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We analyze frictional motion for a laboratory fault as it passes through the stability transition from 
stable sliding to unstable motion. We study frictional stick-slip events, which are the lab equivalent of 
earthquakes, via dynamical system tools in order to retrieve information on the underlying dynamics and 
to assess whether there are dynamical changes associated with the transition from stable to unstable 
motion. We find that the seismic cycle exhibits characteristics of a low-dimensional system with average 
dimension similar to that of natural slow earthquakes (<5). We also investigate local properties of 
the attractor and find maximum instantaneous dimension �10, indicating that some regions of the 
phase space require a high number of degrees of freedom (dofs). Our analysis does not preclude 
deterministic chaos, but the lab seismic cycle is best explained by a random attractor based on rate- and 
state-dependent friction whose dynamics is stochastically perturbed. We find that minimal variations 
of 0.05% of the shear and normal stresses applied to the experimental fault influence the large-scale 
dynamics and the recurrence time of labquakes. While complicated motion including period doubling is 
observed near the stability transition, even in the fully unstable regime we do not observe truly periodic 
behavior. Friction’s nonlinear nature amplifies small scale perturbations, reducing the predictability of the 
otherwise periodic macroscopic dynamics. As applied to tectonic faults, our results imply that even small 
stress field fluctuations (�150 kPa) can induce coefficient of variations in earthquake repeat time of a 
few percent. Moreover, these perturbations can drive an otherwise fast-slipping fault, close to the critical 
stability condition, into a mixed behavior involving slow and fast ruptures.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Tectonic faulting and the seismic cycle involve a complicated 
set of processes that are only partially understood. A number of 
modeling strategies have been proposed in the literature, includ-
ing both high- and low-dimensional models, to mimic the seismic 
cycle. On one hand, high-dimensional models usually require solv-
ing a set of partial differential equations describing tectonic fault’s 
physics (e.g., Lapusta and Liu, 2009; Bizzarri and Cocco, 2006). 
On the other hand, low-dimensional models approximate fault be-
havior under simplified conditions, commonly leading to a set of 
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ordinary differential equations (e.g., Burridge and Knopoff, 1967; 
Huang and Turcotte, 1990).

Any strategy to model the seismic cycle and the full spec-
trum of slip modes that includes aseismic slip, slow earthquakes 
and elastodynamic rupture requires an understanding of fault fric-
tion. The seismic cycle involves inter-seismic periods of loading 
followed by failure events with fast or slow unloading. These fail-
ure events correspond to earthquakes or slow slip events (or slow 
earthquakes), and their behavior is known as stick-slip, because 
of the inter-seismic loading (stick), and the failure (slip). Within 
this context, laboratory experiments have played a major role for 
understanding earthquake physics and frictional failure, providing 
phenomenological laws for fault friction (Dieterich, 1979; Ruina, 
1983). These phenomenological laws have been used to synthesize 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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low-dimensional models that describe the behavior of sliding sur-
faces with a limited number of independent variables (i.e., degrees 
of freedom, dofs) (e.g., Perfettini and Avouac, 2004), and provided 
useful constitutive laws for high-dimensional models (e.g., Lapusta 
and Liu, 2009; Dal Zilio et al., 2020).

In this paper, we focus on low-dimensional models to describe 
a recently derived set of laboratory experiments (also referred to as 
laboratory earthquakes or labquakes) encompassing the full spec-
trum of fault slip behavior, ranging from stable creep to slow and 
fast stress unloading, as well as mixed behavior of both slow and 
fast events in the same experiment (Mele Veedu et al., 2020). We 
consider the widely accepted framework where friction (μ) de-
pends on both the sliding rate (v) and a state variable (θ ) that 
embeds memory effects and fault healing (Dieterich, 1979; Ruina, 
1983; Rice and Ruina, 1983). This framework defines the so-called 
rate- and state-dependent friction models (briefly RSF), that have 
been used extensively to characterize laboratory friction experi-
ments and tectonic faulting for a wide range of systems, including 
labquakes where inter-seismic loading and repeating failure events 
are observed (e.g., Dieterich, 1979; Ruina, 1983; Gu et al., 1984; 
Baumberger and Caroli, 2006; Li et al., 2011; Scholz, 2019; Leeman 
et al., 2016), and to simulate the seismic cycle (e.g., Lapusta and 
Liu, 2009; Luo and Ampuero, 2018; Dal Zilio et al., 2020).

The stick-slick behavior observed in the seismic cycle is rather 
complicated, and modifications to the basic RSF framework have 
been proposed. For example, works on friction have adopted one 
or more state variables (Gu et al., 1984), introduced a possible de-
pendency of frictional state on normal stress (Linker and Dieterich, 
1992), and accounted for fault zone porosity and shear localiza-
tion (Marone and Kilgore, 1993; Segall and Rice, 1995), or consid-
ered temperature effects (Bizzarri and Cocco, 2006). Other works 
have shown that RSF parameters might vary with the slip veloc-
ity (Mair and Marone, 1999), making them additional variables or 
dofs of the system (Im et al., 2020). Despite these and more recent 
works (e.g., Perfettini and Molinari, 2017; Barbot, 2022) our under-
standing of the seismic cycle and the number of dofs required to 
describe it are still unclear.

One way to improve our understanding of fault friction and the 
seismic cycle is through the lenses of dynamical system theory. 
From this perspective, we expect a set of experimental observa-
tions provided by, e.g., laboratory earthquakes, to admit the exis-
tence of some persistent dynamics or trajectories (i.e., an attractor). 
If we observed such an attractor, we could, in principle, calculate 
useful properties such as its dimension (that is, the dimension of 
the system’s dynamical trajectories (Theiler, 1990)) and the Lya-
punov spectrum associated with the system (Wolf et al., 1985; 
Sano and Sawada, 1985). The attractor dimension is a particularly 
important quantity as it defines the number of variables needed 
to fully characterize (macroscopically) the state of the system, and 
consequently the number of differential equations needed to de-
scribe its dynamics (i.e., the system dimension). This is a critical 
aspect, given the ambiguity regarding the number of variables re-
quired to describe the seismic cycle.

Introducing a local concept of dimension, Faranda et al. (2017a), 
Gualandi et al. (2020) have shown that this quantity is not a 
constant property of geophysical systems: different regions of the 
attractors have different dimensions. Local (also referred to as in-
stantaneous) dimensions can be calculated from the statistics of 
the neighboring points of a given state. This thanks to a recent 
breakthrough that has linked Poincaré’s recurrence theorem with 
extreme value theory (Faranda et al., 2017a). In fact, the local di-
mension is related to the frequency at which a trajectory of the 
attractor visits an arbitrarily small neighborhood around a given 
state in the phase space. An advantage of this approach with re-
spect to other commonly used methods (e.g., box counting (Grass-
berger and Procaccia, 1983)) is that we can investigate locally, i.e., 
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in local regions of the phase space, how many degrees of free-
dom the system has, and consequently how many variables are 
needed to characterize the dynamics in each specific region. In 
other words, in some regions of the attractor the dynamics can 
be described by only a small number of dofs, while in others a 
higher number is required. In this way we retrieve information not 
only on the asymptotic behavior of the attractor (by averaging over 
time under the ergodic assumption), but also on its local nature.

Global attractor dimensions can be obtained using (i) the Lya-
punov dimension (Kaplan and Yorke, 1979) from the Lyapunov 
spectrum, as well as (ii) the information dimension (Farmer et al., 
1983), computed as the average of the local (or pointwise) dimen-
sion. These quantities provide the asymptotic (or average) behavior
of the attractor. We note that there are several other definitions 
of attractor dimension, with associated procedures and algorithms 
to estimate them. Some other methods include the box counting 
dimension (Grassberger and Procaccia, 1983), and the Hausdorff 
dimension (Hausdorff, 1919). These were not used in this work.

From the Lyapunov spectrum we can additionally gain informa-
tion on the possible chaotic nature of the system. Indeed, the Lya-
punov exponents characterize the asymptotic behavior of a hyper-
volume centered around a point on the attractor. If at least one of 
the dimensions of the hyper-volume stretches asymptotically, then 
we potentially have sensitivity to initial conditions. This implies 
limitations on the possibility of making long term predictions be-
cause of intrinsic uncertainty in our knowledge of the actual state 
at previous times (see Table 1 for formal definitions of key terms).

A key challenge when inferring dynamical properties from data, 
such as the dimensions of the attractor just mentioned, is related 
to the available observations. These usually consists of time se-
ries data of a limited number of variables. In the context of RSF 
models we may infer or observe the sliding rate and/or the shear 
stress, but a direct measure of the state variable is challenging. It 
follows that we do not directly observe the attractor. Nonetheless, 
from this limited number of variables we can obtain useful prop-
erties of the possible generative dynamical system underlying the 
available data using Taken’s embedding theorem (Takens, 1981). 
Indeed, Taken’s embedding theorem allows deriving the attractor 
dimension even when only a single scalar observable is available, 
as long as: a) it is linked to the other variables of the system, b) 
the time series is sufficiently long, and c) it is sampled at a suffi-
cient rate.

Since its formulation, Taken’s theorem has been used in a va-
riety of studies involving nonlinear dynamics (Sauer et al., 1991), 
but a systematic application to earthquake physics is lacking. In the 
laboratory the limitations stemmed typically from data recording 
rates, and for earthquake faults from the small number of seismic 
cycles measured. At natural scale, such limitations have been cir-
cumvented studying slow earthquakes, a phenomenon with many 
similarities with regular earthquakes but with a shorter recurrence 
time, of the order of weeks or months. The observation of repeated 
ruptures of the same fault segment enabled the estimation of the 
system dimension in the Cascadia subduction zone, where slow 
earthquakes have been found to have on average a reduced num-
ber of dofs (< 5) (Gualandi et al., 2020).

Even if stick-slip laboratory experiments have been used exten-
sively to mimic the seismic cycle (Tinti et al., 2016; Leeman et al., 
2018), at least two questions are still open: 1) Are slow and regular 
earthquakes controlled by the same physics? And 2) Is the physics 
of friction the same at the laboratory and natural scale? Providing 
a complete answer to these questions is a complicated task that 
will likely need experiments at multiple spatio-temporal scales, 
but we can at least verify if slow and fast labquakes live in the 
same phase space, and if they have a similar number of dof as the 
one observed for slow earthquakes in nature (< 5) (Gualandi et al., 
2020). In this paper, we focus on laboratory experiments, and com-
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Table 1
Nonlinear dynamical systems glossary.

Keyword Description

Dynamical system A system for which the dynamics can be described via a set of differential equations.

Deterministic system A dynamical system described by a set of either ordinary differential equations or partial differential equations. Formal definition: A 
differentiable map � or flow {�t } defined on a differentiable manifold M ⊆Rn .

Stochastic system A dynamical system described by a set of stochastic differential equations, i.e. a set of differential equations where at least one term on 
the right hand side is a stochastic process.

Stochastic process “A random phenomenon that arises through a process which is developing in time in a manner controlled by probabilistic laws is called 
a stochastic process. [. . .] from the point of view of mathematical theory of probability a stochastic process is best defined as a 
collection {X(t), t ∈ T } of random variables. The set T is called the index set of the process.” (Parzen, 2015)

System dimension Given a dynamical system described by a set of n differential equations, n is the dimension of the system. Formal definition: The 
dimension of the space into which the differentiable map � is defined.

Phase space Given a dynamical system described by a set of n differential equations, the n variables, that evolve in time according to the associated 
system, form the so-called phase space. In other words, to fully characterize the state of the system at a given time t, we need n
numbers, each corresponding to the value taken by one of the n variables at the specified time t. The n-dimensional space where a 
point fully characterizes the state of the system is called phase space (or state space).

State vector Given a dynamical system described by a set of n differential equations, a state vector is an n-dimensional vector belonging to the phase 
space. The n variables of the state vector are needed to fully characterize the state of the system at a given time t. Note: the state 
vector does not have to be confused with the state variable (θ) of the rate- and state-friction framework. In fact, θ is one of the 
variables needed to describe the state of the system. In other words, θ is one of the elements of the state vector, but the state vector is 
made of other variables as well (e.g., the slip velocity v , the frictional shear stress τ f , etc.).

Degrees of freedom Each of the variables belonging to the state vector.

Trajectory Given a dynamical system described by a set of n differential equations, the evolution in time of the system is described by a sequence 
of state vectors. The geometrical object described by this sequence is a trajectory.

Attractor “An invariant set that attracts all the trajectories of the system” (Crauel et al., 1997). In other words, given a trajectory, the set of points 
towards which the system tends to spend its time. An attractor can be a single point, a line, or a more complicated object (e.g., a 
so-called strange attractor). By definition, an attractor is a geometrical object that lives in the phase space. It follows that its dimension 
must be smaller than or equal to the system dimension. Strange attractors have non-integer dimensions.

Poincaré map Given an attractor, let us take an oriented hyper-plane (i.e., one side will be labeled as negative and the other side as positive) and let 
us cut the attractor. We call this hyper-plane a Poincaré section. The trajectories will cross the Poincaré section twice: once moving 
from the negative side to the positive, and once to move in the opposite direction. Let us consider only the points of the attractor that 
intersect the hyper-plane when passing from the negative side to the positive one. These points will form an ordered set. The Poincaré 
map is a function that moves one point of the previously defined set to the next. The orange points of Fig. 1 correspond to the above 
mentioned set obtained via the Poincaré map using the hyper-plane of constant value of τ f , equal to the average value 〈τ f 〉, as Poincaré 
section.

Lorenz map Given the time evolution of one of the variables belonging to a dynamical system, the Lorenz map is a function that maps the 
consecutive local maxima or minima. The cobweb plot is a diagram that helps visualizing the set of points formed by the Lorenz map, 
and can be seen as the plot of the i-th local maximum/minimum vs the i + 1-th local maximum/minimum.

Lyapunov spectrum The Lyapunov spectrum is the set of all Lyapunov exponents.

Lyapunov exponents Let us consider a point on an attractor. Let us further consider an orthonormal basis centered on the selected point. If we evolve the 
basis according to the flow, i.e. according to the time evolution imposed by the differential equations governing the system, we obtain a 
new (potentially deformed) basis. Some directions might be stretched, other contracted. We can then orient the new basis such that the 
first vector of the basis points towards the direction of maximum stretch. Then we build the second vector of the basis in such a way 
that the area spanned by the first two basis vectors is stretched the most possible. And so on, we orthonormalize the deformed basis 
until the n-th vector. Once we have updated the basis, we will evolve it again, but this time following the flow defined in the new point 
where the trajectory has evolved. Sometimes the basis will stretch in a given direction, and sometimes it will contract. We define the 
Lyapunov exponents as the tendency to stretch or contract of a given vector of the basis that we have evolved. In other words, the 
Lyapunov exponents are a concept that represents the long-term asymptotic behavior of expansion/contraction of a hypervolume of the 
phase space around the attractor.

Lyapunov exponents
(formal definition 
from Benettin et al. 
(1980))

Let � be a differentiable map representing a dynamical system. Given a point on the manifold M, the Lyapunov exponents characterize 
the asymptotic behavior of the differential {d�t

x}. Let {Et } be a family of n-dimensional real vector spaces, with t ≥ 0. Let us further 
assume that each vector space has a scalar product 〈·, ·〉t . If At is a linear mapping of E0 onto Et ∀t, and lim supt→∞ 1

t ln‖At‖ < ∞ is 
always true, with ‖At‖ being the norm of At , then we define the Lyapunov characteristic exponent of the vector g with respect to the 
family {At } as the quantity χ(At , g) def= lim supt→∞ 1

t ‖At g‖ < ∞, ∀g ∈ E0, g �= 0.

Deterministic chaos Deterministic “chaos is aperiodic behavior in a deterministic system that exhibits sensitive dependence on initial conditions” (Strogatz, 
1994). It is commonly stated that a system is governed by deterministic chaos if at least one of its Lyapunov exponents is positive, but a 
system exhibiting stochastic chaos will also have at least a positive Lyapunov exponent.

Stochastic chaos Chaotic behavior generated by a stochastic system, i.e. by a set of stochastic differential equations.

Lyapunov time The inverse of the maximum Lyapunov exponent.

Embedding vector A vector of dimension m generated by a lower dimensional observed time series. The lower dimensional observation can be a scalar 
time series or a multivariate time series. In this work we deal with embedding vectors generated by a scalar time series, the friction 
shear stress τ f .

Embedding dimension Dimension m of the embedding vector.
(continued on next page)
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Table 1 (continued)

Keyword Description

Delay time When generating the embedding vector, the time delay between points of the observed scalar time series. Here we use standard 
embedding approaches with constant delay time.

Average dimension Average of the instantaneous dimension. Because of the ergodic assumption, the time average corresponds to the average in the phase 
space.

Instantaneous dimension It is related to how dense is the attractor in a given point of the phase space. To measure it, we consider the neighbors of a given point 
on the attractor, and estimate the density via extreme value theory and the connection with Poincaré recurrence theorem (Faranda et 
al., 2017a).

Fig. 1. Experimental set up and data. (a) Sketch of the biaxial apparatus (BRAVA) used for the experiments (Tinti et al., 2016). (b) Frictional shear stress time series (τ f ). 
Purple/green dots represent local max/min values of τ f . Orange dots are the closest points during a slip event to the average value of the shear stress 〈τ f 〉. (c) Zoom of the 
black dashed box of panel (b). Interevent (or return) times are taken between the orange dots to reduce sensitivity to measurement noise associated with using max/min 
values and define the returning of the trajectory to a well specified region of the phase space (i.e., the hyperplane τ f = 〈τ f 〉).
pare them to slow earthquakes in nature. We find that labquakes 
and slow natural earthquakes share similar dynamical features. We 
further find that labquakes can be described by a random attractor 
(that is: a set of stochastic differential equations). We also argue 
that our methods can be extended to study frictional dynamical 
systems at different scales.

The manuscript is organized as it follows. In Section 2 we de-
scribe the laboratory data used in the work. In Section 3 we report 
the obtained results. In particular, in three distinct subsections we 
comment i) on the estimated dimension, ii) on a plausible low-
dimensional model, and iii) on the existence of a random attrac-
tor to explain the observations. We conclude the manuscript with 
discussions and implications of our findings for regular faults. To 
4

facilitate connections between earthquake physics and nonlinear 
system dynamics, we include a glossary of key definitions and con-
cepts (Table 1).

2. Laboratory data

We use data from 14 stick-slip friction experiments conducted 
at different imposed normal stress (σn) conditions (Mele Veedu et 
al., 2020). In the experiments, two layers of quartz powder are put 
under σn and then sheared using an acrylic piston to modulate the 
elastic stiffness k around a value (14.8 GPa/m) (Tinti et al., 2016; 
Mele Veedu et al., 2020) (Fig. 1a). The applied normal stress is 
used as a control parameter to systematically traverse the critical 
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Fig. 2. Results from laboratory data. (a) Lyapunov spectrum estimated from τ f laboratory data. Legend is shared with panel (d). (b) Lyapunov dimension (D K Y ) and in-
formation dimension (D1) estimated from τ f time series. Blue dashed box: results shown in panel (c) with no D saturation for the experiment at lowest σn0. (d) and (e): 
bifurcation diagrams using interevent times of the previous and next events. Orange dashed lines indicate hypothetical periodic cycles with one (straight lines) or two (curved 
lines) events in the cycle. Departure from the dashed lines is evidence of aperiodic behavior.
stability condition for which the stiffness of the loading appara-
tus (k) is equal to the critical rate of frictional weakening with slip 
(also called the critical stiffness) of the system (kc ∝ 1

σn
) (Rice and 

Ruina, 1983; Gu et al., 1984). In fact, we use data that includes 
the full transition from stable frictional sliding to slow and fast 
stick-slip motion. The transition from slow to fast events (Fig. 1b) 
is defined by the peak sliding velocity during failure, which is dic-
tated by the ratio of k � kc or k � kc . We provide this information 
in Tab. S1 in the Supplementary Material.

For normal stresses below 14 MPa slip is stable (e.g., Scud-
eri et al., 2016). At higher normal stresses, slow stick-slip events 
(labquakes) occur and these have small stress drop. At intermedi-
ate normal stresses, we observe alternating fast and slow events 
(e.g., Leeman et al., 2016). At the highest normal stress, labquakes 
are faster with elastodynamic energy release and large amplitude 
acoustic emissions (Bolton et al., 2020) (Fig. 1b). We use the lab-
oratory observations to determine the number of dofs governing 
the system with particular focus on changes across the stability 
transition. We first set up a model with the appropriate number of 
phase space dimensions to match laboratory data and then explore 
possible variations for the range of labquake behaviors observed.

Each experiment includes several labquake cycles. We use data 
in a 200 s time window (Fig. 1 and Tab. S2) in order to have a 
sufficient number of cycles to perform dynamical systems anal-
ysis. We do not extend this window because we do not want 
to include friction evolution effects associated with shear fabric 
development and wear. Throughout each experiment, the loading 
velocity v0 and the applied σn are kept constant to some precision 
using servo-control. Their mean values and standard deviations are 
reported in Tab. S2. The nominal v0 was 10 μm/s for all experi-
ments. Data are sampled every �t = 0.01 s.

3. Results

3.1. System dimension

We are interested in retrieving the system dimension (D) be-
cause it tells us how many dofs the system has on average. In 
other words, it carries information on the number of axes that 
compose the phase space, and consequently indicates how many 
5

differential equations we need to characterize the dynamics of the 
system. To infer D we exploit Takens’ embedding theorem (Tak-
ens, 1981) and use the scalar time series of the frictional shear 
stress (τ f , Fig. 1b-c) since it is the measure with the smallest noise 
contribution (Tab. S3). We proceed in two different ways. In the 
first case, we determine the embedding dimension (m) with the 
method of Cao (1997), and we find values of m ranging from 6 
to 9 choosing as an automatic threshold for the metrics E1 and 
E2 a value of 0.9 (Tab. S4). Selecting a higher threshold for the 
E statistics would provide a higher embedding dimension m (see 
Fig. S1). We then calculate the Lyapunov dimension (D K Y ) via the 
Kaplan-Yorke conjecture (Kaplan and Yorke, 1979), using the Lya-
punov spectrum obtained with the method of Sano and Sawada 
(1985) (Fig. 2a-c). In the second case, we estimate the information 
dimension (D1) as the average instantaneous dimension (Faranda 
et al., 2017b,a) (Fig. 2b-c). Details on the methods are provided 
in Sec. S1. With both techniques we find in most cases relatively 
small dimensions (< 5) (Fig. 2b), suggesting that a reduced order 
model may suffice to explain the observations. The only exception 
is the experiment at lowest σn (Fig. 2c), for which we observe sta-
ble creep. In this case the signal to noise ratio (SNR) is low and 
the retrieved dimension is higher, as expected for noise dominated 
data. In general, the SNR is increasing the more we increase σn , 
with larger shear stress drops and same level of noise dictated by 
the recording apparatus. This may explain why we observe an in-
crement in the calculated dimension with smaller normal stresses. 
Our results are overall consistent with Takens’ embedding theo-
rem, for which m ≥ 2D + 1 (Takens, 1981). Remarkably, a similar 
low dimension was observed for slow slip events in nature (Gua-
landi et al., 2020), suggesting that it might be a common feature 
of frictional faulting across multiple spatio-temporal scales.

3.2. A low-dimensional model

We now seek a low-dimensional model to explain the observa-
tions. For a spring-slider model obeying RSF, the number of dofs 
is 2 plus the number of state variables. Noticing that the dimen-
sion of the system tends to decrease with higher σn (i.e., for more 
periodic faster labquakes) (Fig. 2b), we deem reasonable to intro-
duce a radiation damping approximation, where the inertial term 
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Fig. 3. Shear stress (τ f , top row), normal stress (σn , middle row), and layer thickness (H , bottom row) time evolution for experiments b726 (first column), b698 (second 
column), b728 (third column) and i417 (fourth column). Red line in second row shows cumulative sum of de-meaned σn and reveals perturbations associated with labquakes. 
Fifth column shows zoom (blue dashed lines in column 4) of experiment i417. Note drop in σn of ∼ 0.3 MPa and in H of ∼ 2 μm.
is replaced by a viscous term to represent energy outflow as seis-
mic waves (Rice, 1993) and the number of dofs is reduced by one. 
Indeed, if inertial effects were important, we would expect fast 
labquakes to have a higher dimension than slow labquakes. For a 
non-inertial spring-slider system with RSF and a single state vari-
able it is impossible to get a bifurcation in the slip behavior: the 
phase space is 2-dimensional, and a closed orbit cannot split into 
two slipping modes without trajectory intersections occurring in 
the phase space. An extra variable is needed.

In the classic spring-slider analysis, σn is assumed constant, but 
variations in stress provide one possible explanation for the neces-
sary extra variable. The laboratory data show that σn varies slightly 
for each stress drop (max �σn ∼ 0.3 MPa), and this is followed by 
a short-term recovery of the target σn0 (Fig. 3). During this time 
the fault zone thickness (H) also varies, showing both immediate 
and slip (time) dependent compaction after a stress drop (Fig. 3). 
The variations in H are a function of relaxation of shear-induced 
dilation (Marone et al., 1990), layer thinning (Scott et al., 1994), 
and the drop in σn that occurs as the servo-control system re-
sponds to the labquake. We did not study partitioning between 
these causes but rather accounted for them using the formalism 
of Segall and Rice (1995) for porous materials, where porosity (φ) 
and pore pressure (p) are introduced as variables in the dynam-
ics and linked to σn via Terzaghi’s principle (Terzaghi, 1925). We 
introduce the possibility for the characteristic distance over which 
the porosity relaxes (Lφ ) to differ from the RSF characteristic slip 
distance (L). The model is summarized by the following set of non-
dimensional ordinary differential equations (ODE) (see section S2.1 
for its derivation):

ẋ =
ex [(β1 − 1) x (1 + λu) + y − u] + κ

(
v0
v∗ − ex

)
− u̇ 1+λy

1+λu

1 + λu + νex

(1a)

ẏ = κ(
v0

v∗
− ex) − νexẋ (1b)

ż = −ρex(β2x + z) (1c)

u̇ = −α − γ u + ż (1d)
6

The state vector ζζζ , i.e. that vector that fully characterizes the 
state of the system, is made of the non-dimensional variables 
[x, y, z, u] = [ln

(
v

v∗

)
,

τ f −τ0
aσn0

, 1
λβσn0

(φ − φ0) ,− 1
λ

p
σn0

], where v∗ is a 
reference sliding velocity, τ0 = μ0σn0 is the product of the refer-
ence friction coefficient μ0 and the reference normal stress σn0, λ
is equal to a

μ0
with a being the RSF direct effect parameter (i.e., 

the instantaneous response of the friction coefficient to a sudden 
step in the sliding velocity), β is the product of the elastic com-
ponent of porosity and the combined compressibility of the fluid 
in the pores and the elastic pores, and φ0 is a reference porosity. 
The other parameters appearing in system (1) are the ratio be-
tween the RSF evolutionary and direct effect parameters β1 = b

a , 
the non-dimensional spring stiffness κ , viscous parameter ν , dila-
tancy coefficient β2, pore pressure in the surrounding α, diffusivity 
γ , and the ratio ρ = L

Lφ
.

The parameters selection is described in Section S3.1, and is 
largely based on values taken from the literature (Figs. S2-S5). For 
the preferred parameters and the tested σn0, the solution of the 
ODE system does not show chaotic behavior. Instead, labquakes 
occur periodically with either a single characteristic time or as 
a characteristic sequence of slow and fast events (Figs. 4a, d, e). 
In other words, with the adopted parameters the system exhibits 
a cyclic attractor and a limit cycle (Fig. 5d). We notice that a 
quasi-static spring-slider system with two RSF state variables is 
a particular case of the set of ODE previously derived, with the 
second state variable being either the porosity or the pore pres-
sure (see section S2.2). Such a system shows the typical behavior 
of the route to chaos within a narrow range of the stability con-
trol parameter, culminating in instability and divergence of the 
solution when sufficiently reducing the stiffness of the system κ
(i.e., when increasing σn0) (Becker, 2000). The modified approach 
with quasi-dynamic approximation, two state variables, and two 
characteristic relaxation distances allows us to avoid numerical di-
vergence and reproduce the major features of the laboratory data, 
including period doubling followed by a return to a single charac-
teristic labquake cycle as σn0 increases (Figs. 4d-e). To obtain these 
results we used a radiation damping term 20 times larger than the 
commonly adopted value, which assumes an infinite fault plane 
in an elastic full space and radiation due only to outgoing planar 
shear waves (Rice, 1993). The experiments we use were conducted 
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Fig. 4. As Figs. 1b and 2, but for ODE simulated time series via the system of eqs. 1. Simulations 4, 8, 10, 11, and 14 use imposed σn0 to mimic experiments b726, b698, b728, 
b721 and i417. The system is periodic with either a single or double period, as highlighted by the orange dotted lines in panels (d) and (e). A slightly positive maximum 
Lyapunov exponent may be due to the temporal sampling used to mimic laboratory observations (0.01 s): to fully resolve the dynamical evolution we need smaller time 
steps, and a calculated positive Lyapunov exponent is not sufficient to claim the presence of chaotic behavior.
on porous gouge with a finite thickness that evolves over time. 
This suggests that in the laboratory with simulated fault zones that 
are a few mm in thickness, a larger fraction of energy might be 
dissipated in so-called spectator regions of the fault zone that are 
adjacent to localized zones of shear (Collettini et al., 2009). Chang-
ing the parameters can lead to deterministic chaos, but typically 
only for a narrow range of σn0 (see simulation 8 in Fig. 6a, corre-
sponding to σn0 = 17.379 MPa in Figs. 6d-e). We do not exclude 
the possibility that part of the observed irregularity may be due 
to this transition to deterministic chaos. This irregularity can be 
seen from Fig. 2 where we plot for each event the time to the next 
event (Tnext ) vs the time since the previous event (T pre) (panel 
d) and the ratio T pre

Tnext
as a function of σn0 (panel e). Fig. 2d in 

particular is an example of a cobweb plot, in the specific for the 
interevent time. In Fig. S6 we show the same plot but for each 
experiment in a separate subplot, to better appreciate the details. 
Another interesting measure is the stress drop, for which a cob-
7

web plot is shown in Fig. S7. In the aforementioned plots we see a 
spread of points around the values that would represent periodic 
cycles of loading and failure (orange dashed lines in Figs. 2d-e). 
Aperiodicity can also be measured via the Coefficient of Variation 
(CV), defined as the ratio between the standard deviation and the 
mean of the observed interevent times (Fig. 5a). Measuring the CV 
using the recurrence time of subsequent ruptures it is possible to 
obtain high CVs also for periodic sequences of slow-fast events, as 
is also the case for ODE simulations in the period doubling param-
eter region.

Period doubling as well as fast and slow events can be obtained 
with models either containing many more dofs with respect to the 
spring-slider (Mele Veedu et al., 2020; Cattania, 2019; Luo and 
Ampuero, 2018), and many more than those deducible from the 
observed time series, or with geometrical complexities (Romanet 
et al., 2018). Our model has the following relevant characteristics: 
(1) reproduces the appropriate range of shear stress drops, (2) re-
produces the bifurcation at the same σn0 values actually imposed 
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Fig. 5. (a) CV (in %), (b) maximum Lyapunov exponent (λmax) and (c) Lyapunov time (tLyap = 1
λmax

) for the laboratory and simulated friction shear stress time series. (d) Phase 
space subregion xyu of the ODE (top) and SDE (bottom) simulations with imposed σn0 to mimic experiments b726, b698, b728, b721 and i417.
in the laboratory, (3) uses a number of dofs in agreement with the 
one derived from the observations, and (4) takes into account vari-
ations in σn0 (even if not perfectly, see Figs. S2-S5b to see how 
τ f and σn vary when changing the parameters). We thus use the 
low-dimensional model to describe the observations rather than a 
more sophisticated model representative of a high-dimensional ex-
tension to the continuum.

3.3. Random attractor

Laboratory data are more irregular than the ODE simulations: 
the events far from the transition regime show a single char-
acteristic cycle, but with a return time not always exactly the 
same (Figs. 2d-e and 5a). We notice that σn and τ f are sub-
ject to high-frequency noise fluctuations (Figs. 3 and 7). An anal-
ysis of the residual time series relative to the experiment ex-
hibiting creep (σn0 = 13.6 MPa) reveals a Gaussian noise with 
εσn0 = std(σn − σn0) = 0.006 MPa and ετ f = std(τ f − τ̃ f ) = 0.004
MPa, where τ̃ f is a cubic spline approximation used to smooth 
the time series and filter out the low frequencies (Fig. 7). These 
fluctuations can be due to observational noise, but can also per-
turb the stress field affecting the system dynamics. In fact, adding 
only observational noise to the ODE simulations explains neither 
the observed irregularities (compare Figs. 2d-e, S6, S7, and S8d-e) 
nor the CV variability since the ODE with a single characteristic 
labquake show a null CV (Fig. 5a). Given the Gaussian nature of 
the residual time series, we modify the ODE related to τ f and σn

(i.e., y and u) substituting the equations with a pair of Stochas-
tic Differential Equations (SDE), with the stochastic term described 
8

by a Wiener process W T (a real-valued continuous-time stochastic 
process) of intensity εy and εu :

dy =
[
κ

(
v0

v∗
− ex

)
− νexẋ

]
dT + εydW T (2a)

du = [−α − γ u + ż] dT + εudW T (2b)

εy and εu can be modulated to introduce more or less noise 
to the dynamics. We set them to half of the non-dimensionalized 
data-derived standard deviation because εσn and ετ f can be con-
sidered as an upper bound for the intensity of the perturbations 
to the dynamics. The simulated time series are shown in Fig. S9. 
Also v and φ (i.e., x and z) may be subject to noise that can per-
turb the dynamics of the system. Contrary to τ f and σn , we do 
not directly measure them. Before introducing further complica-
tions, we consider the noises on σn and τ f as the most relevant 
ones. To mimic the laboratory time series, we finally add measure-
ment noise of ετ f to the SDE generated τ f time series (Fig. 8a). 
The Lyapunov spectrum, the system dimension, and the interevent 
times are shown in Figs. 8b-e. We find a Lyapunov spectrum sim-
ilar to the one derived from the data, D K Y typically between 3 
and 4, and both D K Y and D1 decreasing with increasing σn0 (see 
Fig. 2b for comparison). Furthermore, in the bifurcation diagrams 
we see a spread similar to the one observed in the laboratory time 
series. This result suggests that the aperiodicities in the returning 
time of laboratory earthquakes (of any type, either slow or fast or 
mixed) could be the result of a stochastic noise component that 
enters the dynamics and gets amplified due to the nonlinearities 
of the equations. As a consequence, with the current available lab-
oratory set up, stick-slip cycles near the critical transition regime 



A. Gualandi, D. Faranda, C. Marone et al. Earth and Planetary Science Letters 604 (2023) 117995

Fig. 6. As Fig. 4 but using ν = 15ν0 instead of ν = 20ν0. Notice that with this parameter the system shows deterministic chaos, highlighted by the departure from the orange 
dotted lines (panels d and e), even if only in a narrow range of σn0.
are reproducible only statistically and not deterministically, in the 
sense that, with the same rocks and conditions applied, we can 
expect to reproduce similar average interevent times and standard 
deviations, but not the same exact sequence of ruptures. Simi-
lar observations were made for a different frictional system of 
labquakes (Karner and Marone, 2000), and this type of feedback 
between the apparatus’ vibrations and the system dynamics has 
been documented for turbulent flows (Faranda et al., 2017b). These 
behaviors may be a more general characteristic of nonlinear fric-
tional systems.

We further notice that the addition of a stochastic term to the 
dynamics induces a bifurcation for a wider range of σn0, leading 
periodic single-rupture scenarios to slip with a mixture of slow 
and fast modes (see the experiments at 20 < σn0 < 23 MPa, Fig. 4
or S8 for ODE simulations and Fig. 8 or S9 for SDE).

4. Implications and future perspectives

Our results suggest the existence of a random attractor (Fig. 5d) 
to describe the seismic cycle. Minimal variations of the order 0.05% 
9

of the shear and normal stresses applied to the fault (intended 
as the experimental frictional interface) influence the large scale 
dynamics and the recurrence time of labquakes, inducing CV of 
a few percent points (� 2%, Fig. 5a). The implications for natural 
faults are significant. At seismogenic depths (∼ 10 km), variations 
of �0.05% of the lithostatic stress would correspond to � 150 kPa. 
Possible causes that can generate stress perturbations of 10-100 
kPa (or more) are: other tectonic sources (with both static and 
dynamic stress variations (Freed, 2005)), magmatic intrusions in 
volcano-tectonic environments (Chen et al., 2019), surface atmo-
spheric loading (D’Agostino et al., 2018; Pintori et al., 2021), an-
thropogenic activity, and tides (Rubinstein et al., 2008). The labo-
ratory experiments here considered were conducted to explore the 
transition between linearly stable to unstable behavior ( k

kc
∼ 1), 

likely similar to the one where episodic tremors are observed in 
nature since the studied labquakes have similar dimensions to 
slow earthquakes in Cascadia (Gualandi et al., 2020). Given that kc

depends on σn (Rice and Ruina, 1983), variations εσn influence the 
stability of the system as seen by the induced slow-fast ruptures 
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Fig. 7. Noise analysis for σn (left) and τ f (right) for experiment b724. a) and b): Original data (black) and subtracted value (red, equal to the average normal stress σn0 on 
the left and a cubic spline smoothing of the shear stress τ̃ f on the right). c) and d): Residual time series representative of the high frequency noise. e) and f): Histograms 
of the residual time series c) and d). The standard deviation and the p-value derived from a Shapiro-Wilk test are also reported. The analysis suggests that, at a standard 
significance level of 0.05, we cannot reject the null hypothesis for which the residual distribution of both the normal stress and the friction shear stress were drawn from a 
normal distribution. For this reason we use as representative of the noise the standard deviations derived from this analysis.
in otherwise single-cycle experiments, suggesting that we should 
not treat faults as isolated systems, especially when modeling the 
limits of the seismogenic zone in nature.

The lack of an appropriate deterministic description of all the 
aforementioned stress perturbations may explain why earthquake 
forecast is a difficult task and statistical methods are used (Main, 
1996, 1999). The addition of the available physical information is 
a fundamental aspect to improve our forecasts. Our results rely-
ing on laboratory experiments may explain why a mix of phys-
ical knowledge and statistical methods like those obtained with 
a Brownian Relaxation Oscillator (BRO) (Matthews et al., 2002) 
are often used for earthquakes forecast (Ogata, 2017). Compared 
to the BRO, we have introduced the stochastic perturbations un-
der a more rigorous physical description of friction, i.e. under the 
RSF framework using two length-scale parameters. Despite a low 
average dimension of the attractor (typically < 5, Fig. 2b), the 
maximum instantaneous dimension deduced from the data ranges 
from ∼ 12 (experiment b727, σn0 = 24.017 MPa) to ∼ 47 (exper-
iment b695, σn0 = 17.909 MPa). This suggests that extra dofs are 
needed to fully characterize the dynamics in some regions of the 
phase space. Supplying a stochastic term to the dynamics is an ad-
mittance of our ignorance on how to monitor and describe these 
extra dofs (Vere-Jones et al., 2005). The maximum instantaneous 
dimension increases from ∼ 2 to ∼ 41 when perturbing the ODE 
dynamics with a stochastic term, and it reaches ∼ 82 when in-
troducing also observational noise. The choice of modeling small 
scale fluctuations via stochastic terms is not unique, and deter-
ministic descriptions could hold as well. Whether solids and fluids 
should be phenomenologically modeled via stochastic or determin-
istic equations is still an open problem (Nath et al., 2009; Cruzeiro, 
2020) which affects, for example, the quality of weather forecasts 
and climate predictions (Palmer, 2019). Another limitation may 
come from the fact that instabilities are introduced by inertial ef-
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fects, here neglected but needed to describe natural earthquakes. 
Despite these limitations, the proposed description explains major 
features of the laboratory shear stress time series and reconciles 
the number of dofs that can be deduced from the observations. 
Furthermore, this model explains fluctuations of the labquakes 
stress drop caused by the inclusion of stochastic perturbations to 
the dynamics, thus contributing to the debate on stress drop scal-
ing with earthquake size (Cocco et al., 2016). Thanks to the ODE 
and SDE models, we can estimate the effect of the stochastic term 
to the predictability of the dynamics. The Lyapunov time (tLyap ) 
is limited for ODE models (∼ 2 s on average) due to the finite 
�t , and it is reduced for SDE models (∼ 0.6 s on average). We 
notice a peculiar trend of tLyap with σn0. In particular, tLyap gets 
smaller when increasing σn0 for ODE simulations, while it gets 
larger for SDE simulations (Fig. 5c). This means that for ODE the 
predictability horizon is larger for slow events and smaller for fast 
events. This can be understood in terms of the instability duration. 
Slow events are seen as more predictable because the differential 
of the system varies less abruptly than that for fast events. This 
means that even when we are not able to properly estimate the 
tangent map because of coarse temporal sampling, if the dynam-
ics are slow then the error is smaller than for the fast dynamics 
with the same temporal sampling. On the other hand, for SDE 
simulations we observe the opposite trend for tLyap . This can be 
explained by the fact that the shear and normal stresses for fast 
events are larger than those for slow events, but the stochastic 
fluctuations introduced to perturb the dynamics have the same 
amplitude independently of the applied normal stress. It follows 
that these perturbations are more relevant for slow events, mak-
ing them more stochastic and thus less predictable. This obser-
vation has relevant implications for frictional sliding at natural 
scale. In fact, we can imagine that small scale fluctuations of the 
stress field play a more relevant role for slow earthquakes than for 
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Fig. 8. (a) Frictional shear stress τ f simulated using the system of SDE with stochastic terms added to y and u, and addition of observational noise ετ f on τ f . Simulations 4, 
8, 10, 11, and 14 use imposed σn0 to mimic experiments b726, b698, b728, b721 and i417. (b)-(e): As Fig. 2, but for SDE simulated time series with stochastic terms added 
to y and u and the addition of observational noise ετ f on τ f . The aperiodic behavior highlighted by the departure from the orange dotted lines is now a common feature at 
all values of σn0, similar to the laboratory observations.
fast, elastodynamic earthquakes. This does not exclude though that 
the irregularity introduced in the recurrence of slow earthquakes 
can then be transmitted to larger scale, influencing regular earth-
quakes recurrence, especially close to the brittle-ductile transition 
zone where slow slip events can trigger regular earthquakes (e.g., 
Radiguet et al., 2016).

Data-driven model-free techniques have been used to predict 
the behavior of chaotic systems. Examples are offered by the Non-
linear Forecasting Analysis (Farmer and Sidorowich, 1987; Casdagli, 
1989; Wales, 1991), reservoir computing approaches (Pathak et al., 
2018), Long-Short Term Memory (LSTM) recurrence neural net-
works and transformer networks (Laurenti et al., 2022). While 
these approaches provide a forecasted value, sometimes in good 
agreement with the observations even up to 8tLyap into the fu-
ture (Pathak et al., 2018), they are often used as black boxes, 
and the interpretability of the analysis is unclear. To have a bet-
ter understanding of the physics behind a prediction, as future 
steps we envision the application of data assimilation (DA) ap-
proaches that can use the model here presented to advance the 
state of the system. The major challenge for a DA approach comes 
11
from the lack of measure of the variables needed to fully describe 
the state of the system. Recent advances linking embedding the-
ory to the Frenet-Serret description of a dynamical system have 
been proposed based on the Hankel view of Koopman (HAVOK) 
theory (Brunton et al., 2017; Hirsh et al., 2021). This approach 
takes advantage of Taken’s embedding theory (Takens, 1981; Sauer 
et al., 1991) and converts an autonomous nonlinear system into a 
non-autonomous linear system with an additional nonlinear forc-
ing term. Given the overall low dimension retrieved for the system 
under study, a plausible next step will be to investigate reduced 
order models like the aforementioned one. Similar to weather fore-
cast, we think that ensemble forecast is the most reasonable way 
to assess the future state of the system because of the unavoidable 
stochastic terms that affect the dynamics. Early attempts of earth-
quake ensemble forecast can be found in Marzocchi et al. (2012)
and references therein. Differently from previous models, which 
were purely based on statistical seismology, we simulate aperiodic 
behavior incorporating the physics of friction via the RSF formal-
ism. We do not exclude using this model to improve laboratory 
earthquakes forecast with machine learning approaches, generat-



A. Gualandi, D. Faranda, C. Marone et al. Earth and Planetary Science Letters 604 (2023) 117995
ing at will synthetic data that resembles the major characteristics 
of the observed time series and reducing the shortcoming of lim-
ited training datasets.
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