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Among the diverse cell types included in the general population named glia, astrocytes
emerge as being the focus of a growing body of research aimed at characterizing their
heterogeneous and complex functions. Alterations of both their morphology and activities
have been linked to a variety of neurological diseases. One crucial physiological need
satisfied by astrocytes is the cleansing of the cerebral tissue from waste molecules.
Several data demonstrate that aquaporin-4 (AQP-4), a protein expressed by astrocytes, is
crucially important for facilitating the removal of waste products from the brain.
Aquaporins are water channels found in all district of the human organism and the
most abundant isoform in the brain is AQP-4. This protein is involved in a myriad of
astrocytic activities, including calcium signal transduction, potassium buffering, synaptic
plasticity, astrocyte migration, glial scar formation and neuroinflammation. The highest
density of AQP-4 is found at the astrocytic domains closest to blood vessels, the endfeet
that envelop brain vessels, with low to zero expression in other astrocytic membrane
regions. Increased AQP-4 expression and loss of polarization have recently been
documented in altered physiological conditions. Here we review the latest findings
related to aging and Alzheimer’s disease (AD) on this topic, as well as the available
knowledge on pharmacological tools to target AQP-4.

Keywords: aquaporin-4, aging, Alzheimer’s disease, astrocytes, glymphatic system, brain clearance,
perivascular space
INTRODUCTION

During the past 15 years, glial cells have gained noticeable attention, as their complex and
heterogeneous functions were progressively getting discovered and understood. Glial cells have
been recognized as essential supportive cells for neurons with a variety of specific and crucial
homeostatic functions, including, but not limited to, uptake and release of chemical transmitters
(Allen and Barres, 2009). For example, a growing body of literature demonstrates that synaptic
function and plasticity require not just the presynaptic and postsynaptic neurons, but also the
presence of glial cells, specifically astrocytes, Schwann cells, and microglia (Araque et al., 1999) with
the contribution of the extracellular matrix too, forming a multi-partite structure referred as
synaptic cradle (Dityatev and Rusakov, 2011; Verkhratsky and Nedergaard, 2014; Pekny et al., 2016;
Verkhratsky and Nedergaard, 2018).
in.org January 2020 | Volume 10 | Article 16561
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Among the diverse cell types included in the general
population named glia, astrocytes emerge as being the focus of
a growing body of research aimed at characterizing their
heterogeneous and complex functions. Indeed, alterations of
both their morphology and activities have been linked to a
variety of neurological disorders and diseases (Scuderi et al.,
2013; Scuderi et al., 2018b). Multiple and disparate changes
occur in astrocytes (e.g., from hypertrophy to atrophy, from
proliferation to cell death) in a highly heterogeneous and
complex way, both context-dependent and disease-specific.
Astroglial pathological modifications are driven by different
signaling mechanisms and produce diverse responses from
adaptive to maladaptive, and further they may change along
the course of a disease (Sofroniew, 2014; Pekny et al., 2016;
Verkhratsky et al., 2017).

One, out of many, crucial physiological need satisfied by
astrocytes is the cleansing of the cerebral tissue from waste
molecules. Indeed, without a waste disposal system, the brain
would accumulate unwanted molecules that would interfere
with its optimal functioning. Such cleansing system has been
the topic of intense research and debates among scientists. In
2012 the original view of waste products disposed by diffusion
was challenged by the publication of a research paper
describing a water and solute clearance system regulated by
astrocytes (Iliff et al., 2012). The authors indeed named it
glymphatic system to underline the crucial role of glial cells.
Experiments were carried out in living mice, injecting
fluorescent tracers into the subarachnoid space of the brains,
and then imaging their real-time movement using two-photon
microscopy. Results suggested that the cerebrospinal fluid (CSF,
mimicked by the tracers) moves by convective flow along the
perivascular space between a vessel and the endfeet of
astrocytes escheating the vasculature. The fluid penetrates the
extracellular space of the parenchyma from the perivascular
space as the artery branches into arterioles and capillaries. At
this level, the CSF mixes with the interstitial fluid filling up of
metabolic waste, moving by diffusion (Holter et al., 2017)
toward the perivascular space of venules and capillaries to
ultimately reach the lymphatic vessels (Louveau et al., 2015),
which drain the molecules absorbed from the dural meninges
to the cervical lymph nodes (Aspelund et al., 2015). This
system was found dependent on aquaporin-4 (AQP-4), a
bidirectional water channel highly expressed by astrocytes,
since deletion of Aqp-4 gene in mice severely reduced (nearly
70%) clearance from the brain (Iliff et al., 2012; Mestre et al.,
2018). Authors then conclude that AQP-4 facilitates convective
flow out of the periarterial space and into the interstitial space
(Iliff et al., 2012; Nedergaard, 2013).

Thirteen aquaporins have been identified so far and, among
them, the AQP-4, isolated from rat brain in 1994 (Hasegawa
et al., 1994; Jung et al., 1994), is recognized as the most
abundant water channel of the central nervous system (CNS).
It is expressed by glial cells, specifically by astrocytes and
ependymal cells, mostly in regions close to vessels throughout
the CNS, including the spinal cord, and the cerebellum (Jung
et al., 1994; Frigeri et al., 1995). Two isoforms have been
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identified in humans, that are AQP-4-M1 and AQP-4-M23
(Sorani et al., 2008a; Sorani et al., 2008b). Nielsen and
collaborators were the firsts to describe that astrocytes
express polarized AQP-4, such that the higher density of the
channel is found at domains closest to blood vessels and the
pia mater, with low to zero expression in other astrocytic
membrane regions, except for some synapses (Nielsen
et al., 1997).

The presence of the glymphatic disposal system in the
human brain has not been fully demonstrated yet, although
some evidence concurs to confirm it (Eide and Ringstad, 2015;
Taoka et al., 2017; Rasmussen et al., 2018). Despite these, not all
scientists believe that such glymphatic waste system actually
exists, at least as presented by Iliff et al. (2012) because of some
inconsistent findings suggesting that solute transport does not
depend on the astrocytic AQP-4 (Smith et al., 2017; Iliff and
Simon, 2019; Smith and Verkman, 2019). Debates are ongoing
about the type of flow supporting the clearance system, as it is
pressure-driven convective flow (generated by pulsation of
arteries and collapse and inflation of veins) (Iliff et al., 2013;
Ray et al., 2019), or diffusive down to gradient (Asgari et al.,
2016; Smith et al., 2017; Smith and Verkman, 2018). Despite
this, evidence demonstrates that AQP-4 deletion impairs blood-
brain interface permeability to water (Papadopoulos and
Verkman, 2005).

Despite the ongoing scientific debates, some new findings
have been collected during the past 5 years valuing the notion
that specific AQP-4 localization in astrocytes and its expression
might be crucial aspects in physiological and pathological
conditions (Figure 1). Here we review the latest findings
related to aging and AD on this topic, as well as the available
knowledge on pharmacological tools to target AQP-4. However,
AQP-4 is involved in a myriad of astrocytic activities, including
calcium signal transduction (Thrane et al., 2011), potassium
buffering (Jin et al., 2013), synaptic plasticity (Fan et al., 2005;
Ding et al., 2007; Zeng et al., 2007), astrocyte migration
(Saadoun et al., 2005; Auguste et al., 2007), glial scar
formation (Saadoun et al., 2005; Wu et al., 2014), and
neuroinflammation (Li et al., 2011) (for extensive review refer
to Xiao and Hu, 2014; Hubbard et al., 2018; Mader and
Brimberg, 2019).

AQP-4 in Aging and Alzheimer’s Disease
Aging is the greatest risk factor for developing dementia and
Alzheimer’s disease (AD). Aging is a process that involves the
whole organism, including the clearance system of the brain. It is
often associated with shorter duration of sleep time (Wolkove
et al., 2007), which is the period of activity of the aforementioned
cerebral waste disposal system (Xie et al., 2013). Aqp-4 gene
expression has been found increased in cerebral and cerebellar
cortices of aged (17-month-old) mice compared to their adult
counterpart (Gupta and Kanungo, 2013). Similarly, age-
dependent raise in AQP-4 expression has been reported in the
hippocampal CA1 region of 12-month-old compared to 6-
month-old 3×Tg-AD mice, a triple transgenic model of AD,
irrespective of genotype (Bronzuoli et al., 2019). In accordance,
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Zeppenfeld et al., reported in 2017 that altered AQP-4
immunostaining was associated with increasing age in post-
mortem human cortices. Therefore, it can be hypothesized that
the upregulation of astrocytic AQP-4 responds to a physiological
need for compensating general astrocytes morphological or
functional alterations known to occur both in rodents and
human post-mortem aged brains (Hoozemans et al., 2011;
Bronzuoli et al., 2019). However, this hypothesis needs further
direct demonstrations.

Aged brains show also altered AQP-4 localization
(Zeppenfeld et al., 2017). Indeed, a study from the Nedergaard
group demonstrated increased perivascular GFAP in aged (18
months) compared to young (2–3 months) C57BL/6 mice,
coupled with a significant, but modest, loss of perivascular
localization (Kress et al., 2014). A loss of vascular localization
of AQP-4 has been demonstrated in old (24-months) compared
to young (6-months) TgSwDI mice, which develop age-
dependent accumulation in amyloid, together with general
reactive gliosis, as shown by increased number of GFAP-
positive astrocytes and Iba 1-positive microglia (Duncombe
et al., 2017). Preservation of perivascular localization of AQP-4
in aged human individuals was predictive of preserved cognitive
abilities (Zeppenfeld et al., 2017). Additionally, the arterial
pulsating force was lower as well as the rate of clearance of the
tracer injected into the brains was slower in aged compared to
young C57BL/6 mice (Kress et al., 2014).

Measurements of beta-amyloid (Ab) deposition in human by
positron emission tomography (PET) show that Ab begins to
abnormally deposit within the brain between age 40 and 50,
thus far before clinical symptoms (Villemagne et al., 2013). This
stage of the disease is termed preclinical or prodromal AD; it is
characterized by patients having no symptoms of the disease
yet, and only few molecular alterations have begun to appear
(Hyman et al., 2012). Oxidative stress, as well as signs of
neuroinflammation and reactive astrocytes, have been
documented at early stages of the disease, before the
Frontiers in Pharmacology | www.frontiersin.org 3
appearance of massive Ab deposition and tau hyper-
phosphorylation (Zhu et al., 2004a; Zhu et al., 2004b; Jack
et al., 2010; Rodriguez-Vieitez and Nordberg, 2018). In absence
of neuronal atrophy, a premature presence of reactive
astrogliosis can be detected in animal models of AD, as in 6-
month-old 3×Tg-AD mice (age that corresponds to a mild stage
of pathology). A study using a novel non-invasive magnetic
resonance imaging protocol reports lower water influx into the
CSF of mice expressing high senile plaque density (APP/PS1
mice) compared to their wild-type counterpart (Igarashi et al.,
2014a), similar to what seen in AQP-4 knock-out mice (Igarashi
et al., 2014b). AQP-4 knock-out mice show reduced (−50%)
intracerebrally infused Ab clearance compared with wild-type
littermates (Iliff et al., 2012). The association of AQP-4 deletion
in APP/PS1 mice brought to a significant increase of both
soluble and insoluble Ab in the brain, without affecting
synthesis or degradation of the protein (Xu et al., 2015).
Moreover, bidirectional relationship between sleep and AD
has been reported, such that patients with AD experience
sleep disturbances as well as poor sleep predisposes to AD (Ju
et al., 2014). Indeed, brain waste products, such excessive Ab
and tau, are cleared during sleep time (Xie et al., 2013; Shokri-
Kojori et al., 2018). Based on this, a recent report investigated
the association of single-nucleotide polymorphisms (SNPs) in
Aqp-4 gene with sleep latency, duration, and amount of
radiolabeled Ab imaged through PET scans carried out in
healthy volunteers >60 years old. They found one SNP
associated with poor sleep quality, and two SNPs associated
with short sleep duration and consequent higher Ab burden. In
contrast, one SNP, the rs2339214, was associated with higher
Ab and also longer sleep duration (Rainey-Smith et al., 2018).
All these accumulating evidence suggests that deposits of Ab
and tau are consequences of impaired clearance, rather than of
increased production (Benveniste et al., 2019).

Burfeind and collaborators identified five SNPs in the Aqp-4
gene and analyzed their possible association with cognitive
FIGURE 1 | Figure shows representative schemes for expression and polarization/localization of AQP-4 in healthy (left) and dysfunctional (right) perivascular
astrocyte. Astrocytes processes wrap the vessel forming a sheath around it. Cerebrospinal fluid (CSF) flows in the perivascular space created around the vessel. The
astrocytic water channel AQP-4 is polarized, as it is densely expressed by astrocytes almost exclusively at the endfeet, in direct contact with the perivascular space,
where it facilitates the interchanges of water. In aging and some pathological conditions, such as Alzheimer’s disease (AD), AQP-4 loses its polarization in reactive
astrocytes and it is found diffusively expressed. Also, higher AQP-4 expression has been documented in Parkinson’s disease, cerebral ischemia, amyotrophic lateral
sclerosis, and other neurological diseases (for review see Xiao and Hu, 2014; Mader and Brimberg, 2019).
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decline exclusively in AD patients. Their results identified two
Aqp-4 SNPs associated with rapid, and two with slow, cognitive
decline (Burfeind et al., 2017). Another report from the same
group studied the association between perivascular AQP-4
localization and its expression levels with AD pathology in
humans, showing for the first time that total AQP-4 expression
was increased in the AD cortex compared to cognitively intact
subjects, both young and aged. The raise was correlated with Ab
deposits. Additionally, loss of perivascular AQP-4 was associated
with AD Braak stage and density of Ab plaques (Zeppenfeld
et al., 2017). Ten years before, increased expression of AQP-1,
but not AQP-4, was reported in the frontal cortex of patients
with early AD stage (Perez et al., 2007). AQP-4 was found highly
diffused in the parenchyma of post-mortem human AD brains
and of a mouse model of AD (5xFAD), with particular
localization near Ab plaques rather than near vasculature
(Smith et al., 2019), supporting the hypothesis that a change in
AQP-4 localization might be a crucial aspect in AD
neuropathology. Interestingly, since 5xFAD mice showed
increased neuronal Ab, they propose that AQP-4 peri-plaques
localization might be a defense mechanism to counteract Ab
deposition (Smith et al., 2019). However, further studies are
needed to demonstrate this novel and intriguing hypothesis.
Anyway, the cited evidence supports the idea that several
alterations, including control of water, ions and solute
clearance, occur in aging and early stages of AD.

Pharmacological Tools Targeting AQP-4
Despite the massive preclinical and clinical efforts, no effective
treatments are currently available for patients with AD. Recent
evidence concurs that the best time for intervention is when the
disease is not fully overt. This preclinical phase of the disease is
difficult to diagnose because, at present, there are no specific
biomarkers able to reliably and timely detect it. Disappointing
results of the latest clinical trials has prompted researchers to
rethink possible pharmaceutical targets and therapeutic
approaches, including targeting AQP-4. However, malfunction
of the brain cleansing system because of aging brings to waste
piling up, including proteins as Ab and tau. Therefore,
a s t rocy t i c AQP-4 seems to represen t a poss ib l e
pharmacological candidate to be targeted in AD at its earliest
s tage , before abnormal protein accumulat ion and
neurodegeneration occur. So far, some molecules have been
tested for activity to AQP-4, but none in in vitro or in vivo
models of AD (Lan et al., 2016; Tradtrantip et al., 2017). Some
phytocompounds with antioxidant properties have shown to be
active on AQP-4. Among them, pinocembrin, a flavonoid
contained in propolis, seems to be able to downregulate AQP-
4 expression in a rodent model of focal cerebral ischemia (Gao
et al., 2010); curcumin treatment reduced hypoxia-hypercapnia-
induced brain edema by downregulating the messenger RNA
(mRNA) expression levels of AQP-4 in rats (Yu et al., 2016) and
dampening AQP-4 and GFAP overexpression in a rat model of
acute spinal cord injury (Nesic et al., 2010). Similar results were
published with epigallocatechin gallate treatment, an essential
Frontiers in Pharmacology | www.frontiersin.org 4
ingredient of green tea (Ge et al., 2013). Acute administration of
carvacrol, a terpenoid, dose-dependently attenuates brain edema
induced by cerebral hemorrhage in mice by downregulating
brain Aqp4 gene and protein expression, likely reducing
astrocyte swelling (Nesic et al., 2010). Preliminary studies in
our laboratory suggest that in vivo chronic treatment of 3×Tg-
AD mice and their wild-type counterpart with the ALIAmide
palmitoylethanolamide (PEA) is able to reduce the upregulated
expression of hippocampal AQP-4 selectively in AD-like mice.
Numerous evidence demonstrates the anti-inflammatory and
neuroprotective properties of PEA (Scuderi et al., 2012; Scuderi
et al., 2014; Skaper et al., 2015), and we have recently
demonstrated in vivo the efficacy of a formulation of
ultramicronized PEA (um-PEA) in reducing several AD-like
molecular and behavioral signs in 3×Tg-AD mice (Bronzuoli
et al., 2018; Scuderi et al., 2018a). However, further studies are
needed to verify the effects of formulations containing PEA on
AQP-4 expression and functions.

Interestingly, it has recently been reported that atorvastatin,
already in use in the clinical setting as lipid-lowering drug, may
prevent ischemic brain edema through downregulation of
astrocytic AQP-4 expression in rats. Authors proposed a
mechanism involving the attenuation of p38-MAPK signaling
(Cheng et al., 2018). Similarly, 2-(nicotinamide)-1,3,4-
thiadiazole (TGN-020) was shown to act as a potent AQP-4
inhibitor in a rodent model of ischemia (Pirici et al., 2018;
Catalin et al., 2018). A Japanese herbal compound named
Goreisan was able to reduce edema in an in vivo model of
hypoxic-ischemic encephalopathy by reducing the lesion-
induced upregulation of AQP-4 protein expression, and
ameliorating the rat survival rate compared to the control
group (Nakano et al., 2018). Similarly, in a rat model of
traumatic brain injury (TBI), acute administration of the
hormone ghrelin was able to prevent post-TBI upregulation of
AQP-4 expression (Lopez et al., 2012). Chronic treatment with
dabigatran etexilate, a thrombin inhibitor, showed an indirect
effect on AQP-4, preventing its misplacement found in
TgCRND8 mice, a mouse model of AD (Cortes-Canteli et al.,
2019). Thus, converging evidence demonstrates that targeting
AQP-4 seems to be a promising pharmacological approach in
several brain pathologies. For example in major depressive
disorder there is a clear reduction in the coverage of blood
vessels by AQP-4-positive astrocyte endfeet (Rajkowska et al.,
2013). Intriguingly, Di Benedetto and collaborators found that
AQP-4 is necessary to mediate fluoxetine-induced growth of
astrocytic processes in rats (Di Benedetto et al., 2016).

New AQP-4 partial antagonists have been discovered by
library screening by Aeromics, Inc. (OH, USA). The drug
AER-270, and its prodrug with enhanced solubility AER-271,
have shown beneficial results on brain edema in two different
model of cerebral injury in rats, reducing swelling and behavioral
neurological damage (Farr et al., 2019). Since AQP-4 was found
up-regulated in the aging brain, and mislocalized in AD, it would
be interesting to test the hypothesis that treatment with AQP-4
modulator may slower brain senescence process and prevent
January 2020 | Volume 10 | Article 1656
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neurological deficit through a fine regulation of this water
channel. However, the effect of therapeutic interventions
targeting AQP-4 will depend on the balance between the
beneficial increased water clearance and deleterious effects on
astrocytic morphological changes. Since not all pathological
conditions are associated with impaired blood brain barrier
(BBB), AQP-4-targeting drug should be able to cross an intact
BBB, as for example in prodromal stages of AD. However,
reaching this perfect balance between maximum benefit and
limited toxicity depends on future further understanding of the
biology of AQP-4.
Frontiers in Pharmacology | www.frontiersin.org 5
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