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Abstract: This research is focused on the problem of agile attitude maneuvering, aimed at the precise
pointing of a satellite forming a typical constellation in low Earth orbit. We consider two different
operational scenarios: (a) pointing toward a specific ground station, located on the Earth surface
(for downlink data routing), and (b) pointing toward a companion satellite (for establishing an
intersatellite connection). The two preceding operational requirements can both be formulated as
attitude tracking problems. In this study, we use an inertia-free nonlinear attitude control algorithm
based on rotation matrices and possessing remarkable stability properties, in conjunction with
a pyramidal array of single-gimbal control momentum gyroscopes. Numerical simulations, in
both nominal and nonnominal flight conditions, demonstrate that the attitude control architecture
proposed in this work is effective for the purpose of performing agile attitude maneuvering, aimed at
precise pointing during downlink and intersat data routing.

Keywords: intersat data routing; agile attitude maneuvering; nonlinear attitude control; momentum
exchange devices; satellite constellations

1. Introduction

The use of large satellite constellations, placed in low Earth orbits and tailored to
enhancing global connectivity, has attracted strong interest since the 90s. Some pro-
grams (Teledesic, Skybridge, Celestri) were canceled before launch and only a few systems
(e.g., Iridium and Globalstar) became operational in the 90s [1–4]. Comparetto [5] and
Dumont [6] reviewed some of these constellation architectures, while Evans [7] focused on a
wider class of configurations, also involving geosynchronous and medium-altitude orbits.

In recent years, a renewed interest is leading some private ventures to completing
the deployment of large constellations, tailored to providing global broadband coverage
for high-speed internet access, especially for rural and remote areas, all around the world.
Most recently, the first satellites equipped with laser technology were launched. In a recent
publication, del Portillo et al. [8] provide a comprehensive analysis of three large satellite
constellations, already launched (or being delivered) by SpaceX, OneWeb, and Telesat,
while identifying some major challenges related to similar systems. Collision avoidance
represents one such challenge, investigated by Le May et al. [9], and imposes continuous
monitoring and a high degree of automation. Efficient geographical data routing is another
fundamental systemic aspect, and is investigated by Roth et al. [10].

Information sharing in large constellations implies the capability of performing agile
attitude maneuvers, in the context of two different operational scenarios: (a) pointing
toward a specific location on Earth, and (b) pointing toward a companion satellite. In
both cases, the attitude control system of the satellite of interest must be able to track a
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time-varying pointing direction, to perform either (a) data acquisition or downlink con-
nection, or (b) an intersatellite connection for data sharing. The two preceding operational
requirements can be both formulated as attitude tracking problems.

The design, implementation, and testing of algorithms for slewing or tracking ma-
neuvers is an active research area, with the final objective of identifying suitable feedback
schemes, effective and accurate for autonomous attitude control. Recent contributions
highlight the growing interest toward agile attitude maneuvers for remote sensing ap-
plications [11–14]. In particular, Poche et al. [13] investigate autonomous guidance for
slewing maneuvers, while taking actuator limitations into account. Gordon et al. [15]
consider the effects of model fidelity and parameter uncertainty on the performance of a
feedback feedforward algorithm for attitude tracking of a satellite with flexible appendages.
Marshall and Pellegrino [16] show that, contrary to common assumptions, the available
angular momentum and torque, supplied by the actuation system, impose more restrictive
limits on maneuverability than the dynamics of the spacecraft, modeled as a flexible sys-
tem. Different representations for attitude kinematics are available. Unlike Euler angles,
Euler parameters (quaternions) are suitable for large reorientation and attitude tracking
maneuvers. Recently, Yefymenko and Kudermetov [17] proposed second-order quater-
nionic equations for attitude kinematics and dynamics. In the scientific literature, several
contributions employed the Euler parameters as the kinematics variables [18–20]. The final
goal was in identifying feedback control laws that enjoy quasi-global stability properties.
Their main drawback is represented by the need of accurate knowledge regarding the
spacecraft mass distribution, in particular its instantaneous inertia matrix. This informa-
tion may be not sufficiently accurate, and this circumstance can compromise the pointing
maneuver or reduce its precision. Recently, some inertia-free algorithms were proposed
that do not require any accurate knowledge of the spacecraft mass distribution [21,22]. In
particular, Sanyal et al. [21] designed an inertia-free attitude control algorithm that employs
rotation matrices. The latter representation has the additional advantage of uniqueness
when compared to Euler parameters.

This research is based on the conference paper [23], and addresses the problem of
agile attitude maneuvering, aimed at precise pointing of a satellite that forms a typical
constellation in low-altitude Earth orbit. More specifically, two different operational sce-
narios are considered: (a) pointing toward a specific ground station, located on the Earth
surface, and (b) pointing toward a companion satellite. In both cases, the attitude control
system of the satellite of interest must be able to track a time-varying pointing direction. To
achieve this, the following study employs an inertia-free nonlinear attitude control algo-
rithm based on rotation matrices [21] and possessing remarkable stability properties. Gain
tuning for this scheme involves the instantaneous angular velocity components, as well
as further quantities related to the maximum available torque and the expected transient
time. Because the orbital dynamics relative to the target—either the ground station (a) or
a companion satellite (b)—is relatively fast, agile attitude maneuvering is mandatory to
complete the required data routing operations. With this intent, this study considers the
use of a pyramidal array of single-gimbal control momentum gyroscopes with constant
rotor speed. Their dynamical interaction with the spacecraft is accurately modeled, to
identify the equivalent torque transferred to the satellite. The main challenge in using
these devices is represented by the identification of an effective steering law, capable of
avoiding singularities. Several approaches are available to address this issue, e.g., the
use of null motion. In this study, singular direction avoidance based on singular value
decomposition of the actuation matrix is used. However, the inclusion of the actuation
dynamics implies that the commanded torque, yielded by the nonlinear control algorithm,
differs from the actual torque transferred to the vehicle. This circumstance implies that the
analytical asymptotic stability properties proven for the attitude control algorithm do not
hold for the overall system that includes the actuator dynamics, strictly speaking. Hence,
numerical evidence must support the use and effectiveness of nonlinear attitude control
with actuation modeling. The satellite of interest is assumed to perform a maneuver com-



Appl. Sci. 2023, 13, 12121 3 of 24

posed of two phases: (i) attitude tracking aimed at continuous pointing toward the target
and (ii) attitude reorientation, in preparation for tracking the next target. Effectiveness of
the attitude control and actuation architecture proposed in this study is being investigated
numerically, with reference to the two operational scenarios of interest, i.e., continuous
pointing of either a ground station (a) or a companion satellite (b), during the respective
time intervals of visibility. Numerical analysis is being performed in both nominal and
nonnominal conditions, associated with stochastic displacements in the initial attitude and
angular rate.

2. Spacecraft Attitude Dynamics

The spacecraft is modeled as a rigid body, and has an instantaneous orientation
associated with vectrix B [24],

B =
[
b̂1 b̂2 b̂3

]
(1)

where (b̂1, b̂2, b̂3) are the unit vectors aligned with the body axes. In this study, the in-
stantaneuos attitude is referred to N, which identifies the inertial reference frame, and is
described through the direction cosine matrix. The attitude of the spacecraft is defined by
R = R

N←B
, which is a rotation matrix such that NT = R

N←B
BT . The kinematics equation for

R is
Ṙ = R ω̃ (2)

where ω̃ is the skew-symmetric matrix associated with the components (along the body
axes) of the angular velocity of the spacecraft relative to the inertial frame.

This research is focused on attitude tracking maneuvers, aimed at driving the ac-
tual spacecraft orientation toward the desired (commanded) attitude, while attaining the
commanded angular rate. Meaningful variables in an attitude tracking problems are

ω e = ω− RT
e ω(C)

c (3)

Φe = cos−1
(

1
2
[
trace(Re)− 1

])
(4)

In Equations (3) and (4) Re = R
C←B

is the error matrix, which is a rotation matrix such

that CT = R
C←B

BT while ω(C)
c and ω are two (3× 1)-vectors that contain, respectively, the

components of the desired angular velocity (in C) and the actual angular velocity (in B).
The transient behavior of the system can be described using the mean (integral) values

of Φe and |ω e|. Let np be the number of visible passes; t0i and t fi
denote the times at which

the i-th tracking phase begins and ends, respectively. The mean values of the variables
defined in Equations (3) and (4) are

Φ̄ei =
1

t fi
− t0i

∫ t fi

t0i

Φe(t) dt i = 1, . . . , np (5)

ω̄ei =
1

t fi
− t0i

∫ t fi

t0i

|ω e(t)| dt i = 1, . . . , np (6)

Since the center of mass C does not move during the maneuver, the attitude dynamics
equations are decoupled from the trajectory equations. Expressed in terms of error angular
velocity, they are given by [21]

J(B)
C ω̇ e =

[
J(B)

C

(
ω e + RT

e ω(C)
c
)]∼(ω e + RT

e ω(C)
c
)
+ J(B)

C

(
ω̃ eRT

e ω(C)
c − RT

e ω̇(C)
c
)
+ T c + MC (7)

In Equation (7) MC is the vector that contains the sum of all external torques referred
to the center of mass of the spacecraft, vector T c is the commanded torque, J(B)

C is the inertia
matrix, resolved in the body-fixed reference frame, with respect to the center of mass.
Vectors MC, Tc, and ωe are resolved in B, unlike ω(C)

c .
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The present research considers the satellite Türksat1B as an illustrative example of
medium-size satellite [25], and assumes the following inertia matrix (obtained from the
inertia matrix of Türksat1B):

J(B)
C =




3815 −15 −21
−15 775 −21
−21 −21 4050


kg m2 (8)

3. Nonlinear Attitude Control

In this analysis, the commanded torque is identified by using the algorithm presented
in [21,26], which does not require perfect knowledge of the inertia matrix. This approach is
based on the Lyapunov method and employs the rotation matrix as the attitude representa-
tion. The desired attitude is associated with vectrix C. The attitude control algorithm aims
at determining the control torque such that the actual attitude of the spacecraft, associated
with R

N←B
, pursues the commanded orientation, identified by the rotation matrix Rc := R

N←C
.

In this study, a tracking maneuver is considered, and the commanded frame C is pursued.
The commanded torque is obtained by using the algorithm presented in [21,26], and is
given by

T c = − Ĵ(B)
C ω̃ω− Ĵ(B)

C (K1Ṡ + ω̃e ω− RT
e ω̇(C)

c )− kp S− Kv(ω e + K1S) (9)

Equation (9) represents a feedback control law, which supplies the commanded torque in
terms of the variables R and ω. In Equation (9) kp is a constant, positive quantity, K1 is
a constant, diagonal, positive-definite matrix, Kv is a positive-definite matrix, Ĵ (B)

C is the
estimate of J (B)

C . Vector S is related to the displacement of the actual attitude matrix R
from Rc,

S =
3

∑
i=1

ai
(

RT
e ei
)∼ ei (10)

where ai (i = 1, 2, 3) denote arbitrary positive constants, whereas ei represents the i− th
column vector of the canonical basis. The time derivative Ṡ is

Ṡ =
3

∑
i=1

ai[(RT
e ei)
∼ω e]

∼ ei (11)

Let L be an operator that takes a (3 × 1)-vector as the input and yields a (3 × 6)-matrix,
whereas γ collects the momenta and products of inertia, i.e.,

L(ω) =




ω1 0 0 0 ω3 ω2
0 ω2 0 ω3 0 ω1
0 0 ω3 ω2 ω1 0


 (12)

γ =
[

J11 J22 J33 J23 J13 J12
]T (13)

The preceding two definitions lead to

J(B)
C ω = L(ω)γ (14)

Let γ̂ be the vector that contains the estimate of γ and Q a constant, diagonal, positive-
definite matrix. The governing equation that describes the time evolution of γ̂ is [21]

˙̂γ = Q−1[LT(ω)ω̃ + LT(K1Ṡ + ω̃ e ω− RT
e ω̇(C)

c )](ω e + K1S) (15)

Gain selection takes advantage of the following formulas [21,26]:

kp =
α0

trace(Ã)
(16)
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Kv = β0




1
1 + |ω1|

0 0

0
1

1 + |ω2|
0

0 0
1

1 + |ω3|




(17)

where ω1, ω2, and ω3 are the three instantaneous angular velocity components, Ã is a
diagonal matrix with elements ai, whereas α0 and β0 are two constant parameters, tuned as
explained in [21,27], through numerical analysis.

4. Actuation

This section is focused on describing the dynamics of the attitude actuators and
defining their steering law. In this research, attitude control is performed through an array
of 4 Single-Gimbal Control Momentum Gyroscopes (SGCMGs). A SGCMG is a momentum
exchange device, which can be modeled as a rotor with an additional degree of freedom, as
depicted in Figure 1, where index j refers to the j-th device. It is composed of a wheel that
rotates about an axis which can change its orientation. In fact, the rotor is linked to a gimbal
that is able to vary the orientation of the axis of the wheel through a rotation by angle θ

(j)
1

about axis ĝj. When a rotation θ
(j)
1 occurs the angular momentum of the wheel varies in

direction and the reaction torque represents the control torque exerted on the spacecraft.

f̂j

ĥj

ĝj

W

θ
(j)
1

θ
(j)
2

Figure 1. Schematic representation of Single-Gimbal Control Momentum Gyroscope.

M50 CMG, produced by Honeywell, is chosen as the actuator in this research. The
characteristics of the device at hand are reported in Table 1, in terms of ωR (velocity of the
rotor), IS (axial moment of inertia), IT (transverse moment of inertia).

Table 1. M50 CMG Honeywell datasheet [28].

ωR[rpm] IS[kg m2] IT [kg m2]

6500 0.1102 0.0551

Developing an effective steering law for SGCMGs represents a challenging task due to
the existence of singular directions related to specific orientations of each device. The
first step is in identifying the actual torque transferred to the spacecraft by an array
of 4 SGCMGs.
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4.1. Actuator Dynamics

Let W0
(j) denote the vectrix associated with the nominal orientation of the j-th wheel,

which is the configuration for which θ
(j)
1 = 0,

W0
(j) =

[
ŵ(j)

1 ŵ(j)
2 ŵ(j)

3

]
(18)

Vectrix W1
(j) denotes the vectrix associated with the instantaneous orientation of the j-th

wheel,
W1

(j) =
[

ĝj f̂ j ĥj

]
(19)

Let R(j)
A represent the constant rotation matrix that describes the orientation of W0

(j) with
respect to B (i.e., the geometry of the mounting of the j-th gyroscope inside the spacecraft),

R(j)
A

T
=
[
r(j)

A1 R r(j)
A2 R r(j)

A3
]

(20)

W0
(j)T

= R(j)
A BT (21)

The space vehicle is equipped with an array of four SGCMGs, which are mounted in a
pyramidal arrangement (cf. Figure 2), where the angle β between the faces and the base is
assumed to equal 54.74°. This configuration is widely used in space missions thanks to the
fact that it is associated with a nearly spherical momentum envelope [29]. The standard
methodology of Eulerian dynamics [24,30] leads to describing the rotational dynamics of a
system composed of a spacecraft with 4 SGCMGs, all characterized by constant rotor speed,
denoted with ω

(j)
R . The dynamics equation is

b̂2

b̂3

b̂1

β ŵ
(1)
3

ŵ
(2)
3

ŵ
(3)
3

ŵ
(4)
3

W1

W2W2

W3

W4

Figure 2. Pyramid array of SGCMGs used in the simulations.

J(B)
C ω̇ = M C − ω̃ J(B)

C ω− J̇(B)
C ω + ω̃

4

∑
j=1

I(j)
S ω

(j)
R
[
sin (θ

(j)
1 ) r(j)

A2 − cos (θ(j)
1 ) r(j)

A3
]
+

+
4

∑
j=1

{
I(j)
S ω

(j)
R
[
cos (θ(j)

1 ) r(j)
A2 + sin (θ

(j)
1 ) r(j)

A3
]
− ω̃ I(j)

T r(j)
A1
}

θ̇
(j)
1 −

4

∑
j=1

I(j)
T r(j)

A1 θ̈
(j)
1 (22)
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In Equation (22), I(j)
T and I(j)

S are the transverse and axial momenta of inertia of wheel j.
The three terms with summation and the term related to the time derivative of the inertia
matrix represent the actual control torque Ta applied to the system, due to the presence of
the array of SGCMGs. In fact, from Equation (22), it is straightforward to recognize that if
these terms vanish, the preceding equation reduces to the Euler’s equation of a single rigid
body. The following quantities are introduced:

θ̇ =
[
θ̇
(1)
1 . . . . . . θ̇

(4)
1
]T (23)

θ̈ =
[
θ̈
(1)
1 . . . . . . θ̈

(4)
1
]T (24)

A =
[
I(1)S ω

(1)
R f

1
. . . . . . I(4)S ω

(4)
R f

4

]
(25)

B =
[
I(1)T r(1)A1 . . . . . . I(4)T r(4)A1

]
(26)

where f
j

is a (3× 1)-vector that includes the components of f̂ j in B. The actual torque is
written in a compact way as

T a = Aθ̇ − Bθ̈ − J̇(B)
C ω− ω̃Bθ̇ + ω̃

4

∑
j=1

I(j)
S ω

(j)
R
[
sin (θ

(j)
1 )r(j)

A2 − cos (θ(j)
1 )r(j)

A3
]

(27)

4.2. Singular-Direction-Avoidance Steering Law

Equation (27) is simplified, for the purpose of deriving an effective, real-time steering
law, by adopting the following assumptions:

• the term J̇(B)
C is negligible, i.e., the overall inertia matrix is subject to modest time

variations, due to the wheels rotation about their gimbal axes;
• the terms related to the second derivative of θ

(j)
1 are negligible;

• |ω(j)
R | � |ω|, namely the rotor speeds are sufficiently high.

In this way, the only terms responsible for generating T a are those not including the gyro-
scopic terms (i.e., terms with ω or ω̃). Under the preceding assumptions, the approximate
actual torque T(A)

a is along axis f̂ j of each wheel and must equal Tc, the commanded torque
supplied by Equation (9),

T(A)
a = A θ̇ = Tc (28)

The Moore-Penrose pseudoinverse provides a solution for θ̇ that minimizes |θ̇| ,

θ̇ = AT(AAT)−1T c (29)

However Equation (29) requires the inversion of matrix AAT , which could be singular in
some cases. In order to overcome this issue, this steering law is modified using a singularity
avoidance strategy based on the singular value decomposition (SVD) [29,31]. To prevent
AAT from becoming singular, one can replace it with

A# = (AAT + X) (30)

where matrix X is properly chosen in order to keep the system far from the singularity.
Matrix A can be factorized trough SVD,

A = UΣVT (31)

where the columns of matrices U and V contain, respectively, the left-singular and the right-
singular vectors of A, whereas Σ is the rectangular diagonal matrix containing the singular
values. This algorithm introduces an error component in the actuated torque, which
allows avoding the singularity. In particular, in this research SDA (Singularity Direction
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Avoidance) is used, based on introducing an error only along the direction associated with
the minimum singular value of A. Matrix X is set to

X = U




0 0 0
0 0 0
0 0 α


UT (32)

where α is given by

α = αre f e
[
−µ0
√

det AAT
]
, αre f , µ0 ∈ R+ (33)

Symbols αre f and µ0 denote two positive scalar quantities; α becomes relevant when the
system is near the singularity, i.e., det(AAT) ≈ 0, whereas it is negligible when the system
is far from singularity, i.e., det(AAT)� 0. Taking advantage of SVD, the computation of θ̇
does not require any inversion of A#. Denoting with σ1, σ2, σ3 the singular values of A in
decreasing order of magnitude, the gimbal angular rates θ̇ (i.e., the steering law) is finally
provided by

θ̇ = V




1
σ1

0 0

0 1
σ2

0

0 0 σ3

σ2
3 + α

0 0 0




UTT c (34)

4.3. Net Motor Torque

The steering law obtained in the preceding subsection must be used in each arc that
composes the overall attitude maneuver (i.e., tracking and slewing arcs, cf. Sections 5 and 6).
The commanded torque Tc is discontinuous across adjacent arcs, and this implies that θ̇ is
discontinuous as well. To improve the accuracy in modeling the dynamical system at hand,
the steering law (34) is used to yield the commanded value of θ̇, denoted with θ̇ c. The real
value of θ̇ is found by integrating

θ̈ =
θ̇ c − θ̇

τact
(35)

where τact (set to 0.05 s) represents the time constant related to the reaction delay of the
SGCMGs, while θ̇ c is obtained from Equation (34), with θ̇ c in place of θ̇. Equation (35)
is also useful for evaluating the angular accelerations of the gimbal axes, which allows
determining the net motor torque g(j)

1 applied to device j [30], i.e.,

g(j)
1 = I(j)

T θ̈
(j)
1 + I(j)

T Ω̇(j)
1 + (I(j)

S − I(j)
T )Ω̃(j)

2 Ω̃(j)
3 + I(j)

S Ω̃(j)
2 θ̇

(j)
2 (36)

where Ω and Ω̃ are (3× 1)-vectors that include the components of the spacecraft angular
velocity in W0 and W1, respectively.

5. Attitude Maneuvering for Downlink Connection

This section considers the problem of attitude tracking of a specified location on the
Earth surface, for the purpose of establishing a downlink connection. This task must be
performed only when the spacecraft is visible from the ground station. Thus, attititude
maneuvering is split in two phases:

• attitude tracking, to point the spacecraft toward the ground station during visible
passes, and

• attitude reorientation, aimed at gaining the correct pointing direction while waiting
for the succeeding visible pass over the ground station.

Visibility of the ground station corresponds to an elevation angle ε greater than a minimum
value εmin, related to the type of sensors mounted onboard the spacecraft. During attitude
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tracking, a time-varying attitude and angular velocity are pursued. In contrast, attitude
reorientation represents a slewing maneuver, with zero angular rate and specified attitude,
identified by the constant matrix Rc. This corresponds to aligning a specified body axis of
the spacecraft with the direction where the ground station appears, as soon as it becomes
visible. It is straightforward to recognize that the commanded attitude and the angular
rate are discontinuous across the two trajectory arcs. As a result, the commanded torque is
discontinuous at the same point (Equation (9)), as well as θ̇c (Equation (34), with θ̇c in place
of θ̇).

5.1. Commanded Attitude

The spacecraft attitude is referred to the Earth-centered inertial frame (ECI), associated
with the following vectrix:

N =
[
ĉ1 ĉ2 ĉ3

]
(37)

The final objective is in defining the commanded attitude, identified by C, in both phases,
i.e., tracking and reorientation. In order to achieve correct pointing, a specified spacecraft
body axis (i.e., k̂c) must be aligned with the relative position vector that points from the
spacecraft center of mass to the ground station.

As a first step, in the ECI-frame the ground station location is identified using
spherical coordinates,

~rT =
[
ĉ1 ĉ2 ĉ3

]



r⊕ cos φ cos ξ
r⊕ cos φ sin ξ

r⊕ sin φ


 (38)

where r⊕ is the Earth radius, whereas ξ is the absolute longitude and φ is the latitude of
the ground station. The absolute longitude ξ is defined by the sum of the geographical
longitude λG and the Greenwich sidereal time θG,

ξ = λG + θG (39)

where
θG = θG0 + ω⊕(t− t0) (40)

In Equation (40), θG0 is the Greenwich sidereal time at epoch t0, while ω⊕ is the Earth
rotation rate.

In the ECI-frame, the spacecraft position vector ~rS can be written in terms of
orbit elements,

~rS =
[
r 0 0

]
R3
(
θt
)

R1
(
i
)

R3
(
Ω
)



ĉ1
ĉ2
ĉ3


 (41)

where Rj(χ) denotes the elementary rotation about axis j by angle χ; angles θt, i, and Ω are
the instantaneous argument of altitude, inclination, and right ascension of the ascending
node (RAAN); r is the instantaneous orbit radius. The argument of latitude equals

θt = ω + θ∗ (42)

where ω and θ∗ represent, respectively, the argument of perigee and the true anomaly.
The commanded attitude is defined through the following relations:

k̂c =
~rT −~rS
||~rT −~rS||

(43)

ı̂c =
k̂c × ĉ3

||k̂c × ĉ3||
(44)

̂c = k̂c × ı̂c (45)
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The commanded attitude reference frame is illustrated in Figure 3. Using Equations (43)–(45),
the unit vectors of the commanded attitude are resolved in the ECI-frame, and the rotation
matrix that relates the commanded reference frame C to the inertial reference frame N,
denoted with R

C←N
, can be found in closed form. The next step is to obtain the analytical

expression of the commanded angular velocity and its time derivative, starting from the
kinematics equation for R

C←N
,

Ṙ
C←N

= −ω̃c R
C←N

(46)

leading to
ω̃c = − Ṙ

C←N
R

N←C
→ ω(C)

c (47)

Equation (47) allows finding the closed-form expression of the three components of ω(C)
c ,

once R
C←N

and Ṙ
C←N

are known. The latter can be written as the sum of three contributions:

Ṙ
C←N

=
∂ R

C←N

∂ξ
ξ̇ +

∂ R
C←N

∂θt
θ̇t +

∂ R
C←N

∂θ∗
θ̇∗ (48)

where
ξ̇ = θ̇G = ω⊕ (49)

whereas the time derivative of the argument of latitude is [32]

θ̇t = θ̇∗ =
√

µ

p3

(
1 + e cos θ∗

)2 (50)

In Equation (50), µ is the gravitational parameter of the Earth, while p is the semilatus
rectum of the operational orbit. The preceding equation assumes Keplerian motion, i.e.,
negligibility of orbit perturbations, which is a reasonable and rather accurate approximation
over the timescale of a single repetition period. As previously remarked, Equation (47)
leads to obtaining the three components of ω(C)

c in closed form. Their expressions are rather
long and are not reported for the sake of conciseness.

The last step consists of computing the time derivative of the commanded
angular velocity,

ω̇(C)
c =

∂ω(C)
c

∂ξ
ξ̇ +

∂ω(C)
c

∂θt
θ̇t +

∂ω(C)
c

∂θ∗
θ̇∗ (51)

It is worth noting that the preceding developments lead to finding the desired attitude
and angular rate in tracking intervals. The desired attitude in reorientation arcs can be
found by predicting the inertial position of the ground station at the time when it becomes
visible. Because this is a slewing maneuver, the corresponding commanded angular velocity
ω(C)

c equals 0, as well as its time derivative.

ĉ1

ĉ2

ξ

ĉ3

r⃗T

r⃗T − r⃗S

r⃗S

ϕ

k̂c

ı̂c

ȷ̂c

Figure 3. Geometry of the commanded attitude (downlink).
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5.2. Numerical Simulations in Nominal Conditions

In this work, the operational orbit is nearly circular, repeating, and with critical
inclination. The repetition period equals 1 nodal day, and includes 15 nodal orbital periods.
All orbit elements are reported in Table 2. The minimum elevation angle εmin is set to 10°.
Figure 4 depicts the elevation time history during the 5 visible passes (in a single repetition
period) over the ground station, sited at geographical longitude of 9.4°and latitude of 39.7°.
The initial attitude conditions are

ω(t0) =
[
0 0 0

]T (52)

θ(t0) =

[
0

π

4
π

2
3π

4

]T
(53)

θ̇(t0) =
[
0 0 0 0

]T (54)

R(t0) = I3×3 (55)

Matrix Q, which is related to the inertia estimator dynamics (15), includes large values if
the knowledge of the mass distribution of the spacecraft is satisfactory. Conversely, small
values correspond to poor knowledge of it. For this simulation, Q is set to

Q = 10−8 I6×6 (56)

The gains used in the numerical simulations are reported in Appendix A.
Figure 5 illustrates the eigenangle time history, which provides a clear indication

of misalignment. This time history exhibits some spikes immediately after the end of
tracking intervals, when the spacecraft must reorient to point toward the direction where
the ground station will appear in the subsequent visible pass. Instead, during visible passes,
the eigenangle reaches modest values, e.g., below 0.1°, as shown in Figure 6, referred to
the fourth tracking interval. Figure 7 portrays the time histories of the components of
the error angular velocity, which reach again their maximum values at the beginning of
reorientation arcs. In contrast, during visible passes, these components quickly drop to
zero, as illustrated in Figure 8. Precision in pointing is testified by the two mean values Φ̄ei
and ω̄ei , defined in Equations (5) and (6),

Φ̄ei = 6.20 · 10−2° (57)

ω̄ei = 2.60 · 10−4 °/s (58)

The actual torque components, depicted in Figures 9 and 10, reach values of order of tens
of Nm. The angular rates of the gimbals are portrayed in Figures 11 and 12 and do not
exceed 30 °/s. Finally, the time histories of net motor torques, shown in Figure 13, turn out
to be of order of 1 Nm.

0 2 4 6 8

104

20

40

60

80

Figure 4. Elevation ε(t)[°] during a repetition period.
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150

200

Figure 5. Pointing error Φe(t)[°] during a repetition period.
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104
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0.1
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°

Figure 6. Pointing error Φe(t)[°] during the fourth tracking interval.
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104

-0.5

0

0.5

Figure 7. Components of the error angular velocity ωe1(t), ωe2(t), ωe3(t)[°/s] during a
repetition period.

3.7978 3.79784 3.79788

104

-0.05

0

0.05

0.1

0.15

TRACKING

Figure 8. Components of the error angular velocity ωe1(t), ωe2(t), ωe3(t)[°/s] during the fourth
tracking interval.
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Table 2. Orbit elements of the operational orbit (semimajor axis a in [km], angles i, Ω, ω, and θ∗ in [°]).

a e i Ω ω θ∗(t0)

6940.47 0.02 63.4 0 −90.0 0

0 2 4 6 8

104

-60

-40

-20

0

20

40

Figure 9. Actual torque components Ta1 (t), Ta2 (t), Ta3 (t)[Nm] during a repetition period.
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104

-40
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Figure 10. Actual torque components Ta1 (t), Ta2 (t), Ta3 (t)[Nm] during the fourth tracking interval.
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Figure 11. Gimbal angular rates θ̇
(j)
1 (t)[°/s]; j = 1, . . . , 4. during a repetition period.
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3.7978 3.79785 3.7979

104

-40

-20

0

20

40

TRACKING

Figure 12. Gimbal angular rates θ̇
(j)
1 (t)[°/s]; j = 1, . . . , 4. during the fourth tracking interval.
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Figure 13. Net motor torques g(j)
1 (t); j = 1, . . . , 4. during a repetition period.

5.3. Monte Carlo Analysis

A Monte Carlo analysis, composed of 100 simulations, is performed for the purpose of
ascertaining effectiveness of the control and actuation architecture in nonnominal flight
conditions. The final goal is in proving convergence toward the desired attitude in the pres-
ence of displacements on the initial conditions, i.e., the spacecraft angular rate and attitude.
The latter is randomly generated by assuming an eigenaxis with uniform distribution over
the unit sphere, whereas the principal angle has uniform distribution in the interval [0, π],

Φ = U (0, π) (59)

ξ = U (0, 2π) (60)

φ = sin−1 r (61)

r = U (−1, 1) (62)

In the preceding relations, symbol U denotes a uniform distribution, with bounds reported
in parenthesis, Φ is the eigenangle, whereas the two auxiliary angles ξ and φ identify the
stochastic direction of the eigenaxis â both in the inertial and in the body axes frame, i.e.,

a(N/B) =
[
cos φ cos ξ cos φ sin ξ cos ξ

]T (63)

The initial angular rate components of the spacecraft are assumed to obey a normal distri-
bution, with zero average value and standard deviation equal to 0.5 °/s, i.e.,

ωi = N (0, σ2) (i = 1, 2, 3) (64)

where N is the normal distribution.
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The mean value and the standard deviations of two quantities are reported in Table 3,
i.e., (a) average value of the pointing error (angle Φ̄e) and (b) average magnitude of
the angular velocity error. Figures 14 and 15 illustrate these two quantities for all the
simulations. The average pointing error is less than 0.5° for the great majority of the
simulations, whereas the average magnitude of the angular velocity error never exceeds
7·10−3 °/s.

Table 3. Downlink: numerical results from the Monte Carlo campaign.

¯̄ωe[°/s] σω̄e [°/s] ¯̄Φe[°] σΦ̄e
[°]

1.18·10−3 8.45·10−4 1.93·10−1 1.38·10−1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
°

°

Figure 14. Average pointing error Φ̄e[°] for all simulations of the Monte Carlo campaign.
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8
10-3 °

°

Figure 15. Average magnitude of the angular velocity error ω̄e[°/s] for all simulations of the Monte
Carlo campaign.

6. Attitude Maneuvering for Intersatellite Connection

This section considers two satellites placed in two repeating ground-track orbits. When
they are mutually visible, the first spacecraft, labeled with S, must point toward the second
target satellite, labeled with T. Correct pointing allows establishing an interlink connection
for data sharing. Attitude maneuvering is split again in two phases:

• attitude tracking, to point S toward T when the two spacecraft are visible to each
other, and

• attitude reorientation, aimed at gaining the correct pointing direction while waiting
for the succeeding trajectory arc where T and S are mutually visible.

During attitude tracking, a time-varying attitude and angular velocity are pursued. Instead,
attitude reorientation represents a slewing maneuver, with zero angular rate and specified
attitude, identified by the constant matrix Rc. This corresponds to aligning a specified
body axis of S with the direction from S to T, as soon as T becomes visible from S. It is
straightforward to recognize that the commanded attitude and the angular velocity are
discontinuous across the two trajectory arcs.
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In this context, visibility is related to the line of sight between S and T. In particular,
let θ be the angle between the two position vectors; θS and θT are the angles at vertex O
(cf. Figures 16 and 17). The following relations hold:

θ = cos−1
(

~rT ·~rS
||~rT || ||~rS||

)
(65)

θS = cos−1
(

r⊕
||~rS||

)
(66)

θT = cos−1
(

r⊕
||~rT ||

)
(67)

From inspection of Figures 16 and 17 it is apparent that visibility and non-visibility arcs
can be distinguished based on these three angles, i.e.,

θ > θS + θT → non-visibility arc (68)

θ < θS + θT → visibility arc (69)
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6.1. Commanded Attitude

The spacecraft attitude is referred again to the Earth-centered inertial frame (ECI),
associated with vectrix N. The final objective is in defining the commanded attitude,
identified by C, in both phases, i.e., tracking and reorientation. In order to achieve correct
pointing, a specified spacecraft body axis (i.e., îc) must be aligned with the relative position
vector that points from S to T.

In the ECI-frame, the position vectors ~rS and ~rT can be written in terms of orbit
elements, using Equation (41) for both S and T.
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The commanded attitude is defined through the following relations:

ı̂c =
~rT −~rS
||~rT −~rS||

(70)

̂c =
ı̂c × ĉ3

||ı̂c × ĉ3||
(71)

k̂c = ı̂c × ̂c (72)

For this problem, the commanded attitude reference frame is illustrated in Figure 18. Using
Equations (70)–(72), the unit vectors of the commanded attitude are resolved in the ECI-
frame, and the rotation matrix that relates the commanded reference frame C to the inertial
reference frame N, denoted with R

C←N
, can be found in closed form.

ĉ1

ĉ2

ĉ3

r⃗T

r⃗T − r⃗S

r⃗S

ı̂c

ȷ̂c

k̂c

Figure 18. Geometry of the commanded attitude (intersat link).

The time derivative of matrix R
C←N

is given by

Ṙ
C←N

=

(∂ R
C←N

∂θ∗T
+

∂ R
C←N

∂θtT

)
θ̇∗T +

(∂ R
C←N

∂θ∗S
+

∂ R
C←N

∂θtS

)
θ̇∗S (73)

Equations (47) and (50) still hold in this context. Finally, the derivative of the commanded
angular velocity is given by

ω̇(C)
c =

(
∂ω(C)

c
∂θ∗T

+
∂ω(C)

c
∂θtT

)
θ̇∗T +

(
∂ω(C)

c
∂θ∗S

+
∂ω(C)

c
∂θtS

)
θ̇∗S (74)

The preceding developments lead to finding the desired attitude and angular rate in
tracking intervals. The desired attitude in reorientation arcs can be found by predicting the
inertial position of T at the time when it becomes visible; in this context, ω(C)

c is set to 0, as
well as its time derivative.

6.2. Numerical Simulations in Nominal Conditions

The two spacecraft are assumed to be placed in two orbits with identical semimajor
axes, eccentricities, and inclinations, set to the values of Section 5.2. Instead, the two orbits
have different values of RAAN,

ΩS = 0° (75)

ΩT = 90° (76)

At the initial time, both satellites are at the ascending node.
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Figure 19 depicts θ and (θS + θT) during a time interval of 10,000 s, in which the two
spacecraft are mutually visibible three times. The first and third visibility arc correspond
to transits in the North latitudinal regions, the second (shorter) visibility arc is associated
with a transit in the South emisphere. The initial attitude conditions are

ω(t0) =
[
0 0 0

]T (77)

θ(t0) =

[
0

π

4
π

2
3π

4

]T
(78)

θ̇(t0) =
[
0 0 0 0

]T (79)

R(t0) =




1 0 0
0 −0.1736 −0.9848
0 0.9848 −0.1736


 (80)

For simulating these attitude maneuvers, Q is set to

Q = 10−7 I6×6 (81)

The gains used in the numerical simulations are reported in Appendix A.
Figure 20 illustrates the eigenangle time history, which provides a clear indication

of misalignment. This time history exhibits some spikes immediately after the end of
tracking intervals, when S must reorient to point toward the direction where T will appear
in the subsequent visibility arc. Instead, during visibility arcs, the eigenangle reaches
modest values, e.g., below 0.1°, as shown in Figure 21, referred to the 2nd tracking interval.
Figure 22 portrays the time histories of the components of the error angular velocity, which
reach again their maximum values at the beginning of reorientation arcs. In contrast, in
visibility arcs these components quickly drop to zero, as illustrated in Figure 23. Precision in
pointing is testified by the two mean values Φ̄ei and ω̄ei , defined in Equations (5) and (6),

Φ̄ei = 4.90 · 10−2° (82)

ω̄ei = 2.60 · 10−4°/s (83)

0 2000 4000 6000 8000 10,000

50

70

90

Figure 19. Angles θ, θS + θT(t)[°] during a the entire time interval [0, 10,000] s.

The actual torque components, depicted in Figures 24 and 25, reach values of order
of tens of Nm and component Ta3 is larger than the other ones. The angular rates of the
gimbals are portrayed in Figures 26 and 27, occasionally exceed 20 °/s, and never exceed
35 °/s. The time histories of net motor torques, shown in Figure 28, turn out to be of order
of 1 Nm, never exceeding 2 Nm. For the sake of completeness, Figure 29 portrays the time
histories of J̃11, J̃22, J̃33, J̃12, J̃13, and J̃23, which represent the displacement of the inertia
momenta and products from the respective actual values.
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Figure 20. Pointing error Φe(t)[°] during the entire time interval.
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Figure 21. Pointing error Φe(t)[°] during the second tracking interval.
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Figure 22. Components of the error angular velocity ωe1(t), ωe2(t), ωe3(t)[°/s] during the entire
time interval.
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Figure 23. Components of the error angular velocity ωe1(t), ωe2(t), ωe3(t)[°/s] during the second
tracking interval.
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Figure 24. Actual torque components Ta1 (t), Ta2 (t), Ta3 (t)[Nm] during the entire time interval.
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Figure 25. Actual torque components Ta1 (t),Ta2 (t),Ta3 (t)[Nm] during the second tracking interval.
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Figure 26. Gimbal angular rates θ̇
(j)
1 (t)[°/s]; j = 1, . . . , 4 during the entire time interval.
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Figure 27. Gimbal angular rates θ̇
(j)
1 (t)[°/s]; j = 1, . . . , 4. during the second tracking interval.
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Figure 28. Net motor torques g(j)
1 (t); j = 1, . . . , 4 during the entire time interval.
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Figure 29. Errors on estimated inertia moments and products J̃11(t), J̃22(t), J̃33(t), J̃12(t), J̃13(t),
J̃23(t)[kgm2] during the entire time interval.

6.3. Monte Carlo Analysis

A Monte Carlo analysis is also performed for the interlink attitude maneuvering.
The stochastic initial conditions are generated by using the same approach described
in Section 5.3. The mean value and the standard deviations of two quantities are reported
in Table 4, i.e., (a) average value of the pointing error (angle Φ̄e) and (b) average magnitude
of the angular velocity error. Figures 30 and 31 illustrate these two quantities for all the
simulations. The average pointing error is less than 0.3° for the great majority of the
simulations, whereas the average magnitude of the angular velocity error never exceeds
6·10−3 °/s and is less than 5·10−4 °/s in most cases.

Table 4. Intersat: numerical results from the Monte Carlo campaign.

¯̄ωe[°/s] σω̄e [°/s] ¯̄Φe[°] σΦ̄e
[°]

3.05·10−4 4.51·10−4 9.89·10−2 6.64·10−2
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Figure 30. Average pointing error Φ̄e[°] for all simulations of the Monte Carlo campaign.
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Figure 31. Average magnitude of the angular velocity error ω̄e[°/s] for all simulations of the Monte
Carlo campaign.

7. Concluding Remarks

This research addresses the design and numerical testing of an attitude control archi-
tecture tailored to precise satellite reorientation and tracking, in two operational scenarios:
(a) pointing toward a ground station, for downlink data routing, and (b) pointing toward a
companion satellite, for intersatellite data sharing. In each scenario, two distinct phases
are identified, i.e., (i) attitude tracking and (ii) reorientation. The related commanded
attitude and angular rate are obtained in closed form through geometric analysis. An
inertia-free nonlinear attitude control algorithm leads to obtaining a feedback law for the
commanded torque components. Actuation is demanded to an array of four single-gimbal
control momentum gyroscopes. They are driven through the use of an effective steering
law that incorporates singular direction avoidance. Accurate modeling of the actuation
devices allows finding the actual torque transferred to the spacecraft, as well as the net
motor torque to apply to each device. Both mission scenarios include slewing and tracking
phases. Nonlinear attitude control, in conjunction with actuation, leads to obtaining mod-
est values for the misalignment angle and the angular velocity error. The single-gimbal
control momentum gyroscopes are effectively steered while remaining within their (safe)
operational range, without any saturation, and modest motor torques are needed. Lastly,
the numerical simulations, assuming either nominal or nonnominal conditions, prove that
the control architecture at hand is rather effective for precise attitude maneuvering, with
the final aim of establishing downlink and intersatellite connections for data sharing.
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Appendix A. Gains of the Attitude Control Algorithm

This appendix includes all the numerical values of the gains that appear in the attitude
control architecture (cf. Sections 3 and 4).

Matrix K1 is set to the identity matrix, αre f = 5.63 · 103, and α0 = 3.0 · 101, in all cases.
In downlink pointing, the remaining gains depend on the type of attitude maneuver.

In tracking arcs,

µ0 = 1.00 · 10−1, β0 = 3.00 · 104,

a1 = 1.00 · 10−5, a2 = 2.00 · 10−5,

a3 = 3.00 · 10−5

whereas in slewing arcs,

µ0 = 1.00 · 10−1, β0 = 3.00 · 104,

a1 = 1.00 · 10−3, a2 = 2.00 · 10−3,

a3 = 3.00 · 10−3

Also in intersat pointing, the remaining gains depend on the type of attitude maneuver.
In tracking arcs,

µ0 = 1.00 · 10−4, β0 = 3.00 · 104,

a1 = 1.00 · 10−5, a2 = 2.00 · 10−5,

a3 = 3.00 · 10−5

whereas in slewing arcs,

µ0 = 1.00 · 10−6, β0 = 4.50 · 102,

a1 = 1.00 · 10−3, a2 = 2.00 · 10−3,

a3 = 3.00 · 10−3
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