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This article delves into the intricate process of artificial intelligence-generated content detection, 
shedding light on automated detectors’ challenges and revealing human detection biases, strengths, and 
weaknesses. 

G enerative artificial intelligence (AI) dominated 
the main emerging technologies of 2023. The 

enormous advances in this field have gained the general 
public’s interest with mainstream tools such as Chat-
GPT (https://openai.com/chatgpt) or Midjourney 
(https://www.midjourney.com/). The results of these 
tools are simply astonishing, opening the door to the 
adoption of AI in numerous new sectors. In paral-
lel with all this, however, the interest of a large part of 
society is growing in relation to the ethical and social 
impact that these technologies will have on our lives. 
In addition to creative and industrial uses, the problem 
arises of understanding how to distinguish real from 
generated content. In this regard, despite generally 
shared concerns, we still know little about whether and 
how humans perceive the difference between real and 

artificial content. Knowing this boundary and monitor-
ing it is essential to understand how far we still are from 
generating content that is indistinguishable from real.

The main aim of this article is to investigate the lim-
its of humans and AI in the detection of fake images. 
In fact, we propose, on the one hand, an analysis of the 
human detection of artificially generated static images 
created with some of the most recent generative tech-
niques. On the other hand, we compare these results 
with some automatic detection models. Our results 
demonstrate that the interaction between photo like-
ability and the type of photo can lead one to believe 
a photo is real. Moreover, human confidence seems 
to predict detection accuracy, especially for deepfake 
faces. From a machine perspective, we propose an anal-
ysis of some automatic detectors. In particular, we intro-
duce an architecture called ResFormer that combines 
the benefits of convolutional networks with transform-
ers and propose a comparison between this network 

Digital Object Identifier 10.1109/MSEC.2024.3390555
Date of current version: 10 May 2024

Human Versus Machine: A Comparative 
Analysis in Detecting Artificial  
Intelligence-Generated Images

https://orcid.org/0000-0001-7969-7821
https://orcid.org/0009-0005-0953-955X
https://orcid.org/0000-0002-9393-5248
https://orcid.org/0000-0002-2692-3458
https://orcid.org/0000-0002-8612-9854
https://orcid.org/0000-0002-6461-1391
https://openai.com/chatgpt
https://www.midjourney.com/


78 IEEE Security & Privacy May/June 2024

SYNTHETIC REALITIES AND ARTIFICIAL INTELLIGENCE-GENERATED CONTENTS

and other commonly used baselines and show that it 
achieves state-of-the-art performance. Our experiments 
confirm results reported in previous studies. Although 
the performance of AI systems is superior to human 
performance when a model is trained and tested on 
images generated with the same family of techniques, 
the generalization of these models is a problem yet to 
be solved.

Despite the provocative title of this work, our intent 
with this article is not to pit humans against machines to 
decide a winner but, rather, to study both limits to under-
stand how to create more robust and human-friendly deep-
fake detectors. As we show, both have limitations that can 
give us some sugges-
tions on how to design 
automatic detectors 
that are more robust 
and more applicable in 
real contexts.

The remainder of 
this article is orga-
nized as follows. The 
fol low ing section, 
“Related Works,” pro-
vides an overview of 
the state of the art. 
We then present this article’s methodology for assessing 
human and AI performance. Next, we introduce a new 
dataset and describe the design guidelines we adopted 
to create it. We then show the results of experiments and 
discuss the difference between human and AI perfor-
mance. Finally, in the last section, we draw conclusions 
and discuss possible future directions.

Related Works
This section provides an overview of the state of the art 
and the positioning of this article. In particular, we begin 
discussing recent literature on static deepfake photo 
detection by humans, also highlighting factors already 
shown to impact detection accuracy. We provide an 
overview of studies in which human performance was 
compared with that of AI. Finally, we describe the chal-
lenges still to be solved in automatic detection.

Human Detection
Face processing is one of the most investigated fields in 
cognitive sciences (e.g., Fysh et al.4). However, since AI 
is becoming increasingly pervasive in people’s lives, this 
new environment is challenging what we know about face 
processing, and the detection of deepfake versus real faces 
has gained notable attention. Humans’ ability to detect 
deepfake faces has been reported to range from chance 
level to up to 75% accuracy (e.g., Papa et al.11). Interest-
ingly, recent literature has also highlighted that deepfake 

detection performance might not be related to other face 
processing abilities (Ramon et al.12). The authors found 
that deepfake detection abilities of dynamic stimuli (vid-
eos) did not differ between a control group and super-
recognizers (i.e., individuals with an innate superiority 
in face identity processing), nor did they find individual 
differences in face identity processing to be related to 
the deepfake detection performance in a large sample 
of police officers. This suggests the potential specificity 
of deepfake detection processes in humans. Still, little is 
known about which cognitive factors impact deepfake 
detection ability. In this field, seminal studies have shown 
that attractiveness, for instance, influences performance  

in face detection, lead-
ing to judging faces as 
deepfake (e.g., Miller 
et al.10 and Tucciarelli 
et  al.13). However, 
classical studies have 
shown that likeabil-
ity is one of the first 
impressions that peo-
ple have when they 
see a face (Willis and 
Todorov15). Here, we 
propose to replicate 

and extend results on human deepfake detection ability, 
assessing the impact of likeability on detection accuracy. 
Knowing whether likable (deepfake) faces are more prone 
to detection errors will prove useful to deeply understand 
how humans interact with and make decisions about AI.

Automatic Detection
The rapid progress of new generative techniques has 
attracted growing interest from the scientific com-
munity regarding the importance of detecting these 
contents. As with content generation, a large part of 
automatic deepfake detection techniques is based on 
deep learning.1 Most detectors focus primarily on 
at least one of the semantic features and frequency 
domain features. The first category includes all those 
models that try to take advantage of semantic, geomet-
rical, or physical errors produced by generative models, 
such as light or perspective. Despite many promis-
ing semantic-based approaches, it is clear that these 
errors will dramatically reduce in the future with the 
advancement of generative techniques. As a result, it 
is important to understand whether alternatives exist. 
Alternatively, differences in the frequency domain 
can often give us essential information about the 
model used to generate an image. These techniques,3 
although very promising because they can extract a 
fingerprint of the generative models, are more chal-
lenging to interpret and require a sufficient number 

Knowing this boundary and monitoring  
it is essential to understand how far we  
still are from generating content that is 

indistinguishable from real.
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of images to estimate a quality fingerprint. Regardless 
of the type of feature taken into consideration, gener-
alization remains the biggest challenge to overcome. 
The literature proposes specific solutions to address 
this issue, like few-shot learning.8 However, a simple 
yet impactful approach to enhance generalization is 
augmentation5 based on JPEG compression, Gauss-
ian noise blurring, geometric transformations, cutout, 
brightness, or contrast changes. Although a human 
easily perceives these 
augmented variations 
of the same image as 
identical to the unaug-
mented image, these 
ex amples  are per-
ceived by an automatic 
model as completely 
new examples. There-
fore, by adding these 
augmented examples  
at training time, the 
detector can learn from 
a more significant number of examples. Finally, utilizing 
ensemble methods significantly aids in enhancing perfor-
mance and producing more robust detectors.2

Human Versus Machine
To date, very few studies have focused on studying the 
human detection of deepfakes compared to automatic 
algorithms. A primary study by Korshunov and Marcel7 
proved that people are confused by good quality deepfakes 
in 75.5% of cases. In contrast, algorithms detect deepfakes 
differently than human observers. They frequently fail to 
recognize fake videos that people can readily tell are false, 
yet specific algorithms, depending on their training data 
and selected threshold, can efficiently recognize videos 
that are difficult for humans to see. Subsequently, based 
on the first generation of deepfake generative models 
[generative adversarial network (GAN) based, from the 
Deepfake Detection Challenge (https://ai.meta.com/
datasets/dfdc/)], Groh et  al.6 show that ordinary indi-
viduals can notice artifacts in deepfake videos. Notably, 
between 13% and 37% of regular individuals outperform 
leading deepfake detection models, particularly in chal-
lenging scenarios, while the models perform slightly bet-
ter in low-quality videos labeled as grainy, blurry, or dark. 
Despite these exciting results, generative techniques have 
recently made giant strides. In this sense, GANs have left 
room for the most recent diffusion models, allowing even 
more impressive results based on a textual description of 
what we want to generate. In this direction, Papa et al.11 
demonstrated how a careful engineering procedure of 
prompts for image generation could guide diffusion mod-
els toward creating realistic human faces, outperforming 

previous generation methodologies. Starting from this lat-
est study, we propose an analysis of the human and auto-
matic detection of these contents.

Method
Our goal for this article is to compare the performance 
of an automatic deep learning-based detector with 
human performance. The first part introduces the 
methodology we followed to measure human detection 

of fake images. Next, 
we present a hybrid 
architecture based on 
convolutional layers 
and transformers for 
deepfake detection.

Human Detection
To evaluate human per-
formance, we re cruited 
120 online participants 
[63 females, age M =  
26.03; standard devia-

tion (SD) = 8.13]. For the experiments, we used 24 deep-
fake photos generated through the method from Papa 
et al.11 and 24 real photos from the FFHQ (https://github.
com/NVlabs/ffhq-dataset) dataset. The photos were 
matched for the gender, age, and ethnicity of the faces. 
The dimension of both the deepfake and real photos 
was 512 × 512 pixels, with PsychoPy (https://www.psy 
chopy.org/) height units of 0.5 × 0.5. After signing an 
informed consent and giving sociodemographic informa-
tion, the participants were randomly presented, one at a 
time, with 48 photos, with a request to indicate whether 
the photos were real or fake (the presentation lasted until a 
response was given). After pressing the corresponding key 
on the keyboard, the participants were asked to rate their 
confidence as well as the likeability of the face in the photo, 
with both ratings on a scale from zero (not at all) to six (very 

Figure 1. The procedure for human performance 
evaluation.
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much), as shown in Figure 1. The participants performed 
the task on their personal computers. The whole procedure 
was constructed on PsychoPy and then carried out on Pav-
lovia (https://pavlovia.org/).

The accuracy of each response was computed by 
assigning a score to each correct (one) or incorrect 
answer (zero). Our statistical analyses aimed at verifying 
whether our predictors (the type of photo, photo likeabil-
ity, and confidence), i.e., fixed effects, predicted accuracy 
(the dependent variable). To address this problem, we 
chose to apply generalized linear mixed models (i.e., an 
extension of logistic regressions), which allow us to con-
trol for the variability of both participants and stimuli (by 
including them as random effects). All statistical analyses 
were performed on R-Studio (version  4.13), using the 
lme4 and emmeans packages.

Automatic Detection
Convolutional neural networks (CNNs) have proved 
effective in detecting AI-generated content; how-
ever, these architectures have inherent disadvan-
tages. CNNs operate on fixed-sized local receptive 
fields, which restricts their ability to understand 
global contexts effectively. Differently, transformers 
introduced the self-attention mechanism, allowing 

models to weigh the importance of different parts of 
the input sequence when making predictions. Simi-
lar to how the human brain can focus attention on 
specific aspects of our environment selectively, the 
self-attention mechanism allows transformers to cap-
ture the global context of the input sequence and 
long-range dependencies.

Despite the superiority of transformers over 
CNNs in several tasks, their effectiveness is not as good 
in forensic studies, where the limited availability of data 
leads the models to overfit. To overcome this problem, 
we propose a hybrid architecture called ResFormer. 
The hybrid model (depicted in Figure  2) consists 
of two main parts. The first is the convolutional part 
for extracting spatial relationships. This component 
extracts feature maps that effectively capture all the 
essential parts in the images. After that, we turn these 
feature maps into patches that we feed into a trans-
former model, which is expected to spot connections 
and context across the entire feature map. The trans-
former structure is based on a multihead self-attention 
(MSA) mechanism, which is composed of several sin-
gle self-attention layers running in parallel. Formally, 
given an input feature map, the transformer layer first 
computes three matrices: the query Q, the key K, and 
the value V, of sizes dq = dk = dv. Then, we use the soft-
max dot product self-attention operation introduced 
by Vaswani et al.,14 which is defined as follows:

 Q K V
d

QK
VAtt ( , , ) softmax .

k

T

= d n  (1)

The multihead attention layer allows the model to 
attend to information from different representation 
subspaces at different positions and operates by concat-
enating several attention heads. Formally,
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O

1 f=  (2)
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The output of the network classifies the images as 
real or fake.

Figure 2. The proposed ResFormer architecture.
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Prompt Analysis
Despite the astonishing results obtained from the most 
recent text-to-image generative models, the choice of 
one textual prompt over another still makes a differ-
ence concerning images’ quality. Our goal is to generate 
images that look like photos taken with a smartphone 
in everyday life. This enables us to assess human capa-
bilities in detecting AI-generated images that look as 
realistic as the ones we commonly observe on social 
media. To do this, we rely on the prompt engineering 
strategy proposed in Papa et al.11 but propose further 
improvement. Figure 3 gives an example of the newly 
generated images and compares them with the ones 
from Papa et  al.11 Unlike their method, which used 
Stable  Diffusion v1.5, our solution is based on the 
Attend-and-Excite (https://huggingface.co/docs/
diffusers/api/pipelines/attend_and_excite) pipeline. 
We chose this model over Midjourney or DALL-E 
because it is open source, enabling us to produce any 
number of images for free.

The advantage of the Attend-and-Excite model 
over Stable Diffusion comes from introducing nega-
tive prompts that allow us to guide image generation 
with greater flexibility. In fact, we noticed that the 
model often tends to generate faces with deformed 
eyes and teeth, as depicted in Figure  4. Often, these 
areas are the most obvious indicator of artificiality. To 
solve this problem, we realized that the specific words 
we used in negative suggestions had a big impact. 
Experimentally, we have noticed that applying the 
following negative prompt to all the generated images 
can obtain very good quality results, as in Figure  3: 
“disfigured, ugly, bad, immature, cartoon, anime, 3d, 
painting, b&w.”

These negative prompts were carefully curated to 
discourage the generation of unrealistic and disfig-
ured images. Following the prompt generation proce-
dure proposed by Papa et al. and the negative prompts 
explained above, we generated a dataset of 10,000 
images. For all the images, we set the guidance scale 
parameter to seven, which encourages the model to 
generate images closely linked to the text prompt.

Compared to Papa et al., our images are more real-
istic in the details of the eyes (see the first row in Fig-
ure 3); the mouth, and especially the teeth (see the last 
row in Figure  3); wrinkles, which in Papa et  al. were 
excessively marked; and in the backgrounds, which 
in our case are very realistic (see the first two rows  
of Figure 3). 

Human Versus Machine
To compare AI and human performance, we followed 
the methodology of Groh et al.6 For the AI model, we 
considered the accuracy value for each photo, whereas 

for the human sample, we computed the mean accu-
racy for each stimulus (i.e., the participants’ responses 
averaged per photo). The human confidence rates were 
transformed by dividing the raw Likert scale scores by 
six (i.e., the number of intervals), achieving values in 
line with the AI model’s confidence range, i.e., zero to 
one. Moreover, we applied receiver operating character-
istic (ROC) analysis. ROC analysis uses the area under 
the curve (AUC) as a metric to express accuracy in the 
discrimination of two categories, in our case, real and 
deepfake photos.

Experiments
In this section, we report the results we obtained with 
humans and AI detectors.

Human Detection
Table 1 reports the descriptive statistics of the human 
participants’ accuracy and confidence levels. Our statistical 
model explained 27% of the variance in accuracy [Pseudo − 
R2(total)  = 0.27; Pseudo  − R2(fixed effects)  = 0.08]. 
For all the results, 2

|  represents the chi-square distribu-
tion with one degree of freedom for the tested model, 
while p indicates the probability to obtain the hypoth-
esized results. In regard to individual predictors, both 
photo likeability . .p1 5 71 0 05[ ( ) , ]2 1| =  and con-
fidence . .p1 87 23 0 0001[ ( ) , ]2 1| =  were shown to 

Figure 4. Common semantic errors produced by the model 
without negative prompts.

(a) (b)

Table 1. Descriptive statistics of the human 
participants.

Class Accuracy Confidence

Fake 0.694 (0.175) 4.42 (0.929)

Real 0.718 (0.158) 4.3 (0.934)

Total 0.708 (0.456) 4.36 (1.43)

For each column, we report the mean and SD.

https://huggingface.co/docs/diffusers/api/pipelines/attend_and_excite
https://huggingface.co/docs/diffusers/api/pipelines/attend_and_excite
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be significantly associated with overall detection accuracy, 
whereas the photo type .p 0 42( )=  was not related with 
the general ability of the participants to correctly detect 
the photos. The latter result indicates that there was no 
statistical difference in accuracy between real and deep-
fake photos. Moreover, photo likeability and confidence 
presented significant interactions with the photo type 

.p 0 001( ),1  indicating that the variables were asso-
ciated with the accuracy of real and deepfake photos in 
different ways (see Table 2).

We then ran post hoc analyses on the regression 
model, where the estimate indicates the estimated coef-
ficient of the model, SE indicates the standard error, 
and z represents the index of the ratio of the estimated 
coefficient to its standard error. As illustrated in Fig-
ure  5(a), photo likeability was significantly associated 
with the accuracy of both real and deepfake photos, 
but in opposite directions: whereas higher likeabil-
ity was significantly related to higher accuracy for 
real photos (estimate = 0.246, SE = 0.037, z − ratio 
= 6.75, p < 0.0001), it was also associated with lower 

accuracy for deepfake photos (estimate = −0.397, SE 
= 0.038, z − ratio = −10.48, p < 0.0001). In fact, the 
contrast between the two slopes is significantly differ-
ent (estimate = 0.634, SE = 0.049, z − ratio = 12.872,  
p < 0.0001). Finally, higher confidence was shown to 
significantly relate to higher accuracy for both real (esti-
mate = 0.126, SE = 0.036, z − ratio = 3.504, p < 0.01) 
and deepfake photos (estimate = 0.377, SE = 0.036,  
z − ratio = 10.44, p < 0.0001) [see Figure 5(b)]. How-
ever, this effect appears to be significantly stronger 
for deepfake stimuli (estimate = −0.251, SE = 0.048, 
z − ratio = −5.239, p < 0.0001).

AI Detection
We compare the performance of the AI model pro-
posed in the previous section against state-of-the-art 
models (i.e., Resnet18, Resnet50, ViT-B/16, and 
Grag20215) on two different datasets: our proposed 
new dataset, which we call Diffusion Model Human 
Detection Dataset (DMHD), and a modified version of 
the CDDB9 dataset, which we refer to as CDDB-s. We 
identify these two datasets based on particular aspects: 
the DMHD was purposely generated to include highly 
realistic images that were difficult for humans to detect 
as fake. The second, i.e., the CDDB-s, is more chal-
lenging for an automatic detector since it was created 
using different generative techniques, thus allowing us 
to analyze the generalization capabilities of the model. 
The DMHD dataset is composed of 10,000 fake images 
generated as explained in the previous section, 10,000 
fake images from Papa et  al., and 20,000 real images 
taken from the FFHQ.11 We use an 80/10/10 split for 
training, validation, and testing. For the CDDB-s data-
set, we select a subset of fake classes containing human 

Figure 5. The detection accuracy for real (1) and deepfake (2) photos, impacted by (a) photo likeability and (b) confidence.

A
cc

ur
ac

y

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

Photo Type 1 2

A
cc

ur
ac

y

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6
(a) (b)

Table 2. The regression model predicting 
detection accuracy. 

Predictor |2 p Value

Photo likeability 5.71 0.017*

Confidence 87.23 0***

Photo type (real versus fake) .65 0.421

Photo likeability × photo type 165.68 0***

Confidence × photo type 27.44 0***
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faces. Specifically, we use ProGAN, StyleGAN, Big-
GAN, and CycleGAN from the CDDB, adding stable 
diffusion from Papa et al. for training. For testing, we 
use NewFake, Glow, and StarGAN from the CDDB 
and the Attend-and-Excite-generated images proposed 
in this article. Due to the way it is constructed, this 
dataset is much more complex than the first concern-
ing the models used for generation, and it is essential 
to emphasize that the generative models used in test-
ing are different from those used in training. All manual 
annotations and generated images are available on our 
GitHub repository (https://github.com/lucamaiano/
humanvsmachines; this will become available on the 
acceptance of the paper). 

Table 3 reports the performance of all the models 
on both datasets. Our proposed model achieves the 
best performance on the CDDB-s dataset and is the 
runner-up for the DMHD dataset. In general, we can see 
that on our dataset, which is very difficult for humans, 
the models’ performances are, on average, high. This 
suggests that, if properly trained on very realistic data, 
models can recognize features that are less visible to us 
as humans. At the same time, such high performance by 
all the models is a sign of overfitting. In fact, in a more 
complex and heterogeneous scenario, such as that of the 
CDDB-s, the models’ performances are much lower, 
suggesting that the information learned during training 
is probably too specific and not very generalizable com-
pared to new generative techniques not seen at training 
time. To confirm this assumption, in Table 4, we present 
the results in the more complex scenario. In the first col-
umn, we measure the performance of the models trained 
on the CDDB-s and tested on the DMHD, while the sec-
ond column describes the opposite scenario. We can see 
that performance on the DMHD is generally lower than 
the previous experiment. In particular, the deeper mod-
els (Resnet50 and ViT-B/16) record a more marked 
drop in accuracy, while ResFormer, Grag2021, and 
Resnet18 appear to be more robust. On the CDDB-s, 
the results are slightly improved compared to the previ-
ous scenario. This result is due to the fact that the model 
trained on the DMHD is able, in most cases, to correctly 
recognize the majority of the images generated with the 
diffusion models. However, the performance on images 
generated by GANs is still very low.

Generally speaking, the results seem to align with 
what has been seen in the state of the art. Tables 5 and 6 
show the performance of ResFormer when trained 
on the DMHD and CDDB-s and tested on the other 
dataset, respectively. As we can see from the results, 
generalization to new distributions (i.e., new genera-
tive models) remains an open issue. The generalization 
problem arises when training and testing an AI model 
on different distributions. In fact, images generated with 

different models will belong to different distributions. It 
has been shown in Corvi et al.3 that these models will 
introduce different traces in the generated images and 
therefore make detection harder for an AI model. In 

Table 3. Performance in terms of the accuracy 
of state-of-the-art neural networks.

Model DMHD CDDB-s

ViT-B/16 0.97 0.58

Resnet18 0.98 0.62

Resnet50 0.97 0.55

Grag20215 1 0.64

ResFormer (ours) 0.99 0.65

Table 4. The generalization performance.

Model DMHD CDDB-s

ViT-B/16 0.83 0.62

Resnet18 0.94 0.66

Resnet50 0.81 0.58

Grag20215 0.97 0.68

ResFormer (ours) 0.94 0.66

The first column shows training on the CDDB-s and testing on 
the DMHD. The second column shows training on the DMHD 
and testing on the CDDB-s.

Table 5. The descriptive statistics of ResFormer 
trained on the DMHD and tested over images 
employed in the human detection experiment.

Class Accuracy Confidence

Fake 1 4.955 (0.165)

Real 0.958 4.998 (0.005)

Total 0.979 4.976 (0.117)

The second column reports the mean and SD.

Table 6. Descriptive statistics of ResFormer 
trained on GAN images and tested over images 
employed in the human detection experiment.

Class Accuracy Confidence

Fake 0.875 4.886 (0.294)

Real 1 4.82 (0.454)

Total 0.937 4.853 (0.379)

https://github.com/lucamaiano/humanvsmachines
https://github.com/lucamaiano/humanvsmachines
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the next section, we compare human performance with 
automatic performance.

Humans Versus AI
As reported above, the overall accuracy of human detec-
tion was 71.61% (SD = 0.16), whereas the correspond-
ing accuracy of the AI model was 93.7% (SD = 0.24). 
As detailed in Figure 6, the AI model erroneously clas-
sified three deepfake photos that, on the other hand, 
were correctly identified by 54.17%, 56.67%, and 72.5% 
of our participants, respectively. Overall, no human out-
performed the AI model, even though one participant 
reached the same accuracy as the AI model (93.75%, 
with three erroneous classifications of real photos). 
To test the difference in performance between AI and 
humans, we ran paired t-tests on the above-described 

values. The accuracy of the AI model was significantly 
higher compared to humans [t(47) = 5.86, p < 0.001], 
as were confidence rates [t(47) = 20.47, p < 0.001]. 
Humans showed a mean confidence in photo classifi-
cation of 72.63% (SD = 0.04), whereas the AI model 
showed a mean confidence of 97.08% (SD = 0.08). 
ROC analyses showed the human AUC to be 0.707 
[confidence interval (CI): 0.695‒0.0718], whereas the 
AI AUC was found to be 0.938 (CI: 0.87‒1), confirm-
ing the AI model’s higher accuracy in discriminating 
between the two categories (see Figure 7).

Discussion
Our analysis shows that AI models can outperform 
humans in detection accuracy. However, from the 
results presented in the previous section, it must be 
highlighted that AI has significant limitations. Its gener-
alization is still far behind that of humans. In fact, it must 
be considered that none of the human subjects involved 
in this study had any specific training for detecting false 
images. The recorded performances depended solely 
on the subjects’ experience. This allows us to under-
stand the impact of fake content on the average popu-
lation. In this regard, it will be interesting in the future 
to understand whether a change in performance can be 
observed when people are trained to detect fakes.

Our findings also reveal interesting facts regarding human 
detection of fake content. First, we showed that photo like-
ability created a general sense of realness for our stimuli, 
leading to high accuracy for real photos and low accuracy 
rates for deepfake photos. Interestingly, this is in contrast to 
above-cited studies on attractiveness, which is a related con-
struct found to be associated with the judgment of faces as 
fake (e.g., Miller et al.10 and Tucciarelli et al.13). However, 
while likeability represents a global affective response to 

Figure 7. The ROC curves of human and AI (ResFormer) 
performance. Sensitivity = the percentage of deepfake photos 
correctly categorized as deepfake, and 1 ‒ specificity = the 
percentage of real photos erroneously classified as deepfake. The 
dashed gray line illustrates random performance (AUC: 0.5).

Group AI Humans
0

0.25

0.50

0.75

1

0 0.25 0.50 0.75 1

S
en

si
tiv

ity

1 – Specificity

AUC: 0.707

AUC: 0.938

Figure 6. The detection (a) accuracy and (b) confidence of ResFormer (single observations for each stimulus) and humans 
(the participants’ means).

Real StimuliDeepfake Stimuli

0

0.25

0.50

0.75

1

Group AI Humans

Accuracy and Confidence Across Stimuli

(a) (b)



www.computer.org/security 85

an image (Willis and Todorov15), attractiveness refers to 
the specific evaluation of facial elements. Tucciarelli et al.13 
argue that less attractive deepfake photos are seen as more real 
because they might be more similar to mental templates of 
faces and their characteristics, created on the basis of every-
day experiences. Likeability, on the other hand, might be 
sustained by broader mechanisms influenced by additional 
sociocognitive variables (e.g., motivations, future interac-
tions, believability, and so on). Thus, we argue that these 
underlying variables led to higher likeability being associated 
with the categorization of images as real. This finding may 
be highly relevant for future studies, which should directly 
investigate the differential impact of the underlying mecha-
nisms of both likeability and attractiveness on (deepfake) 
face detection. Moreover, measuring the effect of specific 
training in face detection (based on face attractiveness and/
or likeability) would help to understand whether specific 
knowledge about deepfake stimuli can improve detection 
performance. Our findings not only show an association 
between accuracy and confidence in human deepfake detec-
tion but also highlight that for deepfake photos, participants 
in low-confidence conditions reach accuracy levels below 
chance level. Participants seem to be aware of their poten-
tially erroneous decisions, as low confidence levels usually 
indicate awareness of difficulty in selecting adequate detec-
tion criteria. Thus, future research should also consider 
investigating which criteria humans base their (erroneous) 
detection decisions on as well as which elements make them 
aware of their incorrect decisions. Since one limitation of the 
present study is the lack of a standardized (or strictly con-
trolled) screen size to present faces, our preliminary results 
should also be tested in a strictly controlled laboratory set-
ting, for instance, using different screen resolutions. In this 
line, further studies should also assess the reliability of this 
pattern of performance, for instance, by adopting a test‒retest 
approach, for both humans and AI detection algorithms. 
Finally, future directions should also investigate individual 
and cultural differences in (deepfake) face detection abilities, 
i.e., Fysh et al.4 and Ramon et al.12

I n this article, we presented a comparative study 
between human and AI performance in the context 

of artificially generated image detection. The results 
show that AI can surpass human performance when 
appropriately trained and tested on images generated 
with a specific type of generative technique. Still, it is 
far behind humans in terms of its ability to generalize to 
new manipulations.

Furthermore, we believe the limitations highlighted 
in this work can guide the design of new detectors sup-
porting a human operator. Interpretability, therefore, 
plays a fundamental role in obtaining detectors that can 
be applied in a real context. Our next studies will focus 

on these aspects as well as on the study of generaliza-
tion, which remains the most critical challenge to solve 
for automatic detectors. 
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