergraph community detection method is also
an area requiring further consideration. The hypermodularity
maximization approach from Kumar et al. (31) has many similari-
ties to community-detection approaches that are common in net-
work neuroscience. However, it also inherits some of modularity’s
limitations, including the issue of the resolution limit (8) and the
lack of significance testing of partitions. Future work may focus
on how different definitions of hypergraph communities may
change these results (e.g., ref. 56 recently introduced a framework
that allows for overlapping communities). Alternately, one could
propose a simplicial complex-based approach, as in ref. 57. The
study of higher-order information in complex systems is still
developing, with many avenues and possibilities to be explored.

In the context of this study, the use of fMRI BOLD data
presents some inherent limitations, such as a small number of
samples (TRs) from which to infer probability distributions, and
the necessity of binarizing a slow, continuous signal. Generalizing
the logic of shared probability mass exclusions remains an area
of on-going work (58), although for the time being, the Hsx
function requires discrete random variables. BOLD itself is
also fundamentally a proxy measure of brain activity based on
oxygenated blood flow and not a direct measure of neural activity.
Applying this work to electrophysiological data M/EEG, which
can be discretized in principled ways to enable information-
theoretic analysis (59), and naturally discrete spiking neural
data (60, 61), will help deepen our understanding of how
higher-order interactions contribute to cognition and behavior.
The applicability of the PED to multiple scales of analysis
highlights one of the foundational strengths of the approach
(and information-theoretic frameworks more broadly): being
based on the fundamental logic of inferences under conditions
of uncertainty, the PED can be applied to a large number of
complex systems (beyond just the brain), or to multiple scales
within a single system to provide a detailed, and holistic picture
of the system’s structure.

4. Conclusions

In this work, we have shown how the joint entropy of a
complex system can be decomposed into atomic components of
redundancy and synergy, revealing higher-order dependencies in
the structure of the system. When applied to human brain data,
this PED framework reveals previously unrecognized, higher-
order structures in the human brain. We find that the well-
known patterns of functional connectivity networks largely reflect
redundant information copied over many brain regions. In
contrast, the synergies for a kind of “shadow structure” that
is largely independent from, or anticorrelated with, the bivariate
network and has consequently remained less well explored. The
patterns of redundancy and synergy over the cortex are dynamic
across time, with different ensembles of brain regions transiently
forming redundancy- or synergy-dominated structures. This
space of beyond-pairwise dynamics is likely rich in previously
unidentified links between brain activity and cognition. The PED
can also be applied to problems beyond neuroscience and may
provide a general tool with which higher-order structure can be
studied in any complex system.

5. Materials and Methods

Neural activity was recorded from adult human subjects using resting-state fMRI
(27). Preprocessing has been previously described in ref. 37. Further details are
available in SI Appendix, Appendix 4A. Statistical analyses of triads and tetrads
are available inSI Appendix, Appendix 4B.1-3. Details of community detection of
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the bivariate FC matrix can be found in SI Appendix, Appendix 4B.4. All subjects
gave informed consent to protocols approved by the Washington University
Institutional Review Board.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information. Previously published data were used
for this work (https://doi.org/10.1073/pnas.2109380118) (37).

ACKNOWLEDGMENTS. We would like to thank Dr. Caio Seguin for valuable
discussion throughout the process. T.F.V. would also like to thank Dr. Robin
Ince and Dr. Abdullah Makkeh for valuable discussions around the topics of
PED and Isx . T.F.V. and M.P. are supported by the NSF-NRT grant 1735095,
Interdisciplinary Training in Complex Networks and Systems. The funders had
no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

1. O. Sporns, G. Tononi, R. Kötter, The human connectome: A structural description of the human
brain. PLoS Comput. Biol. 1, e42 (2005).

2. O. Sporns, Networks of the Brain (MIT Press, 2010).
3. A. Fornito, A. Zalesky, E. Bullmore, Fundamentals of Brain Network Analysis (Elsevier, 2016).
4. K. J. Friston, Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp.

2, 56–78 (1994).
5. M. D. Fox et al., The human brain is intrinsically organized into dynamic, anticorrelated functional

networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678 (2005).
6. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and interpretations.

NeuroImage 52, 1059–1069 (2010).
7. O. Sporns, R. Kötter, Motifs in brain networks. PLOS Biol. 2, e369. (2004).
8. S. Fortunato, Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
9. F. Battiston et al., The physics of higher-order interactions in complex systems. Nat. Phys. 17,

1093–1098 (2021).
10. F. E. Rosas et al., Disentangling high-order mechanisms and high-order behaviours in complex

systems. Nat. Phys. 18, 476–477 (2022).
11. A. I. Luppi et al., A synergistic workspace for human consciousness revealed by integrated

information decomposition. bioRxiv [Preprint] (2020). https://www.biorxiv.org/content/10.1101/
2020.11.25.398081v3.full (Accessed 28 March 2023).

12. M. Gatica et al., High-order interdependencies in the aging brain. Brain Connect. 11, 734–744
(2021).

13. P. L. Williams, R. D. Beer, Nonnegative decomposition of multivariate information. arXiv [Preprint]
(2010). http://arxiv.org/abs/1004.2515 [math-ph, physics:physics, q-bio].

14. A. J. Gutknecht, M. Wibral, A. Makkeh, Bits and pieces: Understanding information decomposition
from part-whole relationships and formal logic. Proc. R. Soc. A: Math. Phys. Eng. Sci. 477,
20210110 (2021).

15. R. A. A. Ince, The partial entropy decomposition: Decomposing multivariate entropy and mutual
information via pointwise common surprisal. arXiv [Preprint] (2017). http://arxiv.org/abs/1702.
01591 [cs, math, q-bio, stat] (Accessed 14 March 2021).

16. T. F. Varley, M. Pope, J. Faskowitz, O. Sporns, Multivariate information theory uncovers synergistic
subsystems of the human cerebral cortex. Commun. Biol. 6, 451 (2023).

17. A. Makkeh, A. J. Gutknecht, M. Wibral, Introducing a differentiable measure of pointwise shared
information. Phys. Rev. E 103, 032149 (2021).

18. A. Kolchinsky, A novel approach to the partial information decomposition. Entropy 24, 403 (2022).
19. F. Rosas, P. A. M. Mediano, M. Gastpar, H. J. Jensen, Quantifying high-order interdependencies via

multivariate extensions of the mutual information. Phys. Rev. E 100, 032305 (2019).
20. C. Finn, J. T. Lizier, Generalised measures of multivariate information content. Entropy 22, 216

(2020).
21. T. M. Cover, J. A. Thomas, Elements of Information Theory (John Wiley & Sons, 2012)
22. O. M. Cliff, L. Novelli, B. D. Fulcher, J. M. Shine, J. T. Lizier, Assessing the significance of directed

and multivariate measures of linear dependence between time series. Phys. Rev. Appl. 3, 013145
(2021).

23. S. Watanabe, Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 4, 66–82
(1960).

24. S. A. Abdallah, M. D. Plumbley, A measure of statistical complexity based on predictive information
with application to finite spin systems. Phys. Lett. A 376, 275–281 (2012).

25. R. G. James, C. J. Ellison, J. P. Crutchfield, Anatomy of a bit: Information in a time series
observation. Chaos: Interdiscip. J. Nonlinear Sci. 21, 037109 (2011).

26. G. Tononi, O. Sporns, G. M. Edelman, A measure for brain complexity: Relating functional
segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91, 5033–5037
(1994).

27. D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. J. Behrens, E. Yacoub, K. Ugurbil, The WU-minn
human connectome project: An overview. NeuroImage 80, 62–79 (2013).

28. O. Sporns, J. Faskowitz, A. S. Teixeira, S. A. Cutts, R. F. Betzel, Dynamic expression of brain
functional systems disclosed by fine-scale analysis of edge time series. Netw. Neurosci. 5, 405–
433 (2021).

29. J.-P. Onnela, J. Saramäki, J. Kertész, K. Kaski, Intensity and coherence of motifs in weighted
complex networks. Phys. Rev. E 71, 065103 (2005).

30. L. G. S. Jeub, O. Sporns, S. Fortunato, Multiresolution consensus clustering in networks. Sci. Rep. 8,
3259 (2018).

31. T. Kumar, S. Vaidyanathan, H. Ananthapadmanabhan, S. Parthasarathy, B. Ravindran, “A new
measure of modularity in hypergraphs: Theoretical insights and implications for effective
clustering” in Complex Networks and Their Applications VIII, H. Cherifi, S. Gaito, J. F. Mendes,
E. Moro, L. M. Rocha, Eds. (Springer International Publishing, Cham, 2020), pp. 286–297.

32. B. T. Yeo et al., The organization of the human cerebral cortex estimated by intrinsic functional
connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

33. A. I. Luppi et al., A synergistic core for human brain evolution and cognition. Nat. Neurosci. 25,
771–782 (2022).

34. F. Z. Esfahlani et al., High-amplitude cofluctuations in cortical activity drive functional connectivity.
Proc. Natl. Acad. Sci. U.S.A. 117, 28393–28401 (2020).

35. R. Betzel et al., Hierarchical organization of spontaneous co-fluctuations in densely-sampled
individuals using fMRI. Netw. Neurosci. (2023). https://doi.org/10.1162/netn_a_00321.

36. J. C. Tanner et al., Synchronous high-amplitude co-fluctuations of functional brain networks during
movie-watching (2022).

37. M. Pope, M. Fukushima, R. F. Betzel, O. Sporns, Modular origins of high-amplitude cofluctuations
in fine-scale functional connectivity dynamics. Proc. Natl. Acad. Sci. U.S.A. 118, e2109380118
(2021).

38. R. F. Betzel, S. A. Cutts, S. Greenwell, J. Faskowitz, O. Sporns, Individualized event structure drives
individual differences in whole-brain functional connectivity. NeuroImage 252, 118993 (2022).

39. T. F. Varley, O. Sporns, Network analysis of time series: Novel approaches to network neuroscience.
Front. Neurosci. 15, 787068 (2022).

40. E. P. Hoel, L. Albantakis, G. Tononi, Quantifying causal emergence shows that macro can beat micro.
Proc. Natl. Acad. Sci. U.S.A. 110, 19790–19795 (2013).

41. A. Zalesky, A. Fornito, E. Bullmore, On the use of correlation as a measure of network connectivity.
NeuroImage 60, 2096–2106 (2012).

42. E. Langford, N. Schwertman, M. Owens, Is the property of being positively correlated transitive? Am.
Stat. 55, 322–325 (2001).

43. P. Barttfeld et al., Signature of consciousness in the dynamics of resting-state brain activity. Proc.
Natl. Acad. Sci. U.S.A. 112, 887–892 (2015).

44. A. Demertzi et al. Human consciousness is supported by dynamic complex patterns of brain signal
coordination. Sci. Adv. 5, eaat7603 (2019).

45. J. M. Shine et al., The dynamics of functional brain networks: Integrated network states during
cognitive task performance. Neuron 92, 544–554 (2016).

46. R. M. Ahmed et al., Neuronal network disintegration: Common pathways linking neurodegenera-
tive diseases. J. Neurol. Neurosurg. Psychiatry. 87, 1234–1241 (2016).

47. J. S. Damoiseaux, K. E. Prater, B. L. Miller, M. D. Greicius, Functional connectivity tracks clinical
deterioration in Alzheimer’s disease. Neurobiol. Aging 33, 828.e19–828.e30.

48. A. I. Luppi et al., Consciousness-specific dynamic interactions of brain integration and functional
diversity. Nat. Commun. 10, 1–12 (2019).

49. F. Zamani Esfahlani et al., Edge-centric analysis of time-varying functional brain networks with
applications in autism spectrum disorder. NeuroImage 263, 119591 (2022).

50. D. P. Feldman, J. P. Crutchfield, Measures of statistical complexity: Why? Phys. Lett. A 238,
244–252 (1998).

51. T. F. Varley, Flickering emergences: The question of locality in information-theoretic approaches to
emergence. Entropy 25, 54 (2023).

52. J. P. Vandenbroucke, A. Broadbent, N. Pearce, Causality and causal inference in epidemiology: The
need for a pluralistic approach. Int. J. Epidemiol. 45, 1776–1786 (2016).

53. L. Novelli, P. Wollstadt, P. Mediano, M. Wibral, J. T. Lizier, Large-scale directed network inference
with multivariate transfer entropy and hierarchical statistical testing. Netw. Neurosci. 3, 827–847
(2019).

54. P. Wollstadt, S. Schmitt, M. Wibral, A rigorous information-theoretic definition of redundancy and
relevancy in feature selection based on (partial) information decomposition. arXiv [Preprint] (2021).
http://arxiv.org/abs/2105.04187 [cs, math] (Accessed 3 June 2021).

55. T. F. Varley, E. Hoel, Emergence as the conversion of information: A unifying theory. Philos. Trans.
Royal Soc.: A Math. Phys. Eng. Sci. 380, 20210150 (2022).

56. M. Contisciani, F. Battiston, C. De Bacco, Inference of hyperedges and overlapping communities in
hypergraphs. Nat. Commun. 13, 7229 (2022).

57. A. Santoro, F. Battiston, G. Petri, E. Amico, Higher-order organization of multivariate time series.
Nat. Phys. 19, 221–229 (2023).

58. K. Schick-Poland et al., A partial information decomposition for discrete and continuous variables.
arXiv [Preprint] (2021). http://arxiv.org/abs/2106.12393 [cs, math] (Accessed 23 January 2022).

59. T. Varley, O. Sporns, A. Puce, J. Beggs, Differential effects of propofol and ketamine on critical brain
dynamics. PLoS Comput. Biol. 16, e1008418 (2020).

60. T. F. Varley, Decomposing past and future: Integrated information decomposition based on shared
probability mass exclusions. PLOS ONE 18, e0282950 (2023).

61. E. L. Newman, T. F. Varley, V. K. Parakkattu, S. P. Sherrill, J. M. Beggs, Revealing the dynamics
of neural information processing with multivariate information decomposition. Entropy 24, 930
(2022).

12 of 12 https://doi.org/10.1073/pnas.2300888120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

R
O

M
A

 L
A

 S
A

PI
E

N
Z

A
 o

n 
Ju

ly
 2

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
15

1.
10

0.
20

0.
23

3.

https://www.pnas.org/lookup/doi/10.1073/pnas.2300888120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2300888120#supplementary-materials
https://doi.org/10.1073/pnas.2109380118
https://www.biorxiv.org/content/10.1101/2020.11.25.398081v3.full
https://www.biorxiv.org/content/10.1101/2020.11.25.398081v3.full
http://arxiv.org/abs/1004.2515
http://arxiv.org/abs/1702.01591
http://arxiv.org/abs/1702.01591
https://doi.org/10.1162/netn_a_00321
http://arxiv.org/abs/2105.04187
http://arxiv.org/abs/2106.12393

	Theory
	Partial Entropy Decomposition
	Analytic vs. empirical PED analysis
	Mathematical analysis of the PED
	Higher-order dependency measures
	Novel Higher-order measures

	Applications to the Brain
	The Hsx redundancy function


	Results
	PED Reveals the Limitations of Bivariate Networks
	PED with Hsx is consistent with O-information

	Characterizing Higher-Order Brain Structures
	Redundancy-synergy gradient & time-resolved analysis


	Discussion
	Conclusions
	Materials and Methods

