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ABSTRACT Neomycin is the first-choice antibiotic for the treatment of porcine enteritis 
caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the 
rise after the increased use of neomycin due to the ban on zinc oxide. We identified 
the neomycin resistance determinants and plasmid contents in a historical collection of 
128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were 
characterized by whole-genome sequencing and antimicrobial susceptibility testing, 
followed by conjugation experiments and long-read sequencing of eight selected 
representative strains. We detected 35 sequence types (STs) with ST100 being the 
most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance 
genes, namely aph(3′)-Ia and aph(3′)-Ib, which were identified in 93% and 7% of the 
isolates, respectively. The aph(3′)-Ia was found on different large conjugative plasmids 
belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and 
IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI 
carried genes encoding resistance to other antimicrobials or heavy metals, highlighting 
the risk of co-selection. The aph(3′)-Ib gene occurred on a 19 kb chimeric, mobilizable 
plasmid that contained elements tracing back its origin to distantly related genera. While 
aph(3′)-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was 
observed between aph(3′)-Ib and mobile genetic elements. In conclusion, the spread of 
neomycin resistance in porcine clinical E. coli is driven by two resistance determinants 
located on distinct plasmid scaffolds circulating within a highly diverse population 
dominated by ST100.

IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia 
coli enteritis in pigs. This work shows that aph(3′)-Ia and to a lesser extent aph(3′)-Ib 
are responsible for the spread of neomycin resistance that has been recently observed 
among pig clinical isolates and elucidates the mechanisms of dissemination of these 
two resistance determinants. The aph(3′)-Ia gene is located on different conjugative 
plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and 
Tn4352) that contributed to its spread. The diffusion of aph(3′)-Ib is mediated by a small 
non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related 
members of the Pseudomonadota phylum and was not associated with any detecta
ble mobile genetic element. Although the spread of neomycin resistance is largely 
attributable to horizontal transfer, both resistance determinants have been acquired by a 
predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for 
approximately one-third of the strains.
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P athogenic Escherichia coli, mainly enterotoxigenic E. coli (ETEC), is a leading cause 
of porcine enteritis, resulting in significant economic losses in pig production. 

Traditionally, colistin and zinc oxide were widely used for the treatment of porcine 
enteritis, but restrictions on the use of these two antimicrobials imposed in the European 
Union (EU) and other parts of the world have made antibiotic treatment of this disease 
difficult (1, 2). Currently, neomycin (NEO) is one of the first choices for this indication 
in view of its excellent antimicrobial activity against E. coli and its favorable pharmaco
logical properties for the treatment of enteritis (i.e., low gastrointestinal absorption) (3). 
In Denmark, NEO was used for the treatment of post-weaning diarrhea in pigs until 
its withdrawal in 2008 and subsequently was reintroduced in 2017. This resulted in a 
gradual rise in the prevalence of NEO resistance by up to 20% in 2020 among clinical E. 
coli isolates from Danish pig farms (4, 5). Recently, we demonstrated an association of 
NEO resistance in clinical isolates from weaners with NEO use at the farm level and the 
presence of F4 and F18 fimbriae, which are typically associated with ETEC (6).

NEO resistance is mediated by aminoglycoside-modifying enzymes such as aminogly
coside 3′ O-phosphotransferases (aph-3′) (7, 8). The aph(3′)-Ia gene (previously aphA1) 
is the most commonly reported NEO/kanamycin resistance gene in commensal and 
pathogenic E. coli isolated from pigs (9–11). Other aminoglycoside phosphotransferase-
encoding genes previously reported in porcine E. coli include aph(3′)-Ib, aph(3′)-IIa, 
and aph(3′)-IIIa (12, 13). NEO resistance genes are usually located on transposons or 
other mobile genetic elements, facilitating their horizontal movement between different 
clonal lineages and bacterial species (10, 14). Previous studies described the mobilization 
mechanism of the aph(3′)-Ia gene in Tn4352, a compound transposon bounded by IS26, 
identified on an IncA/C2 plasmid (15). Tn4352 is widely diffused, often in association with 
other relevant resistance determinants, such as the tet(X7) gene, conferring high-level 
tigecycline resistance identified in E. coli from chickens, or mcr-1.1 conferring colistin 
resistance in E. coli from swine, poultry, and bovine sources (16, 17). The aph(3′)-Ia gene 
has also been reported as part of Tn903 in E. coli (18). However, the genetic environment 
of NEO resistance genes in pig pathogenic E. coli is largely unknown.

The objective of this study was to identify the NEO resistance determinants and 
assess their genetic location and mobility in a historical collection of 128 NEO-resistant 
E. coli isolates collected from Danish pig farms between 1992 and 2020. All isolates were 
analyzed by whole-genome sequencing (WGS), followed by conjugation experiments 
and long-read sequencing of selected strains for plasmid characterization.

RESULTS

Antimicrobial resistance

Antimicrobial susceptibility testing (considering the intermediate category as resistance) 
showed that 122 isolates (95.3%) were resistant to three or more antimicrobial classes 
tested in addition to NEO. A single isolate was susceptible to all tested antimicrobials. 
The highest proportions of resistance were observed for streptomycin (89.8%), sulfame
thoxazole (85.9%), ampicillin (83.6%), and tetracycline (78.9%). Resistance proportions 
were the lowest for cefotaxime (5.5%), colistin (3.1%), and ciprofloxacin (no resistance 
detected). NEO MICs ranged from 64 to ≥4,096 mg/L, with most of the isolates (n = 
105, 82%) displaying MICs between 128 and 512 mg/L (Fig. 1). Significant differences in 
the prevalence of antimicrobial resistance (AMR) were observed between toxigenic and 
non-toxigenic isolates with ETEC displaying lower proportions of resistance to ampicillin, 
chloramphenicol, sulfamethoxazole, and streptomycin (Table 1).

Based on WGS data, a total of 67 AMR genes were detected by ResFinder, including 
genes encoding aminoglycoside resistance mediated by aadA adenylyltransferases 
(aadA1, aadA2, aadA2b, aadA3, aadA5, aadA7, aadA8b, aadA11, aadA12, aadA13, aadA17, 
and aadA22), aph phosphotransferases [aph(3′)-Ia, aph(3′)-Ib, aph(3″)-Ib, aph(4)-Ia, and 
aph(6)-Id], and aac acetyltransferases [aac(3)-IV and aac(3)-IId]. Among those, two 
phosphotransferase-encoding genes were previously associated with NEO resistance, 
namely aph(3′)-la, which was detected in 119 isolates (93%), and aph(3′)-lb, which was 
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found in nine ETEC isolates (7%). The occurrence of genes encoding resistance to 
antimicrobial classes other than aminoglycosides is presented in Table 1. ETEC harbored 
more frequently aph(3′)-Ib and less frequently sul2, aph(3″)-Ib, tet(B), dfrA5, dfrA12, and 
tet(M) genes in comparison with non-ETEC isolates (Table 1). Statistical analysis revealed 
a strong agreement between the presence of resistance genes and phenotypic resist
ance based on MIC testing. The kappa value ranged between 0.62 and 1.00 for all tested 
antimicrobials, except for nalidixic acid and spectinomycin, which displayed kappa 
values of 0.03 (slight agreement) and 0.62 (substantial agreement), respectively. No 
known colistin resistance determinants were identified in the four strains defined as 
colistin resistant by phenotypic testing.

Strain diversity

Multilocus sequence typing (MLST) analysis of the 128 NEO-resistant isolates revealed 
the presence of 35 sequence types (STs), including 20 singleton STs and 10 clonal 
complexes (CC): CC10, CC12, CC23, CC42, CC86, CC101, CC155, CC156, CC165, and CC469. 
In total, 38 strains did not belong to a CC. The most common lineage was ST100/CC165, 
which accounted for 49 strains (38.3%), followed by ST10/CC10 (22.7%), CC23 (7.8%), 
and CC42 (6.3%). Among the 128 isolates tested, phylogroup A was the most common 
(64.1%), followed by B1 (14.1%), B2 (0.8%), C (7.8%), D (7.8%), E (3.1%), G (0.8%), or 
undetermined phylogroups (1.6%). The SerotypeFinder tool identified a total of 31 
O-types and 23 H-antigens, leading to 41 O:H combinations (see also Data set S1 in 
the supplemental material). The most common serotype was O149:H10 (28.9%) followed 
by O141:H4 (6.3%) and O138:H14 (3.9%).

A phylogenetic tree alignment, based on 1,989 core genes (defined as present in 
99% of the strains), was performed to assess the genetic relationships among the 128 
Illumina-sequenced strains (Fig. 2). Coherently with MLST results, a midpoint-rooted 
visualization of the tree displayed several branches, the most populated one consisting 
of 49 genomes belonging to ST100 and two genomes with unassigned STs. All but one 
of the other 76 genomes clustered in multiple clades (Fig. 2). Associations between CCs 
and phylogroups were observed (Fig. 2). Namely, the two major CCs, CC165 and CC10, 
were clearly associated with phylogroup A (95.8% and 96.5% isolates, respectively) and 
all CC23 isolates belonged to phylogroup C. On the contrary, phylogroup B1 exhibited 

FIG 1 Neomycin MIC distribution of 128 porcine E. coli strains. NEO MIC was tested in the range from 64 to ≥ 4,096 mg/L.
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a high level of heterogeneity as it comprised six CCs and seven singleton STs. No 
associations were observed between serogroups and clades (Fig. 2).

While aph(3′)-Ia occurred in a variety of genetically distinct E. coli lineages, aph(3′)-Ib 
showed a less heterogeneous distribution. Out of the nine strains carrying this NEO 
resistance gene, six strains were obtained from pigs in three different Danish regions, 
with a mean distance on the core genome of 13 single-nucleotide polymorphisms 
(SNPs; range: 7–19 SNPs) and were localized in the ST100 branch (SNP distance matrix 
is provided in Data Set S2). The three remaining strains did not show any core genome-
based relationship.

Distribution of virulence genes

The most common virulence genes detected in the 128 sequenced isolates were curlin 
major subunit (csgA, 99.2%), lipoprotein precursor (nlpl, 96.9%), avian E. coli hemolysin 
gene (hlyE, 95.3%), followed by the presence of fimbrial cluster genes (yehA/B/C/D, 
91.4%). In all, 86 (67.2%) isolates were ETEC, defined as E. coli with one or more entero
toxin genes (6), namely estA, estB (heat-stable enterotoxin A and B; STa and STb), and 
elt (heat-labile enterotoxin; LT). The most common enterotoxin gene was estB (60.2%), 
followed by elt (51.6%) and estA (24.2%). The most prevalent enterotoxin combination 
was estB:elt (40.6%). The astA gene encoding enteroaggregative E. coli heat-stable 
enterotoxin was present in 60.9% of isolates. Two isolates were identified as hybrid 
ETEC/STEC (shiga toxin-producing E. coli), as they exhibited the presence of both shiga 
toxin (stx2e) and enterotoxins (estA/B), along with F18 fimbria (fedA).

Fimbrial genes were widely distributed, with the most common types being fimH type 
1 fimbriae (50.8%), followed by faeG encoding F4 (41.4%) and fedA encoding F18 (29.7%), 
which was present as two subunits fedAac (n = 33) and fedAab (n = 5). Other fimbrial 
genes, including afa, focC, sfaD, yfcV, papA_F16, papC_F48, and f17G (F17), were detected 
in single isolates. ETEC isolates harbored faeG (52.3%), fedA:fimH (25.6%), faeG:fimH 
(6.9%), fedA (6.9%), fimH (6.9%), while one isolate (1.2%) had no fimbriae-encoding 
genes. Accordingly, 59.3% and 32.5% of ETEC isolates could be classified as ETEC:F4 and 
ETEC:F18, respectively (Table S1).

In vitro conjugative transfer of neomycin resistance

PlasmidFinder performed on WGS data demonstrated high variability of replicons within 
the 128 NEO-resistant strains. In all, 32 strains were selected for conjugation experiments 
based on the phylogenetic tree of Fig. 2 (see also Data Set S1 in supplemental material). 
All donor strains were positive for more than one replicon (Table 2). NEO resistance was 
transferable to E. coli K12 from 25 out of the 32 selected donor strains. Each of the 25 
transconjugants harbored either aph(3′)-Ia (n = 23) or aph(3′)-Ib (n = 2), and at least one 
of the replicon types from the respective donor (Table 2). Based on PCR-based replicon 
typing (PBRT), the most prevalent replicon type associated with the transfer of aph(3′)-Ia 
was I1(α) (14/23 donor strains). Overall, this replicon type was identified in 80 of the 119 
strains carrying aph(3′)-Ia. Other replicon types commonly associated with aph(3′)-Ia in 
the transconjugants were FII (n = 8), HI2 (n = 5), and X1 (n = 3), which occurred in 79, 20, 
and 49 aph(3′)-Ia-positive strains, respectively. The two transconjugants with aph(3′)-Ib 
carried I2 and HI2 plasmids, respectively (Table 2). Some transconjugants did not transfer 
only one single plasmid but were positive for multiple (up to five) replicon types, such as 
X1, X4, I2, FIB, FIA, HI1, HI2, and FII.

Plasmid identification

To better characterize the plasmids carrying the aph(3′)-Ia and aph(3′)-Ib genes, eight 
donor strains, used for the conjugation experiments and displaying unique plasmid 
profiles by PBRT, were selected for long-read sequencing (indicated by arrows in Fig. 
2; see also Data Set S1 in the supplemental material). The selected strains belonged to 
ST10, ST23, ST58, ST88, ST100, ST101, ST2952, and ST12193. Table 3 shows the plasmid 
profiles of these strains that were sequenced by Oxford Nanopore Technologies (ONT). 
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The aph(3′)-Ia was located on (i) an IncI1α plasmid (pAV54_I, pB188_I, pB44_I; 110 kb) 
that was conjugated from three distinct donor strains belonging to ST10 (CC10), ST88 
(CC23), and ST58 (CC55); (ii) an IncN plasmid (pC40_N; 76.7 kb) transferred from an ST101 
(CC101) donor; (iii) an IncHI1 plasmid (pB207_H; 205 kb) from singleton ST2952; (iv) 
an IncHI2 plasmid (pB39_H; 264 kb) from singleton ST12193; and (v) a 5.9 kb ColRNAI 
plasmid from ST100 (CC165). This plasmid was estimated at 60 copies per cell. Various 
genes encoding resistance to other antimicrobials [aadA1, aadA2, aadA12, dfrA1, dfrA12, 
ΔqacE, aph(3″)-Ib, aph(6)-Id, ant(3″)-Ia, aac(3)-IId, blaTEM-1B, blaTEM-214, sul1, sul2, tet(A), 
tet(B), erm(B), mph(A)] or heavy metals such as mercury (merT) and tellurite (terW) 
were detected in all these NEO resistance plasmids except the small ColRNAI plasmid 
(Table 3). In one of the three IncI1α plasmids analyzed (pB44_I), the aph(3′)-Ia on Tn903 
showed a distinct localization along the plasmid backbone (Fig. S1). As for aph(3′)-lb, the 
prototype MG16 strain harbored this gene on a 19-kb chimeric plasmid characterized 
by a RepA protein not detected by PlasmidFinder (here named RepMG16), whose gene 
shared a 98.8% nucleotide identity with the one from pAX22 plasmid (HF679279.1) 
(19). Yet, the BLASTn research performed on the entire plasmid indicated similarities 
with additional plasmid backbones, such as plasmids pROUE1 (MK047608.1) (20) and 
pLM16A1 (KM659090.1) (21) found, respectively, in a Pseudomonas putida strain, isolated 

TABLE 2 Characteristics of the 32 NEO-resistant strains selected for bacterial conjugation, including ST, CC, MIC of NEO, NEO resistance gene, transfer of NEO 
resistance by conjugation, and PBRT in both donor and transconjugant strains

Strain ID ST/CC (no.) NEO MIC (mg/L) NEO resistance gene Conjugative PBRT in donor PBRT in transconjugant

JEO5619a CC165 (49) 4,096 aph(3')-Ia Yes I1α, FIB, X1, FII I1α
AV1 CC165 (49) 256 aph(3')-Ib Yes I2, FIB, I1ϒ, FIIS, FII I2(δ)
B188a CC23 (10) 512 aph(3')-Ia Yes I1α, FIB, X1, FII I1α
MG16a CC23 (10) 256 aph(3')-Ib Yes HI2, FIB, FIIS, FII HI2
A73 CC86 (3) 256 aph(3')-Ia Yes I2, BO, FIB, FIIS, FII BO, FII
C71 ST641 (2) 256 aph(3')-Ib No
AV54a CC10 (29) 64 aph(3')-Ia Yes I1α, BO, FIIS, X1, FII I1α
A34 CC156 (2) 256 aph(3')-Ia Yes I1α, FIB, FIA, FII I1α
B44a CC155 (4) 256 aph(3')-Ia Yes I1α, FIB, FII I1α
C40a CC101 (1) 256 aph(3')-Ia Yes N, FIB, FII N, FII
A126 CC12 (1) 256 aph(3')-Ia Yes BO, FIB, FII BO
MG12 CC469 (1) 128 aph(3')-Ia No
A102 Unknown CC (20) 256 aph(3')-Ia Yes HI2, I1α, X1, FII HI2, I1α, FII
MG9 CC42 (8) 128 aph(3')-Ia Yes I1α, FIB, FII I1α
C4 ST117 (2) 512 aph(3')-Ia Yes I1α, FIB, FII I1α
C66 ST542 (2) 128 aph(3')-Ia Yes FIB, FII FIB, FII
C134 ST760 (1) 256 aph(3')-Ia Yes I1α, X1, FII I1α
C109 ST763 (3) 256 aph(3')-Ia No
C147 ST772 (3) 256 aph(3')-Ia Yes HI2, I1α, I2, FIB, FII HI2
B61 ST1629 (1) 2,048 aph(3')-Ia Yes I1α, FIB, FIA, X1, FII I1α, FIB, FIA, FII
C16 ST2177 (1) 512 aph(3')-Ia No
B209 ST2521 (1) 128 aph(3')-Ia Yes I2, FIB, FIA, X1, FII X1
C74 ST2602 (1) 128 aph(3')-Ia Yes HI2, I1α, FIB, X1, FII HI2, FII
Z6 ST2628 (1) 128 aph(3')-Ia Yes I1α, FIA, FIB, FII I1α
B138 ST2675 (1) 512 aph(3′)-Ia Yes HI2, I1α, X1, FII, X4 I1α
B207a ST2952 (2) 128 aph(3′)-Ia Yes HI1, I1α, I2, FIB, X1, FII, X4 HI1, I1α, I2, FIB, X4
C52 ST3524 (2) 256 aph(3')-Ia No
B218 ST3525 (1) 1,024 aph(3')-Ia Yes HI1, I1α, I2, FIB, X1, FII X1, FII
C30 ST7651 (1) 256 aph(3')-Ia No
B24 ST10333 (4) 128 aph(3')-Ia No
B39a ST12193 (1) 128 aph(3')-Ia Yes HI2, I1α, FIIS, N2, X1, FII HI2
B146 ST11407 (1) 128 aph(3')-Ia Yes HI2, I1α, X1, FII I1α, X1, FII
aStrains selected for Oxford nanopore technologies sequencing.
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from the hospital setting, and a member of the Achromobacter genus, isolated from an 
environmental source (Fig. 3). Despite sharing similar backbones and replicase genes, 
these plasmids did not carry the aph(3′)-Ib gene. The MG16 plasmid showed 100% 
nucleotide identity in a region of 2.5 kb flanking the NEO resistance gene aph(3′)-Ib with 
pUZ8002 plasmid (MN602278.1) isolated from an E. coli in Germany. This region carries 
genes encoding for the protein traB, ΔtraA, aph(3′)-Ib, and a toxin/antitoxin system. None 

TABLE 3 Main features of the eight completely sequenced strains, including plasmid replicon type, size, virulence genes, and resistance genes

Strain ID (ST) Plasmid Replicon type Size (kb) Virulence genes on plasmid Resistance genes on plasmid NCBI Acc. no.

JEO5619 (ST100) pJEO5619_Col ColRNAI 5.9 −a aph(3′)-Ia OQ401023

pJEO5619_F IncFIB/FII 117.8 astA, eltA, eltB aadA1, dfrA1, mph(B), ΔqacE, sul1 OQ401022

pJEO5619_FSE11 IncFII(pSE11) 83.1 faeC, faeD, faeE, faeF, faeH, faeI, 

faeJ (K88 pili/F4 fimbriae)

− OQ401021

pJEO5619_V UTb 65.6 hlyA, hlyB, hlyC, hlyD, astA − OQ401019

pJEO5619_X IncX1 33.5 − aadA1, dfrA1, mph(B), ΔqacE, sul1 OQ401018

pJEO5619_I IncI1α 101.4 − aph(3″)-Ib, aph(6)-Id OQ401020

AV54 (ST10) pAV54_I IncI1α 107.0 − aadA1, aph(3')-Ia, dfrA1, ΔqacE, sul1, 

aph(3″)-Ib, aph(6)-Id, blaTEM-1B,

sul2, tet(A), tet(R), Mer locus

OQ420467

pAV54_F IncFII 82.6 esta − OQ344286

pAV54_FX IncFII/IncX1 76.4 hlyA, hlyB, hlyC, hlyD − OQ420466

pAV54_BO IncB/O 116.1 − Mer locus OQ420465

B188 (ST88) pB188_I IncI1(α) 112.5 − aadA2, aph(3')-Ia, dfrA12, erm(B), 

mph(A), ΔqacE, sul1, Mer locus

OQ420475

pB188_F IncFIB 171.6 iroB, iroC, iroD, iroN, iutA, iucA, 

iucB, iucC, iucD

aph(3″)-Ib, aph(6)-Id, sitABCD, sul2, 

tet(A), arsD, Mer locus

OQ420474

pB188_p0111 p0111 92.2 − − OQ420476

pB188_X IncX1 41.3 − aadA5, dfrA17, blaTEM-1B, ΔqacE OQ420477

MG16 (ST23) pMG16 pMG16 19.6 − aph(3')-Ib OQ401017

pMG16_Hc IncHI2 ND ND ND

B44 (ST58) pB44_I IncI1α 101.4 − aph(3')-Ia, blaTEM-1B OQ420464

C40 (ST101) pC40_N IncN 76.7 − ant(3'')-Ia, aph(3'')-Ib, aph(3')-Ia, 

aph(6)-Id, blaTEM-1B, ΔqacE, dfrA1, 

mph(A), aadA1, sul1, Mer locus

OQ401024

pC40_Col Col440II 5.4 − − OQ401025

B207 (ST2952) pB207_H IncHI1 205.2 − aac(3)-IId, dfrA12, aph(3'')-Ib, 

aph(3')-Ia, aph(6)-Id, blaTEM-1B, 

blaTEM-214, sul2, tet(B), locus Mer

OQ401029

pB207_I IncI1α/X1 153.2 hlyA, hlyB, hlyC, hlyD blaTEM-1B, blaTEM-1B OQ401028

pB207_FF IncFIB/FII 97.2 − − OQ420463

pB207_I2 IncI2 59.6 − − OQ401027

pB207_X IncX4 31.8 − − OQ401026

pB207_F IncFII 68.9 − aadA12, blaTEM-1B, erm(B), mph(A), 

ΔqacE, sul1

OQ420462

B39 (ST12193) pB39_H IncHI2 264.4 − aph(3')-Ia, tet(B), ter(W) OQ420469

pB39_V UT 260.7 − − OQ420472

pB39_C IncC 93.3 fedA ant(3″)-Ia, aph(3″)-Ib, aph(6)-Id,

dfrA1, erm(42), floR, mph(B), ΔqacE,

sul1

OQ420468

pB39_I IncI1α 110.3 − aadA1, ant(3″)-Ia, cmlA1, dfrA12, sul3 OQ420470

pB39_X IncX1 64.4 hlyA, hlyB, hlyC, hlyD, esta − OQ420473

pB39_p0111 p0111 64.5 − − OQ420471
aNegative for virulence and/or resistance determinants.
bUT, untypable replicon by PlasmidFinder version 2.1.
cpMG16_H plasmid sequence was not completely closed. Therefore size is not determined (ND) and virulence/resistance genes identified in WGS cannot be attributed to this 
plasmid that remains as undetermined.
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of the sequenced plasmids carrying NEO resistance determinants was associated with 
virulence genes.

Mobile elements

The mobile element containing NEO resistance genes was analyzed in the eight strains 
selected for ONT. The aph(3′)-Ia gene was found on different mobile elements. Plasmids 
pJEO5619_Col and pB44_I were characterized by Tn903 (TnCentral acc. no.: V00359.1). 
The transposon of pB44_I displayed an inversion in one of the two genes encoding 
for the TnpA transposase (Fig. 4, panel A). In plasmids pB188_I, pB207_H, pAV54_I, 
pB39_H, and pC40_N, aph(3′)-Ia was found in Tn4352 derivatives, in all but one (pB39_H) 
integrated in proximity (1–6.5 kb) of the locus Mer (Fig. 4, panel B).

In the aph(3′)-Ib plasmid pMG16, there was no clear association between the NEO 
resistance gene and a transposable element (Fig. 3).

DISCUSSION

In Denmark, NEO was reintroduced in 2017 for the treatment of porcine enteritis 
resulting in an increase in the proportion of NEO resistance in clinical E. coli (6). This 
study demonstrates that this rise in NEO resistance is attributable to the spread of 
two resistance determinants, aph(3′)-Ia and, to a lesser extent aph(3′)-Ib, across distinct 
clonal lineages. These two NEO resistance determinants were previously reported among 
pig pathogenic E. coli in Denmark (11) and limited to aph(3′)-Ia, also in Spain (22), 
Switzerland (9), and Australia (10). However, their genetic environment and mechanism 
of dissemination had not been extensively explored prior to this study. Based on our 
genomic analysis of a comprehensive collection of porcine clinical E. coli isolates, it 
appears that the spread of aph(3′)-Ia in Danish pig production is attributable to multiple 
acquisitions of at least five distinct conjugative plasmids of variable size (76–264 kb) by 
E. coli ST100 or other less common lineages. A high prevalence (67.2%) of the I1-I(α) 
replicon was observed in our strain collection, whereas the other replicons associated 
with this gene were less frequent, suggesting that IncI1-I(α) plasmids are the main carrier 
of this NEO resistance gene. Plasmid insertion of aph(3′)-Ia was associated with two 
different transposable elements (Tn903 and Tn4352), and insertion by Tn4352 occurred 
at different sites on the plasmid backbone, highlighting the complexity of the evolution
ary process leading to the widespread occurrence of this NEO resistance determinant 
among Danish pathogenic E. coli, which involves a variety of host lineages, plasmids, 
transposable elements, and insertion sites. Upon analyzing the data available on the 
NCBI database, it is evident that the distribution of Tn4352 and Tn903 is heterogeneous 
across multiple species and isolation sources. Both transposons have been previously 
associated with aph(3′)-Ia in E. coli and other Gram-negative bacteria (18, 23).

In contrast to aph(3′)-Ia, the dissemination of aph(3′)-Ib is mediated by the small 
non-conjugative plasmid pMG16 (19 kb) that has been acquired by four phylogenetically 
distinct E. coli lineages, that is, ST100, ST641, ST42, and ST23. The gene encoding for 
RepMG16 was found in all the nine strains carrying aph(3′)-Ib, indicating that the spread 
of this NEO resistance determinant is strongly associated with pMG16. This plasmid is 
non-conjugative, as it lacks part of the genes encoding mating pair formation (20). The 
plasmid content was assessed in the transconjugants of the AV1 and MG16 strains (data 
not shown), suggesting that even if pMG16 is non-conjugative, it can be mobilized by 
conjugative plasmids, presumably I2(δ) and HI2 in these donor strains, respectively (Table 
2). Based on nucleotide sequence identity, this is a chimeric plasmid, with the scaffold 
shared with plasmids isolated from the Achromobacter and Pseudomonas genera and the 
region flanking the aph(3′)-Ib gene in common with plasmids found mainly in E. coli. 
The mechanism by which aph(3′)-Ib was inserted into pMG16 remains unknown since 
no mobile elements were detected in the region flanking this second NEO resistance 
determinant.

Despite the high diversity observed in our collection of NEO-resistant strains, the 
results indicate that ST100 (CC165) is the main lineage responsible for NEO resistance 
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in Danish pig production. This lineage was almost exclusively composed of ETEC strains 
(44/49 strains), harbored both NEO resistance determinants, usually exhibited resist
ance to three or more antimicrobial classes (44/49 strains), and occurred throughout 
the period covered by the strain collection, namely 1992 and 2016–2020. ST100 has 
previously been reported as prevalent among clinical porcine ETEC strains from the 
United States (24), Korea (25), and Denmark (11). The second most common lineage 
was ST10 (CC10), which occurred in both ETEC and non-ETEC strains and was previously 
associated with porcine ETEC strains in Spain (26), the United States (27), and China (28). 
ST10 has also been described as responsible for recurring E. coli outbreaks with high 
mortality levels in Danish broiler production (29) and is one of the global extraintestinal 
pathogenic lineages of increasing importance in human infections (30).

NEO-resistant strains displayed high proportions of resistance to alternative 
antibiotics that can be used to manage porcine ETEC enteritis, such as spectinomy
cin (89.8%), sulfamethoxazole (85.9%), and tetracycline (78.9%) (Table 1). This result 
highlights the lack of effective alternatives to NEO for the treatment of this common 
disease in pig production. ONT sequence analysis of the plasmids mediating NEO 
resistance revealed that aph(3′)-Ia was usually located on plasmids carrying AMR 
genes conferring resistance to other antimicrobials such as tetracyclines [tet(A), tet(B)], 
sulfonamides (sul1, sul2), trimethoprim (dfrA), and macrolides [mph(A)]. Co-resistance was 
particularly evident in the scaffolds of IncI1α, IncHI1, and IncN plasmids, which carried 
additional resistance genes (Fig. 4), providing evidence that NEO resistance may be 
co-selected by the use of other antimicrobials and vice versa. Indeed, NEO resistance 
might also be selected by exposure to mercury and tellurite, as suggested by the 
occurrence of genes conferring resistance to these heavy metals on NEO resistance 
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plasmids (Table 3). Notably, fimbrial, hemolysin, and enterotoxin genes associated with 
ETEC occurred on IncF plasmids that do not carry NEO resistance genes, excluding 
possible co-selection of virulent strains by NEO usage as hypothesized in a previous 
study (6).

There was an excellent agreement between AMR phenotype and AMR gene content, 
except for nalidixic acid, spectinomycin, and colistin. The low agreement between the 
phenotype and genotype of nalidixic acid resistance is attributable to the fact that 
resistance to this quinolone is frequently not conferred by transferrable resistance 
genes but by point mutations in the drug target (DNA polymerase). In all, 16 strains 
harbored aadA1 or ant(3″)-Ia and displayed spectinomycin MICs ≥ 32 mg/L but were not 
classified as resistant by phenotypic testing because their MIC fell below the EUCAST 
epidemiological cutoff value (R ≥ 128 mg/L), indicating that strains harboring these 
spectinomycin resistance genes may be categorized as susceptible using this cutoff. It 
is unclear why no colistin resistance determinants were identified in the four strains 
defined as colistin resistant by phenotypic testing. This apparent discrepancy between 
phenotype and genotype could be due to the presence of mutations in genes associated 
with the modification of the lipid A of LPS, the primary target of colistin, or other not yet 
characterized mechanisms of resistance.

We acknowledge some limitations of our study. First, the distribution of isolates 
over time was uneven, and only eight strains were selected for ONT sequencing, which 
may have led to a biased representation of the NEO-resistant E. coli population and 
overlooked genetic variations and plasmids present in the remaining strains. To mitigate 
this risk, we selected eight prototype strains representing the whole collection and its 
salient features based on their diverse localization on the phylogenetic tree as well as on 
their plasmid profiles, NEO MICs, and NEO resistance genes. In addition, the study only 
examined NEO-resistant E. coli from pig farms in Denmark, and therefore our findings 
cannot be generalized to pig production in other countries.

In conclusion, the population of NEO-resistant E. coli strains that cause enteric disease 
in Danish pig farms is highly diverse and consists of numerous clonal lineages, with 
ST100 accounting for approximately one-third of the strains sequenced in this study. The 
spread of neomycin resistance that has been recently observed in association with the 
increased use of this aminoglycoside is driven by two resistance determinants, aph(3′)-Ia 
and, to a lesser extent aph(3′)-Ib. While aph(3′)-Ia is located on different conjugative 
plasmid scaffolds and associated with two distinct transposable elements (Tn903 and 
Tn4352) that contributed to its spread, diffusion of aph(3′)-Ib is mediated by a small 
non-conjugative, mobilizable chimeric plasmid (pMG16) and the mobile element that 
permitted its integration into this plasmid remains unknown.

MATERIALS AND METHODS

Bacterial strains

A total of 128 clinical porcine NEO-resistant E. coli isolates were included in the study. 
Except for a single isolate from 1992, all isolates were collected from 2015 to 2020 [2015 
(n = 1), 2016 (n = 1), 2017 (n = 3), 2018 (n = 15), 2019 (n = 26), and 2020 (n = 81)]. 
The isolates from 2020 comprised all NEO-resistant E. coli isolates obtained from routine 
diagnostic samples submitted to the SEGES Laboratory for swine diseases that year (6). 
The remaining isolates were previously obtained from this laboratory as part of various 
research projects. Most isolates originated from small intestinal content obtained during 
post-mortem examination (n = 75), followed by feces (n = 24), rectal swabs (n = 9), liver (n 
= 9), spleen (n = 2), kidney (n = 1), and unknown origin (n = 8). Metadata for all isolates 
are provided in Data Set S1 in the supplemental material.

Antimicrobial susceptibility testing

All isolates were tested by broth microdilution using custom-made Sensititre plates 
(ThermoFisher Scientific, Waltham, USA) containing the following antimicrobials: 
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amoxicillin/clavulanic acid, ampicillin, apramycin, cefotaxime, chloramphenicol, 
ciprofloxacin, colistin, florfenicol, gentamicin, nalidixic acid, spectinomycin, streptomycin, 
sulfamethoxazole, tetracycline, and trimethoprim (6). Results were interpreted accord
ing to CLSI clinical breakpoints (CLSI M100, 2018; CLSI VET08 4th ed., 2018), EUCAST 
CBPs (EUCAST, v 8.1 Breakpoint Tables) (31–33), or according to epidemiological cutoffs 
(ECOFFs) available on EUCAST.org or proposed by Tian et al. (34).

Breakpoints used for each drug are reported in Table S1. In addition, minimum 
inhibitory concentrations of NEO were tested by broth microdilution using concentra
tions ranging from 8 to 4,096 mg/L and the reference strain E. coli ATCC 25922 as a quality 
control strain (35).

Illumina sequencing

DNA was extracted using the Maxwell RSC Cultured Cells DNA Kit (Promega, Wisconsin, 
USA), following the manufacturer’s instructions in the Maxwell RSC machine (Promega). 
The quality and quantity of extracted DNA were determined using NanoDrop-1000 
(Thermo Fischer Scientific, Massachusetts, USA) and agarose gel electrophoresis. DNA 
libraries were constructed using the Nextera XT Library Preparation Kit (Illumina, 
California, USA) following the manufacturer’s sequencing protocol on MiSeq (Illumina).

Bacterial conjugation

Based on the results of genome sequence analysis, one strain per NEO resistance gene 
(aph(3′)-Ia/Ib) and per clonal complex based on MLST analysis was selected as donors 
for bacterial conjugation (n = 32 strains; Table 2). Lactose-positive, rifampicin-resistant 
E. coli K12 JEO432 was used as the recipient strain. Both donor and recipient strains 
were grown in Luria Bertani (LB) broth up to an OD600 = 0.5, followed by centrifugation 
at 5,000 rpm for 3 min and resuspension of the pellet in fresh LB medium. Bacterial 
conjugation was performed on LB agar plates with filters (0.22 µM, Millipore, Copenha
gen, Denmark) at 37°C. Donor and recipient were mixed in a 1:1 ratio to a final volume 
of 100 µL on the filters. After overnight incubation at 37°C, bacterial material was washed 
off from the filters by vortexing using 0.9% isotonic NaCl. Dilution series were made, 
and 100 µL of bacterial suspensions was plated on MacConkey agar plates containing 
32 mg/L NEO and 50 mg/L rifampicin for transconjugant selection. NEO resistance genes 
were confirmed in presumptive transconjugants by multiplex colony PCR targeting 
aph(3′)-Ia/Ib using primers and PCR conditions previously published by Miró et al. (36). 
Transconjugants confirmed by PCR were stored at −80°C for further analysis.

Plasmid-based replicon typing

Plasmid replicon types in donors and transconjugants were determined using the PBRT 
2.0 Kit (Diatheva, Fano, Italy) following the manufacturer’s instructions, as previously 
described (37). The amplified products were analyzed by 2.5% agarose gel electrophore
sis.

Nanopore sequencing

In total, 32 donor strains were chosen for bacterial conjugation, and as a result, 25 E. coli 
K12 strains acquired NEO resistance. Eight of these 25 NEO donor strains were selected 
for further sequencing using ONT. These strains were selected based on unique plasmid 
profiles revealed by PBRT of both donors and transconjugants.

High molecular weight DNA extraction was performed using the Monarch HMW 
DNA Extraction Kit for Tissue (New England Biolabs, Massachusetts, USA) following 
the manufacturer’s instructions. Nanopore library preparation was performed using the 
Rapid Barcoding Kit 96, SQK-RBK110-96 (Oxford Nanopore Technologies, Oxford, UK). 
Sequencing was performed on an Mk1C MinION platform on a Flow Cell R9.4.1 (Oxford 
Nanopore Technologies).
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Bioinformatics analysis

Illumina raw sequencing reads were assembled using SPAdes Genome Assembler 
(v.3.13.1) (38), and quality was checked on QUAST (v.5.0.2) (39). The 128 assemblies 
were annotated using Prokka (40), and the resulting .gff files were used to determine a 
core genome alignment using the Roary tool (41). The IQ-TREE tool (42) was deployed 
for phylogenetic tree construction, using 1,000 ultrafast bootstraps. The tree exhibits 
multiple clades, wherein each clade represents a branch within the cladogram that 
encompasses a single presumed ancestor and all its descendant lineages. The visuali
zation was carried out using microreact (43), and the figure was adjusted using the 
InkScape software (https://inkscape.org/). SNP distance among isolates was estimated 
using the snp-dists tool (https://github.com/tseemann/snp-dists). Assembled genomes 
were screened for resistance determinants using ABRicate v1.0.1 (https://github.com/
tseemann/abricate) against the ResFinder database (44), and alignment results with 
identity scores greater than 95% were selected as positive matches. Raw sequences 
were analyzed using MLST 2.0 (Achtman scheme), and CC clustering was performed by 
Phyloviz v2.0 (45). Strains sharing seven identical alleles were grouped and given the 
same ST. A CC was defined as a group of STs in which every ST shares at least five of 
the seven alleles with the other STs in the complex. To further describe the relationship 
between the strains, we used the term “clonal lineage” to refer to a group of phylogeneti
cally related strains originating from a common ancestor and belonging to the same CC, 
even if they do not necessarily share the same ST. Serogroups and phylogroups were 
determined using assembled genomes in the Center for Genomic Epidemiology (CGE) 
(http://www.genomicepidemiology.org) (SerotypeFinder) (46) and ClermonTyping (47), 
respectively. VirulenceFinder (48) and PlasmidFinder (49) available at the CGE database 
were used to identify the proportion of virulence genes and plasmids.

Long-read assembly was performed using Flye (50). Illumina reads and ONT 
assemblies were integrated by the Unicycler tool version 0.4.8.0 (51) using a 
bold bridging mode. In the cases in which the Unicycler tool could not yield full-
length, circular plasmids in the strains subjected to ONT (i.e., pAV54_BO, pAV54_F, 
pAV54_FX, pAV54_I, pB188_X, pB207_I, and pJEO5619_Col), the circular Flye assem
bly was used as scaffold for the reconstruction using the Unicycler partial assem
blies by BLASTn. AMR and replicon genes were identified using the ResFinder and 
PlasmidFinder tools, respectively, on staramr (Galaxy Version 0.9.1+galaxy0) (https://
github.com/phac-nml/staramr). All these tools are available on the GalaxyEU Server 
(https://usegalaxy.eu/). Plasmid annotation was performed on the RAST Server (https://
rast.nmpdr.org/). Transposon identification was performed using the TnCentral database 
(https://tncentral.ncc.unesp.br/) (52). Gene cluster comparison figures were realized 
using the clinker tool (53), and figures were adjusted using the open-source InkScape 
software.

Statistical analysis

Cohen’s kappa statistical analysis was used to calculate the discrepancies between the 
phenotype and genotype resistance of the tested antimicrobials (SPSS, version 26, IBM, 
USA) (54). Correlation between these factors was interpreted based on kappa value; 
0.01–0.20, slight agreement; 0.21–0.40, fair agreement 0.41–0.60, moderate agreement; 
0.61–0.80, substantial agreement; and 0.81–1.00, perfect agreement. Fisher’s exact test 
was used to assess whether there was an uneven distribution of AMR and resistance 
genes between ETEC and non-ETEC strains [JASP Team (2023), JASP (Version 0.17.1) 
(Linux)]. Statistical significance was considered for a P-value <0.05.
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