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ABSTRACT
Federated Learning (FL) enables collaborative training of Machine Learning (ML) models across
decentralized clients while preserving data privacy. One of the challenges that FL faces is when the
clients’ data is not independent and identically distributed (non-IID). It is, therefore, crucial to quantify
how non-IID data impacts performance. However, due to the limited number of federated data available,
it is not easy to carry out real-world simulations. In this work, we propose for the first time (1) the
Hist-Dirichlet-based and Min-Size-Dirichlet methods for partitioning data into multiple nodes using the
features and quantity distribution and the Dirichlet distribution. We use the (2) Jensen-Shannon and
Hellinger distances for quantifying the degree of IID data. Moreover, we implemented (3) state-of-the-art
partitioning methods based on the labels’ distribution across clients. All our proposals are open-source in a
library called FedArtML, publicly available on PyPI. It facilitates research on cross-silo and cross-device
FL, allowing a systematic and controlled partition of centralized datasets using the label, features, and
quantity skewness. To demonstrate the value of our proposed methods and the robustness of FedArtML,
we experimented in the ECG arrhythmia detection field with Physionet 2020 data. Our results demonstrate
that our tool generates federated datasets for multi-client model training and accurately measures client
distribution heterogeneity. Our approach achieves 48% higher non-IID-ness than existing feature skew
methods, providing more granularity. Furthermore, we validate our simulated federated datasets against
real-world data, revealing only a 2% F1-Score difference, affirming the method’s real-life applicability.

INDEX TERMS Centralized Datasets, Client’s Heterogeneity, Federated Datasets, Federated Learning,
Heterogeneity Metrics, Machine Learning, Non-IID-ness.

I. INTRODUCTION

In recent years, we have witnessed the development of
impressive machine learning (ML) services [1], [2], [3].
The latter is witnessed with the introduction of Generative
Artificial Intelligence (a.k.a GenAI) tools such as Chat
GPT [4], Gemini [5] and Dall-E [6]. The success of Chat
GPT by OpenAI is likely the most evident proof of the
advancements made by the research in this field. GPT-3’s
model [7] was trained using a vast amount of text available
on the internet collected by OpenAI (i.e., centralized ML
- in the sequel CL). However, some relevant scenarios

exist where data are sensible and private. For example,
health [8], [9] or investment [10], [11] data are usually
protected and cannot be easily shared. The General Data
Protection Regulation (GDPR) [12] is a European Union
(EU) regulation on data protection and privacy that defines
several strict rules to handle sensitive data and limits data
transfer across organizations and countries. Consequently,
some are claiming that such strict rules will increase the
emergence of data silos [13], namely the collection of
data held by one group that is not quickly or thoroughly
accessible by other groups, even in the same organization.
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Furthermore, while most companies allow access to their
models developed using CL by suitable API, they consider
the model a company asset and then protect it. Finally, in
CL settings, once data are shared, the owner loses control
and has to trust the service provider to handle their data
according to specific rules without guaranteeing indisputable
technical means of verification. Consequently, a recent trend
is emerging named Federated Learning (FL) [14], [15], [16]
, a technique to run ML algorithms in a federation of
nodes, each contributing with its dataset to the computation
of a common model, without collecting them in a single
place as CL. In FL, the data remains in the control of
the data owner; all participants share only the model. The
latter approach properly deals with efficiency [17], [18]
(the global model converges to an optimal state despite the
decentralized nature of training) and privacy, [19], [20]
(local data remains on devices, addressing privacy concerns
related to sharing sensitive information).

However, collecting data in multiple places presents se-
vere challenges [21], [22]. Since local devices produce data,
the usual assumption behind CL is that data are Identically
and Independently Distributed (IID), which does not neces-
sarily hold. In other words, non-IID data characterizes FL.
Therefore, a natural research question is how CL and FL
performance behave under different configurations of non-
IID data. Thus, there is a need for metrics that systematically
evaluate the level of non-IID data, as the current literature
often relies on ad-hoc FL partitions [23], [24], [25]. In
addition, given the widespread availability of centralized
datasets, there is a necessity for a tool to generate cross-
silo and cross-device FL datasets [26] with a desired level of
non-IID-ness, starting from these widely available datasets.

A. MOTIVATION
Quantifying the degree of non-IID-ness becomes crucial as it
provides insights into the heterogeneity of data distributions
across clients. Understanding this variance aids in devising
more effective FL algorithms, ensuring the robustness, fair-
ness, and generalizability of models. In addition to the need
for metrics to characterize the non-IID-ness of the data and
a practical tool to create FL data, we think evaluating FL
algorithms still needs a standard benchmark for a systematic
study [24, 25]. In this perspective, and given the non-IID
peculiar nature of FL, we do believe that the availability
of non-IID data sets with a precise measure of the level of
non-IID-ness is a fundamental ingredient to developing the
benchmark mentioned above.

The availability of centralized datasets used to train
and test CL algorithms is much more common than FL
datasets. So, in this paper, we focus on using well-known
CL datasets that are publicly available to generate FL ones
with a measurable level of non-IID-ness. To the best of
our knowledge, this work is the first attempt to propose
metrics to control and evaluate the distribution heterogeneity
among the multiple local datasets of the FL nodes. The latter
allows us to quantify and control the number of local nodes

participating in the federation and the imbalanced properties
of local data to evaluate their effects on the federated
algorithms. In addition, with our brand-new methods for
partitioning centralized data using the feature and quantity
distribution of the clients, we generate the datasets from
centralized publicly available, and we do not have to face
all the regulation and privacy concerns to access real-world
federated data.

Thanks to the flexibility of the proposed metrics to
evaluate the level of non-IID-ness, we can run experiments
similar to the ones presented by Li et al. [24] but with a
higher degree of granularity and consistency that allows us
to have better confidence in the applicability of the results
of our study to a broader context.

B. CONTRIBUTION
The following points summarize the contributions of our
paper and tool:

1) We use the Jensen-Shannon (JSD) and Hellinger dis-
tance (HD) as reliable alternatives to quantify the level
of data heterogeneity, systematically analyzing their
performance in an FL setting.

2) We introduce two brand-new methods for partitioning
centralized data into federated data by considering the
feature and quantity distribution of the clients.

3) We provide FedArtML, a flexible, publicly avail-
able tool for creating cross-silo and cross-device FL
datasets starting from any available centralized one,
proving the tool’s robustness by comparing the simu-
lated FL data to a real-life FL dataset.

To our knowledge, no systematic analysis measures the
non-IID-ness of clients in FL (see section III). In addition,
as far as we know, a tool to create federated datasets
from centralized datasets while controlling and quantifying
the degree of heterogeneity (non-IID-ness) has yet to be
developed.

The Python code employed for FedArtML is publicly
available1. It contains the source code and getting started
notebook examples for the users to get used to its function-
alities. Moreover, users can access the package on PyPI and
easily install it by running the following command: pip
install fedartml.

C. ROADMAP
In the next Section, we provide the related literature. Sec-
tion III presents metrics for quantifying the data’s non-IID-
ness. In Section IV, we provide techniques to create FL
datasets. In Section V, we present the specifics of our
tool. In Section VI, we introduce the data and models
employed for the experiments; in Section VII, we depict
the aggregation algorithm employed, and in Section VIII, we
use it to showcase our tool. In Section IX, we conducted an
ablation study of the methods and metrics presented in this

1Code available at: https://github.com/Sapienza-University-Rome/
FedArtML
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work. Section X exhibits the limitations of our tool. Finally,
we conclude and provide some implications and future work
in Section XI.

II. RELATED WORK
The heterogeneity in the clients’ distribution in FL is a well-
known challenge [27], [28], [29], [30], [31] that can impact
the performance and convergence of the learning process.
These studies are based on the non-IID distribution, where
clients have very different data (like a hospital specializing
in one disease), which leads to local updates that diverge
during training, ultimately hurting the overall model’s accu-
racy and convergence. This is further complicated because
parametric and non-parametric models react differently to
non-IID data due to their distinct training mechanisms.
Therefore, quantifying data heterogeneity is crucial to acting
against heterogeneous scenarios. Chen et al. [32] introduced
a general Bayesian Personalized FL framework to decom-
pose and jointly learn shared and personalized uncertainty
representations on statistically heterogeneous client data
over time. They utilized the HD to investigate the average
generalization error of their solution. Fang et al. [33] used
the JSD to constrain the loss model updates to improve
the model stability. The main idea was to constrain the
output consistency of the classifier on different augmen-
tations of the same image. Zhang et al. [34] employed
the JSD, expressed as the summation of two Kullback-
Leibler (KL) divergences, to quantify the trade-offs between
privacy leakage, utility loss, and efficiency reduction, which
led them to the No-Free-Lunch (NFL) theorem for the
FL system. Abay et al. [35] utilized the HD between the
training data-induced distribution and the trained model-
induced distribution to measure the similarity between the
truth and model predictions, where a lower HD indicates
greater similarity. Notice that previous works employed
JSD and HD to measure the generalization error of their
proposals and constrain loss of the FL models. However,
as far as we know, JSD and HD metrics have not been
employed to quantify the degree of heterogeneity of the
clients’ distribution in an FL setting. The latter exemplifies
how our proposal differs from the state-of-the-art uses of
JSD and HD.

Researchers have proposed relevant approaches to cre-
ate federated datasets using a centralized dataset as input
while varying the heterogeneity in the distribution of the
client’s labels in FL. Zeng et al. [36] showcased FedLab,
a lightweight open-source framework for the simulation
of FL. Its design focuses on FL algorithm effectiveness
and communication efficiency. It allows server optimiza-
tion, client optimization, communication agreement, and
communication compression customization. Lai et al. [37]
introduced the FedScale framework with datasets encom-
passing a wide range of critical FL tasks, ranging from
image classification and object detection to language mod-
eling and speech recognition. Each dataset has a unified
evaluation protocol using real-world data splits. Ogier et

al. [38] presented a novel cross-silo dataset suite focused on
healthcare, FLamby (Federated Learning AMple Benchmark
of Your cross-silo strategies), to bridge the gap between
theory and practice of cross-silo FL. FLamby encompasses
seven healthcare datasets with natural splits, covering multi-
ple tasks, modalities, and data volumes, each accompanied
by a baseline training code. Nevertheless, notice that the
previous frameworks only have algorithms and FL datasets
to simulate label skew, but they do not include feature and
quantity skewness partition methods.

Hsieh et al. [25] proposed a federated dataset creation
approach explicitly partitioning centralized datasets using
label distribution. However, for the feature skew partition,
only one relevant method has been introduced by Li et
al. [24], in which the features are transformed by adding
Gaussian Noise to its local dataset to achieve different
feature distributions where users can change σ to increase
the feature dissimilarity among the parties. The limitation
of this approach is that injecting high levels of variation,
i.e., high variance leads to a poor model’s performance. We
tackle this issue by including a new-brand algorithm for
partitioning centralized data into federated data by control-
ling the desired level of non-IID-ness of the features present
in the local nodes. Li et al. [24] also proposed a method
to simulate quantity skew using the Dirichlet distribution
to allocate different amounts of data samples to each party.
They used the parameter β to control the imbalance level of
the quantity skew. However, their approach is not applicable
when the data is too small or the number of clients is too
big. We propose an alternative algorithm that successfully
tackles this limitation.

Moreover, Li et al. [24] and Hsieh et al. [25] provided
different techniques for mimicking non-IID data situations,
which aided researchers in investigating and comprehending
the non-IID data setting in FL. They suggested various data
partitioning approaches encompassing the most common
non-IID data cases. However, researchers selected those
strategies arbitrarily despite being thoroughly examined and
defined. Our tool offers a solution by allowing the selection
of non-IID scenarios in a systematic and regulated manner.
Additionally, the mentioned works [24], [25] employed
techniques such as Dirichlet distribution, Percent of non-
IID method and Gaussian Noise to create FL datasets. Yet,
none of them used any metrics for measuring the degree
of heterogeneity among clients’ distributions, an aspect our
proposed tool includes.

Table 1 compares FedArtML to the other popular FL sim-
ulation tools presented above (FedLab, FedScale, FLamby,
and NIID-Bench). While all these tools can simulate label
skew, and some offer functionalities for quantity skew
and varied datasets, FedArtML stands out in its ability to
generate data with controlled feature skew. Additionally,
FedArtML incorporates non-IID metrics (i.e., JSD and HD)
to quantify the degree of non-IID-ness in the generated
datasets for each type of skewness. Furthermore, FedArtML
allows users to upload custom datasets and provides an
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interactive UI for a more user-friendly experience compared
to some of the other tools.

Attribute FedLab [36] FedScale [37] FLamby [38] NIID-Bench [24] FedArtML

non-IID metrics ✗ ✗ ✗ ✗ ✓
Label skew ✓ ✓ ✓ ✓ ✓

Feature skew ✗ ✗ ✗ ✓ ✓
Quantity skew ✓ ✗ ✗ ✓ ✓
Varied datasets ✓ ✓ ✗ ✓ ✓

Custom data use ✓ ✗ ✗ ✗ ✓
Interactive UI ✗ ✓ ✗ ✗ ✓

Table 1. Comparison of FedArtML to existing tools. Notice that at the date of
publication of this paper, our tool is the only one offering metrics to quantify the
non-IID-ness in FL.

III. METRICS FOR DISTRIBUTION HETEROGENEITY
A generic dataset (a.k.a. centralized dataset2) D is a col-
lection of n tuples D = {(x1, y1), . . . , (xn, yn)}, where
xi = [(xi)1, . . . , (xi)m] is the feature representation of the
ith element (sample) in the dataset, and yi ∈ {1, . . . , ℓ} is
the (true) label of the ith element.

In the FL setting, the dataset D is distributed over K
clients. We let Di be the set of elements of the ith client.
That is:

D = ∪K
i=1Di and for i ̸= j: Di ∩ Dj = ∅.

Defining the type of non-IID-ness in FL is relevant since
it can drastically influence the performance of the models.
We follow the settings of previous work [39, 40]. For a
supervised learning task on client i (local node i), we
assume that each data sample (x, y) ∈ Di, where x is the
input attributes or features, and y is the label, following a
local distribution Pi(x, y). Let us define: with PY

i (y), the

PY
i (y) =

∑
(x,z)∈Di

z=y
Pi(x, z) P

Xℓ
i (x) =

∑
(x,y)∈Di

xℓ=x
Pi(x, y)

ith client labels’ distribution and PXℓ
i (x) the distribution

over the ℓth input feature of the ith client. Then, the
classification for non-IID is as follows:

• Regarding the concept of identically distributed:
1) Label skew: Means that the label distribution

PY
i (y) of different clients is different.

2) Feature skew: Occurs when the distribution of
the features PXℓ

i (x) varies from client to client.
3) Quantity skew: Refers to the significant differ-

ence in the number of examples of different client
data Pi(x, y).

• Regarding the concept of independent:
4) Spatiotemporal skewness: Refers to the inner

correlation of data in the time (or space) domain.
In other words, the distribution Pi(x, y) is not
stationary but depends on the time or space.

2Notice that this definition of a centralized dataset includes tabular data,
images, medical data, graph data, and any type of dataset that can be
expressed as a collection of arrays.

Notice that the spatiotemporal skewness is not included
in this work. The latter is due to the complexity of in-
corporating location and time-based parameters during data
partitioning, and it is currently under development. We plan
to explore methods for simulating spatiotemporal skewness
in future versions of FedArtML, allowing researchers to in-
vestigate the impact of these factors on model performance.
Given the above definitions, we introduce two metrics to
measure the non-IID-ness across two or more clients.

A. JENSEN-SHANNON DISTANCE (JSD)
The Jensen-Shannon distance (JSD) is a metric that mea-
sures the similarity between two probability distributions,
calculated by taking the square root of the Jensen-Shannon
divergence, a smoothed and symmetrical version of the
Kullback-Leibler (KL) divergence. The formula [41] for the
Jensen-Shannon distance between two probability distribu-
tions, PY

1 (y) and PY
2 (y), is given by Equation (1):

JSD
(
PY
1 (y), PY

2 (y)
)
=

√
0.5 ·KL(PY

1 (y),M) + 0.5 ·KL(PY
2 (y),M)

(1)
where KL

(
PY
1 (y),M

)
is the KL divergence be-

tween PY
1 (y) and the mean distribution M =(

PY
1 (y) + PY

2 (y)
)
/2.

The JSD can be extended by calculating the average
distance between each pair of distributions to include more
than two distributions. The JSD has the advantage of being
bounded between 0 and 1, with 0 indicating identical
distributions and 1 indicating entirely different distributions.
Moreover, it satisfies the triangular inequality [41].

B. HELLINGER DISTANCE (HD)
The Hellinger Distance (HD) is a metric for measuring the
separation between two probability distributions calculated
as in Equation (2).

HD(PY
1 (y), PY

2 (y)) = 1√
2

√∑
y∈Y

(√
PY
1 (y)−

√
PY
2 (y)

)2

(2)
To include more than two distributions, the HD can be
extended by first calculating the average distance between
each pair of distributions. The Hellinger Distance is between
0 and 1, with 0 denoting similar distributions and 1 indicat-
ing completely different distributions. It is symmetric and
satisfies the triangular inequality [42].

IV. METHODS FOR SYNTHETIC PARTITIONING
This section considers various methods for creating syn-
thetic partitions of a centralized dataset into multiple clients
(federating datasets) for label, features, and quantity skew
simulation. In the following, we introduce methods in which
one parameter controls heterogeneity among client distribu-
tions.

A. LABEL SKEW PARTITION
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Figure 1. High-level partition process for FedArtML

1) Dirichlet-based method

This technique uses the Dirichlet distribution (DD) to par-
tition the data. The DD is a probability distribution that
produces a set of random numbers that sum up to one [43].
In federating datasets, the DD generates a set of weights to
partition the data into various subsets. We can control the
skewness of the dataset by adjusting the parameter α. The
value of α manages the degree of non-IID-ness: α = 100
mimics identical local data distributions. The smaller α is,
the more likely the clients hold examples from only one
class (randomly chosen) [23].

2) Percentage of nonIID-ness-based method

It is a technique that partitions the centralized data based
on the desired Percentage of non-IID data points from the
centralized dataset [25] by adjusting the Percentage of the
non-IID parameter, allowing control of the skewness by
changing the fraction of non-IID data. For example, 20%
non-IID indicates 20% of the dataset gets partitioned by
labels, while the remaining 80% is partitioned uniformly
at random [25]. For the sake of space, this method is not
showcased in this paper but belongs to the FedArtML tool.

B. FEATURE SKEW PARTITION

1) Gaussian noise method

In this method, for each client, different levels of Gaussian
noise are added to the local dataset to achieve different
feature distributions [24]. Precisely, given user-defined noise
level σ, they add noises x̂ ∼ Gau

(
σ · i

K

)
for client i, where

x̂ represents the resulting features after adding the noise
level to the original features Gau

(
σ · i

K

)
is a Gaussian

distribution with mean 0 and variance σ · i
K and K the

number of clients. Users can change σ to increase the feature
dissimilarity among the local nodes. One drawback of this
approach is that injecting high σ levels (i.e., high variance)
directs to a poor model’s performance, leading to inaccurate
conclusions about the FL model’s performance.

2) Hist-Dirichlet-based method

It is our proposed method to tackle the mentioned problem
of the Gaussian Noise approach. The algorithm begins by
characterizing the features of each client and then applying
a binning process to categorize them. Then, the participation
of each label’s class inside each client is defined using
the DD with a given α. The latter guarantees that the CL
data gets split into disjoint datasets and, as a result, the
performance of the models will not be affected, given that
the dataset is not transformed, as happens in the Gaussian
Noise method, but it still gets distributed among the clients.

C. QUANTITY SKEW PARTITION

1) Dirichlet method

In quantity skew, the size of the local dataset varies across
parties. Although data distribution may still be consistent
among the parties, it is interesting to see the effect of
the quantity imbalance in FL. Like label skew imbalance,
the DD allocates different data samples to each party. It
is sampled q ∼ Dir(α) and allocates a qj proportion of
the total data samples to each client. The parameter α
controls the imbalance level of the quantity skew [24]. The
mentioned method has one drawback: it is not usable when
the data is too small, or the number of clients is too big.

2) Min-Size-Dirichlet method

It is our proposed method to tackle the mentioned problem
of the Dirichlet approach for quantity skew. The algorithm
begins by defining an α for the DD distribution and gen-
erating the desired participation proportions for each client.
Then, a minimum required size (a.k.a, number of examples)
gets defined for each client. Thus, the minimum proportion
size MinSize is MinSize = MinRequiredSize

n , where n
is the total number of examples in the centralized dataset.
If the defined proportions are smaller than MinSize, the
proportions get replaced by MinSize. Finally, the propor-
tions get normalized between 0 and 1. The latter approach
guarantees that the method will converge even if the data is
too small or there are many clients.
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V. THE FEDARTML TOOL
The FedArtML tool is an FL library compatible with Python
versions 3.5 and above. The current version of the package is
0.1.32, including all the functionalities introduced in section
IV to create federated datasets. It also incorporates the
metrics used for non-IID-ness (JSD, HD). The interactive
User Interface (UI) has sliders to select the desired values
(number of clients and degree of non-IID-ness), with plots
that automatically adjust to depict the clients’ distributions.
Thus, stacked barplot, scatterplot, and barplot divided by
client distributions showcase the label’s distributions for
each client in real time after setting the desired percentage
of heterogeneity and the number of clients.

The high-level partition process of FedArtML is depicted
in Figure 1. It takes a centralized dataset as input; then, the
user defines the skew desired (label, feature, or quantity)
to split the data. Afterward, the user can select the desired
level of non-IID-ness and the number of clients (K). The
tool then partitions the data, allocating specific quantities
to each client while ensuring a desired level of dissimilarity
between partitions using metrics like JDS and HD. This way,
researchers can generate federated datasets with character-
istics they define, facilitating more realistic simulations for
their FL research.

Figure 2 depicts a screenshot of the FedArtML tool
for a partition with α = 0.01 and four clients. When
the user selects the α parameter of the desired DD, the
stacked barplot distribution automatically updates to reflect
the label distributions for each client. A similar behavior
occurs when the user controls the sliders to choose the
number of partitions.

VI. DATA AND MODELS
Data. In this work, we consider high-quality 12-lead electro-
cardiography (ECG) data [44] obtained from different health
centers that use different ECG recording devices with vary-
ing levels of recording accuracy to classify different types of
cardiac anomalies. The latter belongs to the Physionet 2020
competition that integrates six diverse datasets [45]. We
leveraged some experiments with a random oversampling
technique to balance the classes (arrhythmias) and improve
the model’s performance.
Models. We select two of the most high-achieving models
of the PhysioNet 2020 competition [44]. The first is a
Deep Neural Network (DNN), selected because they are
widely employed in ECG arrhythmia predictions due to
their capacity to learn hierarchical representations of data
through multiple layers of interconnected neurons [46]. It
comprises one input layer, three hidden layers, and one
output layer [47]. The input layer uses as many units as
the number of features used in the training set. The three
layers contain 500 hidden units each, while the last layer
is formed by considering the neurons equal to the number
of classes to predict. Additionally, the hidden layers em-
ployed the ReLu activation and the SoftMax for the output
layer. The mentioned activation functions arose after the

fine-tuning method. The second uses a Long-Short-Term-
Memory (LSTM) methodology [47], chosen because those
models can effectively model the dynamic nature of heart
rhythm variations over time, allowing for accurate detection
and classification of arrhythmias [48]. The input layer uses
as many neurons as the number of variables to predict, while
the LSTM cell and the output layer are composed of the
same number of neurons as the number of classes to predict.
Regarding the output layer’s activation function, their values
appeared after the fine-tuning process, where the ReLu and
SoftMax functions provided the best performance. While
Convolutional Neural Networks (CNNs) and Transformers
are commonly utilized in ECG arrhythmia detection, it is
essential to note that they are not considered in this work.
This is because they are primarily designed for processing
signals and image-like datasets, whereas our tool is show-
cased using tabular data. Nevertheless, our tool can split
centralized datasets such as images, medical data, graph
data, etc.

Remark that our paper’s main goal is to develop a tool
to investigate the effect of non-IID-ness on FL algorithms.
For this reason, we decided to study the impact of non-IID-
ness on two relatively simple models where the impact of
hyperparameter tuning is limited. Indeed, in our reference
DNN and LSTM models, we do not have to set up any
hyperparameter. In this scenario, coherently with our main
goal, the experimental results can be exclusively associated
with the non-IID-ness of the input. In future work, we plan
to exploit this tool to thoroughly investigate the effects of
non-IID-ness on state-of-the-art algorithms.

The hardware specification used to train and evaluate the
models is shown in Table 2.

Component Specification

Disk size 108 GB
Processors’ model Intel(R) Xeon(R) CPU @ 2.20GHz
Number of processors 2
Memory 51.0 GB
Operating System (Linux) Ubuntu 18.04.5 LTS
GPU GeForce RTX 3070 8GB
Python version 3.7.13

Table 2. Hardware specification used to train models

VII. AGGREGATION ALGORITHM
Researchers have proposed several algorithms for construct-
ing a single global model based on the local models trained
by each client using the locally available data. In this work,
we use FedAvg [49], the most well-studied algorithm in
FL. Each round briefly starts with the central server that
transmits the global model to a random set of clients. In
the sequel, each client receiving a model updates it using
the local dataset. The updated models are transmitted back
to the central server, which computes the averages of the
received local models and updates the global model.
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Figure 2. Stacked distribution of labels partitioned into four clients, α = 0.01, with an HD = 0.98.

VIII. EXPERIMENTS AND RESULTS
This section provides three examples of how FedArtML
can facilitate experimentation for federated learning research
considering label, features, and quantity skew partitions.
In addition, it showcases the robustness of the tool. We
merge the six datasets and then partition them for a desired
level of skewness. Given the newly partitioned dataset, we
evaluate the performance of the DNN and LSTM models
using the FedAvg algorithm. Based on the datasets, mod-
els, and algorithms presented, we showcase the Dirichlet-
based method leveraged on the labels’ distribution, the
Hist-Dirichlet-based and Gaussian Noise methods to create
synthetic partitions leveraged on the distribution of the
features, and the Min-Size-Dirichlet method for quantity
skew. For the sake of the extension, the Percentage of non-
IID-ness-based method is not showcased in this work but
remains available in the FedArtML tool.

A. LABEL SKEW PARTITION SHOWCASE

This experiment demonstrates how the Dirichlet-based
method can partition the Physionet FL dataset based on
the label’s distribution. We first start by merging all the
partitions into a centralized dataset and, in the sequel,
split into disjoint clients, considering two, four, six, eight,
ten, one hundred and five hundred clients and employing
α = {0.03, 0.3, 1, 6, 1000} to control the label skewness of
the resulting partition. We use the JSD and the HD for each
resulting partition to measure the similarity between the
different clients’ distributions. Table 3 shows the resulting
metrics for each combination. Observe how the distance
of the partitions increases as we increase the value of
α. In addition, notice that it is impossible (NaN) to get
pathologically high non-IID-ness levels when the number
of clients is 500 since the local nodes’ size (proportion)
becomes much smaller. Thus, the algorithm can’t find a way
to split the data.

Table 3. Achieved label skewness as measured using the JSD and HD
metrics when partitioning the Physionet dataset into different numbers of
clients (CLS) for α = 0.03, 0.3, 1, 6, 1000.

JSD HD

CLS
α 1000 6 1 0.3 0.03 1000 6 1 0.3 0.03

2 0.108 0.530 0.564 0.810 0.994 0.107 0.505 0.513 0.764 0.978
4 0.050 0.334 0.557 0.726 0.957 0.062 0.350 0.577 0.732 0.955
6 0.036 0.322 0.491 0.700 0.963 0.049 0.374 0.541 0.746 0.972
8 0.029 0.262 0.449 0.662 0.933 0.042 0.314 0.514 0.733 0.959

10 0.035 0.294 0.432 0.644 0.914 0.052 0.368 0.513 0.737 0.953
100 0.030 0.172 0.329 0.492 0.729 0.056 0.293 0.531 0.753 0.946
500 0.092 0.171 0.299 0.422 NaN 0.195 0.344 0.572 0.762 NaN

Figure 3. F1-Score of the DNN and LSTM models on the Physionet dataset
for CL, and the Physionet dataset partitioned for 4 clients to achieve different
label skewness as measured based on JSD, for FL using FedAvg.

Consider the case where we wish to evaluate the per-
formance of four clients. After using FedArtML with the
resulting partitions, we measure the performance of the
two models for the CL and FL versions using the FedAvg
aggregation algorithm. Figure 3 depicts the performance
achieved in terms of the F1-score for the resulting partitions
based on the measured distance using the JSD metric.
Remark that the JSD value of the original dataset is included
to compare the performance quickly. Notice that when the
label skewness increases, the achieved performance drops.
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Figure 4. F1-Score of the DNN model on the Physionet dataset for CL and
FL, partitioned for 2 . . . 500 clients for different label skewness as measured
based on HD = {0.05, 0.37, 0.54, 0.75, 0.97}, for FL using FedAvg.

Another approach is to evaluate the models’ perfor-
mance by varying the number of partitions from two to
five hundred and different non-IID characteristics. In this
experiment, we use FedArtML to partition the Physionet
dataset into multiple datasets with a label skewness of
HD = {0.05, 0.37, 0.54, 0.75, 0.97}. Figure 4 depicts the
resulting performance of the DNN model for the CL and
FL versions using the FedAvg algorithm. Thus, increasing
the HD among the partitions (increasing the degree of
non-IID-ness) highly and consistently impacts the model’s
performance. Additionally, when considering 100 and 500
clients, the gap for different non-IID-ness levels gets smaller
while the overall performance drastically decreases.

B. FEATURE SKEW PARTITION SHOWCASE
This experiment shows how our Hist-Dirichlet-based
method can partition the Physionet FL dataset based on
the feature distribution. We first start by merging all the
partitions into a centralized dataset and next we split into
disjoint clients, considering two, four, six, eight, ten, one
hundred and five hundred clients and employing α =
{0.03, 0.3, 1, 6, 1000} to control the feature skewness of
the resulting partition. We use the JSD and the HD for
each resulting division to measure the similarity between the
different clients’ distributions. Table 4 shows the resulting
metrics for each combination. Observe how the distance
of the partitions increases as we decrease the value of α.
Moreover note that achieving pathologically high levels of
non-IID-ness (NaN) is unattainable when the number of
clients is 500. This is because the size or proportion of local
nodes becomes significantly smaller, making it challenging
for the algorithm to divide the data effectively.

Consider the case where we wish to evaluate the per-
formance of four clients. After using FedArtML with the
resulting partitions, we measure the performance of the
DNN model in the CL and FL versions using the FedAvg
aggregation algorithm. Moreover, we compare the perfor-

Table 4. Achieved feature skewness as measured using the JSD and HD
metrics when dividing the Physionet dataset into different numbers of clients
for Hist-Dirichlet with α = {0.03, 0.3, 1, 6, 1000}.

JSD HD

CLS
α 1000 6 1 0.3 0.03 1000 6 1 0.3 0.03

2 0.017 0.235 0.447 0.845 0.996 0.014 0.197 0.38 0.808 0.987
4 0.013 0.179 0.510 0.723 0.967 0.013 0.174 0.524 0.750 0.962
6 0.013 0.194 0.459 0.711 0.969 0.014 0.212 0.495 0.758 0.973
8 0.013 0.195 0.444 0.686 0.944 0.014 0.226 0.498 0.762 0.965

10 0.013 0.203 0.442 0.660 0.942 0.015 0.252 0.521 0.754 0.970
100 0.011 0.175 0.375 0.535 0.79 0.016 0.263 0.531 0.737 0.944
500 0.032 0.136 0.289 0.428 NaN 0.059 0.262 0.551 0.769 NaN

Figure 5. F1-Score of the DNN model for CL and FL using FedAvg; the
dataset partitioned for 4 clients achieving different feature skewness measured
by HD, comparing Gaussian Noise and Hist-Dirichlet methods.

mance of the Gaussian Noise method vs. the Hist-Dirichlet-
based approach. Figure 5 depicts the performance achieved
in terms of the F1-score for the resulting partitions based on
the measured distance using the HD metric, demonstrating
the superiority of our proposed method. Notice that when
the feature skewness increases, the achieved performance for
the FL fashion, in terms of the F1-Score, does not diminish
significantly compared to the CL version. In addition, the
performance of CL and FL approaches using the Hist-
Dirichlet-based method does not decrease when the HD
increases, as occurs for the Gaussian Noise method. This
is because, over a given threshold, the noise becomes the
most significant component, making 1) difficult to distin-
guish differences among the samples in the clients and 2)
impacting the performance of the models.

C. QUANTITY SKEW PARTITION SHOWCASE
This experiment shows how our Min-Size-Dirichlet method
can partition the Physionet FL dataset based on the quantity
skew (number of examples per client). Following the same
approach as in the previous chapters, we split the CL
dataset into two, six, ten, one hundred, and five hundred
clients. We set α = {0.03, 0.3, 1000} to control the quantity
skewness of the resulting partition. We use the JSD and the
HD for each resulting partition to measure the similarity
between the different clients’ distributions. Table 5 shows
the resulting metrics for each combination. Observe how the
distance of the partitions increases as we decrease the value
of α.

Consider the case where we wish to evaluate the per-
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Table 5. Achieved quantity skewness as measured using the JSD and HD
metrics when dividing the Physionet dataset into different numbers of clients
(CLS) for Mis-Size-Dirichlet with α = {0.03, 0.3, 1000}.

JSD HD

CLS
α 1000 0.3 0.03 1000 0.3 0.03

2 0.008 0.301 0.699 0.007 0.254 0.673
6 0.005 0.233 0.346 0.006 0.245 0.353

10 0.004 0.171 0.274 0.005 0.191 0.282
100 0.001 0.03 0.07 0.001 0.05 0.08
500 0.001 0.009 0.01 0.001 0.009 0.02

Figure 6. F1-Score of the DNN model for CL and FL using FedAvg; the
dataset partitioned for six clients achieving different quantity skewness
measured by HD.

formance of six clients. After using FedArtML with the
resulting partitions, we measure the performance of the
DNN model in the CL and FL versions using the FedAvg
aggregation algorithm. Figure 6 depicts the performance
achieved in terms of the F1-score for the resulting partitions
based on the measured distance using the HD metric. Notice
that when the quantity skewness increases, the achieved
performance for the FL fashion, in terms of the F1-Score,
remains almost constant compared to the CL version. Notice
that the previous result was also obtained by Li et al. [24],
leveraging the significance of such behavior.

D. COMPARING REAL-WORLD VS. SIMULATED FL
PARTITIONS.
When designing non-IID data simulation methods, one
important thing is figuring out what kind of generation is
analogous to the real-world heterogeneous statistical distri-
bution. The latter leads to evaluating the similarity between
our proposed partition methods and a real-life federated
scenario. To achieve the last, we perform the following
experiment:

1) Start from the Physionet decentralized dataset (a.k.a.
original FL)

2) Compute the level of non-IID-ness (Hellinger dis-
tance) on the original FL

3) Train the DNN and LSTM models on the original FL
4) Create a centralized dataset (a.k.a. CL) made of the

union of the clients of the original FL

5) Train the same classification models on the CL
6) Generate a new decentralized dataset from the CL

(a.k.a. Simul. FL (FedArtML) with the same HD
distance computed in 2), using the FedArtML library

7) Train the same classification models on the Simul. FL
(FedArtML)

As depicted in Table 6, the DNN model trained on the
original FL dataset reaches an F1-Score = 0.44. Using
FedArtML to re-partition the dataset in six clients with
FedArtML, the DNN model obtained an average F1-Score
= 0.46. In addition, for the LSTM model, the behavior is
similar since the F1-Score of the real-world and simulated
datasets is almost identical. The latter demonstrates that
FedArtML can generate analogous results to a real-life FL
scenario. It is a reliable tool for creating new synthetic
FL datasets from a centralized one with different non-IID
characteristics that resemble real-world settings.

Table 6. Metrics achieved for the scenarios explained in the experiment using
six clients. Results for Simul. FL (FedArtML) using five trials and taking the
average. The standard deviation is shown after the ± symbol.

DNN LSTM
Scenario HD F1-Score Accuracy F1-Score Accuracy

Original FL 0.73 0.44 0.39 0.46 0.42
CL NA 0.46 0.46 0.52 0.49

Simul. FL (FedArtML) 0.72± 0.03 0.46± 0.01 0.44± 0.01 0.48± 0.01 0.41± 0.005

Figure 7 demonstrates how the examples of the original
FL dataset rolled to the clients generated in the simulated
FL dataset. It is evident that with FedArtML, we can get
similar datasets (in terms of HD or non-IID-ness), but it
does not mean we reproduce exactly the original dataset.

Figure 7. Rolling matrix of original vs simulated FL datasets.

IX. ABLATION STUDY
In this section, we further conduct ablation studies to
investigate the impact of JSD and HD under different non-
IID scenarios and varying the number of clients participating
in the FL training process. Notice that separate analyses
are performed for each type of skewness (label, feature,
quantity) to understand the differences in each metric’s
behavior properly.
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A. LABEL SKEW
In this analysis, we start by setting the number of clients
as K = {4, 100, 500} to evaluate the metrics changes under
diverse devices participating in the FL process. Additionally,
we set as a baseline the cases where partitions are created
with FedArtML using the Dirichlet-based method with α =
1000, simulating a completely IID case obtaining JSD and
HD close to 0. Then, for each number of clients, we simulate
cases increasing the non-IID-ness level for the labels across
the clients using α = {6, 1, 0.3, 0.03}, reaching JSD and HD
that range from 0 to 1. Finally, we train the DNN model
defined in Section VI for all the partitions generated and
extract the F1-Score.

Figure 8. HD, JSD and F1-Score comparison for K = {4, 100, 500} clients
simulating label skew.

As depicted in Figure 8 JSD and HD are pretty similar
when considering four clients. Nevertheless, when increas-
ing the number of devices, the JSD tends to provide a
smaller measurement (reaching a maximum of 0.8) than HD,
which still reaches levels close to 1. In addition, notice that
for the case of 500 clients, it is impossible to partition when
the non-IID-ness is pathologically high. The mentioned
behaviors permit us to infer that when dealing with a few
clients, the users can use indistinctly JSD of HD, but when
considering a large number of clients, HD is a more granular
choice. Another interesting highlight is that the F1-Score
decreases as the number of clients increases, regardless of
the distance metric used. This suggests that as data gets
partitioned among more clients, the overall performance of
the FL model tends to decline.

B. FEATURE SKEW
The setting for feature skew is similar to the one presented
in the previous subsection. The only difference is that we
employed the Hist-Dirichlet-based method from FedArtML
to create the partitions in this case.

As occurred for label skew, in feature skew also, JSD
and HD are similar for few clients but more diverse for a
higher number of devices as shown in Figure 9. Besides,
partitioning the data into more clients leads to a decrease in
the F1-Score. But, in this case, increasing the JSD or HD

Figure 9. HD, JSD and F1-Score comparison for K = {4, 100, 500} clients
simulating feature skew.

distances among the feature distributions does not cause a
drop in the model’s performance.

C. QUANTITY SKEW
The scenario regarding quantity skew closely resembles
those shown in the preceding subsections. However, one
distinction lies in utilizing the Min-Size-Dirichlet-based
technique from FedArtML to generate the partitions in this
particular instance. In addition, we set the number of clients
to K = {6, 100, 500}.

Figure 10. HD, JSD and F1-Score comparison for K = {6, 100, 500} clients
simulating quantity skew.

Figure 10 illustrates that the maximum value obtained in
quantity skew for JSD and HD is close to 0.4, much smaller
than the obtained for label and feature skew. The latter is
understandable since the data itself might not inherently
differ between clients because only the amount of data
varies. Another relevant point is that the scenario with six
clients is the only one that reaches JSD and HD higher
than 0.2. The cases with more devices provided a similarity
smaller than 0.1. The latter arises because as the number
of clients increases, the data needs to be further divided,
resulting in smaller and potentially more similar subsets for
each client.
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X. LIMITATIONS AND DRAWBACKS
Although FedArtML offers a suite of valuable techniques
to simulate federated data controlling label, feature, and
quantity skewness using as input a centralized dataset, it
has the following limitations and drawbacks that the users
need to take into consideration when using the implemented
methods:

• Multi-label data: FedArtML’s label skew simulation
methods are currently limited to scenarios where labels
are vectors. It cannot handle multi-label data, where
a data point can have multiple labels simultaneously
(e.g., an image tagged with both "cat" and "dog," a
patient with more than one type of arrhythmia at the
same time).

• Categorical feature skew: The feature skew simula-
tion methods focus on numerical features since they are
based on average and addition operations. The current
techniques of FedArtML do not apply to categorical
features (e.g., occupations with values like "doctor,"
"engineer," etc.), which are prevalent in real-world
data.

• Task-Specific applicability: Supervised learning (SL)
algorithms are composed of two varieties: regression
and classification tasks. Regression-based SL meth-
ods try to predict numerical outputs based on input
variables. Classification-based SL tasks identify which
category a set of data items belongs to. The current
version of FedArtML only supports classification tasks.

• Small alpha and large Clients: The label, feature,
and quantity skewness simulation method using the
Dirichlet distribution might not work well when the
Dirichlet’s alpha parameter is minimal (i.e., smaller
than 0.1) and the number of participating clients is high
(i.e., higher than 300). The latter specific case can lead
to long splitting times or non-converging partitions.

• Spatiotemporal skew simulation: The current version
of the tool permits partitioning the data focusing on
label, feature, and quantity skew. Nevertheless, it does
not support partitioning the centralized data using space
or temporal variables.

XI. CONCLUSIONS AND FUTURE WORK
The experiments in this study demonstrated the effective-
ness of the FedArtML library in producing cross-silo and
cross-device decentralized datasets generated from a widely
available centralized dataset to facilitate the comparisons
between CL and FL research. The results showed that
the library successfully generated consistent datasets with
different degrees of heterogeneity through a measurable
and controlled level of non-IID-ness, even offering similar
performance to real-life FL scenarios.

We used the Physionet centralized dataset for our exper-
iments and considered JSD and HD as metrics to measure
the differences among the clients’ distributions. The experi-
ments conducted using the Dirichlet-based method for label
skew and the brand-new Hist-Dirichlet-based and Min-Size-

Dirichlet methods showed we could effectively control the
degree of skewness of the generated FL datasets. Notice
that FedArtML is not limited only to tabular datasets. It can
be used to split centralized images, medical datasets, graph
datasets, etc., since it is designed to receive arrays as inputs.

All the methods allowed us to increase the distance among
partitions (measured by the earlier metrics) by decreasing
the parameter α. Furthermore, as the label skewness in-
creases, the performance of the FL degrades in terms of the
F1-Score. When there is no label skewness, namely, data are
IID, the effectiveness of the CL and FL, in terms of the F1-
Score, is almost identical. Regarding features and quantity
skewness, high levels of non-IID-ness in the features or
quantity distributions do not significantly impact the models’
performance.

Overall, the results indicate that the tool is helpful and
robust for researchers in the field of FL, enabling them
to create compelling and diverse datasets for comparing
centralized and FL algorithms, guaranteeing that the results
obtained with the simulated FL datasets are comparable to
the real-world FL data.

A. IMPLICATIONS

FedArtML offers significant advancements for researchers
and developers in the field of FL. Here’s how this work can
have a lasting impact:

• Reducing the gap between simulation and real-
ity: By enabling the creation of controlled, non-IID
datasets, FedArtML allows researchers to simulate real-
world FL scenarios more effectively. This connection
between simulation and reality accelerates the devel-
opment of robust FL algorithms that can handle the
inherent heterogeneity of FL data.

• Fairer comparisons between CL and FL: The ability
to generate datasets with measurable non-IID levels
allows for a more refined comparison between tradi-
tional CL and FL approaches. Researchers can directly
evaluate the impact of data distribution on model
performance, leading to a better understanding of when
each approach is best suited.

• Standardization and benchmarking: The HD and
JSD metrics included in FedArtML provide a way to
standardize experiments in FL research. Researchers
can utilize consistent methods for data partitioning
while quantifying the degree of non-IID-ness, facili-
tating the comparison and replication of results across
different studies. The latter promotes faster innovation
and a deeper understanding of FL’s potential.

• Real-world applicability: The ability to create datasets
that mimic real-world conditions empowers developers
to build FL models that are generalizable and function
effectively across diverse data silos and devices. The
latter contributes to practical applications of FL in
various sectors, from healthcare and finance to man-
ufacturing and the IoT.
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B. FUTURE WORK
FedArtML offers a foundation for further exploration in
non-IID data generation based on label, feature, and quantity
skew for FL research. Here are some relevant avenues for
future development:

• Simulating spatiotemporal skewness: Real-world
federated data often exhibits spatiotemporal skew-
ness, where data distribution varies geographically
and over time. Future work can focus on incorpo-
rating approaches to simulate such skewness within
FedArtML. This could involve introducing location or
time-based parameters during data partitioning, allow-
ing researchers to evaluate the impact of these factors
on FL performance.

• Mixed non-IID types: FedArtML currently simulates
a kind of non-IID data at a time. An interesting
extension would be implementing or modifying meth-
ods for generating data with mixed non-IID charac-
teristics. This could involve combining label, feature,
and quantity skewness within the partitioning process,
creating more complex and realistic data distributions
for researchers to explore.

• Regression tasks: FedArtML’s current functionalities
primarily focus on classification tasks. Future devel-
opment could also involve extending the implemented
techniques to handle regression tasks. This would allow
researchers to investigate the effects of non-IID data on
FL models predicting continuous values.

• Categorical variables and mixed data: The current
feature skew methods primarily address data partition
based on numerical features. Future work could in-
volve extending them to handle categorical variables, a
common data type, in real-world scenarios. Exploring
methods for handling mixed-type datasets containing
numerical and categorical features would further en-
hance FedArtML’s capabilities.

• Multi-label Data: The current metrics JSD and HD
for label skew methods are limited to single-label data.
Extending these functionalities to handle multi-label
data, where each data point can have multiple labels,
would broaden the applicability of FedArtML to a
broader range of FL research problems.

• Alternative metrics for non-IID-ness: The state of the
tool includes JSD and HD metrics to quantify non-IID-
ness. Nevertheless, it is worth including and analyzing
more metrics that can measure the distance of the data
distribution of the clients in FL.
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