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Abstract: Cultivated rice is a staple food for more than half of the world’s population, providing
approximately 20% of the world’s food energy needs. A broad spectrum of pathogenic microorgan-
isms causes rice diseases leading to huge yield losses worldwide. Wild and cultivated rice species
are known to possess a wide variety of antimicrobial secondary metabolites, known as phytoalexins,
which are part of their active defense mechanisms. These compounds are biosynthesized transiently
by rice in response to pathogens and certain abiotic stresses. Rice phytoalexins have been intensively
studied for over half a century, both for their biological role and their potential application in agro-
nomic and pharmaceutical fields. In recent decades, the growing interest of the research community,
combined with advances in chemical, biological, and biomolecular investigation methods, has led
to a notable acceleration in the growth of knowledge on rice phytoalexins. This review provides
an overview of the knowledge gained in recent decades on the diversity, distribution, biosynthesis,
chemical synthesis, and bioactivity of rice phytoalexins, with particular attention to the most recent
advances in this research field.
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1. Introduction

Domesticated rice (Oryza sativa L., Poaceae) is one of the widely grown food crops
worldwide and is the primary food source in many countries, especially but not only in
Asia. Unlike other staple cereal crops, most rice production is used for human consumption
in the form of whole-husked grains. In addition to being a primary source of carbohydrates,
proteins, and other essential nutrients, rice provides a wide range of bioactive secondary
metabolites, including phenolic acids, flavonoids, terpenoids, steroids, and alkaloids. To
date, approximately 280 secondary metabolites have been identified in rice. The diversity
of secondary metabolites in rice was recently described in an excellent review paper by
Wang and co-workers [1].

Like other crop plants, rice is susceptible to various diseases sustained by microor-
ganisms, including viruses, bacteria, and fungi, which cause huge economic losses to
farmers [2]. A study published by the International Rice Research Institute (IRRI) reported
that, on average, farmers lose 37% of their rice production due to diseases and pests and that
these losses can range between 24% and 41%, depending on the production situation [3].
Fungal infections of rice can also pose a significant human health risk due to mycotoxin
contamination, especially in geographical areas where rice is a staple food [4].

Plants have evolved multiple defense mechanisms to counteract pathogen attacks,
including overproduction of reactive oxygen species (ROS), activation of defense-related
genes, synthesis of pathogen-related (PR) proteins, localized strengthening of cell walls,
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production of pathogen cell wall-degrading enzymes, and accumulation of specialized
toxic metabolites, including phytoalexins and phytoanticipins.

The phytoalexin concept was first introduced by Karl O. Müller, who observed that
inoculation of potato plants with an incompatible strain of Phytophthora infestans induced
the biosynthesis of a putative defense compound that conferred resistance to a compatible
strain of this phytopathogenic oomycete [5]. In 1940 H. Börger and O. Müller referred to
phytoalexins as “chemical compounds produced as a result of invasion of living cells by
a parasite” [6]. In the following years, it emerged that the biosynthesis of phytoalexins
can also be induced by abiotic stress, such as exposure to UV radiation or heavy metal
ions. Furthermore, increasingly sensitive analytical techniques showed that phytoalexins
can be produced and/or accumulated even in healthy tissues, albeit at very low levels.
Considering these observations, since the 1980s, a broader concept of phytoalexins gained
acceptance from the scientific community: “Products of higher plant metabolism, absent
from healthy tissues or present only in negligible traces, which accumulate in significant
amounts in response to fungal or bacterial challenge” [7].

The concept of phytoanticipins was introduced in 1994 by VanEtten and colleagues [8]
with reference to “low molecular weight antimicrobial compounds present in plants before chal-
lenge by microorganisms or produced after infection solely from pre-existing constituents”.

According to the above definition, phytoalexins are mainly defined in terms of biosyn-
thesis dynamics and biological role rather than in terms of chemical structure or biosynthetic
origin. Indeed, phytoalexins can be biosynthesized through different pathways and thus
belong to different classes of secondary metabolites, including terpenoids, phenols, and
alkaloids. Sometimes, they are even structurally hybrid compounds whose biosynthesis
involves the contribution of multiple biosynthetic pathways [9].

Some of rice’s secondary metabolites, such as momilactone B, exhibit a significant
inhibitory activity on seed germination and plant development in addition to playing a
key role in plant-pathogen interactions (phytoalexins) and are, therefore, presumed to be
involved in plant–plant antagonistic interactions (allelochemicals). The allelopathic activity
of natural compounds is attracting growing interest in the research community, stemming
from their potential to develop next-generation bioherbicides for use in sustainable weed
management [10–13].

In addition to being key components of the plant defense system, phytoalexins ex-
hibit a wide range of health-promoting biological activities [14,15]. The potential of rice
phytoalexins as active ingredients of new-generation antibiotic drugs derives from their
proven antiviral [16,17], antitumor [18], antibacterial [19], and antifungal [18–20] activity.

Continued investigation of the biosynthesis, diversity, and biological activities of rice
phytoalexins will provide foundational knowledge to enable the development of strategies
to improve resistance to insect pests, bacterial and fungal diseases, and abiotic stressors, as
well as to develop next-generation antimicrobial drugs.

Building on previous experimental and review papers on rice phytoalexins, this review
provides a selection of some of the most interesting discoveries that have accumulated over
the last few decades regarding the diversity, distribution, biosynthesis, chemical synthesis,
and bioactivities of this diverse family of secondary metabolites.

2. Diversity and Distribution of Rice Phytoalexins

Since the 1970s, a wide range of phytoalexins has been identified in Oryza species. The
rice phytoalexins known so far belong to the classes of diterpenes (Figures 1–3), flavonoids
(Figure 4A), and phenylamides (Figure 4B–G) [9,21].
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Figure 1. Momilactones so far isolated from rice (A–E) and oryzalactone (F). The dual role of phy-
toalexins and allelochemicals has been demonstrated for momilactone A and B. Momilactones share 
a pimarane skeleton, while oryzalactone exhibits an abietane skeleton. 
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Figure 3. Oryzalexins so far isolated from rice. Despite the name, oryzalexins (A–F) are distin-
guished from oryzalexin S both by the chemical structure (ent-sandaracopimaradiene- and stema-
rane-type, respectively) and by the metabolic intermediate from which they derive (ent-san-
daracopimara-8(14),15 diene and syn-stemar-13-ene, respectively; vide infra). 
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Figure 3. Oryzalexins so far isolated from rice. Despite the name, oryzalexins (A–F) are distinguished
from oryzalexin S both by the chemical structure (ent-sandaracopimaradiene- and stemarane-type,
respectively) and by the metabolic intermediate from which they derive (ent-sandaracopimara-
8(14),15 diene and syn-stemar-13-ene, respectively; vide infra).
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Figure 4. Phenolic compounds that accumulate in rice after exposure to biotic and/or abiotic stresses. 
(A) is a flavanone compound, while (B–G) are phenylamides. 
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(A) is a flavanone compound, while (B–G) are phenylamides.

2.1. Diterpenoid Phytoalexins in Rice

Terpenes and terpenoids, also known as isoprenoids, are the largest and most di-
verse group of natural products, most of which are derived from plants. Of the more than
18,000 plant terpenoids known to date, about 10,000 are diterpenoids (composed of four iso-
prene units to form a 20-carbon backbone) [22,23]. Monocot diterpenoids almost invariably
belong to the large family of labdane-related compounds [24]. This group of diterpenoids
is characterized by a labdane-type bicyclic core structure or more complex ring systems de-
rived from labdane-type skeletons, such as abietane, kaurane, pimarane, beyerane, cassane,
atisane, stemodane, and manoyl oxide [25]. To date, more than 7000 different labdane-
related diterpenoids have been identified in plants [26]. Although they include the plant
hormones gibberellins (GAs) as primary metabolites, the vast majority of labdane-related
diterpenoids are secondary or rather specialized metabolites, acting as inducible antimicro-
bial compounds (phytoalexins) and/or plant growth inhibitors involved in antagonistic
plant–plant interactions (allelochemicals).

Rice diterpenoid phytoalexins can be classified into four groups based on the structure
of their hydrocarbon precursors, namely momilactones A and B [27,28] (Figure 1A,B),
phytocassanes A–G [29–31] (Figure 2A–G), oryzalexins A–F [32–38] (Figure 3A–F), and
oryzalexin S [39,40] (Figure 3G). Recently, Gu et al. [41] isolated seven diterpenoids from
rice hulls, three of which have never been described previously (i.e., 3,20-epoxy-3α-hydroxy-
8,11,13-abietatrien-7-one; 4,6-epoxy-3β-hydroxy-9β-pimara-7,15-diene; 2-((E)-3-(4-hydroxy-
3-methoxyphenyl) allylidene) momilactone A). All isolated compounds showed antifungal
activity against four crop pathogenic fungi (i.e., Magnaporthe grisea, Rhizoctonia solani,
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Fusarium oxysporum, and Blumeria graminearum), and phytotoxicity against the major rice
weed Echinochloa crus-galli (barnyard grass).

2.1.1. Momilactones

Momilactones belong to the small family of (9β-H)-pimarane compounds, which are
characterized by a β-orientation of the hydrogen bonded to carbon-9 of the pimarane
scaffold [20]. To our knowledge, momilactones A and B (Figure 1A,B) were the first
phytoalexins to be characterized by any member of the Poaceae family. They were first
identified as plant growth inhibitors from rice seed husks [27] and only later recognized as
phytoalexins due to their blast-induced biosynthesis and antifungal activity [28]. The name
“momilactone” is the combination of two words, namely momi, which is Japanese for rice
husk, and lactone, which refers to the chemical structures of momilactones A and B [20].
Other rice momilactones have been identified, whose role as phytoalexins has so far not
been demonstrated. Momilactone C (Figure 1C) was isolated in 1976 by Tsunakawa and
collaborators [42] as a minor constituent of growth inhibitors from rice seed husks, while
momilactones D and E (Figure 1D,E) were isolated in 2015 by Cho and co-workers [43]
from rice roots. Momilactone E is a 19-nor-(9β-H)-pimarane and does not contain a lactone
residue in its molecular structure; therefore, its name is not chemically correct [20].

Although momilactones were initially discovered in cultivated rice (Oryza sativa) [27,28],
comparative genomic and biochemical studies have recently demonstrated the ability
of several wild rice species (i.e., O. barthii, O. brachyantha, O. glaberrima, O. glumaepatula
O. meridionalis, O. punctata, O. rufipogon) to biosynthesize momilactones A and B, suggest-
ing that gene clustering for momilactone biosynthesis (see Section 3) had already been
accomplished before rice domestication [9,44].

Surprisingly, momilactone biosynthesis has also been found in barnyard grass [45,46],
which falls into a separate clade within the Poaceae family. Even more surprising is the iden-
tification of momilactones A and B in the moss species Plagiomnium acutum (Mniaceae) [47]
and Calohypnum plumiforme (Hypnum plumaeforme prior to 2019, Hypnaceae) [48], which
represent a very early diverging lineage of land plants. Ethanol extracts of C. plumiforme
showed significant growth inhibitory activity against angiosperms, mosses, and liver-
worts. This suggests that momilactones in bryophytes, as well as in Poaceae, play a role
in allelopathy.

Intra- and inter-specific variation in diterpenoid phytoalexin production in rice has
not yet been extensively investigated. Recently, Kariya and colleagues [9] analyzed the
abundance of diterpenoid phytoalexins in UV-light-irradiated leaves of rice cultivars from
the World Rice Core Collection (WRC) (covering a wide range of genetic diversity of
rice [49]), and in several wild rice species. Momilactone A was found in most WRC cultivars
and wild species, while momilactone B was generally accumulated at lower or undetectable
levels. In cultivated rice, the highest content of momilactone A was found in the japonica
cultivars (up to 495 nmol g−1 FW in ‘Urasan 1’). In wild rice, the greatest accumulation
was observed in species with AA and BB genomes (up to 667 nmol g−1 FW). In contrast,
momilactones were not detected in O. brachyantha, which has a FF genome. They also
discovered a novel phytoalexin, oryzalactone (Figure 1F), which was only detected in three
cultivars in the WRC and in a few strains of wild rice species O. rufipogon and O. meridionalis.
The abietane skeleton of oryzalactone distinguishes it from other momilactones, which are
instead characterized by a pimarane skeleton.

2.1.2. Phytocassanes

Several phytocassanes were identified in cultivated [29–31] and wild [9] rice. They
share an ent-cassane-type diterpene skeleton with a C-11 keto group (Figure 2). Modi-
fication of the skeleton by the introduction of keto and hydroxy groups increases their
chemical variation. Phytocassanes A–D (Figure 2A–D) were first isolated in 1995 by
Koga and co-workers [29] from rice stems infected with Rhizoctonia solani (the causal
agent of rice sheath blight) and from rice leaves infected with Magnaporthe grisea (syn.
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M. oryzae, Pyricularia grisea/oryzae, responsible for rice blast disease). Phytocassanes E and
F (Figure 2E,F) were extracted, respectively, from suspension-cultured rice cells elicited
with mycelial extracts of the potato pathogenic fungus Phytophthora infestans [30] and
UV-irradiated rice leaves [31].

It has been shown that phytocassanes, as well as momilactones, accumulate not only
in the aerial parts but also in the roots of rice plants. Toyomasu et al. [50] reported that
the roots of rice seedlings biosynthesize phytocassanes A–E and momilactones A and B,
which are largely released into the environment through exudation. Unlike momilactones,
phytocassanes did not show allelopathic activity against dicot seedling growth. Therefore,
the authors hypothesized that these compounds might play a role in defense against soil
pathogens such as M. grisea. Indeed, it has been reported that this fungal pathogen can
invade rice roots using a typical root-specific pathway [51].

As mentioned above, the production of diterpenoid phytoalexins in cultivated and
wild rice was recently investigated by Kariya and co-workers [9]. All examined cultivars,
except for ‘Jinguoyin’, contained phytocassanes A and D, which were also detected in most
wild species, especially those with the AA genome (within the genus Oryza, species with
AA and BB genomes are phylogenetically close to each other and distant from FF [52]).
Furthermore, they isolated two undescribed phytoalexins, namely oryzalactone (an isomer
of momilactone A) (Figure 1F) and phytocassane G (a di-dehydrogenated phytocassane A)
(Figure 2G), from the cultivars ‘Basilanon’ and ‘Jaguary’, respectively. All cultivars in
the WRC (except for ‘Jinguoyin’ and ‘Phulba’) showed the phytocassane G-accumulating
chemotype, while only three cultivars showed the oryzalactone-accumulating chemotype.

2.1.3. Oryzalexins

Oryzalexins A to F (Figure 3A–F) are ent-sandaracopimaradiene-type compounds.
Oryzalexin A was first isolated in 1983 by Akatsuka et al. [32] from rice leaves infected
with M. grisea (Table 1). The in vitro inhibitory activity of oryzalexin A on M. grisea conidial
germination, with an ED50 value of 130 ppm (0.43 mM), was reported by Akatsuka and
collaborators [33]. Kariya et al. [53] recently studied the accumulation of oryzalexin A in
response to UV light in 69 cultivars from the World Rice Core Collection (WRC) [49] and
in 10 strains of the wild species Oryza rufipogon (the putative wild ancestor of cultivated
rice). They found that only ten of the studied cultivars, belonging to both the japonica
and indica subspecies, produced oryzalexin A. Moreover, both oyzalexin A-producing
and non-producing chemotypes were found in O. rufipogon, suggesting that the metabolic
pathway involved in the biosynthesis of this compound was inherited from an ancestor
of O. rufipogon and was lost multiple times during evolution. They also reported that, in
some cultivars, oryzalexin A accumulation is induced by UV light but not by jasmonic
acid (JA), while in others, it is induced by JA but not UV light. This indicates that different
signal transduction pathways are induced by UV and JA, and in these cultivars, one of
these pathways does not operate [53].

Oryzalexins B–F were identified in cultivated rice subjected to pathogen infection or irradi-
ation by UV light, and their antifungal activity against rice pathogens was ascertained [34–38].

In 1988 Kodama and colleagues [54] found a new antifungal substance that was distinct
from the previously known phytoalexins. In 1992 they structurally characterized this new
phytoalexin which they named oryzalexin S [55] (Figure 3G). This compound differs from
oryzalexins A–F by its stemarane-type skeleton [40].

At present, oryzalexins have only been found in cultivated rice and the related wild
species O. rufipogon (Table 1).
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Table 1. Distribution of rice diterpenoid phytoalexins.

Compound Species (Subspecies, Cultivar) Part of the Plant References

Momilactones A and B

Oryza sativa L. (subsp. japonica cv. Koshihikari) Seed husks [27,55]

O. sativa (subsp. japonica cvs. Sasashigure;
Koshihikari; Haresugata) Leaves and straw [28,54,56,57]

O. sativa (subsp. japonica cv. Koshihikari) Root exudates [58–61]

Wild rice species: Oryza barthii A. Chev.;
O. brachyantha A. Chev. et Rhoer.; O. glaberrima
Steud.; O. glumaepatula Steud.; O. meridionalis
N. Q. Ng; O. punctata Kotschy ex Steud.;
O. rufipogon Griff.

UV-light-irradiated leaves [9,44]

Echinochloa crus-galli (L.) P.Beauv. Leaves [45,46]

Calohypnum plumiforme (Wilson) Jan Kučera &
Ignatov (formerly Hypnum plumaeforme Wilson) Aerial parts [48,62–65]

Plagiomnium acutum (Lindb.) T. Kop. Plant material [47]

Momilactone C
O. sativa (subsp. japonica cv. Koshihikari) Seed husks [42]

Pseudoleskeella papillosa (Lindb.) Kindb Plant material [66]

Momilactones D and E O. sativa (subsp. japonica cv. Chucheongbyeo) Roots [43]

Oryzalactone
O. sativa (subsp. tropical japonica cv. Jaguary;
subsp. indica cvs. Local Basmati and Bingala)
Wild rice species: O. rufipogon; O. meridionalis

Leaves irradiated with UV
light or inoculated with
conidia of Magnaporthe grisea

[9]

Phytocassanes A, B, C and D O. sativa (subsp. japonica cv. Jukkoku)
Leaves infected with
Magnaporthe grisea and stems
infected with Rhizoctonia solani

[29]

Phytocassanes A and D

Wild rice species: Oryza barthii A. Chev.;
O. brachyantha A. Chev. et Rhoer.; O. glaberrima
Steud.; O. glumaepatula Steud.; O. meridionalis
N. Q. Ng; O. rufipogon Griff.

Leaves [9]

Phytocassane E O. sativa (subsp. japonica cv. Koshihikari)
Suspension-cultured rice cells
elicited with Phytophthora
infestans mycelial extract

[30]

Phytocassane F O. sativa (subsp. japonica cv. Koshihikari) UV-irradiated leaves [31]

Phytocassane G
O. sativa (almost all cultivars in the WRC)
Wild rice species: Oryza rufipogon; O. glaberrima;
O. barthii; O. glumaepatula; O. meridionalis

UV-irradiated leaves [9]

Oryzalexin A

O. sativa (−)
Leaves infected with
Magnaporthe grisea (Syn.
Pyricularia oryzae)

[32]

O. sativa (69 cultivars in the world rice core
collection) and O. rufipogon (10 strains within
the clades, Or-I, Or-II, or Or-III)

Leaves irradiated by UV light,
treated with jasmonic acid, or
inoculated with conidia of
Bipolaris oryzae

[53]

Oryzalexins B and C O. sativa (subsp. japonica cv. Koshihikari) Leaves infected with M. grisea [33,34]

Oryzalexins D O. sativa (subsp. japonica cv. Koganenishiki) Leaves infected with M. grisea [36]

Oryzalexin E O. sativa (subsp. japonica cv. Nipponbare) UV-irradiated leaves [37]

Oryzalexin F O. sativa (subsp. japonica cv. Nipponbare) UV-irradiated leaves [38]

Oryzalexin S O. sativa (subsp. japonica cv. Koshihikari) UV-irradiated leaves [39,40,54]

WRC: World Rice Core Collection [49].
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2.2. Phenolic Phytoalexins in Rice

Sakuranetin (4′,5-dihydroxy-7-methoxyflavanone) (Figure 4A) is the major phenolic
phytoalexin in rice. It belongs to the class of flavonoids known as flavanones. Sakuranetin
is the O-methylated derivative of the better-known flavanone naringenin, which is predom-
inantly found in some edible fruits such as Citrus species, grapefruit, and tomatoes [67].
It was first isolated from the bark of Chinese cherry (Prunus pseudocerasus) [68] and wild
Himalayan cherry (Prunus cerasoides or Prunus puddum) [69] and was later established as
a phytoalexin in rice [70]. Over a century of investigations have shown that this flavanone
is widely distributed in angiosperm families, generally in its glycosylated form (primar-
ily sakuranin). Some of the sakuranetin-producing plants are listed in Table 2, which is
largely based on an excellent review paper recently published by [71] focusing on the
pharmacological aspects and distribution of this compound.

The induction of sakuranetin accumulation in response to the rice blast fungus infec-
tion [70,72,73], as well as its antimicrobial activity against a wide range of phytopathogenic
fungi (e.g., M. grisea, Bipolaris oryzae, and R. solani) and bacteria (e.g., Burkholderia glumae,
Xanthomonas oryzae pv. Oryzae, and X. oryzae pv. oryzicola) strongly suggests its biological
role as phytoalexin [73,74].

To understand the role of sakuranetin in rice blast resistance, Hasegawa et al. [73]
compared the fungus-responsive characteristics in resistant- and susceptible-type rice lines
(IL7 and Nipponbare, respectively). They found that sakuranetin has stronger antifungal
activity to blast fungus than momilactone A and that the resistant rice line accumulated
sakuranetin in infected regions at an adequate concentration to restrict the fungus, while
the amount in the susceptible line was too low to be effective. Moreover, different time-
dependent sakuranetin accumulation profiles and hypersensitive responses (HR) were
observed in resistant and susceptible lines. Leaves of the resistant line showed HR within
three days post-inoculation (dpi) with M. grisea spores, with a four-fold increase in saku-
ranetin accumulation at 4 dpi. Conversely, a susceptible line had an increase in sakuranetin
accumulation at 4 dpi but not at 3 dpi, resulting in a large fungus mass without HR.

Table 2. Plant species in which sakuranetin has been identified in recent decades.

Species Family Part of the Plant Reference

Prunus pseudocerasus Lindl. Rosaceae Bark [68]

Prunus cerasoides D.Don (Prunus puddum) Rosaceae Bark [69]

Eupatorium havanense Kunth Asteraceae Whole plant [75]

Ribes nigrum L. Grossulariaceae Leaves [76]

Iris milesii Baker ex Foster Iridaceae Rhizomes [77]

Artemisia campestris subsp. glutinosa (Gay ex Bess.) Batt. Asteraceae Aerial parts [78]

Hyptis salzmanii Benth. Lamiaceae Leaves [79]

Bonnetia dinizii Huber Guttiferae Wood [80]

Primula sieboldii E. Morren Primulaceae Bud exudate [81]

Eriodictyon californicum (Hook. & Arn.) Torr. Boraginaceae Leaves [82]

Teucrium stocksianum Boiss. Lamiaceae Aerial parts [83]

Dodonaea viscosa Jacq. Sapindaceae Aerial parts [84]

Xanthorrhoea hastilis R. Br. Xanthorrhoeaceae Dried resin [85]

Daphne aurantiaca Diels. Thymelaeaceae Stem bark [86]

Dodonaea viscosa Jacq. Sapindaceae Aerial parts [87]

Baccharis retusa DC. Asteraceae Twigs [88]
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Table 2. Cont.

Species Family Part of the Plant Reference

Dicerothamnus rhinocerotis Less. Asteraceae Leaves [89]

Prunus avium L. Rosaceae Sweet cherry [90]

Viscum album L. Santalaceae Tinctures [91]

As will be discussed later, the direct precursor of sakuranetin is supposed to be
naringenin. Sakuranetin showed significantly higher antifungal activity than naringenin
against M. grisea [70,92]. Interestingly, sakuranetin can be detoxified into naringenin and
sternbin (another flavanon compound) by M. grisea [92] and into naringenin, sakuranetin-
4′-O-β-d-xylopyranoside, and naringenin-7-O-β-d-xylopyranoside by the rice sheath blight
fungus R. solani [93].

Until recently, sakuranetin was considered the only phenol phytoalexin in rice. How-
ever, recent studies have shown that several phenylamides (e.g., N-cinnamoyltyramine,
N-benzoyltryptamine, N-feruloyltryptamine, N-cinnamoyltryptamine, N-feruloyltyramine,
N-p-coumaroylserotonin, and N-feruloylserotonin) (Figure 4) are produced by rice in
response to biotic or abiotic stress. Phenylamides are secondary metabolites widely dis-
tributed in plants resulting from the conjugation of mono- or polyamines with aromatic
acids, like caffeic, ferulic, and p-coumaric acids [94]. Amine moieties found in rice pheny-
lamides include the arylmonoamines tyramine, tryptamine, and serotonin [21].

Some of the phenylamides found in rice have shown significant antimicrobial activity
against several bacterial and fungal pathogens such as Burkholderia glumae, Xanthomonas oryzae,
Magnaporthe grisea, and Cochliobolus miyabeanus [74,95,96]. This observation strongly sug-
gests that, together with sakuranetin, phenylamides are members of phenolic phytoalexins
in rice [21,96].

Ishihara and co-workers [97,98] identified several phenylamides, including N-p-
coumaroylserotonin (CouSer), N-feruloyltryptamine (FerTry), and N-feruloylserotonin
(FerSer), in rice leaves infected with the blast fungus M. oryzae and the rice brown spot
fungus B. oryzae. Quinet and colleagues [99] observed that salt stress in leaves of the salt-
resistant rice cultivar Pokkali led to an increase in putrescine amides, which are presumably
conjugated with phenolic acids or other low molecular weight compounds. UV-induced
accumulation of N-benzoyltryptamine (BenTry) and N-trans-cinnamoyltyramine (CinTyr)
in rice was also observed by Park and colleagues [100]. N-Benzoyltyramine (BenTyr) was
isolated from rice leaves exposed to UV radiation by Horie et al. [95]. The production of this
compound was also induced by inoculation with M. oryzae. However, unlike CinTyr and
BenTry, BenTyr has shown negligible antifungal activity against this pathogen, and further
antimicrobial testing is needed to investigate its possible role in plant defense against
pathogen attack. To provide a full picture of inducible phenylamides in rice, Morimoto and
co-workers [96] monitored the accumulation of 25 phenylamides in rice leaves after infec-
tion with C. miyabeanus and X. oryzae. Both pathogens caused significant increases in pheny-
lamide accumulation, although the greatest effects were recorded after C. miyabeanus infec-
tion, which mainly induced the accumulation N-feruloylputrescine (FerPut), BenTry, and
N-benzoylserotonin (BenSer), followed by BenTry, N-trans-cinnamoylserotonin (CinSer),
CouSer, FerSer, CinTyr, N-feruloylagmatine (FerAgm), and N-trans-cinnamoyltryptamine
(CinTry). Phenylamide accumulation has also been induced by treatment with different
hormones, including jasmonic acid, salicylic acid, and 6-benzylaminopurine.

3. Rice Phytoalexin Biosynthesis
3.1. Biosynthesis of Rice Diterpenoid Phytoalexins

All isoprenoids are derived from the common five-carbon precursor isopentenyl
diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP). In plants,
IPP and DMAPP are biosynthesized through two independent pathways: the meval-
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onate (MVA) pathway, which occurs in the cytosol, and the methylerythritol-4-phosphate
(MEP) pathway, localized in the chloroplast (Figure 5). Certain isoprenoids, such as
monoterpenes, diterpenes, carotenoids, tocopherols, and the side chains of chlorophylls,
are formed via the MEP pathway, while others, such as phytosterols, sesquiterpenes,
triterpenes, and the side chain of ubiquinone are biosynthesized via the MVA path-
way [101]. Several lines of evidence suggest that the MEP pathway is involved in the
biosynthesis of diterpenoids [102,103], although some MEP-MVA crosstalk could not be
ruled out [104,105]. Microarray analysis showed a clear correlation between the expression
of MEP pathway genes and the accumulation of diterpenoid phytoalexins in elicitor-treated
suspension cells [102].

Isopentenyl diphosphate ∆-isomerase (IPPI) catalyzes the reversible conversion of
IPP to DMAPP. To convert IPP to DMAPP in the cytoplasm, IPPI is required, and in the
absence of this enzyme, the MEP pathway is blocked. In contrast, IPPI is not strictly
essential in plastids where a mixture of DMAPP and IPP is produced from 4-hydroxy-3-
methylbut-2-enyl diphosphate (HMBPP) by the last enzyme in the MEP pathway HMBPP
reductase (HDR) [106]. Two IPPI isoforms, OsIPPI1 and OsIPPI2, have been identified in
rice. The subcellular localization of OsIPPI1 and OsIPPI2 was recently investigated by Jin
et al. [101] by constitutively expressing these enzymes fused to synthetic green fluorescent
protein (sGFP). Although both isoforms were detected in the endoplasmic reticulum (ER),
mitochondria and peroxisomes, only OsIPPI2 was identified in plastids. However, OsIPPI2
gene expression did not correlate with chlorophyll or carotenoid accumulation in plastids,
suggesting that it may be a redundant component of the MEP pathway. Colocalization of
both OsIPPI1 and OsIPPI2 in the ER suggests that DMAPP may be synthesized de novo in
this compartment in rice [101].
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is fed by the cytosolic MEV pathway, while mono-, di-, and tetraterpenes biosynthesis typically is
fed by the plastidial MEP pathway. AACT: acetoacetyl-CoA thiolase (EC 2.3.1.9); CMK: 4-(cytidine
5′-diphospho)-2-C-methyl-D-erythritol kinase (EC 2.7.1.148); DMAPP: dimethylallyl diphosphate;
DPTS: diterpene synthase (E.C. 4.2.3.x); DXR: 1-deoxy-D-xylulose 5-phosphate reductoisomerase (EC
1.1.1.267); DXS: 1-deoxy-D-xylulose 5-phosphate synthase (EC 2.2.1.7); FDP: farnesyl diphosphate;
FPPS: farnesyl diphosphate synthase (EC 2.5.1.10); G3P: D-glyceraldehyde 3-phosphate; GPP: geranyl
diphosphate; GPPS: geranyl diphosphate synthase (EC 2.5.1.29); GGPPS: geranylgeranyl diphosphate
synthase (EC 2.5.1.29); HDR: (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase; HDS: (E)-4-
hydroxy-3-methylbut-2-enyl diphosphate synthase (EC 1.17.1.2); HMGR: 3-hydroxy-3-methylglutaryl-
CoA reductase (EC 1.17.1.2); HMGS: 3-hydroxy-3-methylglutaryl-CoA synthase (EC 2.3.3.10); IPPI:
isopentenyl diphosphate ∆-isomerase (EC 5.3.3.2); IPP: isopentenyl diphosphate; MCT: 2-C-methyl-d-
erythritol 4-phosphate cytidylyltransferase (EC 2.7.7.60); MDD: diphosphomevalonate decarboxylase
(EC 4.1.1.33); MDS: 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (EC 4.6.1.12); MTPS:
monoterpene synthase (EC:4.2.3.-); MVK: mevalonate kinase (EC 2.7.1.185); MVAP: mevalonate
5-phosphate; MVAPP: mevalonate diphosphate; PMK: phosphomevalonate kinase (EC 2.7.4.2); STPS:
sesquiterpene synthase (EC 4.2.3.49; 4.2.3.47; 3.1.7.6); TPS: terpene synthase (EC 4.2.3.47); TTPS:
triterpene synthase (EC 5.4.99.-) (adapted from [107]).

Higher molecular weight isoprenoids are synthesized by the addition of one or more
IPP units to a DMAPP, with a simultaneous release of the pyrophosphate anion (PPi).
DMAPP is mainly used as a chemically active substrate, which is extended by the addition
of IPP units to short-chain prenyl diphosphates such as geranyl diphosphate (GPP, C10),
farnesyl diphosphate (FPP, C15), and geranylgeranyl diphosphate (GGPP, C20) (Figure 5).
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GGPP is the central precursor of all diterpenoids, including rice diterpenoid phytoalexins
(Figure 6). The IDS responsible for GGPP biosynthesis is GGPP synthase (GGPPS).

The structural diversity of labdane-type diterpenoids arises from the pairwise activity
of class I and class II diterpene synthases (diTPSs) which act sequentially to convert GGPP
into distinct diterpenoid scaffolds [24,26,108] (Figure 6). Class II diTPSs catalyze the first
step of rice diterpenoid biosynthesis, consisting of the conversion of (E,E,E)-GGPP into
the bicyclic prenyl diphosphate intermediates (5S,9S,10R)-copalyl diphosphate (syn-CPP)
and (5R,9S,10S)-copalyl diphosphate (ent-CPP). Two class II diTPSs belonging to the TPS-c
subfamily [24,109] are responsible for the biosynthesis of syn-CDP and ent-CDP, i.e., OsCPS4
and OsCPS1/2, respectively. Subsequently, class I diTPSs convert syn-CPP and ent-CPP
via ionization of the diphosphate substituent and several cyclization and rearrangement
reactions downstream of the carbocation intermediate [26].
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Figure 6. Proposed pathway for the biosynthesis of rice diterpenoid phytoalexins and gibberellins.
The enzymes whose chloroplast localization is established are written in green. CPP: copalyl diphos-
phate; diTPS I: class I diterpene synthase; diTPS II: class II diterpene synthase; GGPP: geranylgeranyl
diphosphate; OsCPS1: ent-copalyl diphosphate synthase (EC 5.5.1.13); OsCPS2 (OsCyc2): ent-copalyl
diphosphate synthase (EC 5.5.1.13); OsCPS4 (OsCyc1): syn-copalyl diphosphate synthase (EC 5.5.1.14);
OsKS1: ent-kaur-16-ene synthase (EC 4.2.3.19); OsKS4 (OsKSL4): syn-pimara-7,15-diene synthase (EC
4.2.3.35); OsKS7 (OsKSL7; OsDTC1): ent-cassa-12,15-diene synthase (EC 4.2.3.28); OsKS8 (OsKSL8;
OsK8; OsDTC2): stemar-13-ene synthase (EC 4.2.3.33); OsKS10 (OsKSL10): ent-sandaracopimara-
8(14),15-diene synthase (EC 4.2.3.29) (adapted from [110]).

Many genes encoding enzymes involved in the biosynthesis of rice diterpenoid phy-
toalexins are arranged as biosynthetic gene clusters (BGCs). A BGC is made up of three
or more non-homologous genes encoding enzymes involved in the same biosynthetic
pathway and located close to each other on the same chromosome. The clustering of genes
encoding protein complexes has been proposed to be a useful strategy for coordinating
the regulation of component genes and providing an optimal proportion of gene products.
Furthermore, the grouping of biosynthetic pathways could help reduce autotoxicity caused
by the accumulation of intermediates. The co-inheritance of entire biosynthetic pathways
promotes the evolution of common gene expression regulation mechanisms, accelerating
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responses to environmental conditions and maximizing plant fitness [111–113]. Gene clus-
ters associated with the biosynthesis of secondary metabolites have been found in several
plant species: benzoxazinone BCG in maize [114], avenacin BCG in oats [115], thalianol,
and marneral BGC in Arabidopsis [116,117], potential BGCs in cucumber [118], as well as a
new momilactone BGC in barnyard grass [45].

At least two BGCs associated with rice diterpenoid phytoalexin biosynthesis have
been identified in the genome of cultivated rice. They are c4BGC, involved in momilactone
A biosynthesis on chromosome 4, and c2BGC, associated with phytocassane biosynthe-
sis on chromosome 2 [44,113,119–121] (Figure 7). Several lines of evidence suggest that
c2BGC plays a more general biosynthetic role, e.g., the production of oryzalexins and
oryzalides [122–124]. Furthermore, it has been shown that the biosynthesis of momilac-
tones requires the contribution of genes belonging to both c4BGC and non-clustered genes
located on different chromosomes [125].
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Figure 7. Schematic diagram of loci corresponding to genes involved in diterpene biosynthesis
in rice. The biosynthetic gene clusters on chromosome 2 (c2BGC) and chromosome 4 (c4BGC)
are located between LOC_Os02g35970 and LOC_Os02g36300 and between LOC_Os04g09800 and
LOC_Os04g10240, respectively (adapted from [44,119,126]).

3.1.1. Biosynthesis of Momilactones

Although several enzymes involved in momilactone biosynthesis have been identified,
the order of known steps and the reconstitution of multiple characterized enzymes in vivo
remains elusive [127,128]. To date, the diterpene synthases OsCPS4 and OsKS4 responsible
for the tricyclic momilactone scaffold formation (Figure 6) have been characterized [129–132].
These enzymes are encoded by genes clustered with genes encoding cytochrome P450 enzymes
(CYPs), CYP99A2 and CYP99A3, and a short-chain dehydrogenase reductase (SDR), OsMAS,
in the biosynthetic gene cluster on rice chromosome 4 (c4BGC) [125] (Figure 7). This BGC
has also been found in the genomes of other Oryza species with AA-genome, namely
O. rufipogon and O. punctata, as well as in the distantly related momilactone-producing
species Echinochloa crus-galli and Calohypnum plumiforme [45,113,133] (Table 1). CYP99A3
and/or CYP99A3 together with two non-clustered CYPs, CYP701A8, and CYP76M8 (coded
by genes located on chromosome 6 and 2, respectively), oxidize the diterpene scaffold
syn-pimaradiene at different positions [134,135] (Figure 8). The order in which these
enzymes act to form a skeleton oxidized at different positions has not yet been fully
understood [124,134,135]. In vitro tests showed that SDR encoded by OsMAS genes is capa-
ble of oxidizing 3β-hydroxy-9β-pimara-7,15-dien-19,6β-olide to form momilactone A [120].
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Figure 8. Proposed pathway for the biosynthesis of momilactones A and B. Chemical functions in
blue indicate characterized reactions, while predicted functionalities are indicated in red. Dashed
arrows indicate missing steps. Enzymes encoded by genes on chromosome 2, 4, and 6 (c2, c4,
c6) are highlighted in green, yellow, and blue, respectively. GGPP: geranyl geranyl diphosphate;
OsMAS: rice momilactone A synthase; OsKS4 (OsKSL4): syn-pimara-7,15-diene synthase (EC 4.2.3.35);
OsCPS4 (OsCyc1): syn-copalyl diphosphate synthase (EC 5.5.1.14); CYP76M8: oryzalexin D syn-
thase (EC 1.14.14.112; 1.14.14.123); CYP99A3: 9-beta-pimara-7,15-diene oxidase (EC 1.14.14.111);
CYP99A2: cytochrome P450 99A2 (EC 1.14.-.-); CYP701A8: ent-sandaracopimaradiene 3-hydroxylase
(EC 1.14.14.70) (adapted from [128]).

More details on the biosynthesis and biogenesis of momilactones and related rice
diterpenoids can be found in two excellent reviews recently published by Zhao et al. [20]
and Serra Serra et al. [12].

3.1.2. Biosynthesis of Phytocassanes

As mentioned above, at least two biosynthetic gene clusters (BGCs) are involved in rice
diterpenoid phytoalexin biosynthesis, c2BGC and c4BGC, which are nominally associated
with phytocassane and momilactone production, respectively [119,120] (Figure 7). It has
also been reported that the production of momilactone A requires the intervention of
enzymes encoded by genes not belonging to c4BGC, namely CYP701A8, responsible for
hydroxylation at C3β [135] and CYP76M8 for hydroxylation at C6β [124] (Figure 8). It
should be noted that CYP76M8 belongs to c2BGC, which also contains the gene OsKLS7
involved in the first step of phytocassane biosynthesis [136], as well as the upstream acting
genes OsCPS1 and OsCPS2 [131,137] (Figures 6–8).

Six cytochrome P450 enzymes (CYP71Z6 and Z7, CYP76M5 to M8) encoded by genes
on rice chromosome 2 contribute to phytocassane biosynthesis [138]. In vitro enzyme
assay systems have been extensively used to explore the biological role of these P450s
in phytocassane biosynthesis. However, little information is available regarding the in
planta contribution of relevant P450 genes. Recently, Ye et al. [138] investigated their in-
volvement in phytocassane production in planta by exploiting loss-of-function rice plants
defective in each P450 gene. By characterizing CYP76M7/M8- and CYP71Z7-suppressed
plants, they proposed a phytocassane biosynthetic pathway and identified novel candi-
date intermediates (Figure 9). They speculated that, in planta, CYP76M7/M8 are respon-
sible for C11α-hydroxylation of 3-hydroxy-ent-cassadiene and CYP71Z7 is involved in
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C2-hydroxylation of phytocassanes. Further studies are needed to confirm this hypothe-
sis and fill gaps in the proposed pathway through the discovery of currently unknown
enzymes that are likely encoded by genes outside of the cluster.
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Figure 9. Proposed pathway for the biosynthesis of phytocassanes. The green highlight indicates en-
zymes encoded by genes belong to the biosynthetic gene cluster on chromosome 2 (c2BGC). Enzymes
encoded by genes located on chromosomes 6 and in both 2 and 6 (c6 and c2–c6) are highlighted
in blue and grey, respectively. GGPP: geranyl geranyl diphosphate; OsKS7 (OsKSL7; OsDTC1):
ent-cassa-12,15-diene synthase (EC 4.2.3.28); OsCPS2 (OsCyc2): ent-copalyl diphosphate synthase
(EC 5.5.1.13); CYP76M7: ent-cassadiene C11-alpha-hydroxylase 1 (EC 1.14.14.112); CYP76M8: oryza-
lexin D synthase (EC 1.14.14.112; 1.14.14.123); CYP701A8: ent-sandaracopimaradiene 3-hydroxylase
(EC 1.14.14.70); C71Z7: ent-cassadiene hydroxylase (EC 1.14.14.69) (adapted from [138]).

Interestingly, phytocassane BGC has also been found in non-Oryza species, such as Chi-
nese rice (Zizania latifolia), with complementary subclusters separated on chromosomes 8
and 10 [139].

3.1.3. Biosynthesis of Oryzalexins

Despite their names, oryzalexins A–F are distinguished from oryzalexin S both structurally
and biosynthetically (Figures 3 and 6). Oryzalexins A–F are ent-sandaracopimaradiene-
type compounds derived from ent-sandaracopimara-8(14),15-diene, while oryzalexin S is a
stemarane-type compound derived from syn-stemar-13-ene.

As shown in Figure 10, hydroxylation of ent-sandaracopimara-8(14),15-diene catalyzed
by CYP701A8 results in the formation of 3α-hydroxy-ent-sandaracopimaradiene, the puta-
tive precursor of oryzalexins A–E [124]. This precursor is then converted to oryzalexins D
and E by the P450 enzymes CYP76M8 and CYP76M6, respectively [123]. Several short-chain
oxidoreductases oxidize oryzalexin D at different positions to form oryzalexins A–C [135].
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Figure 10. Proposed pathway for the biosynthesis of oryzalexins A–E. Enzymes encoded by genes
located on chromosomes 2, 4, 6, and 12 (c2, c4, c6, c12) are highlighted in green, yellow, blue, and pink,
respectively. A, B, C: oryzalexin A, B, and C, respectively. CYP701A8: ent-sandaracopimaradiene
3-hydroxylase (EC 1.14.14.70); CYP76M6: oryzalexin E synthase (EC 1.14.14.122); CYP76M8: oryza-
lexin D synthase (EC 1.14.14.112; 1.14.14.123); GGPP: geranyl geranyl diphosphate; OsCPS4: syn-
copalyl diphosphate synthase (EC 5.5.1.14); OsKS10: ent-sandaracopimara-8(14),15-diene synthase
(EC 4.2.3.29) [123,138].

In contrast to their ent-sandaracopimaradiene-derived counterparts, little information
is available on the biosynthesis of oryzalexin S. The biosynthetic pathway of this compound
branches when GGPP is converted into syn-CDP by OsCPS4 (Figure 6). At that point,
OsKS8 converts it into syn-stemar-13-ene [24,26,108]. To date, the last steps concerning
the addition of the hydroxyl groups to C2β and to the methyl substituent in C4β, which
characterize oryzalexin S, have not been resolved.

3.2. Biosynthesis of Rice Flavonoid Phytoalexins

Sakuranetin is a flavonoid belonging to the group of methoxylated flavanones. Like
most plant-based flavonoids, sakuranetin derives from the aromatic amino acid pheny-
lalanine (Phe). In plants, the precursor of aromatic amino acids is chorismate, the end
product of the shikimate pathway (Figure 11). Phe is then converted to p-coumaroyl-CoA
via the phenylpropanoid pathway. Chalcone synthase (CHS) catalyzes the condensa-
tion of three malonyl-CoA molecules with one p-coumaroyl-CoA molecule to form the
open-chain flavonoid naringenin chalcone, which is converted to naringenin by chal-
cone isomerase (CHI). Naringenin is then transformed into sakuranetin by S-adenosyl-l-
methionine-dependent naringenin 7-O-methyltransferase (OsNOMT). OsNOMT can either
be activated by UV or fungal infection [70,72]. The 7-O-methylation appears to be crucial
for the antifungal activity of sakuranetin, as naringenin itself does not exhibit significant
toxic effects against rice fungal pathogens such as M. grisea [70]. Since naringenin is the
common biosynthetic intermediate for several flavonoids, OsNOMT is a key player at the
branch point between flavonoid and sakuranetin biosynthesis (Figure 11). OsNOMT was
purified from UV-treated leaves of the oscomt1 rice mutant, and the corresponding gene
was identified by Shimizu et al. [140]. Several putative flavonoid O-methyltransferase
genes (OMTs) have been identified in the rice genome, and thus others may be involved in
sakuranetin biosynthesis.
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12). Tyramine, tryptamine, and its derivative serotonin are the aryl monoamines found in 
rice phenylamide phytoalexins [74,97,98,100]. Tyramine and tryptamine result from the 
decarboxylation of the aromatic amino acids tryptophan (Try) and tyrosine (Tyr) cata-
lyzed by Try decarboxylase (TDC) and Tyr decarboxylase (TYDC), respectively. Tyr is 
synthesized downstream of the shikimate pathway, which also provides precursors to the 
other aromatic amino acids Phe and Try [142]. Serotonin (5-hydroxytryptamine) is syn-
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duction by abiotic and biotic stress can be found in Cho and Lee [21]. 

Figure 11. Biosynthesis of sakuranetin. ACC: acetyl-CoA carboxylase (EC 6.4.1.2); CHI: chal-
cone isomerase (EC 5.5.1.6); CHS: chalcone synthase (EC 2.3.1.74); OsNOMT: naringenin 7-O-
methyltransferase (EC 2.1.1.232); SAH: adenosyl-L-homocysteine; SAM: S-adenosyl-L-methionine.
Multiple arrows indicate multiple biosynthetic steps, while direct synthesis is indicated by
single arrows.

Phenylamides are formed by the conjugation of phenolic acid-CoAs (e.g., p-coumaroyl-
CoA, trans-cinnamoyl-CoA, and feruloyl-CoA) with arylamines [94,100,141] (Figure 12).
Tyramine, tryptamine, and its derivative serotonin are the aryl monoamines found in
rice phenylamide phytoalexins [74,97,98,100]. Tyramine and tryptamine result from the
decarboxylation of the aromatic amino acids tryptophan (Try) and tyrosine (Tyr) catalyzed
by Try decarboxylase (TDC) and Tyr decarboxylase (TYDC), respectively. Tyr is synthesized
downstream of the shikimate pathway, which also provides precursors to the other aromatic
amino acids Phe and Try [142]. Serotonin (5-hydroxytryptamine) is synthesized from
tryptamine by tryptamine 5-hydroxylase (T5H). Additional details regarding the pathways
involved in the biosynthesis of rice phenolic phytoalexins and their induction by abiotic
and biotic stress can be found in Cho and Lee [21].
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4. Chemical Synthesis of Rice Phytoalexins

Several research groups have tried their hand at the chemical synthesis of rice phy-
toalexins. However, only limited data is currently available on this topic (Table 3), and
the main source of these compounds is still natural. From a general point of view, organic
synthesis is a very valuable tool in the study of molecules with a complex skeleton. Indeed,
it is possible to use chemical synthesis not only to establish the molecular structure, which
often cannot be elucidated with X-ray analysis due to the small amount of the naturally
occurring compound, but also to produce bioactive compounds in quantity adequate to
carry out a structure–activity relationship study. Furthermore, organic synthesis allows for
the development of efficient synthetic strategies, useful for the preparation of derivatives
that could eventually result in more potent bioactivity. Despite all these potentials, the
de novo synthesis of rice phytoalexins (with the exception of sakuranetins, the smaller and
least complex ones) cannot be considered, up to now, a method to supply these molecules
to the agrochemical industry, due to the large number of steps required by the developed
synthetic plans that result in an overall yield.

Table 3. Rice phytoalexin chemical synthesis.

Entry Compound Skeletal Type References

1 (±)-Momilactone A (9β-H)-Pimarane [143]

2 (−)-Phytocassane D ent-Cassane [144]

3 (+)-Oryzalexin A, B and C ent-Isopimarane [145]

4 (−)-Sakuranetin Flavanone [146,147] *,

5 (±)-Sakuranetin Flavanone [148], [149,150] *,
[151], [152–155] *

* Semisynthesis of sakuranetin from naringenin.

4.1. Momilactones Chemical Synthesis

The only momilactone that has been synthesized is (±)-momilactone A (Table 3,
entry 1) [143]. The preparation of this compound was preceded by several synthetic studies
on the pimarane skeleton that were reported, along with its synthesis, in a recent review [156].

4.2. Phytocassane Chemical Synthesis

(−)-Phytocassane D was synthesized from the (R)-Wieland–Miescher ketone 1 (Scheme 1)
and, after a comparison with the spectral data of the authentic natural product, its absolute
configuration was confirmed as ent-cassane (Table 3, entry 2) [144].
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(f) (i) TsNHNH2, MgSO4, PPTS, THF; (ii) excess LDA, THF then quenched with aq. NH4Cl; (iii) 
TBAF, THF, room temp. (68%, 3 steps). (g) (i) MCPBA, NaHCO3, CHCl3; (ii) Dess–Martin perio-
dinane, CH2Cl2; (iii) pyrrolidine, Et2O (67%, 3 steps). (h) (i) Ph3P=CH2, THF; (ii) Ac2O, DMAP, 
C5H5N; (iii) TBAF, THF, 50–60 °C; (iv) PCC, 4-Å MS, CH2Cl2 (59%, 4 steps). (i) (i) LiHMDS, TMSCl, 
THF; (ii) MCPBA, NaHCO3, hexane; (iii) (CO2H)2, MeOH; (iv) Dess–Martin periodinane, CH2Cl2; (v) 
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Compound 1 was converted into 2 through a six steps sequence where two methyl 
groups on C-(4) were inserted. A Robinson annulation of 2 gave the unsaturated tricyclic 
ketone 3 that was converted into 4 by passing through the saturated tricyclic ketone and 
inserting the double bond by employing a sulfinate ester. Compound 4 was reacted with 
Me2CuLi to give, after a medium-pressure liquid chromatography, compound 5 in a dis-
crete yield. The latter was converted into 6 using a four-step sequence that consisted of a 
formylation reaction, a subsequent sodium borohydride reduction, protection of the pri-
mary hydroxy group as a tert-butyldiphenylsilyl ether, and finally, a reoxidation of the 
secondary hydroxy group at C-(12) with PCC. Alkene 7 was obtained with a Shapiro re-
action on ketone 6 followed by selective silyl-group deprotection. The double bond in 
compound 7 was transformed into an epoxy group, while the hydroxyl function was oxi-
dized, yielding an aldehyde that, by treatment with pyrrolidine, yielded the α,β-unsatu-
rated γ-hydroxy aldehyde 8. The latter was converted into ketone 9 after a four-reaction 
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Scheme 1. (−)-Phytocassane D chemical synthesis [144]. Reagents and conditions: (a) (i) 2,2-dimethyl-
1,3-propandiol, BF3.Et2O; (ii) PhSH, aq. CH2O, Et3N, EtOH; (iii) Li, liq. NH3, H2O, THF, then MeI,
THF; (iv) LiAlH4, THF; (v) aq. HCl, THF; (vi) TBSCl, imidazole, DMF (40%, 6 steps). (b) (i) NaH,
HCO2Et, THF, PhMe; (ii) MeCOCH=CH2, Et3N; (iii) NaOMe, MeOH (78%, 3 steps). (c) (i) Li, liq.
NH3, EtOH, THF; (ii) PCC, 3-Å MS, CH2Cl2; (iii) KH, PhSO2Me, THF; (iv) CaCO3, PhMe, heat
(77%, 4 steps). (d) (i) Me2CuLi, Et2O; (ii) diastereoisomer separation (47%). (e) (i) NaH, HCO2Et,
MeOH; (ii) NaBH4, THF, MeOH; (iii) TBDPSCl, imidazole, DMF; (iv) PCC, 4-Å MS, CH2Cl2 (57%,
4 steps). (f) (i) TsNHNH2, MgSO4, PPTS, THF; (ii) excess LDA, THF then quenched with aq. NH4Cl;
(iii) TBAF, THF, room temp. (68%, 3 steps). (g) (i) MCPBA, NaHCO3, CHCl3; (ii) Dess–Martin
periodinane, CH2Cl2; (iii) pyrrolidine, Et2O (67%, 3 steps). (h) (i) Ph3P=CH2, THF; (ii) Ac2O, DMAP,
C5H5N; (iii) TBAF, THF, 50–60 ◦C; (iv) PCC, 4-Å MS, CH2Cl2 (59%, 4 steps). (i) (i) LiHMDS, TMSCl,
THF; (ii) MCPBA, NaHCO3, hexane; (iii) (CO2H)2, MeOH; (iv) Dess–Martin periodinane, CH2Cl2;
(v) TBSCl, imidazole, DMF (25%, 5 steps). (l) LiAlH4, THF, then aq. HCl (64%). (k) TPAP, 4-ÅMS,
MeCN, CH2Cl2 (40%).

Compound 1 was converted into 2 through a six steps sequence where two methyl
groups on C-(4) were inserted. A Robinson annulation of 2 gave the unsaturated tricyclic
ketone 3 that was converted into 4 by passing through the saturated tricyclic ketone and
inserting the double bond by employing a sulfinate ester. Compound 4 was reacted with
Me2CuLi to give, after a medium-pressure liquid chromatography, compound 5 in a discrete
yield. The latter was converted into 6 using a four-step sequence that consisted of a formy-
lation reaction, a subsequent sodium borohydride reduction, protection of the primary
hydroxy group as a tert-butyldiphenylsilyl ether, and finally, a reoxidation of the secondary
hydroxy group at C-(12) with PCC. Alkene 7 was obtained with a Shapiro reaction on ke-
tone 6 followed by selective silyl-group deprotection. The double bond in compound 7 was
transformed into an epoxy group, while the hydroxyl function was oxidized, yielding an
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aldehyde that, by treatment with pyrrolidine, yielded the α,β-unsaturated γ-hydroxy alde-
hyde 8. The latter was converted into ketone 9 after a four-reaction sequence that included
an olefination, an acetylation, the removal of the tert-butyldimethylsilyl protecting group,
and finally, a pyridinium chlorochromate oxidation. The oxygenated function on C-(2) was
inserted by transforming the ketone 9 into the corresponding silyl enol ether, epoxidizing
the enol double bond, and treating the epoxide with methanolic oxalic acid. Oxidation of
the keto-alcohol with Dess–Martin periodinane gave the corresponding α-diketone, which
furnished the enol ether 10 under silylation conditions. Finally, a reduction and a cleavage
of the tert-butyldimethylsilyl protecting group gave 11, and selective oxidation of the allylic
hydroxy group at C-11 afforded (−)-phytocassane D.

4.3. Oryzalexin Chemical Synthesis

(+)-Oryzalexins A–C were synthesized by Mori and Waku in 1985 [145] (Table 3,
entry 3). Their synthesis was planned in a way to have a key intermediate (compound 12
in Scheme 2) that, after allylic oxidation, would provide the target molecule. Compound
12 would be synthesized from tricyclic ketone 13, whose preparation could be carried out
from the commercially available naphthalene derivative 14.
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Scheme 2. Retrosynthetic scheme for (+)-oryzalexins A–B.

Compound 14 was converted, via ketone 15, into racemic tricyclic enone 16 (Scheme 3).
The latter compound was demethylated to give (±)-17, which, in a six-step sequence, was
transformed into (±)-13 with the oxygenated group on C-(3) oriented correctly. The C-ring
of the ketone (±)-13 has been elaborated to have the α,β-unsaturated aldehyde on the C-(13)
present in compound (±)-18. This group is indeed necessary for the insertion of the methyl
and the vinyl group on the isopimarane skeleton of the oryzalexins. The key compound 12
was initially synthetized in a racemic fashion, and for its optical resolution, the compound
was reacted with different chiral acyl-chloride to give a diastereomeric mixture of esters.
Acylation of 12 with (−)-camphanyl chloride yielded better results. Finally, (+)-12 was
converted to oryzalexins A–C by means of allylic oxidation with SeO2.
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Scheme 3. (+)-Oryzalexins A–C chemical synthesis. Reagents and conditions: (a) (i) (CH3O)2SO2,
NaOH, ∆; (ii) Na, boiling alcohol (73%, 2 steps). (b) (i) pyrrolidine, C6H6, ∆; (ii) CH3I, 1,4-dioxane,
∆; (iii) (C2H5)2NCH2CH2COCH3, CH3I, C6H6, 0 ◦C (59% 3 steps). (c) KOC(CH3)3, CH3I (75%).
(d) (i) HOCOCH3, Pd on C, H2; (ii) NaI, CH3CN, (CH3)3SiCl, room temp.; (iii) THF, Li, liquid NH3,
−60 ◦C; (iv) TsOH, CH3OCOCH3, ∆; (v) Raney Ni, H2; (vi) Jones CrO3 (34% 6 steps). (e) (i) NaOCH3,
HCOOCH2CH3, C6H6; (ii) TsOH, C6H6, BuSH, ∆; (iii) t-BuMe2SiCl, DMF, imidazole, room temp.;
NaBH4, CH3CH2OH; (iv) CH3CH2OH, CdCO3, HgCl2, ∆ (58%, 4 steps). (f) (i) C6H6, KOC(CH3)3,
CH3I, ∆; (ii) Ph3P=CH2, THF; (iii) HF, CH3CN (40%, 3 steps). (g) (i) (−)-camphanoyl chloride, 0 ◦C,
diastereoisomer separation by column chromatography; (ii) conc HCl, CH3OH (40%, 2 steps).
(h) (i) acetone, Jones CrO3; (ii) C6H6, SeO2, HOCOCH3, H2O (66% 2 steps). (i) (i) CH3COOCOCH3,
pyridine; (ii) C6H6, SeO2, HOCOCH3, H2O; (iii) (CH3)2SO, CH3COOCOCH3, (iv) K2CO3, CH3OH
(23%, 4 steps). (j) acetone, Jones CrO3 (100%).

4.4. Sakuranetin Chemical Synthesis

The first total synthesis of (±)-sakuranetin was performed in 1987 by Mizuno and
co-workers [148], and it was made during a study on the structure of a flavanone extracted
from the seeds of Coptis japonica var. dissecta (Table 3, entry 5, Scheme 4).
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The synthesis is relatively simple. To give chalcone 19 that, upon acidic treatment,
gave the racemic flavanone 20, 2-hydroxy-4,6-dimethoxyacetophenone was condensed
with p-benzyloxybenzaldehyde. The latter, after a debenzylation reaction and deprotection
of only one of the methoxy groups, gave racemic sakuranetin.

The second total synthesis, always racemic, was undertaken during a study on di-
insininolone synthesis (Table 3, entry 5) [151].

In this synthesis (Scheme 5), the flavanone skeleton was formed through an ortho-
quinone methide cycloaddition–oxidation sequence. The ortho-quinone methide was
formed in situ, and it reacted in a cycloaddition reaction with p-tertbutoxystirene to produce
flavan (±)-21 that is converted into sakuranetin via (±)-22.
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In addition to these two total syntheses, there are a series of articles in the literature
(Table 2, entries 4 and 5) relating to the semisynthesis of sakuranetin by methylation of the
natural product naringenin [146,147,149,150,152–155].

5. Biological Activities of Rice Phytoalexins
5.1. Bioactivities of Diterpenoid Phytoalexins

Rice phytoalexins have been investigated mainly for their antimicrobial activity, which
is linked to their role in plant–pathogen interactions, and for their inhibitory activity on
seed germination and plant development, which is instead correlated with their role in
plant–plant allelopathic interactions. In recent years, a growing number of studies have
revealed a wide variety of biological activities (Table 4) and possible applications of these
biomolecules, especially in the pharmaceutical field.

Table 4. Biological activities of rice diterpenoid phytoalexins.

Metabolite/s Activity Experimental Model References

Momilactones
Antimicrobial and
allelopathic

Structural characterization of momilactones A and B isolated from
rice husk (cv. Koshihikari), which inhibited rice root growth at less
than 100 ppm.

[27]

Evaluation of inhibitory activity of momilactones A and B isolated
from rice (cvs. Koshihikari and Surjamukhi) seed hulls on rice and
lettuce seed germination.

[55]

Structural characterization of momilactone C isolated from rice husk
(cv. Koshihikari) and evaluation of inhibitory activity toward
germination of lettuce seeds.

[42]
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Table 4. Cont.

Metabolite/s Activity Experimental Model References

Increased responsiveness of rice to the infection by M. grisea after
treatment of leaves with the resistance inducer WL28325
(2,2-dichloro-3,3-dimethylcyclopropane carboxylic acid) in terms of
momilactones A and B synthesis.

[56]

Evaluation of inhibitory activities of momilactones A and B isolated
from rice (cv. Koshihikari) on lettuce seed germination and rice root
growth. Bioassays with several semisynthetic momilactone
derivatives to establish the functional groups responsible
for the bioactivity.

[157]

Structural characterization of momilactones A and B from coleoptiles
of etiolated plantlets of rice (cv. Sasashigure) exposed to UV radiation.
Evaluation of anti-fungal activity on Cladosporium cucumerinum
through TLC bioassay.

[28]

Evaluation of inhibitory effect of rice root exudates (cvs. Hinohikari,
Nipponbare, Norin 8, Kamenoo, Kinuhikari, Koshihikari, Sasanishiki,
and Yukihikari) on co-cultivated seedlings of alfalfa (Medicago sativa L.),
cress (Lepidium sativum L.) or lettuce (Lactuca sativa L.).

[158]

Evaluation of inhibitory activity of momilactone B in rice
(cv. Koshihikari) root exudates on growth of cress and lettuce. [58,159]

Evaluation of phytotoxicity of momilactones A and B and other
putative allelochemicals from rice (cv. Hochokjindo) hulls against
duckweed (Lemna paucicostata). Evaluation of inhibitory effects of
identified compounds on germination and growth of the three weed
species Amaranthus retroflexus, Cyperus difformis, and
Leptochloa chinensis.

[160]

Release of momilactone B and other allelochemicals into the soil
promoted by the presence of barnyard grass by two allelopathic rice
varieties PI312777 [from USDA-ARS rice germplasm collection [161]
and Huagan-1, and the non-allelopathic rice variety Huajingxian.

[162]

Evaluation of allelopathic potential of rice hull extracts from
ninety-nine rice varieties containing momilactones A and B on
barnyard grass germination and growth.

[163]

Evaluation of inhibitory activity of acetone extracts from the moss
Calohypnum plumiforme (syn. Hypnum plumaeforme) on the growth of
angiosperms (Arabidopsis thaliana, Nicotiana tabacum), mosses
(Physcomitrella patens and H. plumaeforme), and a liverwort
(Jungermannia subulata cultured cells).

[48]

Evaluation of herbicidal activity (inhibition of germination and
elongation of shoot and root) of momilactones A and B from rice
hulls on barnyard grass and monochoria (Monochoria vaginalis).
Evaluation of antifungal activity by agar dilution method against
Botrytis cinerea, Fusarium solani, F. oxysporum, and
Colletrotrichum gloeosporioides.
Evaluation of antibacterial activity by disc diffusion method against
Pseudomonus ovalis, Bacillus cereus, B. pumilus, and Escherichia coli.

[19]

Evaluation of growth inhibitory activity (lengths of hypocotyls) of
momilactones A and B released in the medium by in vitro-grown rice
(cv. Nipponbare) seedlings on lettuce and Chinese cabbage (Brassica rapa).

[50]

Evaluation of inhibitory activity of momilactone A from root
exudates of rice (cv. Koshihikari) on growth of cress (length of root
and hypocotyl).

[60,61]
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Table 4. Cont.

Metabolite/s Activity Experimental Model References

Elicitation of momilactone accumulation and secretion in C.
plumiforme through UV, jasmonic acid, metals (CuCl2 and FeCl2), and
a protein phosphatase inhibitor (cantharidin).

[63,64]

Evaluation of inhibitory activity of H2O:MeOH extracts of soil under
colonies of C. plumiforme on growth of cress (Lepidium sativum),
lettuce (Lactuca sativa), lucerne (Medicago sativa), ryegrass
(Lolium multiflorum), timothy (Phleum pratense), Digitaria sanguinalis,
and Echinochloa crus-galli.

[65]

Evaluation of inhibitory activity of momilactones A and B from root
exudates of rice (cv. Koshihikari) on growth of barnyard grass (length
of shoot and hypocotyl). Evaluation of allelopathic activity of six rice
cvs. (Hinohikari, Kamenoo, Kinuhikari, Koshihikari, Nipponbare,
Norin 8, Sasanishiki, and Yukihikari) by donor–receiver bioassay.

[164]

Evaluation of momilactone B production and release in rice (O. sativa)
and barnyard grass (E. crus-galli) co-cultures. [165,166]

Screening of 41 different rice cvs. for their ability to reduce
germination, root growth, and root dry weight of Alisma
plantago-aquatica. Quantification of momilactone B in the studied
rice cvs.

[167]

Evaluation of allelopathic activities of momilactones A and B from
husks of rice (cv. Koshihikari) against different plant species,
including nine weed species [Cress, lettuce, alfalfa (Medicago sativa),
ryegrass (Lolium multiflorum), timothy, barnyard grass, Echinochloa
colonum, crabgrass (Digitaria sanguinalis), and Arabidopsis thaliana],
and four rice cvs. (Koshihikari, Nipponbare, Norin 8,
and Sasanishiki).

[168]

Evaluation of allelopathic activity of barnyard grass in response to
momilactone B from rice (cv. Koshihikari) seedlings or root exudates. [169]

Evaluation of inhibitory activity of momilactones A, B, E from rice (cv.
Koshihikari) husk on germination rate and root and shoot elongation
of lettuce, barnyard grass, and tall goldenrod (Solidago altissima).

[170]

Anti-cancer

Evaluation of cytotoxic activity of momilactones A and B from rice
(cv. Hochokjindo) hulls against P388 murine leukemia cells. [171]

Evaluation of cytotoxic and antitumor activity of methanolic extract
and momilactone B from rice hulls by MTT-dye reduction assay
against human colon cancer cells and colonic aberrant crypt foci
(ACF) assay in 1,2-dimethylhydrazine (DMH)-injected F344 male
rats, respectively.

[172]

Investigation of the molecular mechanism responsible for the
inhibitory effects of momilactone B on the growth of cultured human
breast cancer T47D cells.

[173]

Evaluation of antitumor efficacy by inducing apoptosis in several
mammalian blood cancer cells, including human leukemic T cells. [174]

Investigation of the molecular mechanism responsible for the
inhibitory effects of momilactone B on cultured human leukemia
U937 cell growth.

[175]

Investigation of the molecular mechanism responsible for the
cytotoxic activity of momilactones A and B against multiple myeloma
U266 and acute promyelocytic leukemia HL-60 cell lines.

[176]
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Table 4. Cont.

Metabolite/s Activity Experimental Model References

Increased tolerance
to salinity and
drought stresses

Correlation between the content of momilactones A and B and
tolerance to salinity and drought in 30 rice cultivars. [177]

Induction of momilactones A and B by application of exogenous
vanillic acid and p-hydroxybenzoic acid to two rice cvs., one
drought-tolerant (Nep nanh ngua Hai phong), and one
drought-susceptible rice (Re nuoc).

[178]

Enhancement of momilactone B and phenolic acids production by
exogenous application of MgSO4 to salinity tolerant (BC15) and
salinity susceptible (DT84DB) rice varieties [179].

[180]

Increased tolerance
to UV and chilling
stresses

Induction of expression of genes related to the biosynthesis of
momilactones and phenolics and enhancement of their accumulation
by UV.

[181]

Anti-diabetic and
anti-obesity

Evaluation of in vitro inhibitory activity of momilactones A and B
from rice (cv. Koshihikari) hulls on α-amylase and α-glucosidase (in
comparison with the known commercial diabetes inhibitors,
acarbose, and quercetin).

[182]

Evaluation of in vitro inhibitory activity of momilactones A and B
from rice bran on pancreatic α-amylase and α-glucosidase (in
comparison with the known diabetes inhibitor γ-oryzanol).

[183]

Antioxidant

Evaluation of antioxidant activity of momilactones A and B from rice
hulls through DPPH radical scavenging capacity assay. [19]

Evaluation of antioxidant activity of momilactones A and B from rice
grains of different cultivars (Koshihikari, Shinnosuke, Seiten no
hekireki, Ginga no shizuku, Ho no mai) through ABTS radical cation
decolorization assay.

[184]

Anti-inflammatory

Structural characterization of momilactones D and E from rice
(cv. Chucheongbyeo) root and evaluation of their ability to inhibit
the production of NO and iNOS mRNA and protein expression in
LPS-stimulated RAW264.7 macrophages.

[43]

Anti-aging

Evaluation of the ability of momilactones A and B from rice grains of
different cultivars (Koshihikari, Shinnosuke, Seiten no hekireki,
Ginga no shizuku, Ho no mai) to relieve wrinkles, skin, and freckles
by in vitro enzymatic assays on pancreatic elastase and tyrosinase.

[184]

Oryzalexins A-F

Antimicrobic

Evaluation of inhibitory activity of oryzalexins A, B, and C against
M. grisea. [33]

Evaluation of inhibitory activity of oryzalexin D against M. grisea. [185]

Evaluation of inhibitory activity of oryzalexin A, B, and C synthetic
enantiomers against M. grisea. [186]

Evaluation of inhibitory activity of oryzalexins A-F against
Magnaporthe grisea. [20]

Evaluation of inhibitory activity of oryzalexin B and sakuranetin
induced in rice leaves by elicitation with fungal metabolites and
nanoparticles on spore production in M. grisea.

[187]

Anti-cancer
Evaluation of binding potential of a combination of oryzalexin B and
other compounds on six potential receptors in estrogen
receptor-positive breast cancer.

[188]

Regulation of
stomatal closure

Evaluation of stomatal closure and susceptibility to drought in cps2
and cps4 knockout lines. [189]
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Table 4. Cont.

Metabolite/s Activity Experimental Model References

Oryzalexin S

Allelopathic
Evaluation of allelopathic activity of oryzalexin S against L. sativa
cv. Black-seeded Simpson and E. crus-galli cv. Kudiraivali in O. sativa
Oskls4 knockouts.

[190]

Antimicrobic Evaluation of inhibitory activity of oryzalexins S against M. grisea. [20]

Regulation of
stomatal closure

Evaluation of stomatal closure and susceptibility to drought in cps2
and cps4 knockout lines. [189]

Phytocassanes Antimicrobial

Evaluation of inhibition of M. grisea spore germination by
phytocassanes A-D from rice leaves infected with M. grisea and from
rice stems infected with Rhizoctonia solani.

[29]

Evaluation of inhibition of M. grisea spore germination by
phytocassanes E from rice suspension-cultured cells treated with a
mycelial extract of the pathogenic potato fungus
Phytophthora infestans.

[30]

Evaluation of inhibition of M. grisea spore production by
phytocassanes A-F from rice leaves elicited by UV light. [31]

5.1.1. Momilactones

As previously mentioned, momilactones are secondary metabolites belonging to the
(9β-H)-pimarane diterpene family, found not only in cultivated and wild rice [27,28,44,127]
but also in other Poaceae such as Echinochloa crus-galli (barnyard grass) [9], as well as in
the mosses Calohypnum plumiforme [48,62], and Plagiomnium acutum [47]. Several biological
activities have been attributed to momilactones (Table 4), some of which are directly related
to their biological role in plant-pathogen and plant–plant interactions. Momilactones
also exhibit pharmacological activities, which make them potential candidates for the
development of novel drugs, cosmetics, and additives for health-promoting foods.

• Antimicrobial and allelopathic activity:

Magnaporthe grisea, the causal agent of rice blast disease, is a major devastating
pathogen resulting in a loss of 40% of global yield [191]. This ascomycete can infect
more than 130 Poaceae species, including barley, wheat, and millet [192,193]. The anti-blast
activity of momilactones A and B was first reported in 1977 by Cartwright et al. [56]. Follow-
ing this discovery, several other metabolites isolated from resistant rice strains were tested
against this fungal pathogen. Among them, momilactone B exhibited the highest power
against both spore germination and germ tube growth of M. grisea [28]. The superior anti-
fungal activity of this compound was then confirmed by tests carried out on different fungal
pathogens, including Botrytis cinerea, Fusarium solani, and Colletrotrichum gloeosporioides [19].
In addition, momilactone B exhibited significantly higher antibacterial activity than momilac-
tone A against different bacteria such as Pseudomonas ovalis, Bacillus cereus, and B. pumilus [19].

The allelopathic properties of momilactones A and B were soon recognized [27]. It has
been observed that, when co-cultivated with rice, the growth of other plant species like barn-
yard grass [164–166,169] and Alisma plantago-aquatica (the common water plantain) [167],
two of the most disruptive rice weeds, was inhibited. Similar results were obtained using
model plants such as Medicago sativa (alfalfa) and Lactuca sativa (lettuce) [55,157,158].

Momilactone B inhibited the growth of cress (Lepidium sativum L.) and lettuce (Lactuca sativa L.)
seedlings at concentrations above 3 and 30 µM, respectively [58]. Momilactones A and B exhib-
ited strong herbicidal activity against duckweed (Lemna paucicostata Hegelm 381) [160] and quan-
titatively inhibited the germination and growth of three weed species (Amaranthus retroflexus L.,
Cyperus difformis L., and Leptochloa chinensis L.) at concentrations ranging from 4 to 20 ppm [160].
Further studies confirmed that momilactones A and B accumulate in the roots of rice
seedlings and can be released into the environment as root exudates [60,159,194,195]. Ex-
pression analyses of diterpene cyclase genes involved in the biosynthesis of momilactones
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and phytocassanes suggest that rice roots are not only responsible for the accumulation
and exudation of these metabolites but also for their production [50]. The role of momilac-
tones as allelochemicals was confirmed via reverse genetics, using knock-outs of relevant
diterpene synthase genes (OsCPS4 and OsKSL4, see Section 3.1 and Figures 6 and 7) [190].

An interesting study by Kato-Noguchi and Ino [169] showed that rice can perceive
some chemicals released into the environment by barnyard grass. Rice plants respond to
the presence of this weed by producing and secreting momilactone B into the surround-
ing environment. On the other hand, this metabolite induces allelochemical activity in
barnyard grass. This suggests that during their evolution, rice and barnyard grass may
have developed chemical crosstalk to promote the defense mechanisms against biotic stress
conditions by detecting certain key compounds [169].

The group of Kato-Noguchi and collaborators investigated the mode of action of
momilactones A and B using the model plant Arabidopsis thaliana [196–198]. They first
observed that momilactones were absorbed by A. thaliana in proportion to their exogenous
levels and that their inhibitory effects on root and hypocotyl growth were related to their
endogenous levels [197]. They then investigated protein expression in the same model plant
in response to momilactone treatment. In Arabidopsis plants treated with momilactones
A and B, it was observed a higher amount of cruciferina, cruciferin 2, and cruciferin 3
compared to the control. The breakdown of cruciferins and cruciferina is indeed essential
for seedling growth as it provides the initial source of nitrogen for seed germination. These
results suggest that momilactones may inhibit the germination of Arabidopsis seeds by
inhibiting the degradation of these proteins.

Further insights into the role of momilactones as allelochemicals can be found in
Table 4 in an excellent review recently published by Serra Serra et al. [12].

• Anti-cancer activity:

In 2005, Chung et al. [160] evaluated the cytotoxic activity of seven compounds
isolated from rice hulls. Three of these, namely orizaterpenol and momilactones A and B,
showed cytotoxic effects against murine P388 leukemia cells. Momilactone B was found
to be significantly more active than momilactone A and orizaterpenol (IC50 0.07, 0.85,
and 4.2, respectively) [171]. In 2007 Kim and colleagues [172] evaluated the cytotoxic
activity of momilactone B on human colon cancer HT-29 and SW620 cells, which exhibited
strong tolerance to anticancer agents in vitro and in vivo in previous studies. Through
MTT-dye reduction, lactate dehydrogenase (LDH), and colony-forming ability assays, they
highlighted the potential of momilactone B as a novel therapeutic agent to induce cell death
in human colon cancer cells [172].

In a study by Lee and colleagues [174], the anticancer activity of momilactone B was
demonstrated in blood cancer cells, including human HL-60 leukemia cells, Jurkat human
leukemic T cells, rat basophilic leukemia RBL-2H3 cells, and p815 mouse mastocytoma
P-815 cells, at concentrations below 6 mM. The cytotoxic effect of momilactone B on Jurkat
cells was associated with its apoptosis-inducing activity via caspases and mitochondria.

• Other activities:

Recently, Quan and collaborators [182,183] investigated the anti-diabetic and anti-
obesity activity of momilactones A and B. By in vitro assays, they showed potent inhibitory
activity of momilactones on key enzymes related to diabetes. The inhibition of pancreatic
α-amylase and α-glucosidase was significantly higher than the known diabetes inhibitor
γ-oryzanol. In addition, a strong anti-trypsin activity was recorded [183].

In 2016, Xuan and co-workers [177] investigated the contents of momilactones in
30 rice cultivars of different origins, including hybrid, foreign, local, sticky, upland sticky,
and upland rice of the two subspecies Japonica and Indica. They found that momilactones
in rice are more related to salinity and drought tolerance than weed resistance. The
correlation between momilactone A and B content and weed resistance was very low, with
r2 coefficients of 0.001 and 0.09, while the correlation with drought tolerance was much
higher, with r2 of 0.65 and 0.27, respectively [177].
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In 2019 Quan and colleagues [184] investigated the antioxidant and anti-skin-aging
activities of momilactones A and B in comparison with tricin, a well-known antioxidant
and antiaging rice flavonoid. ABTS assay and in vitro enzymatic assays on pancreatic
tyrosinase and elastase highlighted the synergistic activity of momilactones A and B, whose
mixture showed significantly greater activity than single momilactones and tricin [184].

5.1.2. Oryzalexins

As mentioned above, oryzalexins A–F are distinguished from oryzalexin S both by
both the biosynthetic pathway and their molecular structure (Figures 3 and 6).

Contrary to what has been reported for momilactones, the literature concerning oryza-
lexins’ biological activity is surprisingly limited. The most widely known bioactivity
associated with these diterpenoid compounds is the antimicrobic activity against M. grisea,
the rice blast fungus [20,187]. Although many reviews from the last decade report this ac-
tivity [1,199–202], they typically refer to literature from the late 1900s that merely scratched
the surface on this topic, focusing on M. grisea spore inhibition [33,185,186].

Interestingly, recent reports suggest that oryzalexins may have other potentially valu-
able capabilities. Cho and colleagues [43] recently reported a potential anti-inflammatory
activity of oryzalexin A, which has been shown to possess an inhibitory activity on NO
production by mouse macrophage RAW264.7 cells. Furthermore, Jain and Das [188] ob-
served that oryzalexin B, in combination with other natural compounds, seems to be able to
bind six potential receptors in estrogen receptor-positive breast cancer, suggesting another
potential use in medicine.

Oryzalexin S also shows a mild allelopathic effect in lettuce and barnyard grass [190]
and, along with other oryzalexins, seems to be able to affect stomatal closure, playing a
role in drought resistance [189].

Regardless of their role, oryzalexins have been shown to accumulate after exposure
to fungal proteins [203] and oligosaccharides [204–207], as well as fungal [208] and nema-
tode [209] infection. Abiotic factors also seem to induce the accumulation of oryzalexins,
such as heavy metal ions [54], salicylic acid [210], and UV radiation [53,211].

5.1.3. Phytocassanes

Despite their known role as phytoalexins, literature regarding phytocassanes and
their biological activity is surprisingly scarce. In the last decade of the 20th century,
known members of this class of diterpenes (i.e., phytocassanes A–E) were found to effec-
tively inhibit spore germination when rice plants were infected with the rice blast fungus
M. grisea, the rice sheath blight fungus Rhizoctonia solani, and the pathogenic potato fungus
Phytophthora infestans [29,30]. Over the last decade, Horie and co-workers [31] confirmed
these observations, including the recently discovered phytocassane F in their tests. During
this last work, an increase in the production of phytocassanes after exposure of rice leaves
to UV light was also observed [31], providing insights into the role of these compounds in
response to abiotic stress. Considering biotic factors, increases in phytocassane production
have been observed after exposure to fungal inoculation [212], Tricoderma viride-derived
xylanase [213,214], cerebrosides A, B, and C [215,216], cholic acid [217,218], and mannan
oligosaccharides [219], demonstrating their implication in response to a wide array of
biological challenges. More recently, phytocassanes have been confirmed to play an active
role in plant response to stress in general. Knock-out lines with deletion of biosynthetic
gene clusters from chromosome 2, associated with phytocassane biosynthesis, were shown
to be more susceptible to fungal blast and bacterial leaf blight than lines with deleted
biosynthetic gene clusters from chromosome 4, associated with momilactone biosynthesis.
These mutants also exhibited a drought and temperature-sensitive phenotype [126].

5.2. Bioactivities of Phenolic Phytoalexins

Sakuranetin is the main phenolic phytoalexin in rice. It showed remarkable antifungal
activity against phytopathogenic fungi, including M. grisea and R. solani [70,92,93]. In
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addition to the antifungal activity, this flavanone exhibits a wide range of other biologi-
cal activities that makes it attractive to the pharmaceutical industry. Some of the major
sakuranetin bioactivities are listed in Table 5.

Table 5. Biological activities of sakuranetin.

Biological Activity Experimental Model References

Antifungal
Magnaporthe grisea (syn. M. oryzae, Pyricularia grisea/oryzae)—Inhibition of spore
germination and germ tube growth. [70]

M. grisea—Fungal colony growth inhibition assay. [95]

Antimutagenic Salmonella typhimurium TA1535/pSK1002—Suppressive effect on umu gene expression
of SOS response against the mutagen AF-2. [220]

Anticancer

Multidrug-resistant Colo 320 human colon cancer cells—Growth inhibition by induction
of apoptosis. [221]

Colon carcinoma HCT-116 human cells—Cytotoxicity test through MTT assay. [18]

B16BL6 mouse melanoma cells—Dose-dependent stimulation of melanogenesis. [222]

Antiallergic
Blood flow decrease in the tail vein microcirculation of mice subjected to
HEL-sensitization as a monitor—Measurement of platelet aggregation of whole blood
induced by ADP through WBA analyzer.

[85]

Anti-inflammatory

In vivo induction of acute inflammation by topical application of TPA to mouse ears or
by subcutaneous injection of PLA2 into mouse paws.
In vitro tests based on the effect of sakuranetin and other dihydroflavonols on
arachidonic acid metabolism and release and/or activity of enzymes implicated in the
inflammatory response like elastase, MPO, and PKC.

[223]

Adipogenesis
induction—glucose
uptake stimulation

Differentiation of 3T3-L1 murine preadipocytes to adipocytes. Expression of genes
involved in development of adipocyte phenotypes. Evaluation of basal- and
insulin-stimulated glucose uptake.

[224]

Anti-inflammatory
and antioxidant

Murine model (male BALB/c mice) of chronic allergic pulmonary
inflammation—Histopathological analysis: evaluation of extracellular matrix
remodeling, inflammation, and oxidative stress in pulmonary vessels and lung
parenchyma; quantification of the vascular wall thickness and the VEGF levels.

[225]

Anti-Helicobacter pylori Study of the interaction between sakuranetin and other flavonoids with HpFabZ protein
from H. pylori by enzymatic and crystalline structure analyses. [226]

Antileishmanial and
antitrypanosomal In vitro antileishmanial and antitrypanosomal tests. [227]

ADP: Adenosine diphosphate; AF-2: Furylfuramide; EC50: Half maximal effective concentration;
HEL: Hen egg-white lysozyme; HpFabZ: β-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori;
MPO: Myeloperoxidase; MTT: Thiazolyl blue tetrazolium bromide; PKC: Protein kinase C; PLA2: Phospholi-
pase A2; TPA: 12-O-Tetradecanoylphorbol-13-acetate; VEGF: Vascular endothelial growth factor; WBA: Whole
blood aggregometer.

In a recent paper, Moulishankar and Lakshmanan [228] investigated the 3D and 2D
interactions between 26 naturally occurring flavonoids and 11 target enzymes through
molecular docking (a key tool used in structural molecular biology and computer-assisted
drug design). They found that sakuranetin binds to several targets related to specific bioac-
tivities, namely 4KIK (anticancer activity by IkB kinase inhibition), 4HZ5 (antibacterial
activity by DNA gyrase B and topoisomerase IV inhibition), and 3LN0 (anti-inflammatory
activity by cyclo-oxygenase inhibition). Further studies on the interaction between saku-
ranetin and specific targets involved in human diseases will contribute to the elucidation
of molecular mechanisms underlying the bioactivities of this compound, which are still
unknown or not fully understood.

According to Miyazawa and colleagues [220], sakuranetin suppresses umu gene expres-
sion during the SOS response against AF-2 in Salmonella typhimurium. The SOS response is
thought to be triggered by an alteration in DNA synthesis, either directly by DNA damage
that blocks the replication fork or indirectly by antibiotics (e.g., novobiocin) that inhibit
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DNA synthesis. The umu assay was developed to evaluate the genotoxic effects of envi-
ronmental mutagens and carcinogens by examining the expression of a gene from the SOS
family to detect DNA-damaging agents.

Sakuranetin has been shown to inhibit cancer growth both in vitro and in vivo. The
induction of cell death by apoptosis appears to be the main mechanism involved in this
bioactivity. As shown by Park et al. [18], sakuranetin inhibits the proliferation of human
colon cancer HCT-116 cells with an IC50 value of approximately 68.8 µg/mL. According to
Drira and Sakamoto [222], sakuranetin strongly promotes melanogenesis in murine B16BL6
melanoma cells by inhibiting ERK1/2 and PI3K/AKT signaling pathways, leading to
increased expression of the Tyr family genes TRP1 and TRP2. Additionally, they found that
sakuranetin reduced the proliferation rate of melanoma cells at concentrations ≥15 µmol/L
without directly affecting cell viability. Based on these findings, sakuranetin appears to be
a promising candidate for anticancer drug development.

In a study aimed at identifying antiallergic compounds in resin extracts of Xanthorrhoea hastilis
R. BR. (Xanthorrhoeaceae), Ogawa and co-workers [85] isolated three chalcones and six
flavanones, including sakuranetin, through bioassay-directed fractionation. In vivo assays
and measurements of platelet aggregation demonstrated that sakuranetin is one of the
active ingredients responsible for the antiallergic activity of X. hastilis extracts.

Between 1999 and 2005, several studies highlighted the presence of sesquiterpenes
and flavonoids with anti-inflammatory activity in Inula viscosa (L.) Aiton (Asteraceae), an
herbaceous plant known for its effectiveness against skin inflammations [223–230]. In 2007
Hernández and colleagues [223] tested the anti-inflammatory properties of three flavanones
isolated from I. viscosa, namely 7-O-methylaromadendrin, 3-acetyl-7-O-methylaromadendrin,
and sakuranetin. Sakuranetin was the most active in vitro, inhibiting the production of
LTB4, acting directly on the 5-LOX enzyme and regulating secretory processes such as
elastase release. Although the anti-inflammatory activity of flavonoids is usually related
to their antioxidant activity, the results of Hernández et al. [223] suggest a possible non-
redox inhibition of lipoxygenases, as well as a blockage of some proteins implicated in
exocytotic mechanisms.

Saito and colleagues [224] observed that, even in the absence of adipogenic hormonal
stimuli, sakuranetin strongly promoted both the differentiation of 3T3-L1 preadipocytes
into adipocytes and the expression of genes associated with the development of adipocyte
phenotypes. They also observed that glucose uptake in differentiated 3T3-L1 fat cells was
stimulated by sakuranetin, suggesting that it may contribute to the maintenance of glucose
homeostasis in animals.

Sakoda and co-workers [225] evaluated the impact of sakuranetin on vascular and lung
parenchyma alterations in a murine model of chronic allergic pulmonary inflammation.
In most of the parameters evaluated by histopathological analysis (Table 5), the effects of
sakuranetin were similar to those of the steroidal anti-inflammatory drug dexamethasone.
The authors speculated that the reduction in the number of eosinophils and elastic fibers
in pulmonary vessels and lung parenchyma, promoted by sakuranetin, results from the
reduction of oxidative stress and the levels of transcription factors NF-kB and VEGF
in the lung.

Zhang and collaborators [226] identified sakuranetin as a new inhibitor of the carrier
protein β-hydroxyacyl-acyl dehydratase from Helicobacter pylori (HpFabZ). Sakuranetin was
compared with two other flavonoids that had already been reported as HpFabZ inhibitors,
namely quercetin and apigenin [226]. Sakuranetin exhibited significantly greater inhibitory
activity than the other compounds (IC50 in µM: 2.0, 39.3, and 11.0, respectively). Complex
crystal structure analysis in combination with kinetic enzyme assays indicated that the
compounds of interest act as competitive inhibitors of HpFabZ by binding to the B tunnel
entrance of the substrate or by plugging into the C tunnel near the catalytic residues mainly
through hydrophobic interactions and hydrogen-bond pattern.

Grecco and colleagues [227] studied the activity of sakuranetin against promastigotes
and amastigotes of Leishmania spp. and trypomastigotes and amastigotes of Trypanosoma cruzi.
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Sakuranetin was found to be active against L. amazonensis, L. braziliensis, L. major, and
L. chagasi (with IC50 between 43 and 52 µg/mL) and against T. cruzi trypomastigotes
(IC50 = 20.17 µg/mL). Interestingly, sakuranetin was methylated to produce sakuranetin-
4′-methyl ether, which was found to be inactive against both Leishmania spp. and T. cruzi,
suggesting that the presence of a hydroxyl group at C-4′ together with a methoxyl group
at C-7 is required for the antiparasitic activity. Further drug design studies targeting
sakuranetin derivatives could contribute to the development of promising therapeutic
agents for leishmaniasis and Chagas’ disease.

In a study conducted by Park and co-workers [74], phenolic rice phytoalexins were
evaluated for their antimicrobial activity against phytopathogenic fungi and bacteria.
Inhibition of Bipolaris oryzae (rice brown spot fungus) growth was observed with N-trans-
cinnamoyltryptamine. In addition to B. oryzae, sakuranetin was active against Magnaporthe
grisea (rice blast fungus) and Rhizoctonia solani (rice sheath blight fungus). Phenylamides
(N-trans-cinnamoyltryptamine and N-p-coumaroylserotonin) and sakuranetin induced by
UV exposure showed antibacterial activity against rice pathogens for blight (Xanthomonas oryzae
pv. oryzae), grain rot (Burkholderia glumae), and leaf streak (X. oryzae pv. oryzicola) diseases.

6. Conclusions

With this review, we intend to provide an overview of the literature produced over
the last few decades on the distribution, biosynthesis, chemical synthesis, and biological
activity of rice phytoalexins.

Rice has been shown to biosynthesize quite a wide array of phytoalexins, mostly in
the form of diterpenoids (such as momilactones, phytocassanes, and oryzalexins) but also
as phenolic compounds (such as sakuranetin and phenylamides). The current knowledge
on rice phytoalexins is very large and constantly growing; therefore, this review cannot
claim to be exhaustive on the subject.

As emerges from this review, in recent decades, considerable attention has been paid
by the scientific community to the study of the pathways involved in the biosynthesis of
rice phytoalexins. Conversely, studies on rice phytoalexin bioactivity mainly focused on
their antifungal activity, primarily against the rice blast fungus Magnaporthe grisea. The
results of the few studies conducted to date on other microorganisms are very encouraging,
suggesting that the spectrum of action of these compounds could be much broader than
we now know today.

Interestingly, some diterpenoids, such as momilactones, have been shown to play dif-
ferent roles, being involved both in the defense of the plant against pathogens (phytoalexins)
and in plant–plant allelopathic interactions (allelochemicals). These secondary metabolites
may thus reveal novel and interesting functions. It would, therefore, be desirable, in the
near future, to further intensify investigations on the bioactivity of rice phytoalexins to
better understand both their multiple functions in the plant and their potential applications,
mainly in the biomedical field.

Great efforts have been made in the past to select rice varieties that best meet the needs
and demands of farmers, the processing industry, and consumers. As emerges from the
research reported in this review, many of the most valuable rice varieties have low levels of
metabolites involved in defense against biotic stresses (e.g., phytoanticipins, phytoalexins,
allelochemicals). In recent years, genetic improvement programs have focused on the selec-
tion of varieties with greater natural defenses and a reduced need for synthetic pesticides
and herbicides, which pose a risk to humans and the environment. In the near future,
a major challenge will be to obtain new varieties that have a favorable balance between
natural defenses, productivity, and organoleptic and nutritional characteristics.
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Abbreviations

3LN0 Structure of compound 5c-S bound at the active site of COX-2
4HZ5 Pyrrolopyrimidine inhibitors of DNA gyrase B and topoisomerase iv
4KIK Human IkB kinase beta
5-LOX 5-Lipoxygenase
ACC Acetyl-CoA carboxylase
ADP Adenosine diphosphate
AF-2 Furylfuramide
BenSer N-Benzoylserotonin
BenTry N-Benzoyltryptamine
BenTyr N-Benzoyltyramine
BGC Biosynthetic gene cluster
CDP Copalyl diphosphate
CHI Chalcone isomerase
CHS Chalcone synthase
CinSer N-trans-Cinnamoylserotonin
Cin-Try N-trans-Cinnamoyltryptamine
Cin-Tyr N-trans-Cinnamoyltyramine
CM Chorismate mutase
CouSer p-Coumaroylserotonin
CS Chorismate synthase
cv. Cultivar
CYPs Cytochrome P450 enzymes
DAHP 3-Deoxy-D-arabinoheptulosonate 7-phosphate
DAHPS 3-Deoxy-D-arabinoheptulosonate 7-phosphate synthase
DHQDT/SDH 3-Dehydroquinate dehydratase/shikimate dehydrogenase
DHQS 3-Dehydroquinate synthase
diTPS Diterpene-synthase
DMAPP Dimethylallyl diphosphate
EC50 Half maximal effective concentration
ent-CPP (5R,9S,10S)-Copalyl diphosphate
ER Endoplasmic reticulum
FerAgm N-Feruloylagmatine
FerPut N-Feruloylputrescine
FerSer N-Feruloylserotonin
FerTry N-Feruloyltryptamine
FPP Farnesyl diphosphate
GAs Gibberellins
GFP Green fluorescent protein
GGPP Geranylgeranyl diphosphate
GGPPS Geranylgeranyl diphosphate synthases
GPP Geranyl diphosphate
HDR 4-Hydroxy-3-methylbut-2-enyl diphosphate reductase
HEL Hen egg-white lysozyme
HMBPP 4-Hydroxy-3-methylbut-2-enyl diphosphate
IC50 Half maximal inhibitory concentration
IDS Isoprenyl diphosphate synthase
IPP Isopentenyl diphosphate
IPPI Isopentenyl diphosphate isomerase
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IRRI International Rice Research Institute
JA Jasmonic acid
LPS Lipopolysaccharides
LTB4 Leukotriene B4
MEP Methylerythritol 4-phosphate
MPO Myeloperoxidase
MTT 3-(4,5-Dimethylthiazol-2-yl)-419 2,5-diphenyltetrazolium bromide
MVA Mevalonate
NO Nitric oxide
NOMT Naringenin 7-O-methyltransferase
OMT Flavonoid O-methyltransferase
Phe Phenylalanine
PKC Protein kinase C
PLA2 Phospholipase A2
PPi Pyrophosphate
PRs Pathogenesis-related proteins
ROS Reactive oxygen species
SAH Adenosyl-L-homocysteine
SAM S-Adenosyl-L-methionine
SDR Short-chain dehydrogenase reductase
SK Shikimate kinase
syn-CPP (5S,9S,10R)-Copalyl diphosphate
TDC Tryptophan decarboxylase
TPA 12-O-Tetradecanoylphorbol 13-acetate
Try Tryptophan
TYDC Tyrosine decarboxylase
Tyr Tyrosine
UBQ5 Ubiquinone 5
UV Ultraviolet radiation
VEGF Vascular endothelial growth factor
WBA Whole blood aggregometer
WRC World rice core collection
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