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ABSTRACT
The L3DAS22 Challenge is aimed at encouraging the development
of machine learning strategies for 3D speech enhancement and 3D
sound localization and detection in office-like environments. This
challenge improves and extends the tasks of the L3DAS21 edition1.
We generated a new dataset, which maintains the same general char-
acteristics of L3DAS21 datasets, but with an extended number of
data points and adding constrains that improve the baseline model’s
efficiency and overcome the major difficulties encountered by the
participants of the previous challenge. We updated the baseline
model of Task 1, using the architecture that ranked first in the previ-
ous challenge edition. We wrote a new supporting API, improving
its clarity and ease-of-use. In the end, we present and discuss the
results submitted by all participants. L3DAS22 Challenge website:
www.l3das.com/icassp2022.

Index Terms— Grand Challenge, 3D Audio, Ambisonics,
Speech Enhancement, Sound Event Localization and Detection

1. INTRODUCTION

Machine learning applications of 3D audio are gaining increasing
interest in recent years. Tasks like sound source localization, sound
source separation, speech enhancement and acoustic echo cancel-
lation, among others, potentially benefit from tridimensional repre-
sentations of sound field, as they carry additional spatial informa-
tion [1, 2]. Consequently, in these tasks 3D audio formats (in partic-
ular Ambisonics) usually provide performance improvements com-
pared to single/dual-channel formats [2, 3]. Based on this motiva-
tion, the L3DAS (Learning 3D Audio Sources) Team has proposed
the L3DAS22 Challenge involving two tasks, 3D Speech Enhance-
ment (SE) and 3D Sound Event Localization and Detection (SELD),
both relying on multiple-source and multiple-perspective (MSMP)
Ambisonics recordings.

3D SE aims at removing unwanted information from spurious
spatial vocal recordings and further enhancing the speech intelligi-
bility and clarity. A widespread strategy to perform SE is to use
deep neural networks to estimate a mask in the Time-Frequency do-
main that tries to remove unwanted noise components from the sig-
nal mixture [4]. Neural beamforming techniques, such as the Filter
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1www.l3das.com/mlsp2021

and Sum Networks (FaSNet) [5], provide state-of-the art results for
Ambisonics-based SE and are usually suitable for low-latency sce-
narios. Also U-Net-based approaches provide competitive results
both for monaural [6] and multichannel SE tasks [7], at the expense
of higher computational power demand. Other techniques to perform
SE include recurrent neural networks (RNNs) [8], graph-based spec-
tral subtraction [9], discriminative learning [10], and dilated convo-
lutions [11], among others.

3D SELD, instead, aims at obtaining exhaustive spatiotempo-
ral descriptions of 3D acoustic scenes, predicting which sound cat-
egories are present in the scene, and when and where each sound
instance is active. SELD can be considered as a combination of the
traditional sound event detection and sound source localization tasks,
and it was presented for the first time in the DCASE2019 Challenge
[12]. Also here, the state-of-the-art methods are based on deep learn-
ing strategies [13]. SELDnet [14] adopted a convolutional-recurrent
design with two distinct branches for localization and detection and
it was used as a baseline model in SELD tasks of the DCASE chal-
lenges. An improved SELDnet model was then introduced by [15],
including temporal convolutions. Other novel solutions for this task
include ensemble models [16], multi-stage training [17] and bespoke
augmentation strategies [18].

In this second edition, we improved many aspects of the
L3DAS21 challenge [19]. First of all, we generated a new dataset
(L3DAS22 dataset2) with an augmented number of datapoints, in-
creasing the total dataset duration from 65 to more than 94 hours.
Moreover, we analyzed the major difficulties encountered by the
participants of the previous edition and we modified the dataset
synthesis pipeline in order to promote less resource-demanding
trainings and facilitate both tasks. In addition, we propose an up-
dated baseline for task 1, using the model architecture that ranked
first in the previous edition, which provides an improved baseline
metric of 0.81 (previously 0.62). Finally, we rewrote the support-
ing API, fixing existing bugs and making clearer and faster the
preprocessing and baseline training/evaluation stages.

The rest of the paper is organized as follows: Section 2 exposes
the details of the L3DAS22 datasets for both the tasks of 3D SE and
3D SELD. Section 3 describes the challenge tasks, while in Section
4 we illustrate the details of the baseline models. Section 5 contains
information on the challenge conduct and Section 6 discusses the
submission results. Finally, Section 7 draws the conclusions of this
paper.

2The L3DAS22 Dataset is freely available on Kaggle: www.kaggle.
com/l3dasteam/l3das22
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Fig. 1: 3D representation of the office used for the recordings. The
red sphere represents microphone A, while the blue one represents
microphone B.

2. A 3D AUDIO DATASET FROM A REAL REVERBERANT
OFFICE ENVIRONMENT

2.1. 3D Impulse Response Recording and Data Collection

The L3DAS22 dataset contains approximately 98 hours of MSMP
B-format audio recordings. We sampled the acoustic field of a real
office room with the approximate dimensions of 6 m (length) by 5
m (width) by 3 m (height). The room has typical office furniture,
a wooden parquet floor and painted concrete walls and ceiling. We
used two first-order A-format Soundfield Ambisonics microphones3,
one placed in the exact center of the room (mic A) and the other 20
cm distant towards the width dimension (mic B), as shown in Figure
1. We positioned both microphones at the same height of 1.3 m,
which is the average ear height of a seated person. Moreover, their
capsules have the same orientation.

We reproduced an analytic signal using a speaker4 placed in 252
fixed spatial positions chosen according to two criteria: a fixed 3D
grid (168 positions) and a 3D uniform random distribution (84 po-
sitions). Figure 2b shows a 2D projection of the grid from above.
Given the first criterion, we placed the speaker in a 3D grid with a
50 cm step in the length-width dimensions, as represented in Fig. 2b
with gray dots. In the height dimension, we considered 7 position
layers at 0.3 m, 0.7 m, 1 m, 1.3 m, 1.6 m, 1.9 m and 2.3 m from the
floor, as shown in Figure 2a. On the other hand, the random posi-
tions are uniformly sampled among those available in a virtual 3D
grid having a 25 cm step and are depicted in red in Fig. 2a. For all
measurements, we directed the speaker’s tweeter towards mic A by
changing the incline of its support.

The analytic signal is a 24-bit exponential sinusoidal sweep that
glides from 50 Hz to 16000 Hz in 20 seconds, reproduced at 90 dB
SPL on average. The IR estimation is then obtained by perform-
ing a circular convolution between the recorded sound and the time-
inverted analytic signal, as introduced by [20]. We finally converted
the A-format signals into standard B-format IRs5.

We considered the collected Ambisonics impulse responses and
some existing clean monophonic datasets, and we applied a convo-
lution operation to virtually place that sound source in the spatial

3Oktava MK-4012
4Event PS6
5http://pcfarina.eng.unipr.it/Public/B-format/

A2B-conversion/A2B.htm
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Fig. 2: (a) Tridimensional distribution of the speaker positions. In
gray the fixed 3D grid, in red the distribution of the randomly-
selected positions. (b) Projection from above of the microphones
position (center dot) and the speaker positions of the fixed 3D grid
(red dots connected by the blue line).

position occupied by the speaker, as perceived from the 2 micro-
phones. The result is a set of synthetic tridimensional sound sources
obtained by convolving the original sounds with our IRs. We aimed
at creating plausible and diverse 3D scenarios to reflect office-like
situations, in which disparate types of sound sources and background
noises coexist in the same 3D reverberant environment.

For this purpose, we used the Librispeech [21] and FSD50K [22]
datasets. More precisely, we selected a total of 1440 noise sound files
from FSD50K equally distributed between 14 transient noise classes:
computer keyboard, drawer open/close, cupboard open/close, finger
snapping, keys jangling, knock, laughter, scissors, telephone, writ-
ing, chink and clink, printer, female speech, male speech, and 4 con-
tinuous noise classes: alarm, crackle, mechanical fan, microwave
oven. Furthermore, we extracted clean speech signals (without back-
ground noise) from Librispeech, taking only sound files up to 12
seconds.

Our dataset is partitioned into two sections, each of which is ded-
icated to a different challenge task. As predictor data for both tasks,
we supply normalized raw waveforms of all Ambisonics channels (8
signals in total), whereas the target data differs significantly. Also,
we developed a variety of acoustic scenarios that were tailored to
each task.

2.2. L3DAS22 Dataset for Task 1: 3D SE

For the task 1, related to 3D SE, we synthesized more than 40000
virtual 3D audio environments, for a total length of approximately
90 hours. In each data point a speech signal with a duration up to 12
seconds is always present, mixed with various types of background
noise. We extracted all the speech sounds from the clean subset of
Librispeech (approximately 53% male and 47% female speech). We
added up to 3 simultaneous non-speech background noises of the
above-mentioned categories, extracting them from FSD50K. With a
25% chance, one of the background noises is a continuous noise.
The signal-to-noise ratio ranges from 6 to 16 dBFS (referring to the
signals’ RMS amplitude), where the voice is always the prominent
signal. We randomly placed all sound sources in the 3D environ-
ment, paying attention to obtain a uniform distribution of locations
within this dataset section.

The predictors data for this task are released as 8-channel 16
kHz 16 bit wav files, consisting of 2 sets of first-order Ambison-
ics recordings. The channels order follows the Ambisonics Channel
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Number (ACN) system of the AmbiX format 6, thus having [WA,
YA, ZA, XA, WB, YB, ZB, XB], where the letters A, B, refer to the
used microphone and W, Y, Z, X, refers to the B-format Ambisonics
channels. The target data provided contains the clean monophonic
recordings of the only speech signals (16 kHz 16 bit mono wav files),
as well as the words uttered in each data point (in a txt file).

For this task, we have also provided an informative csv file for
each subset, where we annotated the coordinates and spatial distance
of the IR convolved with the target voice signals for each datapoint.
This may be useful to estimate the delay caused by the virtual time-
of-flight of the target voice signal and to perform a sample-level
alignment of the input and ground truth signals.

2.3. L3DAS22 Dataset for Task 2: 3D SELD

For the task 2, related to 3D SELD, we synthesized 900 30-
seconds-long data points, reaching a total length of 7.5 hours of au-
dio. Each data point contains a simulated 3D office audio environ-
ment in which up to 3 simultaneous acoustic events may be active
at the same time. Moreover, when multiple sounds are active at the
same time, the probability of the sounds to belong to the same class
is artificially increased. As a result, in the case of a maximum of
3 overlaps, two simultaneous sounds may belong to the same class
with an approximate probability of 15% when the overlapped events
are 2 or 22% when 3 sounds are overlapped. Although, when this
happens, we forced the simultaneous sounds of the same class to be
virtually positioned at least 1 meter distant from each other.

The tracks with 1, 2 and 3 overlaps contain an average of 7, 13
and 20 acoustic events, respectively with a standard deviation of 2,
3 and 4. The sound events belong to the aforementioned 14 transient
noise classes and are therefore 1120 in total. As opposed to the SE
dataset, here the data points are not forced to contain speech signals,
although they may contain voice sounds. The volume difference be-
tween the different sounds ranges from 0 to 20 dBFS (referring to the
signal’s RMS amplitude). Also here, we randomly place all sound
sources in the 3D environment, paying attention to obtain a uniform
distribution of locations.

The predictors data for task 2 have the same form as for the
task 1, except for the sampling frequency, which here is 32 kHz.
As target data, we provide a csv file containing the onset and offset
time stamps, the typology class and the spatial coordinates of each
individual sound event present in a data point.

2.4. Dataset Splits

We split both dataset sections into a training set (approximately 80
hours for SE and 5 hours for SELD) and a test set (approximately
7 hours for SE and 2.5 hours for SELD), paying attention to create
similar distributions. The train set of the SE section is divided in
two partitions: train360 and train100, and contain speech samples
extracted from the correspondent partitions of Librispeech (only the
samples up to 12 seconds). All sets of the SELD section are divided
in: OV1, OV2, OV3. These partitions refer to the maximum amount
of possible overlapping sounds, which are 1, 2 or 3, respectively.

The test set of both dataset sections is further split into two
equally-long subsets that present a similar distribution: one develop-
ment and one blind test set. The first one is part of the initial release
of the dataset, and it is aimed, as usual, at the model’s hyperparam-
eters fine-tuning. The latter, instead, is aimed at the submissions’

6http://pcfarina.eng.unipr.it/aurora/B-Format_
to_UHJ.htm

evaluation and was initially released with the only predictors data,
without target labels/signals.

3. CHALLENGE TASKS

We propose 2 different tasks, both based on our L3DAS22 dataset:
3D Speech Enhancement in Office Reverberant Environment and 3D
Sound Event Localization and Detection in Office Reverberant Envi-
ronment. Each one is divided in 2 sub-tasks: one-mic and dual-mic
recordings, respectively relying on the sounds acquired by one or
both Ambisonics microphones, as described in Section 2.

In this context, the information predicted for one task may be
beneficial for the other one. For instance, the sound localization pa-
rameters may be re-used to improve the performance of 3D speech
enhancement networks, as in [23,24]. Therefore, participants are en-
couraged to develop a strategy to bootstrap the resources and exploit
the output of one model to enhance the performance of the other one
(although this is not mandatory).

3.1. Description and Goals of Task 1: 3D SE

The objective of this task is the separation and enhancement of
speech signals immersed in a noisy 3D environment, basing on the
SE section of the L3DAS22 dataset. Here the models are expected to
extract the monophonic voice signal from the 3D mixture that con-
tains various background noises. The evaluation metric for this task
is a combination of the short-time objective intelligibility (STOI),
which estimates the intelligibility of the output speech signal, and
word error rate (WER), computed to assess the effects of the en-
hancement for speech recognition purposes. We use a Wav2Vec [25]
architecture pre-trained on Librispeech 960h7 to compute the WER.
The final metric for this task is a combination of these two measures
given by (STOI + (1 − WER))/2. This metric lies therefore in
the 0-1 range and higher values are better.

3.2. Description and Goals of Task 2: 3D SELD

The aim of this task is to detect the temporal activity, spatial position
and typology of a known set of sound events immersed in a synthetic
3D acoustic environment. This task is performed on the SELD sec-
tion of the L3DAS22 dataset. Here the models are expected to pre-
dict a list of the active sound events and their respective location at
regular intervals of 100 milliseconds.

We use a joint metric for localization and detection: location-
sensitive detection error, as defined in [26]. This metric is computed
on each time frame and consists of measuring the Cartesian distance
between the predicted and true events with the same label, and count-
ing a true positive only when its label is correct and its location is
within a threshold from its reference location. After this operation,
we compute the regular F score. Since the scenario is particularly
complex and challenging, we fixed the spatial error threshold to 2
meters for this task.

4. BASELINE METHODS

As baseline methods, we propose state-of-the-art architectures,
specifically adapted for each task. For both tasks, we used only
signals coming from one Ambisonics microphone (mic A), leaving
room for experimentation with the dual-mic configuration.

7https://huggingface.co/facebook/wav2vec2-base-
960h
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For task 1 (SE), we use a beamforming U-Net architecture [7],
which provided the best metrics for the L3DAS21 Challenge on the
SE task. This network uses a convolutional U-Net to estimate B-
format beamforming filters and contains three main modules: en-
coder for extracting high-level features, decoder for reconstructing
the size of input features from the output of the encoder, and skip
connections for concatenating each layer in the encoder with its cor-
responding layer in the decoder. The enhancement process is per-
formed as that of the traditional signal beamforming. We multiply
the complex spectrogram of B-format noisy signal with the filters
estimated by U-Net through element-wise multiplication, and then
sum the result over the channel axis to estimate a single-channel en-
hanced complex spectrogram. In the end the ISTFT is performed
to obtain the enhanced time-domain signal. With this model we ob-
tained a baseline test metric for task 1 of 0.83, with a word error rate
of 0.21 and a STOI of 0.88.

For task 2, instead, we developed a variant of the SELDnet archi-
tecture [14]. We ported to the PyTorch language the original Keras
implementation8 and we modified its structure in order to make it
compatible with the L3DAS22 dataset. The objective of this network
is to output a continuous estimation (within a fixed temporal grid)
of the sounds present in the environment and their respective loca-
tion. The original SELDNet architecture is conceived for processing
sound spectrograms (including both magnitudes and phase informa-
tion) and uses a convolutional-recurrent feature extractor based on
3 convolution layers followed by a bidirectional GRU layer. In the
end, the network is split in two separate branches that predict the de-
tection (which classes are active) and location (where the sounds are)
information for each target time step. We augmented the capacity of
the network by increasing the number of channels and layers, while
maintaining the original data flow. Moreover, we discard the phase
information and we perform max-pooling on both the time and the
frequency dimensions, as opposed to the original implementation,
where only frequency-wise max-pooling is performed. In addition,
we added the ability to detect multiple sound sources of the same
class that may be active at the same time (3 at maximum in our case).
To obtain this behavior we tripled the size of the network’s output
matrix, in order to predict separate location and detection informa-
tion for all possible simultaneous sounds of the same class. This
network obtains a baseline test F-score of 0.34, with a precision of
0.42 and a recall of 0.29.

For further implementation details on our baseline models,
please refer to the L3DAS official GitHub repository9.

5. RULES AND CONDUCT OF THE CHALLENGE

The L3DAS22 Challenge lasted 8 weeks, from the release to the sub-
mission date. All the participants were allowed to submit results for
at least one of the two challenge tasks. Each individual participant
was not allowed to join more teams, thus having the possibility to
submit only one set of results.

No restrictions were placed on the methods to be used for the
two tasks. Teams had the possibility to choose their best results
among those obtained in the 1-mic and 2-mic configurations. It was
also allowed to augment the L3DAS22 dataset and/or to integrate
additional data with pretrained models.

Challenge winners have been selected according to the best per-
formance for each task, separately.

8https://github.com/sharathadavanne/seld-net
9https://github.com/l3das/L3DAS22

(a)

(b)

Fig. 3: L3DAS22 Challenge results for (a) Task 1: 3D SE, and (b)
Task 2: 3D SELD.

6. CHALLENGE RESULTS

The L3DAS22 Challenge has received 46 registrations and 24 result
submissions: 17 teams submitted results for the task 1 and 7 teams
for task 2. A graphical illustration of the results has been reported
in Fig. 3, where it can be seen that several teams have improved the
baseline results.

In particular, the winner team for Task 1, ESP-SE, has obtained a
T1 metric score of 0.984, with a WER of 0.019 and a STOI of 0.987.
On the other hand, the winner team for Task 2, Lab9 DSP411, has
obtained a T2 metric score of 0.699, with a precision of 0.706 and
a recall of 0.691. Further information about challenge results and
awards can be found on the L3DAS22 Challenge website10.

7. CONCLUSION

This paper has introduced a Signal Processing Grand Challenge,
named L3DAS22 Challenge: Machine Learning for Signal Process-
ing. Alongside the challenge we presented a new dataset on 3D audio
recorded in a real reverberant office environment and two different
tasks on 3D SE and 3D SELD. Future works by the L3DAS Team
will involve more challenging 3D acoustic scenarios, different mi-
crophone configurations and also new tasks.

10www.l3das.com/icassp2022/results
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