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Abstract: We investigate the non-equilibrium character of self-propelled particles through the study
of the linear response of the active Ornstein–Uhlenbeck particle (AOUP) model. We express the linear
response in terms of correlations computed in the absence of perturbations, proposing a particularly
compact and readable fluctuation–dissipation relation (FDR): such an expression explicitly separates
equilibrium and non-equilibrium contributions due to self-propulsion. As a case study, we consider
non-interacting AOUP confined in single-well and double-well potentials. In the former case, we also
unveil the effect of dimensionality, studying one-, two-, and three-dimensional dynamics. We show
that information about the distance from equilibrium can be deduced from the FDR, putting in
evidence the roles of position and velocity variables in the non-equilibrium relaxation.

Keywords: linear response; fluctuation–dissipation relations; active matter; self-propelled particles

1. Introduction

The fluctuation–dissipation relations (FDR) played a pivotal role in the development
of non-equilibrium statistical mechanics. Starting from the regime of weak departure
from equilibrium, with the pioneering work of Einstein on mobility–diffusivity relation,
through the central work of Onsager on the reciprocal relations [1], a unification of further
theoretical results was obtained in the Kubo’s linear response theory [2], which includes
also Green–Kubo relations useful for transport coefficients in spatially extended systems.
In Onsager’s and Kubo’s theories, all relations remain “simple”, provided that some kind
of time-reversal symmetry holds in the unperturbed state. As soon as this symmetry is lost,
the simplicity of linear response and transport coefficients is no more guaranteed [3].

Time-reversal symmetry is broken in widespread natural phenomena: a constraint
against equilibration is usually given by non-equilibrium boundary conditions or in the
presence of very slow relaxation dynamics, as in glassy systems. Hindrance to equilibration
can also be caused by internal non-conservative forces, such as those in granular systems
and in self-propelled particles. In all those cases, response theory must be generalized,
paying a price in simplicity. Several generalized relations have been proposed in the last
decades; they still connect the perturbed system to the unperturbed one, but often require
some detailed microscopic knowledge of the system. Some generalized relations may
take a simple form in particular situations, e.g., an effective temperature may replace the
thermostat temperature in a range of well-separated timescales for aging glassy systems,
but this scenario is far from being general [4,5]. More frequently, one faces a situation where
the equilibrium FDR is modified by additional contributions of a more complex nature.

The several approaches to FDR present in the literature belong to two main classes:
Class A requires the knowledge of the stationary distribution, while class B only requires
the knowledge of the microscopic dynamical rules (transition rates or Langevin equations).
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First examples of FDR of class A were obtained for chaotic systems and Brownian dynam-
ics with non-conservative forces [6,7]. In those cases, the knowledge of the steady-state
probability distribution (at least, in some approximations) still maintains a fundamental
importance: in the absence of this information the generalized FDR remains, somehow,
an implicit relation which can be useful to test ansatz on the steady-state properties [8].
More recent FDR of this kind express the non-equilibrium contributions in terms of stochas-
tic entropy production [9,10]. Examples of FDR of class B are derived from the Malliavin
weight sampling [11], or the Novikov theorem [12], which have been intensively employed
in the context of glassy physics and represent a powerful tool to calculate the susceptibility
and, thus, the so-called effective temperature of a system [4,13]. However, in this approach,
the FDR involves correlations with the noise and the physical meaning of these terms
remain often difficult to catch. Other schemes in this class include the description in terms
of “frenetic” contributions [14,15], focusing on the role of time-symmetric fluctuations out
of equilibrium (see also in [16] for derivations of analogous FDR for discrete spin variables).

The generalization of the FDR to active matter represents a challenging issue. Systems
of active particles are usually far from equilibrium and many of them move in the solvent
through complex mechanisms involving chemical reactions or mechanical agents, such as cilia
or flagella [17–20]. In the spirit of minimal modeling, these systems could be described through
simple stochastic dynamics that resembles that of passive colloids except for the addition of a
coarse-grained time-dependent force, often called self-propulsion or simply active force [21,22].
This force replaces the microscopic details of the system that, in general, are related to
complicate internal mechanisms of energy transduction and involve an intrinsic source of
strong deviation from thermodynamic equilibrium. Except for special cases, the steady-
state properties of these non-equilibrium models are not known analytically or without
approximations, and thus FDR of class A remain in implicit forms [23,24]. Explicit expressions
can be worked out in the limit of small persistence time τ, with the first example obtained
in [25]. On the other hand, the Malliavin weight sampling procedure has been applied
to the case of active particle dynamics [26,27] and, in particular, employed to numerically
calculate susceptibility and effective temperature of suspensions of active particles [28–32],
even, in phase-separated configurations [33]. We remark that usually the concept of effective
temperature is thermodynamically meaningful only in systems with well-separated time-
scales [34]. This approach has been also employed to calculate the transport coefficients,
such as the mobility, in combination with an approximate method valid at low-density values
or small persistence regimes [35,36]. An attempt to generalize FDR to active systems has
been recently presented in [15,37,38]: in the latter case, a relation involving a double-time
derivative of correlators appears, making the meaning of the formula and its numerical
(and experimental) application not immediate.

In this paper, we provide a clear example in the framework of active matter for which
a generalized FDR of class B can be explicitly obtained in terms of simple steady-state
correlations, involving functions of the observables (such as positions and velocities),
which do not require a knowledge of the steady-state properties and do not involve any
approximation (e.g., for small persistence regimes, etc.). Moreover, we propose a new
quantity to measure the departure from equilibrium, which is defined in terms of the
generalized FDR and takes into account the features of the system under time-reversal.
We study the behavior of such a quantity for non-interacting self-propelled particles
confined via different potentials, ranging from non-harmonic single-well to double-well
potentials. In the former case, we also investigate the effect of the dimensionality on the
non-equilibrium features.

The article is structured as follows. In Section 2, we introduce model and notations,
while in Section 3 we report the FDR relation obtained in our approach. Section 4 is
dedicated to the numerical study of the linear response, exploring both convex and non-
convex potentials in one-, two-, and three-dimensional systems. Finally, in Section 6,
we compare our results with two popular approximated results showing their failure,
while the final section is dedicated to discussions and conclusions.
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2. Self-Propelled Particles

We consider a well-known scheme to describe the behavior of self-propelled particles,
the Active Ornstein–Uhlenbeck (AOUP) model [39–46] (also known as Gaussian Colored
Noise (GCN)). The AOUP has been employed to reproduce the phenomenology of passive
colloids immersed in a bath of active particles [47–50] but also—perhaps at a more approxi-
mate level—the dynamics of self-propelled particles themselves. Its connection with other
popular models for self-propelled particles has been addressed by some authors [51,52].
For instance, the AOUP model can reproduce the accumulation near the boundaries of chan-
nels and obstacles [41,53], the non-equilibrium clustering or phase-separation [25,54,55]
typical of active matter and the spatial velocity correlation spontaneously observed in
dense active systems [56,57]. According to the AOUP scheme, the position in d dimensions
x of the self-propelled particle evolves with the following stochastic equation,

γẋ(t) = F(t) + fa(t) + h(t) , (1)

where γ is the drag coefficient. In Equation (1), we have neglected the thermal noise due to
the solvent as the thermal diffusion is usually smaller than the effective diffusion due to
the active force in several experimental active systems [18]. The term F(t) = −∇U[x(t)]
models the force due to an external confining potential, while the term fa(t) represents the
self-propulsion of the particle i and is described by an Ornstein–Uhlenbeck process:

τḟa = −fa + γ
√

2Daξ , (2)

where ξ is a white noise vector with zero average and unit variance. The parameter τ
is the persistence time, while Da is the diffusion coefficient due to the self-propulsion.
Finally, the term h(t) is an external small perturbation used to probe the linear response
properties of the system. In what follows, the perturbed dynamics will be denoted by
the superscript h to be distinguished by the unperturbed one. The response function
can be computed as the observed (normalized) variation of some observable when the
perturbation is an impulse at time 0, i.e., h(t) = γδx(0)δ(t) (with δx(0) a vector with
infinitesimal displacements representing the impulsive perturbation). In general, with the
exception of singular measures, it is possible to derive a compact formula for the response
function of one of the degrees of freedom xi of the system to the perturbation of a degree of
freedom xj,Rxixj , defined—in the steady state—as

Rxixj(t) =
〈xi(t)〉h − 〈xi(t)〉

δxj(0)
= γ

δ〈xi(t)〉h
δhj(0)

∣∣∣∣∣
h=0

, (3)

where t > 0 and, in the last equality, we have introduced the functional derivative with
respect to the perturbative force hj(0). In the following, for the one-dimensional case,
we will replaceRxx(t) withRx(t) for notational convenience.

3. Generalized Fluctuation–Dissipation Relation for Self-Propelled Particles

The model introduced so far reaches a non-equilibrium stationary state even in the ab-
sence of perturbation displaying a non-vanishing entropy production [25,58–60], with a few
special exceptions: in the absence of external potential, or in the presence of linear forces,
the detailed balance is restored and the system recovers an apparent equilibrium state
with vanishing entropy production [61]. This is an imperfection of the AOUP model [62].
Except for these special cases, the probability distribution, p(x, fa), is unknown. An ap-
proximation can be obtained, valid in the proximity of equilibrium (τ = 0) [25,43,61,63].
Therefore, in general, this model of self-propelled particles cannot be treated within the
FDR of class A, because the FDR remains implicit:

Rxixj(t) = −
〈

xi(t)
∂

∂xj
log[p(x(0), fa(0))]

〉
, (4)
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where the average 〈·〉 is obtained considering the unperturbed system and p(x, fa) is the
stationary probability distribution in the absence of perturbations that depends on the
whole set of particle positions and velocities. Equation (4) can be used only perturbatively in
powers of the persistence time since the expression of p(x, fa) is only known perturbatively
in powers of τ [23]. For small τ, the system is near the equilibrium, and, thus, the relation (4)
is restricted to the same regimes. A similar approach has been employed in [25].

We propose an alternative approach, inspired by FDR of class B, to calculate the
response function in terms of suitable steady-state correlations. Below, we report the final
outcome of our technique applied to an AOUP confined by an external potential, while the
detailed calculations are accurately described in Appendix A:

DaγRxixj(t) =
1
2
[〈

xi(t)∇jU(0)
〉
+
〈
∇iU(t)xj(0)

〉]
+

τ2

2
[〈

vk(t)∇k∇iU(t)vj(0)
〉
+
〈
vi(t)∇j∇kU(0)vk(0)

〉]
, (5)

where all the correlations have been evaluated in the steady state and we have introduced
the particle velocity vj = ẋj. According to our notation, repeated indices are summed:
U(s) = U(x(s)) and ∇i = ∂xi . Let us comment in detail on Equation (5): first, we observe
that it is symmetric under time reversal (i.e., when times t and 0 are swapped) and involves
both position and velocity correlations. The first line of Equation (5) has the same form of
the equilibrium FDR holding for passive particles. Indeed, when the detailed balance condi-
tion holds (for τ → 0), the first and the second terms on the right-hand side of Equation (5)
coincide, while the second line disappears in such a way that DaγRxixj =

〈
xi(t)∇jU(0)

〉
.

The second line provides two additional terms that are specific non-equilibrium contribu-
tions to the response function. Remarkably, these non-equilibrium correlations involve the
particle velocity, without containing direct simple dependence on the perturbed observable,
namely, the particle position (but of course position is involved through the potential).
At variance with the well-known equilibrium scenario, in active systems, Rxixj(t) is not
only determined by a time correlation involving the position but is strongly affected by the
correlations between the other variables involved in the dynamics, the velocity in this case.
The harmonic case—which is a special case where the AOUP model satisfies the detailed
balance even when τ > 0—is treated in Appendix B.

Understanding what are the leading terms in Equation (5) is a challenging issue that
cannot be performed in general but requires a numerical analysis. In addition, as the
detailed balance does not hold in systems of active particles, in general, the reversibility
is broken by the presence of non-zero steady-state currents that produce non-vanishing
entropy. The structure of Equation (5) suggests a way to measure how much the system is
far from equilibrium by quantifying the unbalance between the couples of terms, to see the
effect of irreversibility on the response function. Therefore, we define

DaγDx
ij(t) =

〈
xi(t)∇jU(0)

〉
−
〈
∇iU(t)xj(0)

〉
(6)

DaγDv
ij(t) = τ2〈vk(t)∇k∇iU(t)vj(0)

〉
− τ2〈vi(t)∇j∇kU(0)vk(0)

〉
, (7)

where all the correlations are calculated in the steady state. Dx
ij(t) and Dv

ij(t) vanish at
the initial time, t = 0 and for any t in any equilibrium configurations where the detailed
balance holds. For notational convenience, we replace Dx

ij and Dv
ij with Dx and Dv in the

one-dimensional case.

4. Numerical Results

In this section, we numerically check the FDR (5), in two typical cases that cannot be
analytically solved: (A) the quartic potential and (B) the double-well potential. On the one
hand, (A) represents the simpler convex case of study, except for the harmonic confinement
where correlation functions and responses can be analytically computed. In the harmonic
case, we remark that the expression (5) is consistent with previous results [23,64] that,
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in particular, predict an exponential time-decay of the response function with a typical
time γ/k (see the Appendix B). In this simple case, the response function does not show
any dependence on the parameters of the active force. On the other hand, (B) is the simpler
non-convex case able to reveal the interplay between the self-propulsion and the non-
convex curvature of the potential. This feature has already manifested many dynamical
anomalies leading to the emergence of regions with effective negative mobility in the
large persistence regime [65] showing a bifurcation-like behavior with non-local stationary
probability distribution [66]. In the quartic case, we also unveil the role of the dimensions
comparing the results for one-, two-, and three-dimensional systems.

The numerical study is performed keeping Da and the potential strength fixed, to in-
vestigate the role of the persistence time, τ. Time is measured in units of a typical time t∗,
ruling the relaxation of the response function for the passive system (obtained for τ → 0),
which is chosen as a reference case. In particular, t∗ = γ/k for the harmonic potential and
t∗ = 1/

√
Dak for the quartic case. In all the cases, the system is perturbed via a small force

along the x-axis, with amplitude δx = 10−3. This choice guarantees the linear regime of
the response calculated using Equation (3).

4.1. Quartic Potential
4.1.1. One-Dimensional System

Figure 1a shows the response function,Rx, in the case of a quartic potential, U(x) = kx4/4
for several values of τ exploring both the small and the large persistence regime, i.e., the near
and far equilibrium regimes, respectively. The figure reveals the agreement betweenRx(t)
calculated from its definition, given by Equation (3), and using the correlation functions
appearing in Equation (5) adapted to the one-dimensional case. This numerically confirms
the extension of the FDR to AOUP active particles, even far from equilibrium. Specifically,
in the small τ regime, the different curves ofRx(t) collapse onto the same curve that corre-
sponds to the response function of a passive Brownian particle at temperature Daγ. Instead,
in the large τ regime, the larger is τ the slower is the relaxation of the response function,
Rx(t), that roughly displays two decay regimes. Indeed, it is known that AOUP in a
single-well non-harmonic potential accumulates far from the potential minimum roughly
near the points where the active force is balanced by the external one, in such a way that
the spatial density shows two symmetric peaks [67]. Somehow, the system behaves as if
an effective double-well confinement control the particle dynamics, an effect captured by
many approximated results [67]. In the quartic case, the τ-dependence is a non-equilibrium
consequence caused by the interplay between the nonlinearity of the potential and the
persistence of the active force. Indeed, in the harmonic case, the response is τ-independent
and uniquely determined by the relaxation time of the potential [64], namely, t∗ = k/γ.

In Figure 1b–g, the terms of the FDR (Equation (5)) are separately studied and com-
pared with Rx(t), for different values of τ = 10−1, 1, 10, respectively. As emerges from
Figure 1b–d, the equilibrium terms, DaγCx(t) = 〈x(t)U′(0)〉+ 〈U′(t)x(0)〉, are dominant
in the near-equilibrium configurations, for small values of τ. In these cases, the non-
equilibrium velocity correlations, i.e., DaγCv(t) = τ2〈v(t)U′′(0)v(0)〉+ τ2〈v(t)U′′(t)v(0)〉,
only weakly affect the first time decay of Rx(t) also vanishing approximatively at t ∼ τ.
When τ is increased, the contribution of the velocity correlation starts growing even if
its decay remains roughly determined by τ, while the potential correlation decreases
slowly. Interestingly, the velocity correlation reaches negative values and increases very
slowly towards zero almost balancing the potential correlation, as shown in Figure 1b–d.
The term DaγCv(t) = τ2〈v(t)U′′(0)v(0)〉+ τ2〈v(t)U′′(t)v(0)〉, becomes dominant in the
large persistence regime, as shown in Figure 1b–d, while the term DaγCx(t) = 〈x(t)U′(0)〉+
〈U′(t)x(0)〉 gives a negligible contribution.

Finally, to understand the role of the detailed balance violation in the temporal decay
of the response, we plot the terms Dx(t) (solid red lines) and Dv(t) (solid blue lines),
in Figure 1e–g. If these two terms are close to zero, then the detailed balance holds. As ex-
pected, this occurs for small τ, while the detailed balance is strongly violated as far as τ
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is increased. Moreover, the irreversibility manifests in different ways: Dx(t) is positive
and reaches a peak for t ∼ τ, while Dv(t) shows an oscillation from positive to negative
values. As a final remark, the violation of the detailed balance strongly suggests that any
equilibrium-like approaches that assume this condition, such as the Unified Colored Noise
approximation (that will be explicitly evaluated in Section 5), cannot work in the large
persistence regime.

Figure 1. (a) Response function, Rx(t), for different values of τ calculated numerically via Equation (3) in the case of a
quartic potential, U(x) = kx4/4. Times are measured in units of the typical time t∗ (see main text). The dashed black lines
are obtained by using the FDR, Equation (5). (b–d) Rx(t) (solid yellow lines) compared to the FDR (dashed black lines),
Equation (5). Dotted violet lines represent Cx = 〈x(t)U′(0)〉/(Daγ) + 〈U′(t)x(0)〉/(Daγ) while green solid lines repre-
sent Cv = τ2〈v(t)U′′(0)v(0)〉/(Daγ) + τ2〈v(t)U′′(t)v(0)〉/(Daγ). (e-g) Dx = 〈x(t)U′(0)〉/(Daγ) − 〈U′(t)x(0)〉/(Daγ)

(solid red lines) and Dv = τ2〈v(t)U′′(t)v(0)〉/(Daγ) − τ2〈v(t)U′′(0)v(0)〉/(Daγ) (solid blue lines). Panels (b,e) are ob-
tained with τ = 10−1, panels (c,f) with τ = 1 and, finally, panels (d,g) with τ = 10. The other parameters are Da = 1, k = 3,
and γ = 1.

4.1.2. Higher-Dimensional Systems

We explore the role of the system dimensions, both on response functions and FDR.
In the case of harmonic confinement (in equilibrium both for dimensions d = 1, 2, 3),
where the detailed balance holds, the dimensions of the system do not affect the time-decay
of the response function.

In Figure 2a, we compareRx(t) for one-, two-, and three-dimensional self-propelled
particles confined through the quartic potentials, U(x) = k|x|4/4. We explore both the small
and the large persistence regime reporting two reference cases, τ = 10−3, 10, respectively.
In the small persistence regime (τ = 10−3) that roughly coincides with the passive case,
the larger is the dimension the faster is the decay ofRx(t), an effect that is entirely due to the
nonlinearity of the potential. The increase of the system dimensions increases the effective
trapping of the particle because of the confinement, an effect not related to the active force.
Instead, in the large persistence regime (τ = 10), the correlations show a first temporal
decay which does not depend on the dimension of the system (that coincides for d = 1, 2, 3),
while, in the second stage of the decay, the higher-dimensional systems decrease faster
than their corresponding in lower dimensions. Somehow, the active force can suppress the
dimensional dependence of the response function, at least for a small time-window.
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Figure 2. (a) Response function, Rx(t), for two different values of τ = 10−3, 10 and dimensions d = 1, 2, 3,
calculated numerically via Equation (3), in the cases of quartic potentials U(x) = k|x|4/4. The dashed black lines
are obtained by using the FDR, Equation (5). (b,c) Dx = 〈x(t)U′(0)〉/(Daγ) − 〈U′(t)x(0)〉/(Daγ) (panel (b)) and
Dv = τ2〈v(t)U′′(t)v(0)〉/(Daγ)− τ2〈v(t)U′′(0)v(0)〉/(Daγ) (panel (c)) for d = 1, 2, 3, at τ = 1. The other parameters are
Da = 1, k = 3, γ = 1.

Figure 2b,c shows the functions Dx(t) and Dv(t) for d = 1, 2, 3 at τ = 1, for simplicity.
We highlight that results are similar for other values of τ (not shown). The qualitative
functional forms of Dx(t) and Dv(t) are unchanged with d, resembling the shape described
in the one-dimensional system: a single peak around t ∼ τ for Dx(t) and an oscillation
from positive to negative values for Dv(t). The higher is the dimension of the system,
the smaller the maximal amplitude of bothDx(t) andDv(t) is. This means that the increase
of d, somehow, reduces the breaking of the detailed balance, producing smaller currents.
This is also consistent with the increasing difficulties to observe collective phenomena
when the dimensions are increased, that in three dimensions typically require larger values
of the active forces compared to two-dimensional systems [68].

Finally, let us mention that in the considered cases the cross-terms in the response
function, Rxy(t) = Ryx(t), vanish due to symmetry reasons. Indeed, on the one hand,
Rxy(t) is an odd function of every cartesian component of position and velocity appearing
in the FDR if U is a central potential. On the other hand, the dynamics is invariant for a
change of sign for each cartesian component of position and velocity, and thus the same
invariance still holds for the response matrix. As a consequence, the only possibility is that
Rxy(t) = 0.

4.2. Double-Well Potential

The response function, in the double-well potential case, U(x) = k(x4/4− x2/2),
is reported in Figure 3a for different values of τ, exploring both the small and the large
persistence regimes. In the small persistence regime, Rx(t) are collapsed onto the same
curve for a broad range of τ (for τ ≤ 10−2). As also occurs in the quartic potential case,
the activity is the faster degree of freedom and can be approximated by a white noise,
fa ≈

√
2Daξ, so that τ does not play any role. In this case, the relaxation towards zero is

mainly determined by two time regimes, as usual in the case of passive Brownian particles.
The first is determined by the relaxation towards the minimum of one of the two wells,
and the second accounts for the jump from a well to another. When τ is increased, the first
time regime starts decreasing faster while the second time regime decays more slowly
approaching zero for very larger times t/t∗ � τ. Moreover, the increase of τ also reduces
the role played by the second time regime in the temporal decay of Rx(t) (the larger τ,
the smaller the value ofRx(t) when the second time regime starts occurring). The second
time regime is even suppressed when τ is sufficiently large (τ ≥ 5, with the potential
setting employed in Figure 3a). This suppression is consistent with the result reported
by Fily [69] in the infinite persistence regime where the steady-state density distribution
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exactly vanishes in the regions where the potential is concave (meaning that no jumps
occur). More generally, the statistical relevance of the second time-regime decreases with
the increase of the persistence time since the jumps from a minimum to the other occurs
rarely when τ is increased both in the small τ regime [70–72] and in the large τ regime [66].

Figure 3. (a) Response function, Rx(t), for different values of τ calculated numerically via Equation (3) in the case of
a double-well potential, U(x) = k(x4/4− x2/2). The dashed black lines are obtained by using the FDR, Equation (5).
(b,c) Dx(t) for different values of τ as reported in the legend. (d,e) Dv(t) for different values of τ as reported in the legend.
The other parameters are Da = 1, k = 3, and γ = 1.

As occurs in the case of the quartic potential, the time-decay of Rx(t) is dominated
by the positional correlation or the velocity correlations, in the small and large persistence
regimes, respectively (not shown). In Figure 3b–e, we report Dx(t) and Dv(t) for different
values of τ, revealing an interesting scenario. In analogy with the quartic potential case,
the Dx(t) assumes positive values via a single peak that shifts for larger t/t∗ when τ is
increased. The Dv(t) displays an oscillation around zero similarly to the quartic potential
case. In a first range of τ, the amplitudes of bothDx(t) andDv(t) increase with τ (as shown
in panels (b,d)). A further increase of τ (panels (d,e)) produces the amplitude decrease of
both Dx(t) and Dv(t), until both the functions become flat, approximatively for τ ≥ 10.
This non-monotonic behavior with the persistence time implies that the system shows an
optimal value of τ that maximizes the departure from the equilibrium via the breaking of
the detailed balance. We justify this non-monotonic behavior through the phenomenology
reported in [65]. When the particle moves close to one of the two minima, the particle
explores a near-equilibrium regime where the local detailed balance almost holds and the
local currents are almost zero both in the small and large persistence regimes. This explains
why, in this space region, effective equilibrium approaches (that assume the detailed
balance condition) give good predictions for the local steady-state properties. Instead,
when the particle overcomes the inflected point of the potential (for which ∂2

xU = 0),
the particle enters into a non-equilibrium region that, in the large persistence regime,
displays an effective negative mobility. There, the particle velocity increases exponentially
in time (with very small fluctuations) until the second minimum is reached through an
accelerated motion. Thus, most of the non-equilibrium currents are generated when the
particle jumps. As we already discussed, the number of jumps from a minimum to the
other decreases with τ (in particular, until to be suppressed for τ = 10 and our setting
of the potential). Our measure of Dx and Dv confirms that the detailed balance is mostly
broken when the jumps occur, and thus it is reasonable to assume that the detailed balance
is almost restored for τ large enough where no jumps occur.
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4.3. Measuring the Non-Equilibrium in Active Systems

The study of the correlations and, in particular, the time behavior of Dx(t) and
Dv(t) suggest introducing a measure to quantify the breaking of the detailed balance and,
thus, how much the system is far from equilibrium. As Dv(t) (and, in principle, also Dx(t))
could assume negative values, we need to consider |Dv(t)| and |Dx(t)|. We propose a
measure based on the time integral of these observables and introduce the quantity:

µ = µx + µv , (8)

where

µx =
1
t∗

∫ ∞

0
|Dx(s)|ds (9)

µv =
1
t∗

∫ ∞

0
|Dv(s)|ds , (10)

where t∗ is the typical time that rules the relaxation of the response function for the passive
case (see above Section 4). The observable µ has the following meaning: starting from
an initial configuration (which is averaged), µ measures (i) how much the system is far
from the equilibrium during the whole trajectory history, and (ii) the global impact of the
detailed balance breaking on the time-decay of the response function. Indeed, when the
detailed balance holds, both µx and µv vanish as Dx(s) = Dv(s) = 0. In general, the larger
is µ, the greater is the amount and how long the detailed balance has been broken starting
from an initial configuration.

These observables are shown in Figure 4a,b for the quartic and double-well potentials,
respectively, for different values of τ/t∗. In the quartic potential case, µ is an increasing
function of τ meaning that the persistence of the activity increases the departure from
the equilibrium. While µ ≈ µx in the small persistence regime, this is no longer true
in the large persistence regime where µ ≈ µv. The double-well potential case confirms
the non-monotonic behavior already observed in Figure 3b–e: µ shows a peak and then
starts decreasing for larger values of τ until to become almost zero. Moreover, µ is mainly
determined by µx for the whole set of τ values. Indeed, even if Dv(t) assumes also larger
value than Dx(t), it is different from zero just for a narrow initial time-window while Dx(t)
remains larger for a longer time.

Figure 4. µ, µx and µv defined in Equations (8)–(10), as a function of τ/t∗ for the quartic potential, U(x) = kx4/4, and the
doublewell potential, U(x) = k(x4/4− x2/2) for panels (a,b), respectively. The other parameters are Da = 1, k = 3, γ = 1.
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5. Failure of the Approximated Approaches

To provide a qualitative explanation of several phenomena typical of active matter,
such as particle accumulation near boundaries or the dynamics in confining potentials,
different approximation schemes have been successfully introduced. Among the others,
the Unified Colored Noise approximation (UCNA) has been crucial for theoretical pur-
poses, providing the first analytical results for the probability distribution function of both
interacting and non-interacting confined systems [73]. This approach provides a scheme to
replace the self-propulsion with effective interactions and is quite similar to the so-called
Fox approximation [74]. Moreover, it is derived assuming vanishing currents and, thus,
the detailed balance, providing the best equilibrium-like predictions to describe the AOUP
non-equilibrium dynamics.

Despite the fact that these approaches are very useful to understand the static proper-
ties of self-propelled particles, at least when confined through convex potentials or inter-
acting through convex interactions, it has been shown that they fail to describe the active
time-dependent properties, such as time correlations and response functions. This concept
has been already stressed in [23], where the authors show that the UCNA approximation is
able to reproduce the response function just in small persistence regimes, where the system
is near the equilibrium and a generalized FDR could be obtained perturbatively in τ using
Equation (4). In the large persistence regime, the numerical study for nonlinear potentials
shows the failure of the UCNA approach.

The aim of this Section is to enforce this idea, through additional analytical argu-
ments, showing that the breakdown of the detailed balance plays an important role in
correlations and response functions and, as a consequence, also for susceptibility and
effective temperature.

5.1. Assuming the Detailed Balance

A possible approximated approach could consist in assuming the detailed balance
condition in Equation (5). This choice means that Dx(t) = 0 and Dv(t) = 0 and should
lead to results similar to those obtained in the UCNA approximation. Thus, the following
relations hold, 〈

xi(t)∇jU(0)
〉
=
〈
∇iU(t)xj(0)

〉
(11)〈

vk(t)∇k∇iU(t)vj(0)
〉
=
〈
vi(t)∇i∇kU(0)vj(0)

〉
, (12)

in such a way that the response can be approximated by

RD
xixj

(t) ≈ 1
Da

〈
xi(t)

∇jU(0)
γ

〉
+

τ2

Da

〈
vk(t)

∇k∇iU(t)
γ

vj(0)
〉

,

where the superscript D stands for detailed balance. Using the property 〈vk(t)∇k∇iU(t)vj(s)〉
= −d/dt〈vk(t)∇k∇iU(t)xj(s)〉, applying the derivative and using the equation of motion,
we obtain

RD
xi xj

(t) ≈ 1
Da

〈
xi(t)

∇jU(0)
γ

〉
+

τ

Da

〈
xi(t)

γ

∇i∇kU(0)
γ

∇kU(0)
〉

− τ

Da

〈
xi(t)Γjk(0)

∇k∇nU(0)
γ

vn(0)
〉
− τ2

Da

〈
xi(t)

∇j∇k∇nU(0)
γ

vk(0)vn(0)

〉
,

(13)

where we have also used the reversibility condition holding because of the detailed balance
assumption. The results of this approximation are shown in Figure 5 for the quartic
potential and the double-well potential. As expected, in the case of a quartic potential,
the approximation holds for small τ = 10−1, i.e., in near-equilibrium regimes, while is
less accurate for large τ = 10. In the case of a double-well potential, the approximation
holds for small and large values of τ, while is not accurate in the intermediate regime.
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We remark that the failure of RD
x (t) to reproduce the decay of Rx(t) is much evident in

correspondence of the ranges of τ such that the measure of the non-equilibrium proposed
in this work, Equation (8), assumes large values.

Figure 5. Response function, Rx(t) as a function of t/t∗ for different values of τ as indicated in the legend, in the case of
a quartic potential, U(x) = kx4, and a double-well potential, U(x) = k(x4/4− x2/2), shown in panels (a,b), respectively.
Solid lines are calculated numerically via Equation (3). Dashed lines report the expressions for RD (Equation (13)),
while dotted lines those for RU (Equation (17)). The parameters of the simulations are Da = 1, k = 3, γ = 1.

We also stress that RD
ij (t) is expressed in the following form,

DaRD
xixj

(t) ∝ 〈xi(t)Cj(0)〉 ,

where Cj(0) is defined by Equation (13) that apparently looks like similar to Equation (4).
Moreover, we also point out that it is not possible to express Cj as ∝ d/dxj ν(x, v) if we
require that ν is a normalized probability as in Equation (4). This observation alone implies
that any approximation for the probability distribution could not agree with the detailed
balance assumption.

5.2. Unified Colored Noise Approximation

According to the UCNA scheme [67,73,75], we can explicitly derive an approximate
solution for the steady-state probability distribution holding for general potentials that has
been used to reproduce the accumulation near boundaries [73] (modeled as soft truncated
potentials) and the particle accumulation far from the potential minimum of a single-well
potential [67]. Moreover, as shown in [23], this procedure obtained neglecting the particle
velocity leads to wrong results for time correlations and response functions even in the
harmonic case (that can be analytically checked). Recently, the UCNA has been successively
extended to include the particle velocity [67,76], which displays a Gaussian-like shape
with a space-dependent velocity variance. The extended version of the UCNA has the
following form,

p(x, v) ∝ exp
(
− τ

Da
v

Γ(x)
2

v
)

exp
(
− H

Daγ

)
, (14)
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where the effective HamiltonianH and Γ(x) are given by

H(x) = U(x) +
τ

2γ
[U′(x)]2 − Daγ log (detΓ(x)) (15)

Γ(x) = I + τ

γ
∇2U(x) . (16)

Here, the matrix Γ(x) plays the role of a space-dependent Stokes force that affects both the
effective potential and the variance of the particle velocity. Note that these interpretations
should be limited to the convex potential (or non-convex potential in the small persistence
regime) since the approximation cannot work if Γ(x) assumes non-positive values in some
regions of space. Thus, there is no hope of applying the method in the case of double-
well potentials.

Using the UCNA, it is possible to derive an expression for the linear response function,
Rx(t). Indeed, plugging the log-derivative of Equation (14) into Equation (4), we obtain

RU
ij (t) ≈

1
Da

〈
xi(t)

∇jU(0)
γ

〉
+

τ

Da

〈
xi(t)

γ

∇j∇kU(0)
γ

∇kU(0)
〉

− τ

Da

〈
xi(t)Γjk(0)

∇k∇nU(0)
γ

vn(0)
〉
− τ2

Da

〈
xi(t)

∇j∇n∇kU(0)
γ

(
3
2

Da

τ
Γ−1

nk (0)−
Knk(0)

2

)〉
,

(17)

where the superscript U stands for UCNA and Kij = vj(s)vk(s) is the generalized kinetic
energy. The derivation of this result is reported in Appendix C. The results of the UCNA
approximation are shown in Figure 5a for the quartic potential. RU

x (t) is a good approxi-
mation ofRx(t) just in the small persistence regime (here, shown for τ = 10−1), while it is
not accurate for large τ = 10 asRU

x (t) decays slower thanRx(t).
We stress thatRU

x (t) in general does not coincide withRD
x (t) because the last terms

in the second lines of Equation (17) and (13) are different. However, according to the
UCNA prediction, τΓkj(x)〈Kkj(x)〉 ≈ Da, where 〈Kij(x)〉 is the space-dependent kinetic
temperature introduced in [61,67] for the scalar case (and the last average is realized at fixed
x). Equation (17) coincides with Equation (13) only by using this reasonable identification.
We also stress that the UCNA dramatically fails to describe active particles in non-convex
potentials because the matrix Γ−1 is ill-defined.

6. Conclusions

Our study provides an explicit extension of the generalized FDR to non-equilibrium
systems of active matter that are numerically checked in many cases of interest, in particular,
the case of the quartic potential explored for one-, two-, and three-dimensional systems
and the case of a double-well potential. At variance with previous approaches, we derive
simple expressions for the correlators involved in the FDR, which could be measured in
experimental systems. Our results can be extended to more general dynamics, within the
framework of non-equilibrium systems. In general, the FDRs out of equilibrium could
involve terms that depend on the specific considered model. For this reason, further
investigations are needed to understand if the shape of the FDR remains unchanged in
the case of other popular models in the field of active matter, such as Active Brownian
Particles. However, in this case, the procedure could be more complex due to the presence
of a source of noise in the dynamical equations for the active force that keeps the active
speed fixed.

Through our expression, we are also able to extrapolate a measure to determine
how far the system is from equilibrium by evaluating its influence on the time-decay
of the response function. We quantify how much the breaking of the detailed balance
affects the response decay looking directly at the correlations of the generalized FDR.
This analysis agrees with previous qualitative observations showing a monotonic increase
of the departure from the equilibrium with the increase of the persistence time in the
quartic potential case but a re-entrant (non-monotonic) behavior in the case of a double-
well potential where the equilibrium is almost restored for large enough persistence times.
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Finally, as the intuition suggests, increasing the dimensionality reduces the departure
from equilibrium.

Our expression of the FDR shows that the breaking of the detailed balance plays
a crucial role to determine the time-decay of the response function and, thus, that any
approximated descriptions that assume the detailed balance (or similar hypothesis to
neglect the dynamical properties of active particles) to calculate responses, susceptibilities
or mobilities are expected to yield poor results, unless in regimes of small activity, or when
interactions are weak and confinement is absent or harmonic (all cases where detailed
balance is weakly or not violated by this model). Finally, let us mention that the case of
interacting particles can be treated within the same approach. A FDR similar to Equation (5)
can be obtained, and we intend to address this topic in a future work.
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Appendix A. Derivation of the FDR for Active Particles

As a first step, we manipulate the original dynamics (i.e., Equations (1) and (2)) to
eliminate fa in favor of ẋ = v, through an exact change of variables. Applying the time
derivative to Equation (1), using Equation (2) to eliminate ḟa and, finally, replacing fa with
v (through Equation (1)), we get

ẋ = v (A1)

τv̇ = −Γ(x)v− ∇U(x)
γ

+ χ +
Ht

γ
, (A2)

where χ =
√

2Daξ is a noise vector such that

〈χi(t)χj(s)〉 = 2Daδijδ(t− s) .

The term Γ(x) is a two-dimensional matrix acting as a space-dependent friction whose
components read

Γij(x) = δij +
τ

γ
∇i∇jU(x) ,

where the space-dependence is provided by the potential curvature. The original dynamics,
perturbed on the particle’s position, is mapped onto an underdamped dynamics with an
effective perturbation that is not simply ht as in Equation (1). The dynamics of vi is affected
by an effective perturbation Ht that reads

Ht

γ
=

[
1 + τ

d
dt

]
ht

γ
(A3)

Despite the strangeness of the transformed dynamics, it is straightforward to apply
the Novikon theorem [12] to get an exact expression for Rxixj(t − s) in terms of noise
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correlations. Indeed, as the functional derivative with respect to Ht/γ is equivalent to the
functional derivative with respect to the noise χ:

δ

δχj
= γ

δ

δH j
=

[
1 + τ

d
dt

]
γ

δ

δhj(t)
,

where we have used the chain rule in the last equality. The inversion of this relation reads

γ
δ

δhj(t)
=

[
1− τ

d
dt

]
δ

δχj(t)
. (A4)

Thus, starting from the definition ofRxixj(t− s), with t > s, we get

Rxi xj (t− s) =
〈xi(t)〉h − 〈xi(t)〉

δxj(s)
= γ

δ〈xi(t)〉h
δhj(s)

∣∣∣∣∣
h=0

= γ
∫ t
D[χh]P[χh]

δ

δhj(s)
xh

i (t)

= −γ
∫ t
D[χh]x

h
i (t)

δ

δhj(s)
P[χh] = −

∫ t
D[χh]x

h
i (t)

[
1− τ

d
ds

]
δ

δχj(s)
P[χh] ,

(A5)

where, we have used the integration by parts in the third equality and Equation (A4) in the
last equality. The term P[χh] is the noise path probability, generating the trajectory, namely,

P[χh] ∝ exp
(
− 1

4Da

∫ s
χ2

h(t
′)dt′

)
,

where the index h reminds that χh generates the perturbed trajectory. Using the Gaussianity
of P[χh] and integrating by parts, we get

2DaRij = 〈xi(t)χj(s)〉 − τ
d
ds
〈xi(t)χj(s)〉 . (A6)

This expression is a generalization to the active dynamics, employed so far, of the
well-known FDR for overdamped passive Brownian particles, which can be recovered in
the equilibrium limit, τ → 0. The additional term, which is proportional to τ involves the
time derivative of the noise correlation and needs to be treated carefully. Replacing the
noise term χi with Equation (A2), that is the evolution equation for vi, in Equation (A6),
the correlation between position and noise reads

〈xi(t)χj(s)〉 = τ
d
ds
〈xi(t)vj(s)〉+

τ

γ
〈xi(t)vj(s)〉+ 〈xi(t)∇i∇kvk(s)〉+

1
γ
〈xi(t)∇jU(s)〉 . (A7)

Plugging this expression into Equation (A6), it is straightforward to derive an expres-
sion for Rij(t− s) as a function of more suitable correlations involving particle position
and velocity:

2DaRij(t− s) =
〈

xi(t)
[

vj(s) +
∇jU(s)

γ

]〉
− τ2 d2

ds2

〈
xi(t)vj(s)

〉
− τ2 d

ds

〈
xi(t)

∇j∇kU(s)
γ

vk(s)
〉

. (A8)

The first average corresponds to the well-known passive Brownian result, while the
second and the third averages account for the non-equilibrium contributions occurring for
non-vanishing τ.

In its current state, expression (A8) is not so useful because involves the temporal
derivatives of suitable correlation functions and cannot be easily calculated. Using the
steady-state property of the correlations, that implies that d/ds→ −d/dt, we get

2DaRij(t− s) =
〈

xi(t)
[

vj(s) +
∇jU(s)

γ

]〉
− τ2 d

dt
〈
vi(t)vj(s)

〉
+ τ2

〈
vi(t)

∇j∇kU(s)
γ

vk(s)
〉

. (A9)

Now, replacing v̇ with the equation of motion, Equation (A2), we obtain
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2DaRij(t− s) =
〈

xi(t)
[

vj(s) +
∇jU(s)

γ

]〉
+ τ

〈
Γik(t)vk(t)vj(s)

〉
+ τ

〈
∇iU(t)

γ
vj(s)

〉
+ τ2

〈
vi(t)

∇j∇kU(s)
γ

vk(s)
〉

,
(A10)

where we have used the causality, such that 〈χi(t)Oj(s)〉 = 0, for any observable Oj if t > s.
Using the same strategy, further manipulations lead to the final result:

2DaRxixj(t− s) =
[〈

xi(t)
∇jU(s)

γ

〉
+

〈
∇iU(t)

γ
xj(s)

〉]
+ τ2

[〈
vk(t)

∇k∇iU(t)
γ

vj(s)
〉
+

〈
vi(t)

∇j∇kU(s)
γ

vk(s)
〉]

,
(A11)

where, again, we have replaced v̇i with the equation of motion ad used that 〈χi(t)Oj(s)〉 = 0,
for any observable Oj if t > s. This completes the derivation of Equation (5). As the sys-
tem does not satisfy the detailed balance we cannot use the reversibility to simplify the
above expression, because

〈
xi(t)∇jU(s)

〉
6=
〈
∇iU(t)xj(s)

〉
and

〈
vk(t)∇k∇iU(t)vj(s)

〉
6=〈

vi(t)∇j∇kU(s)vk(s)
〉
.

Appendix B. The Active Harmonic Oscillator

The harmonic oscillator can be used as a check to test the different FDR for the
linear response function, namely Equations (4) and (5). Indeed, in this case, the response
function and the correlations can be calculated exactly as a function of time and the steady-
state distribution is known. As the system is linear, each component of the dynamics
evolves independently with the others, and thus studying the one-dimensional system is
enough. For this reason, we drop the subscripts in what follows. Choosing U(x) = k/2x2,
the steady-state distribution is a multivariate Gaussian, namely,

p(x, v) ∝ exp
(
− τ

Da
Γ

v2

2

)
exp

(
− k

Daγ
Γ

x2

2

)
(A12)

where v = ẋ corresponds to the particle’s velocity, such that

v = − k
γ

x +
fa

γ
, (A13)

and the coefficient Γ is given by

Γ = 1 + τ
k
γ

,

and represents the effective viscosity of the dynamics which is spatial independent in the
harmonic case. We start evaluating Equation (4), that explicitly leads to the following
expression for the response function in terms of correlations:

Rx(t) = −
〈

x(t)
d

dx
p(x(0), v[x(0), f a(0)])

〉
=

k
Daγ

Γ[〈x(t)x(0)〉 − τ〈x(t)v(0)〉] ,
(A14)

where we d/dx is the total derivative (not just the partial derivative) and the function needs
to evaluated as a function of x and fa because of Equation (A13). We observe that Rx reduces
to the well-known relation for passive overdamped systems in the limit τ → 0, since in
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this limit Γ→ 1. In this special case where the detailed balance holds, the correlations can
be calculated as a function of time, in such a way that, in the steady state, we get

〈x(t)x(0)〉 = Daγ

k
τ

(
τ2 k2

γ2 − 1
)−1[ k

γ
e−

t
τ − 1

τ
e−

k
γ t
]

(A15)

〈v(t)x(0)〉 = d
dt
〈x(t)x(0)〉 = −〈x(t)v(0)〉 . (A16)

Combining these results, we obtain

Rx(t) = e−
k
γ t , (A17)

which does not depend on τ. As a consequence, the response function in the presence of a
harmonic force is not influenced by the value of τ.

In this special case, also the generalized FDR, given by Equation (5), can be evaluated
explicitly and reads

DaγRx(t) = k
[
〈x(t)x(0)〉+ τ2〈v(t)v(0)〉

]
. (A18)

Using the time-dependent expressions for the correlation functions, we obtain
Equation (A17), confirming that the equivalence between Equations (4) and (5) in the
harmonic case.

Appendix C. Response Function with the UCNA Approach

To evaluate the response function using the UCNA approach, it is enough to plug
the log-derivative of the UCNA probability distribution, namely, Equation (14), into the
generalized FDR (4) without employing any path integral techniques. Explicitly, the log-
derivative of the distribution (14) reads

− d
dxj

log p(x, v) =
1

Daγ

d
dxj
H+

τ

2Da

d
dxj

(vk(x)Γkn(x)vn(x)) . (A19)

We remind that the spatial derivative comparing in Equation (4) and, thus,
in Equation (A19), is a total derivative [23]. As already shown in [23], one needs to replace
the velocity v with its whole expression as a function of the position before taking the
derivative, i.e., γv = −∇U + fa; otherwise, one gets inconsistent results. Following these
procedures, we get

1
Daγ

d
dxj
H(x) =

∇kU
Daγ

Γkj(x)−
3
2

d
dxj

log det|Γ(x)| (A20)

τ

2Da

d
dxj

(vk(x)Γkn(x)vn(x)) =
1

Da

τ2

2γ
∇j∇k∇nUvkvn −

τ

Da
Γjk(x)

∇k∇nU(x)
γ

vn . (A21)

The spatial log-derivative of the Γ determinant can be evaluated in components
and reads

∂

∂xn
log det|Γ| = ∑

jk
Γ−1

jk
∂

∂xn
Γkj = ∑

jk
Γ−1

jk
∂

∂xj
Γkn (A22)

Finally, collecting the results all together in Equation (4), we obtain Equation (17).
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