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a b s t r a c t

Predicting fetal brain abnormalities (FBAs) is an urgent global problem, as nearly three of every thousand
women are pregnant with neurological abnormalities. Therefore, early detection of FBAs using deep
learning (DL) can help to enhance the planning and quality of diagnosis and treatment for pregnant
women. Most of the research papers focused on brain abnormalities of newborns and premature infants,
but fewer studies concentrated on fetuses. This study proposed a deep learning-CNN-based framework
named StackFBAs that utilized the stacking strategy to classify fetus brain abnormalities more accurately
using MRI images at an early stage. We considered the Greedy-based Neural architecture search (NAS)
method to identify the best CNN architectures to solve this problem utilizing brain MRI images. A total
of 94 CNN architectures were generated from the NAS method, and the best 5 CNN models were selected
to build the baseline models. Subsequently, the probabilistic scores of these baseline models were com-
bined to construct the final meta-model (KNN) utilizing the stacking strategy. The experimental results
demonstrated that StackFBAs outperform pre-trained CNN Models (e.g., VGG16, VGG19, ResNet50,
DenseNet121, and ResNet152) with transfer learning (TL) and existing models with the 5-fold cross-
validation tests. StackFBAs achieved an overall accuracy of 80%, an F1-score of 78%, 76% sensitivity,
and a specificity of 78%. Moreover, we employed the federated learning technique that protects sensitive
fetal MRI data, combines results, and finds common patterns from many users, making the model more
robust for the privacy and security of user-sensitive data. We believe that our novel framework could be
used as a helpful tool for detecting brain abnormalities at an early stage.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The use of magnetic resonance imaging (MRI) is one of the most
significant and frequently used techniques to examine brain activ-
ity (Attallah et al., 2019). MRI imaging is also very useful for inves-
tigating fetal brain imaging (Attallah et al., 2018). The early
detection of fetal brain anomalies by scanning is crucial as about
3 out of 1000 pregnancies have various types of brain abnormali-
ties (BA). In addition, a range of neuropathological variations
may happen which is related to serious clinical morbidities
(Griffiths et al., 2017). With the help of MRI diagnosis, the abnor-
mality of the fetus’s brain and tumors in the early stage can help
with the preliminary study without any medical interference
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(Alansary et al., 2015; Katorza et al., 2018). Doctors can help par-
ents to understand and also prepare them to deal with abnormal-
ity, also the possible treatments if it is detected as early as possible
(Katorza et al., 2018). In the domain of bioinformatics, deep Learn-
ing (DL) is utilized as a great mechanism for pattern recognition
and image processing. DL is used for analyzing ultrasound images
and also it is used outside the field of fetal (van Sloun et al., 2020;
Ouahabi and Taleb-Ahmed, 2021; Shen et al., 2021; Zaffino et al.,
2020). This technique can be enforced for disease images to assist
specialists in analyzing disease diagnoses. Therefore, DL can be
essential for examining the MRI images of the fetus’s brain for early
detection and identifying the specific diseases (Hosseini and Zekri,
2012). With the help of the MRI scan, we can get hidden properties
of the soft tissues under the fetus’s brain structure. So, without any
medical obstruction, the preliminary identification of brain abnor-
malities can be found (Attallah et al., 2019). Therefore, identifying
them in the initial stage with the DL has many benefits. Firstly,
doctors can easily diagnose the disease accurately and consult
the parents about the upcoming challenges and prepare them for
managing the abnormality. Secondly, it aids to guide the issues
that might occur during the pregnancy. Lastly, it enhances the
standard of the treatment plan which is suitable for the patient
(Katorza et al., 2018).

The recent work on MRI images mostly focused on segmenta-
tion. In papers (Sanz-Cortes et al., 2013; Sanz-Cortés et al., 2013),
they used the FBA images for limited classifications, also authors
have utilized these images to forecast an abnormal neuro-
behavior for gestational age (SGA) babies using the segmentation
technique. They segmented the fetal brains manually which is
time-consuming. Similarly in another paper (Kainz et al., 2014),
they also proposed a fully automatic framework to perform brain
classification using rotation invariant extractors. They demon-
strated that the classification technique can be directly applied
for brain segmentation using basic refining approaches inside
raw MRI scan data, resulting in a final segmentation with more
than a 0.90 Dice score. More research is concentrating on brain-
structure segmentation. For instance, Wang et al. (2018) intro-
duced a novel DL-based system (MCANet) that can segment the
middle cerebral artery and obtain the knowledge of gate position.
This system reduces the workload of the sonographers to adjust
several hyper-parameters for generating high-resolution and col-
orful ultrasound images. As an encoder, a pre-trained ResNet is
used, and as a decoder, dense upsampling convolution blocks are
used in this study. The authors of the work (Wu et al., 2020) pre-
sented a deep attention network to automate the process of mea-
surement of cavum septum pellucidum. This process is normally
done manually, Therefore, it has become difficult and time-
consuming even for expert sonographers. Their work is inspired
by U-Net encoder-decoder architecture where the backbone of
the encoding path is VGG11 and between the encoder and the
decoder, a channel attention module is added. These two studies
(Singh et al., 2021; Zhang et al., 2020a) are very similar to Wu
et al. (2020). They also inspired their CNN architecture from U-
Net. Singh et al. (2021) optimized a ResU-Net-c semantic segmen-
tation model to automatically segment the cerebellum and Zhang
et al. (2020a) designed a CNN-based system (MANet) that can seg-
ment the circumference of a fetus’s head. Both systems are based
on encoder-decoder architecture.

Apart from that, few researchers focused on exploring 3D archi-
tecture. In paper, Huang et al. (2018), the proposed a framework
(VP-Nets) to segment extra-cranial tissues in order to segment
and pinpoint 5 brain areas at the same time. 3D U-Net is also uti-
lized in Wyburd et al. (2020,). In paper (Wyburd et al., 2020), Using
three different types of CNNs, they offered a new approach for seg-
menting the compact bone from 3D sonogram images. Similarly,
Venturini et al. (2020) also proposed a multi-task CNN-based 3D
2

U-Net to automatically mask out several segments of the fetal
brain from ultrasound images. All these studies are further
explored in this paper (Namburete et al., 2018). They resolved
three issues regarding fetal structural segmentation, 3D fetal brain
localization, and alignment to a referential coordinate system.
Moser et al. (2019) also work on 3D fetal brain localization using
end-to-end 3D CNN. The research on fetal brains is not limited to
these studies. More recent articles demonstrate a few more tech-
niques regarding fetal brain segmentation. Such as The author of
this paper (Lee et al., 2020) claimed that their novelty is the use
of the Bayesian Network on ultrasound images to predict GA.
Few papers are focused on investigating fetal brain development.
Namburete et al. (2017) and Wyburd et al. (2021) used 3D Convo-
lutional Regression Network and CNNs to estimate the fetal brain
maturation respectively. More extended discussion regarding fetal
brain analysis is present in this most recent paper (Fiorentino et al.,
2022).

Nevertheless, few works used MRI images that focus on classi-
fications (Hosseini and Zekri, 2012; Makropoulos et al., 2018).
Attallah et al. (2018) claimed that their research is the first to clas-
sify FBAs based on GAs. The research uses a variety of machine
learning (ML) classifiers, including K-nearest neighbor (KNN), ran-
dom forest (RF), naive Bayes (NB), neural network (NN), and diag-
onal quadratic discriminates analysis (DQDA). They were able to
attain the best accuracy utilizing the KNN classifier, according to
their findings.

We proposed a novel CNN-based framework that used the
stacking method to achieve a more accurate and stable perfor-
mance in detecting fetal brain abnormalities at an early stage. To
automatically find the best CNN architectures for our up-to-date
dataset (� see samples of the dataset in Fig. 2) ([link], 2022), we
employed the Neural architecture search (NAS) approach (Liu
et al., 2020). However, existing algorithms (such as NASNet, PNAS,
Bayesian optimization, Random search, and Hyperband) are often
computationally expensive. To overcome this issue, we used a
Greedy-based NAS (Chowdhury et al., 2022) algorithm to find the
best CNN architectures. In addition, we also compared these archi-
tectures with the pre-trained CNN Models (e.g., VGG16, VGG19,
ResNet50, DenseNet121, and ResNet152) with transfer learning
(TL). Among 94 CNN architectures that are generated from the
NAS method, the best 5 models are selected for baseline models.
StackFBAs framework effectively merged these baseline models
(see baseline architectures in Fig. 3)) to obtain the final meta-
model utilizing the stacking technique to fuse their strengths.
Moreover, we must be cautious about the privacy and security of
user-sensitive information while dealing with medical image data.
As a result, we utilized a mechanism called federated learning (FL)
(Yang et al., 2019).
2. Materials & proposed methodology

In this section, we have explained the fundamental concepts of
StackFBAs in depth. Fig. 1 is the flowchart of StackFBAs.
2.1. Dataset

The dataset we utilized in our study was accumulated by a
medical group at Harvard Medical School ([link], 2022). The data-
set contains 227 fetal MRI images (114 abnormal and 113 normal
images) taken between 16 and 39 weeks of gestation. 20% of the
dataset was reserved for testing, including both normal and abnor-
mal samples, while the remaining portion was used for training. A
detailed description of the dataset is available online in [link]
(2022). Fetal MRI scans are acquired as stacks of T2-weighted
images using a standard half-Fourier single-shot RARE grouping



Fig. 1. The overall framework of the proposed StackFBAs. The architecture of StackFBAs involves four major stages, including (A) data pre-processing, where all FBAs datasets
were collected and split as the training and testing dataset (B) Neural architecture search (NAS), where top five optimized architectures (CNNa;CNNb ;CNNc ;CNNd , and CNNe)
were selected based on the prediction scores for the brain MRI dataset; (C) Stacking strategy and the meta-model was built using the top five CNN optimized architectures
where the KNN model was applied as a stacking classifier for the prediction task; (D) Federated learning, where our stacking meta-model was connected with Node with data
model update request and Node had a connection with multi-cloud/data center to retrieve the secure data.
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approach from different plans (e.g. axial, sagittal, and coronal). Due
to the fetal motion throughout the checkup, each obtainment acts
as a scout for the next obtainment. A typical sequence had an echo
train length of 72, an echo spacing of 4.2 ms, a TE of 60 ms, a field
of view of 24 � 24 cm, a section thickness of 4 mm, and an acqui-
sition matrix of 192 � 256. The acquisition time for each image is
only 430 ms per slice. In addition, to restrict the portion of the
radio frequency (RF) control statement, a 130-degree refocusing
heartbeat was employed.Attallah et al. (2019). Fig. 2 contains sam-
ple images from the dataset.

2.2. Transfer learning

Transfer learning (TL) is a kind of DL-based model where an
architecture implemented for a prediction task is reused on a
new problem (Houlsby et al., 2019). A machine utilizes previously
trained knowledge to increase the prediction ability for a second
task in the TL. TL is widely applied to train deep learning models
for diverse natural language processing (Houlsby et al., 2019;
Durrani et al., 2021), computer vision (Li et al., 2020;
Whatmough et al., 2019), and image processing-related (Hussain
et al., 2018; Aslan et al., 2021) tasks. In image processing, neural
networks generally apply to find edges in the first layers, build in
the central layer, and perform the task in the last layers. The first
and middle layers are utilized in TL, and the final layers are only
retrained. Using TL in our model aims to improve neural network
performance, reduce training time complexity, and manage miss-
ing data. The generated model approach and the pre-trained model
3

approach are two popular procedures for the TL model, and both
methods were considered for training in this study. We selected
multiple pre-trained deep CNN models such as VGG16, VGG19,
ResNet50, ResNet152, and DenseNet121 to perform the TL. TL asso-
ciates the concepts of a domain and a task. A domainD consists of a
feature space X and a marginal probability distribution PðXÞ over
the feature space, where X ¼ x1; . . . ; xn�X . For MRI image classifica-
tion, X is the space of all image representations, xi is the i th term
vector corresponding to some image and X is the sample of images
used for training. So the formal definition of transfer learning is,
Given a domain, D ¼ X; PðXÞ, a task T consists of a label space Y
and a conditional probability distribution PðY jXÞ that is typically
learned from the training data consisting of pairs xi�X and yi�Y.
In the MRI image classification example, Y is the set of all labels,
(i.e. Normal, Abnormal) and yi is either Normal or Abnormal.

2.3. Neural architecture search

Neural Architecture Search (NAS) is an automating mechanism
for CNN architecture engineering that has outperformed hand-
designed architectures on several problems in object detection
(Chen et al., 2018), image identification (Zoph et al., 2017; Real
et al., 2018), and semantic segmentation (Zoph et al., 2017). NAS
method can be categorized into three dimensions: search space
which is utilized in StackFBAs, search and performance evaluation
techniques. It is a subfield of AutoML (Hutter et al., 2019) shows a
lot of similarities with hyperparameter optimization (Feurer and
Hutter, 2019) and meta-learning (Vanschoren, 2019). Greedy



Fig. 2. Few samples of the Dataset (Normal and Abnormal cases).
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hyperparameter optimization (Chowdhury et al., 2022) has proven
to be an effective approach for hyperparameter optimization that
can also be applied to NAS. Greedy-based NAS (GNAS) is very effec-
tive, compact, and resource-friendly for designing CNNs due to its
greedy strategies. We applied Greedy-Based NAS (Chowdhury
et al., 2022; Huang et al., 2018) in StackFBAs to automatically find
the optimized architectures for the Brain MRI dataset.

In this study, GNAS reduced the range of possible evaluated
architectures from exponential to linear complexity of the features
using greedy strategies. It can significantly accelerate the back-
propagation training by implementing the weight-sharing mecha-
nism of individual possible architectures (Pham et al., 2018; Real
et al., 2017). In StackFBAs, the GNAS method handles the automatic
design of CNN architectures in a completely different way. It splits
the general architecture optimization problem into subproblems,
depending on appropriate layer (Inter and Intra) greedy strategies
from the aspect of neural architecture optimization and the greedy
strategy assures that the architecture search is efficient. Generally,
GNAS is a non-parametric technique that avoids the loop of using
additional hyper-parameters for reinforcement learning (RL)
(Zoph et al., 2018) and Bayesian optimization (BO) (Snoek et al.,
2012). Recently DeepQGHO and GNAS have achieved promising
results in terms of time consumption and for searching multi-
attribute learning, respectively. We have generated the best five
CNN architectures from StackFBAs using NAS are shown in Fig. 3.

2.4. Stacking strategy

Previous research has shown that ensemble approaches can
outperform their baseline models in terms of predictive perfor-
mance (Manavalan et al., 2020; Wei et al., 2021; Xie et al., 2020;
Zhang and Zou, 2020; Charoenkwan et al., 2021). Generally, there
are three types of ensemble approaches: stacking, bagging, and
boosting strategies (Xie et al., 2020; Qiang et al., 2018). In order
4

to obtain an accurate prediction, we used a feature representation
method based on a stacking strategy that may reap the benefits of
the individual baseline model. Base-classifier and meta-classifier
are the two stages of stacking ensemble learning (Wolpert, 1992;
Sun and Trevor, 2018). The training set is used in the base-level
classifier to train models and make predictions. The meta-model
uses heterogeneous data for training, while the base-output classi-
fier is transferred to the real classification tag. In this work, we
have considered different CNN models which were generated from
the NAS algorithm. Then we stacked the best five based on the CNN
models and then the meta classifier, KNN, is used to predict each
base model. Fig. 4 depicts the stages involved in implementing
the stacking method. The 5 PFs of a given MRI image were applied
as new input features for the meta-model, which can be formu-
lated by the Eq. 1 (Charoenkwan et al., 2022):

nFeatðPÞ ¼ ½f ðBC1ðPÞÞ; f ðBC2ðPÞÞ; . . . ; f ðBC5ðPÞÞ�T ð1Þ

where f ðBMiðPÞÞ represents the ith PF attained by the ith baseline
model ðBCiÞ of the MRI Image P.

2.5. Federated learning

Federated learning (FL) is a training statistical model that is
constructed using a distributed dataset (Jia et al., 2022; Li et al.,
2022; Zhang et al., 2021; Lu et al., 2020). This procedure does
not disclose any confidential information between the clients.
The trained federated technique can be installed in the systems
of each participant or shared with all clients. In terms of data pri-
vacy, FL models trained on decentralized data are a new theory. It
can ensure privacy while minimizing latency and a central model’s
replica is distributed into connected devices. The input data of
users from each device is employed to train the models and the
training results are sent to the cloud server to be compiled and
updated to the central model. The working principle of FL is repre-



Fig. 3. The architecture of the five best CNNmodels. A and D contain 21 layers with two fully connected layers, and their structure includes five convolutional layers, followed
by a MaxPool. The main difference between these two architectures is neuron size. Similarly, B has b has 19 layers with only one fully connected layer, and it also has five sets
of convolutional layers with a MaxPool activation. C has 16 layers, and it has four sets of convolutional layers. Lastly, e is the largest architecture because of the layers, where
it contains 31 layers, including three fully connected layers. These five architectures are identical in terms of their number of layers, neuron size, and performance.

Fig. 4. A step-by-step procedure for constructing the stacking models for MRI images. Five different models are generated that are selected by the NAS technique. Second, the
prediction probabilities scores were combined by applying the stacking strategies to generate feature sets. Based on the feature set, we train the KNN model with five feature
spaces and exploit the integration of individual feature set into the stacking model. Finally, the prediction score is generated from the KNN predicting FBAs with improved
accuracy.
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sented in 1. An FL technique, particularly for medical diagnosis
data, has a substantial impact on data anonymity and protection.
Federated learning can be defined as follow: consider a real appli-
cation scenario such as our application where we developed a
CNN-based stacking model which can identify brain abnormalities.
It is assumed that N users, fN1;N2 . . . ;Nng each have their own
database, fD1;D2 . . . ;Dng and that none of them can directly access
other people’s data to extend their own. As we know that the aim
of FL is to train a model by combining training data from several
devices. We have followed three simple steps to perform FL
(McMahan et al., 2016): (1) Each device receives the initial model
from the server. (2) The machine Ni does not need to exchange its
source data; instead, it can independently train its own model Mi

using the local data Di. (3) The server uploads the local models
fM1;M2; . . . ;Mng to the global model M and then updates each
user’s local model with the global model. We are dealing with
highly sensitive MRI data. Therefore, We need to ensure data con-
fidentiality. We have opted to use the Model aggregation mecha-
nism of the federated learning in the StackFBAs framework to
ensure the privacy of the data. We have mentioned the Federated
Learning technique in Algorithm 4 as a part of our proposed
StackFBAs.
2.6. Proposed framework

There are three primary functions in the StackFBAs framework
that control the entire procedure: 1) arcSearch() 1 for NAS 2) stack-
ing() for stacking technology 2, and 3) ClientUpdate () 3 for feder-
ated learning and the main function controls all of these functions.
For finding the optimal architectures for this dataset, each hyper-
parameter is optimized by the greedy-based NAS algorithm while
some hyperparameters are kept constant during the search. Each
hyperparameter optimization is repeated until all local hyperpa-
rameters have been optimized. Let T ¼ ðT n; T hÞ be a DNN configu-
ration, where T n denotes a network topology and T h denotes the
DNN hyperparameters for a decision set D. We suppose that w is
the set of all DNN weights. Using the validation accuracy function,
V, the equation optimizes the hyperparameters, T h. With the num-
ber of hyperparameters, the cost of computing the optimization in
Eq. 2 increases exponentially. This exponential computational cost
is reduced using the greedy method. The greedy method, in partic-
ular, optimizes one hyperparameter while leaving the others con-
stant. Let n represents the number of hyperparameters in
T h ¼ ðT 1

h; T
2
h; . . . ; T

n
hÞ, with T i

h�Di being the ith hyperparameter

in T h. Let’s say the search space for the ith hyperparameter T i
h

has m elements and is represented by Di ¼ ðDi
1;Di

2; . . . ;Di
mÞ, where

Dj
i is the jth element in the T i

h search space. The decision set for the

hyperparameter T i
h:Di�Rm. We can rewrite the equation

(Chowdhury et al., 2022) using the greedy-based hyperparameters
optimization (GHO) method as follows.

max
T i

h2D
i

f Vð½T n; T h�;V;w�Þ 8i ð2Þ

The pseudo-code of the GHO algorithm is mentioned in arch-
Search() function in Algorithm 1, where, validation accuracy
Va ¼ ðV1

a ;V2
a ; . . . ;Vn

aÞ and V i
a indicates the validation accuracy

achieved from the Eq. 2.
6

Algorithm 1. Neural Architecture Search

1: archSearchði; j; T i
h;DiÞ :

2: T i;j
h  D

i
j

3: Evaluate V i;ja
4: if V i;ja PV ia then

5: V ia  V
i;j
a

6: T i
h  T

i;j
h

7: end if

8: return V ia; T i
h

For the stacking process, the data frame Df and KNN model
Mknn are initialized along with a variable that will store the accu-
racy in VM . This accuracy is sorted in descending order in a Li. Then
the best five configurations are taken to create another new data
frame which is used to train with the KNN model. Finally, it will
return the accuracy. The pseudo-code of the stacking technology
is mentioned in the stacking() function in Algorithm 2.
Algorithm 2. Stacking

1: stackingðLaÞ :
2: Df  Initialize data frame
3:Mknn  Initialize KNN Model
4: Vm  £
5: La:sortðreverse ¼ TRUEÞ
6: for j 1 to 5 do
7: Df :appendðpredictðLa½1�ÞÞ
8: end for
9: Vm  Mknn:fitðDf Þ
10: return Vm

Although one of FL’s primary goals is to increase data confiden-
tiality, the attacks threaten to undermine the advantage. As a
result, several well-known techniques have been incorporated into
FL algorithms to optimize the systems’ resistance to them. Differ-
ential privacy is a term that arose in machine learning and is used
to characterize how resistant data and its analysis are to member-
ship inference attacks. A system that is randomized S : D ! Rwith
range R and domain D fulfills ð�; dÞ differential privacy if it holds
for any two consecutive inputs d; d1 2 D and any subset of outputs
M#R then Xu et al. (2021),

Pr½SðdÞ 2 M� 6 e�Pr½Sðd1Þ 2 M� þ d ð3Þ

In the domain of machine learning, adjacent inputs are two
datasets Y ;Y0 that differ in a discrete training sample, so that
Y ¼ Y 0 fyng. The randomized process is intended to ensure that
the output of the Machine learning model cannot be followed back
to the consequences of a single sample. Using a Gaussian method is
one technique to provide differential privacy. Assume we want to
encrypt f : D ! R, a deterministic real-valued function. Then, the
Gaussian mechanism can be used as in Eq. 4 (Xu et al., 2021):

SðdÞ ¼ f ðdÞ þ N ð0;M2
f r

2Þ ð4Þ
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Sf denotes the sensitivity of f , which is described as the greatest
absolute distance jf ðdÞ � f 0ðdÞj between two consecutive inputs d
and d0. When this additional Gaussian noise is used once with f , it

fulfills (ð�; dÞ) differential privacy if d P 4
5 expð�ðr�Þ2=2Þ and

� < 1. Abadi et al. provide a more extensive discussion of differen-
tially private SGD and differential privacy (Abadi et al., 2016).

Algorithm 3. Client Update

1: ClientUpdateðkc;wcÞ :
2: Bc  ðdivide Pk into batches of size BcÞ
3: for every local iterations i from 0 to E� 1 do
4: for batch bc 2 Bc do
5: wc  wc � ncDlcðwc; bcÞ
6: end for
7: end for
8: return wc to server

A client–server architecture is used in an FL system (pseudo-
code of the client–server architecture is mentioned in Algorithm
3 & 4), with one server in charge of enabling training, constructing
the model, and making it for training the model to all clients with
the local data (Pfitzner et al., 2021). A formal algorithm in
McMahan et al. (2016) implies that the weights of the model are
distributed among clients and servers. Most of the techniques just
share parameter information to limit the amount of data commu-
nication. When employing local mini-batches, McMahan et al.
(2016) discovered that selecting a proportion of Ck = 0.1 for each
iteration (K customers) is the best choice, while smaller values
are rarely good. Furthermore, if the clients have sufficiently power-
ful computing equipment, setting the maximum epochs E or min-
imizing the batch size B might optimize the communication cost
and accelerate the model convergence. We have utilized this FL
algorithm in StackFBAs as shown in Algorithm 4 where g repre-
sents the learning rate, K are indexed by k; E indicates the total
epochs, and B is the local minibatch size. The pseudo-code of the
StackFBAs is mentioned in Algorithm 4.
Algorithm 4. StackFBAs

1: Va  £
2: Li  £

3: T i
h  Initialize hyperparamters

4: Di  Initialize search space
5: for i 0 to n� 1 do
6: for j 0 to m� 1 do

7: Li0 ;Li1 ¼ archSearchði; j; T i
h;DiÞ

8: end for
9: end for
10: Ps  £
11: Ps ¼ stackingðLiÞ
12: N  maximumðC� K;1Þ
13: for t  0 to T � 1 do
14: St  ðarbitrary set of N clientsÞ
15: for every clients k 2 St in parallel do
16: wk

t  ClientUpadteðk;wtÞ
17: end for

18: wt þ 1 
PK

k¼1
nk
n wk

t þ 1
19: end for
7

2.7. Evaluation metrics

To evaluate the performance of the generated five best models
from NAS, five performance metrics are used, including sensitivity
(SN), specificity (SP), accuracy (ACC), F-Score, and Matthews corre-
lation coefficient (MCC). These metrics are formulated as follows:

SN ¼ TP
TP þ FN

ð5Þ

SP ¼ TN
FP þ TN

ð6Þ

ACC ¼ TP þ TN
TP þ FN þ FP þ TN

ð7Þ

F � Score ¼ 2TP
2TP þ FP þ FN

ð8Þ

MCC ¼ ðTP � TNÞ � ðFP � FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð9Þ
3. Results

3.1. Evaluation of Five CNN models with transfer learning

All parameters of CNN models were started with random Gaus-
sian distributions and trained for a maximum of 100 epochs with a
batch size of 64 images. The training convergence can be noticed
within the 15 epochs. The remaining hyperparameters are weight
decay (0.0005), learning rate (0.001), and momentum (0.9) which
was reduced by a factor of 10 every 15 epochs. Its learning rate
remains unchanged at 0.001. Determining the ideal learning rate
for each layer, particularly for very deep networks like Dense-
Net121, is difficult. For this experiment, we have used the Tensor-
flow framework and Nvidia GTX 1060 6 GB GPU to train CNNs. The
experiments were started by splitting the dataset into two parts for
training and testing, with an exact ratio of 80 and 20. We deter-
mined to apply the TL technique to the Five CNNs (VGG16,
VGG19, ResNet50, ResNet152, and densenet121). These CNNs can
be either fine-tuned from the pre-trained models or learned from
scratch. Both approaches were performed in this work. We utilized
the training dataset to execute, evaluate, and compare the results
of the 5 pre-trained models. To observe how these models are
working on the training dataset, we applied the K-fold cross-
validation (CV) technique. The k-fold CV technique is a resampling
technique that is splitting the dataset into two portions- training
and testing data and training data are split into k parts. In each iter-
ation, k� 1 parts are participating in training and a single portion
is for validation. To evaluate the pre-trained models, we used val-
idation accuracy as the evaluation metric. The results of the CNN
models utilized, together with their 5-fold accuracy and validation
accuracy, are shown in Table 1. We have achieved the best results
with ResNet50 with or without using transfer learning. Without
using TL the test result of ResNet 50 is 0.68 and VGG16 and Rest-
Net152 give the same result and hold the second position with a
difference of 0.02 and a test result of 0.66. From Table 1 it can be
seen that VGG19 gave the lowest accuracy at 0.63. Implementing
TL has improved the results slightly. From the table, it can be seen
that ResNet50’s accuracy has increased slightly by 0.01 with an
accuracy of 0.69. Here, VGG19 had an increase in accuracy by
0.05 and also gives the second-best result along with VGG16 with
an accuracy of 0.68. DenseNet121 gave the least accuracy with



Table 1
K-Folds Accuracy and Validation Accuracy of CNN Models with and without Transfer Learning (TL).

CNN Models CV1 CV2 CV3 CV4 CV5 Test

VGG16 0.66 0.67 0.67 0.66 0.66 0.66
VGG19 0.63 0.63 0.65 0.63 0.65 0.63
ResNet50 0.68 0.67 0.67 0.67 0.68 0.68
DenseNet121 0.64 0.64 0.65 0.64 0.65 0.64
ResNet152 0.66 0.66 0.63 0.66 5 0.66 0.66
VGG16-TL 0.68 0.69 0.67 0.67 0.68 0.68
VGG19-TL 0.65 0.69 0.68 0.68 0.68 0.68
ResNet50-TL 0.70 0.67 0.68 0.67 0.69 0.69
DenseNet121-TL 0.66 0.66 0.66 0.68 0.67 0.66
ResNet152-TL 0.68 0.67 0.67 0.66 0.67 0.67

Table 2
Performance of the four NAS algorithms with several parameter settings.

Experiments Models Algorithm Computational Time Validation Accuracy

1st Experimental Setup 1st Best GHO 2hr 22 min 0.76

1st Best BO 5hr 14 min 0.76

1st Best RS 5hr 01 min 0.75

1st Best HB 3hr 12 min 0.74

2nd Experimental Setup 2nd Best GHO 1hr 51 min 0.75

2nd Best BO 4hr 49 min 0.74

2nd Best RS 4hr 41 min 0.74

2nd Best HB 2hr 58 min 0.75

3rd Experimental Setup 3rd Best GHO 1hr 40 min 0.74

3rd Best BO 4hr 38 min 0.74

3rd Best RS 4hr 31 min 0.74

3rd Best HB 2hr 17 min 0.74

4th Experimental Setup 4th Best GHO 1hr 22 min 0.73

4th Best BO 4hr 10 min 0.72

4th Best RS 3hr 55 min 0.73

4th Best HB 2hr 02 min 0.71

5th Experimental Setup 5th Best GHO 1hr 08 min 0.70

5th Best BO 3hr 48 min 0.71

5th Best RS 3hr 38 min 0.70

5th Best HB 1hr 37 min 0.71
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0.66. So, it can be observed that accuracy has improved marginally
as a result of transfer learning.

3.2. Effectiveness of NAS algorithms

In this section, we have selected four algorithms, such as GHO
(Chowdhury et al., 2022), Bayesian Optimization (BO) (Snoek
et al., 2012), Random Search (RS) (Bergstra and Bengio, 2012),
and Hyper Band (HB) (Li et al., 2017), to search for the optimal
architectures from the search space (see Table 4). Table 2 shows
the performance accuracies and computational times of the differ-
ent search algorithms with different parameter settings. Here, we
have only considered the best five architectures and their perfor-
mances from each algorithm. In the 1st experimental setup, GHO
obtained the highest accuracy of 0.76 with 2 h 22 min computa-
tional time, and HB received the second-best accuracy of 0.75 with
3 h 12 min. The other variant of the search algorithm, RS, has the
third best performer achieving a 0.75 accuracy score with 5hr
01 min. The BO algorithm obtained a 0.74 accuracy score with
5hr 14 min, which attained the worst prediction performance of
the other three algorithms.

Over the four NAS algorithms, GHO and HB have consistently
achieved the best results and remained the best algorithms in
terms of validation accuracy and computational times. For the

2nd;3rd, and 4th experimental setup, we can also see that GHO
and HB algorithms took much less computational time and showed
high accuracy. The best performance (Accuracy: 0.76) we have
8

obtained in 1st experimental setup and less computational time
(1 h 08 Mins) was taken by also GHO in the 5th experimental
setup. In contrast, the GHO algorithm showed the highest predic-
tion performance because of its fastest optimization (Greedy
Algorithms (Zhang et al., 2000)), whereas Greedy Algorithms per-
form recursively based on the parameter set by a scanning list of
objects. In Fig. 5 (a–e), the line graphs (epoch vs. accuracy) display
different coverage areas, the line from GHO covers the highest spot,
which is larger than the other three techniques. Besides, the com-
putational time comparison graphs of different algorithms are
shown in Fig. 6. The main aim of this experiment was to compare
and analyze the performance of four NAS search algorithms and
select the most effective search algorithm. This experiment dis-
closes that GHO is more powerful and plays a significant role in
choosing the best five CNN models in terms of accuracy and com-
putational time.

3.3. Performance evaluation of baseline models

The accuracy of classification has improved significantly
because of automated the design of CNN architectures. We applied
a greedy-based NAS algorithm in StackFBAs. It generated 94 archi-
tectures among them best 10 are visually represented in Fig. 7.
Later, the best 5 architectures were used to combine together using
the stacking strategy. Then, based on the highest validation accu-
racy, each of the HPO algorithms chose the optimal hyperparame-
ter configuration. We have set the activation function to relu, the



Fig. 5. Epoch Vs Accuracy curve a) 1st Experimental Setup b) 2nd Experimental Setup c) 3rd Experimental Setup d) 4th Experimental Setup e) 5th Experimental Setup.
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optimizer to adam, the epochs to 100, and the kernel size to (3,3) to
prevent time complexity. stride size: (2,2), and Pool size: (2,2).To
prevent the model from overfitting, we used the early stopping
callback function, as well as the monitor: ’val loss’ and patience:
3. The hyperparameter configuration space is summarized in
Table 4. The CNNs were tuned on a computer equipped with an
Intel Core i5-4460 Processor, NVIDIA GTX 1060 GPU card, 16 GB
of DDR4 CPU memory, and 6 GB of GPU memory. We used several
open-source Python libraries and frameworks, including Ten-
sorFlow and Keras.
9

The performance of the best five models is shown in Table 3.
These models are represented as CNNa;CNNb;CNNc;CNNd, and
CNNe. The CNNa has the highest accuracy of 0.76 and the CNNb

comes up next with a 0.75 accuracy, while CNNe has the least accu-
racy with a 0.70. As can be seen, the accuracy rate has increased
dramatically while employing NAS rather than transfer learning.
Among the 5 architectures, CNNa has the highest f-score, SP, and
MCC among the rest of the architectures with 0.76, 0.75, and
0.51 respectively. Therefore, we can say that the CNNa architecture
is the best for our experiment. Fig. 8 represents ROC and PR curve



Fig. 6. Computational time comparison among several experimental setups.

Fig. 7. Best ten CNN architectures generated from NAS.
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for each experiment. From Fig. 8, we can observe that CNNa has the
best performance than other CNNs that are generated from StackF-
BAs using NAS. The second and third (Fig. 8) ROC and PR curves are
for pre-trained models with and without TL. In both cases,
ResNet50 shows promising performances. However, the best five
architectures (CNNa;CNNb;CNNc; CNNd, and CNNe) of StackFBAs
outperformed the pre-trained models in terms of ROC and PR
curves in every scenario. Because of this, we fused the strength
of these best five architectures using the stacking strategy.

3.4. Establishment of a meta-model using KNN

KNN was used to create a meta-model using the new
5-dimensional feature vectors. Unlike models created using simple
Table 3
Performance of the best five architectures.

Architectures SN SP

CNNa 0.74 0.75
CNNb 0.73 0.74
CNNc 0.74 0.74
CNNd 0.72 0.73
CNNe 0.73 0.72
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ensemble procedures (such as average scoring and majority vot-
ing), our stacking techniques allow for the automatic exploration
of several baseline architectures. The final meta-model might
potentially give better and more steady performance by intelli-
gently integrating their distinct strengths without human inter-
vention (Wei et al., 2018; Xiong et al., 2018; Zhang et al., 2015).
Table 5 shows the impact of each meta-model. As a result, we will
be able to understand the performance of various ML algorithms as
meta-models.

Table 5 shows the prediction results of different ML algorithms
to find the suitable meta-model. For the meta-model, the KNN
algorithm is considered the best prediction classifier. Whereas
the SN, SP, F-Score and ACC of the KNN model reach 0.76, 0.78,
0.78, and 0.80. These results support the superiority of KNN over
the other four classifiers. However, applying an LR algorithm as a
meta-model, the SN, SP, F-Score and ACC are 0.74, 0.75, 0.75, and
0.76, which are 2%, 3%, 3%, and 4% lower than the KNN classifier.
The XGBoost and NB gave the same and the least accuracy with
an accuracy of 0.72 which is 8% lower than KNN and 4% lower than
LR.

3.5. Performance of ensemble models

We developed and ran an experiment to test the performance of
ensemble models using the stacking strategy: five CNN baseline
models (CNNa;CNNb;CNNc;CNNd, and CNNe) generated from
StackFBAs using NAS were combined to form an ensemble model.
When compared to pre-trained models with or without TL, it is
clear that CNNs with stacking strategy consistently outperformed
pre-trained CNN models on all metrics (i.e., SN, SP, ACC, and F-
Score). These findings suggested that utilizing an ensemble model
ACC F-Score MCC

0.76 0.76 0.51
0.75 0.75 0.50
0.74 0.75 0.50
0.72 0.74 0.48
0.70 0.74 0.47



Fig. 8. ROC and P-R Curve of a) CNN Models generated from NAS. b) CNN Models without Transfer Learning. c) CNN Models with Transfer Learning.
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can improve the prediction performance of individual models, as
has been demonstrated in several earlier research (Garg and
Gupta, 2008; Wei et al., 2018; Zhang et al., 2015). We also com-
pared our stacking strategy with average scoring (AS) (Zhang
et al., 2018; Wang et al., 2018; Zhang et al., 2020b) and majority
voting (MV) (Wang et al., 2017; Chen and Jeong, 2009). Table 6
illustrates the performance of different ensemble methods. As
demonstrated in Table 6, these two ensemble models did not
significantly enhance prediction performance over the stacking
11
strategy where the stacking strategy achieved the best perfor-
mance, showing its ability for the prediction tasks. We can see that
the stacking strategy has the best ACC 0.80 where average scoring
and majority voting has 0.75 and 0.74 which is 5% and 4% lower
than the stacking strategy respectively. Compared with the stack-
ing technique, both the models (AS, MV) were decreased by 2%,
4%, 2% and 1%, 4%, 3% on SN, SP, and F-Score. The findings proved
that the stacking strategy is the best suitable ensemble model for
StackFBAs to predict brain abnormalities.



Table 4
Search space for the Neural Architecture Search.

Hyperparameter Range

number of Conv layers 2 [1 to 5]
units per layer 2 [16, 32, 64, 128, 256, 512]
dense units per layer 2 [64, 128, 256, 512, 1024]
number of dense layers 2 [1, 2, 3]
dropout 2 [0.0 to 0.8]
weight decay 2 [0.0, 1e-01, 1e-03, 1e-04]
learning rate 2 [1e-01, to 1e-05]

Table 5
Performance measurements on different algorithms for level-1 model (meta-model).

Algorithms SN SP F-Score ACC

LR 0.74 0.75 0.75 0.76
KNN 0.76 0.78 0.78 0.80
SVM 0.75 0.74 0.74 0.74
XGBoost 0.72 0.71 0.71 0.72
NB 0.72 0.71 0.71 0.72

Table 6
Performance comparison of different ensemble strategies.

Ensemble strategy SN SP F-Score ACC

Stacking 0.76 0.78 0.78 0.80
Average Scoring 0.74 0.74 0.76 0.75
Majority Voitng 0.75 0.74 0.75 0.74

Fig. 9. Comparing inference latency for different models.
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Moreover, we have considered four models (i.e., ResNet50 with
and without transfer Learning, CNNa, and CNNa + Stacking model)
to compare the inference time. The Inference time of all models
is shown in Fig. 9. We can see that the stacking model has higher
latency due to its multiple levels.
4. Conclusion

We proposed an efficient algorithm named StackFBAs for diag-
nosing abnormalities in fetal brains. This study aimed to develop a
new stacking framework with greedy-based neural architecture
search (NAS) and federated learning techniques to classify brain
abnormalities at an early stage. This approach was developed
based on the different architectures of the baseline CNN classifiers,
where the probabilistic score of these baseline models was com-
bined to construct the final meta-model (KNN) using the stacking
strategy. We considered the greedy-based NAS method to identify
12
the best CNN architectures, which attained higher prediction
results than popular ML classifiers. Moreover, the federated learn-
ing technique was utilized to protect sensitive fetal MRI data, com-
bine results, and find common patterns from many users, making
the model more robust for the privacy and security of user-
sensitive data. Our framework has successfully diagnosed fetal
brain abnormalities in MRIs of various planes and ages (from
16 weeks to 39 weeks). Furthermore, the proposed algorithms out-
performed the individual models in most situations. To our knowl-
edge, most of the past research has focused on segmenting preterm
and neonatal MRI brain pictures. Few studies that looked at fetal
MRI scans for classification used fetal scans in conjunction with
newborn scans to quantify the deficit, known as SGA, in newborns
rather than fetuses. The experimental results disclosed that our
StackFBAs model beats the transfer learning model in categoriza-
tion. This discovery will assist in developing guidance for future
research by encouraging academics to start categorizing the prena-
tal brain. It will also assist physicians in making an accurate diag-
nosis, determining a suitable treatment schedule, and
appropriately advising parents on how to cope with the abnormal-
ities before the birth of the child.
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