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Abstract: Sustainable soil management requires a correct assessment of soil chemi-

cal and physical properties. Historically, this has been gained through conventional 

laboratory analyses, which are considered costly and time-consuming, particularly 

when a large number of soil samples need to be analysed. An alternative, faster and 

less expensive, approach is based on the use of reflectance spectroscopy in the vis-

NIR domain. This approach implies the calibration of predictive models that relate 

the spectral reflectance to soil properties. The goodness of the models can be partic-

ularly influenced by the multivariate methods used. In this article, we compare the 

performance of different multivariate and statistical ensemble methods for estimating 

some basic soil properties, such as sand, silt, clay, and organic carbon in the specific 

pedo-environmental conditions of an important agricultural area in southern Italy.  

Keywords: vis-NIR reflectance spectroscopy, prediction of soil properties, multi-

variate and statistical ensemble methods. 

1. Introduction 

Soil is one of the main natural resources. It contributes to basic human needs like 

food, clean water, and clean air, and is a major carrier for biodiversity (Keesstra et 

al., 2016). From here, the need to preserve this resource (soil) to ensure sustainable 
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and shared prosperity to humanity (FAO, 2015) through sustainable agricultural and 

non-agricultural uses. Sustainable soil management cannot disregard a correct as-

sessment of its chemical and physical properties and their variability in space and 

time. 

Historically our understanding of the soil system and assessment of their prop-

erties has been gained through conventional laboratory analysis (Viscarra-Rossel et 

al., 2006). The latter, although usefully and practically irreplaceable for detailed in-

vestigations, are costly and time-consuming, thus not very suitable when large num-

bers of soil samples need to be analysed, as, for example, in large soil surveys, or for 

high-resolution soil mapping and precision agriculture. Hence, the need to develop 

alternative techniques for soil analyses. 

In recent years, vis-NIR reflectance spectroscopy has been shown to be a useful 

technique for the measurement of various soil properties (Lucadamo and Leone, 

2015; Lucadamo et al., 2020). Compared to conventional analytical methods, vis–

NIR spectroscopy is faster, cheaper, and non-destructive; it requires less sample 

preparation, with less or no chemical reagents, is highly adaptable to automated and 

in situ measurements, and has the potential to analyse various soil properties simul-

taneously (Viscarra-Rossel et al., 2006; McCarty et al., 2002; Vasques et al., 2008). 

Reflectance spectroscopy refers to the measure of spectral reflectance (Milton, 

1987), i.e., the ratio of the electromagnetic radiation reflected by a soil surface to 

that which impinges on it (Drury, 1993). Since the characteristics of the radiation 

reflected from a material are a function of the material’s properties, observations of 

soil reflectance can provide information on the properties and state of the soil (Irons 

et al., 1989). The reflectance spectra of soil in the vis–NIR are largely non-specific 

due to the overlapping absorption of soil constituents. This characteristic lack of 

specificity is compounded by scatter effects, caused by soil structure or specific con-

stituents, such as quartz. All of these factors result in complex absorption patterns 

that need to be mathematically extracted from the spectra and correlated with soil 

properties. Therefore, multivariate statistics are required to mathematically extract 

complex absorption patterns and to correlate these patterns with the measured soil 

properties for calibration (Martens and Næs, 1989; Stenberg et al., 2010; Araújo et 

al., 2014; Xu et al., 2018). The selection of the multivariate statistic methods, along 

with that of proper instrumentation, accessories and optical probe design (Mouazen 

et al., 2009), improved spectra filtering and pre-processing (Maleki et al., 2008), are 

essential factors for successful calibration of predictive models (Mouazen et al., 

2010; Nawar et al., 2016).  
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A large number of multivariate calibration methods have been used to relate 

vis-NIR reflectance spectra with measured soil properties (e.g., Viscarra-Rossel et 

al., 2006; Janik et al., 2009; Mouazen et al., 2010; Stevens et al., 2010; Viscarra-

Rossel and Behrens, 2010; Vohland et al., 2011; Shi et al., 2015; Araújo et al., 2014; 

Kuang et al., 2015; Were et al., 2015). However, none of these proposed calibration 

techniques have achieved universal acceptance because a calibration model that 

works well for one application may be unacceptable for another (Xu, 2018). The 

specificity of the pedo-environment, besides the choice of the pre-processing meth-

ods, may also influence the selection of the statistical calibration methods, being a 

soil a complex and heterogeneous system. 

This study aims to explore the performances of different multivariate and sta-

tistical ensemble methods for estimating some basic soil properties, such as sand, 

silt, clay, and organic carbon (OC) contents, within the specific pedo-environmental 

conditions of an important, irrigated area of southern Italy. Namely, the compared 

statistical methods are: Partial Least Squares Regression (PLS), Regression Tree 

(RT), Bagging and Random Forest algorithm (B, RF), Boosting Regression (BR), 

Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines 

(MARS). The remaining part of the article is organized as follows: in section 2, all 

the statistical methods used for the analysis are introduced; section 3, describes data 

collection and material; in section 4 the results are synthesized; some concluding 

remarks are shown in section 5.  

2. Some theoretical aspects 

2.1 Partial Least Squares Regression (PLSR) 

Partial least squares regression is by far the most used multivariate statistical method 

in the field of vis-NIR reflectance spectroscopy (Gholizadeh et al., 2016; Leone et 

al., 2012; Leone et al., 2019; Vibhute et al., 2018; Viscarra-Rossel et al., 2006; Coz-

zolino and Moron, 2003; Wang et al., 2013; Volkan Bilgili et al., 2010; Lee et al., 

2009; Viscarra-Rossel and Behrens, 2010; Kuang et al., 2015; Wetterlind et al., 

2008; Viscarra-Rossel and Lark, 2009; Brown et al., 2006; Stevens et al., 2013; Dunn 

et al., 2002; Fystro, 2002; Mouazen et al., 2007). This method was proposed by H. 

Wold for the modeling of data sets in terms of chains of matrices (path models), 

suggesting a procedure named NIPALS (Non-linear Iterative Partial Least Squares) 

to estimate the parameters (Wold, 1973). Later, other groups led by S. Wold and H. 

Martens popularized the use of this method for chemical applications by slightly 
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modifying the PLS model with only two matrices containing the explanatory varia-

bles (X) and the response variables (Y) to deal with complicated data sets where 

ordinary regression was difficult or impossible to apply. Several authors (Wold et 

al., 1993; Wold et al., 2004) started to interpret PLS as the Projection to Latent Struc-

tures, providing a more descriptive meaning. 

There are two basic approaches, named PLSR1 and PLSR2. In PLSR1, one cali-

bration model is considered for y or separate calibration models are built for each 

column in Y. With PLS2, one calibration model is built for all columns of Y simul-

taneously. PLSR was first proposed for analysing NIR spectra by Wold et al. (Wold 

et al., 1983), who derived an algorithm with orthogonal scores. Successively, Mar-

tens (Martens, 1985) and Martens and Naes (Martens and Naes, 1989) proposed a 

PLSR algorithm with orthogonal loadings. Moreover, Helland (Helland, 1998) 

showed the equivalence between these proposals for the PLSR1 algorithms, while 

the geometry of PLS has been explored in depth by Phatak and de Jong (Phatak and 

De Jong, 1997). For the purpose of this paper, we refer only to the PLSR1 algorithm. 

PLSR finds the linear (or polynomial) relationships between a centred response 

variable vector y and a matrix of centred predictors X expressed as y=f(X)+E. PLS 

regression seeks then to provide a statistical model based on the reduction of the 

space spanned by the often-large number of correlated predictors in a lower-dimen-

sional space generated by derived PLS components. These components reflect the 

information in the X-variables that are of relevance for modelling and predicting the 

response variable y. The link is then obtained by the following decompositions that 

lead to orthogonal scores and non-orthogonal loading vectors (Wold’s algorithm): 

𝐗 = 𝐭𝟏𝐩′𝟏 + 𝐭𝟐𝐩′𝟐 + ⋯ 𝐭𝐊𝐩′𝐊 + 𝐄𝑲 = 𝐓𝐏′ + 𝐄𝐊 

𝐲 = 𝐭𝟏𝐪𝟏 + 𝐭𝟐𝐪𝟐 + ⋯ + 𝐭𝐊𝐪𝐊 + 𝐟𝐊 = 𝐓𝐪 + 𝐟𝐊 

where t is a vector of scores calculated by tk = Xk−1wk with scaled weights wk and 

T = [t1, … , tk], p are the spectral loadings, q the chemical loadings and E and f are 

the predictor and response variable residuals, respectively, of the estimated effect for 

the k-th factor (k=1,…,K). Wold et al. use, for achieving these solutions, the well-

known non-linear iterative partial least squares (NIPALS) algorithm for centred X 

and y data: let X0 = X and Y0 = Y, the orthogonal scores {t1, … , tk} are then itera-

tively obtained, where the basic k-th step of the algorithm is given by: 

1. Compute the scaled weight vector wk = cX′k−1yk−1/y′k−1yk−1 with c 

scaling factor; 

2. Compute the orthogonal score tk = Xk−1wk; 

3. Compute the residuals Xk = (I − Ptk
)Xk−1 = (I − Ptk

)X and  
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yk = (I − Ptk
)yk−1 = (I − Ptk

)y   where Ptk
= tk(t′

ktk)−1t′
k  and   

PTk
= Tk(T′

kTk)−1Tk  are the orthogonal projection operators onto tk and 

the subspace spanned by {t1, … , tk}, respectively. 

The number of factors to use in PLSR model may be determined through leave-

one-out cross-validation. The optimal number of factors should allow the modelling 

of as much as possible of the correlation between X and y without overfitting y. 

Then, for the selected number of factors, one calculates the final linear regression 

coefficients, b = W(W′P)−1q (where W is the weight matrix) and b0 = y̅ − x̅′b to 

be used in the predictor ŷ𝑖 = b0 + xib where xi is the new spectrum. The well-

known Martens algorithm is instead based on the factorization: 

𝐗 = 𝐭̃𝐤𝐰̃′𝟏 + ⋯ + 𝐭̃𝐊𝐰̃′𝐊 + 𝐄𝐊 =  𝐓̃𝐖̃′ + 𝐄𝐊 

𝐲 = 𝐭̃𝟏𝐪̃𝟏 + ⋯ + 𝐭̃𝐊𝐪̃𝐊 + 𝐟𝐊 =  𝐓̃𝐪̃ + 𝐟𝐊 

which uses a non-orthogonal score matrix T̃ , i.e. T̃′ T̃ is a non-diagonal matrix, with 

orthogonal loadings and where the scores {t1, … , tk} are iteratively obtained. The 

basic k-th step of this algorithm (with X0 = X and Y0 = Y) is given by: 

1) Compute the weight vector w̃k = X̃′k−1ỹ′k−1; 

2) Compute the non-orthogonal score t̃k = X̃′k−1w̃′k/w̃′kw̃k and set  

T̃k = [t̃1, … , t̃k]; 

3) Compute the regression coefficients q̃k of y in T̃k given by  

q̃k = (T̃′kT̃k)
−1

T̃′kỹk; 

4) Compute the residuals X̃k = X̃k−1 − t̃kw̃′k and ỹk = y − ∑ q̃kjt̃k
k
j=1 ; 

such to obtain the above X decomposition X = T̃W̃′ + Ẽk, and where the score vec-

tors
 
t̃k = Xw̃k ∕ w̃k

′ w̃k and tk spam the same vectorial space. The regression coeffi-

cient vector is finally given as a simple least square solution  

b̃ = W̃(W̃′X′XW̃)
−1

W̃′X′y providing the same coefficients as the previous PLS1 

formula. 

We remark that the latter algorithm, giving the non-orthogonal score vectors, 

does not provide the problems that Pell (Pell et al., 2007) has recently highlighted 

for the NIPALS results about their possible inconsistence with respect to model 

spaces for residual-based outlier detection and prediction purpose. See Ergon (Er-

gon, 2009) for a re-interpretation of the NIPALS results, which solves the PLSR 

inconsistency problem. 

We highlight that in this paper all computations have been performed by using 

the software for the chemometric analysis of spectroscopic data called “ParLeS” 
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(Viscarra-Rossel, 2008). This software implements the most used form of the PLSR1 

algorithm, which produces orthogonal scores, and provides several statistical tools 

to assist the researcher in performing and interpreting the analysis results. For exam-

ple, the number of samples (rows) to leave out in the cross-validation may be any 

integer selected by the user and the accuracy of the cross-validation is given by the 

root-mean-square error (RMSE). Moreover, the goodness of fit is given by R2 and 

Q2 statistics, which give the upper and lower bounds, of how the model well explains 

the data and predicts new observations. For the selection of an optimal parsimonious 

PLSR model (i.e., one that represents the variability in the data without causing it to 

overfit) the Akaike Information Criterion (AIC) (Akaike, 1973)  is also provided by 

ParLeS where N is the sample size and m is the number of model parameters, in this 

case, the number of factors. A sorted VIP (Variable Importance for Projection) data 

table, and the percent variation in each of the x and y-data that is explained by each 

of the PLSR factors, are also given, where the VIP index is computed as: 

𝐕𝐈𝐏𝐣(𝐤) = 𝐊 ∑ 𝐰𝐣𝐤
𝟐 (

𝐒𝐒𝐘𝐤
𝐒𝐒𝐘𝐭𝐨𝐭

⁄ )
𝒌

 

where VIPj(k) is the importance of the j-th predictor variable based on a model with 

k factors, wjk is the corresponding loading weight of the j-th variable in the k-th 

PLSR factor, SSYk is the explained sum of squares of y by a PLSR performed with 

the only k-th factor, SSYtot is the total sum of squares of y, and K is the total number 

of predictor variables. The reader is directed to Viscarra-Rossel (Viscarra-Rossel, 

2008) for a full description of ParLeS and the algorithms it implements. 

2.2 Regression Trees (RT) 

An alternative algorithm for analysing the relationship between variables is the 

"Classification And Regression Trees" (CART). Even if the basic idea is the same, 

in this paper it has been preferred to separate the classification tree treatment from 

the tree regression, also by virtue of the fact that in the dataset in our possession, the 

variable y is a continuous random variable.  

The regression tree constructs an H tree from the root node h1, by performing a 

succession of splits, or divisions, of the full set of observations, to make the units 

more homogeneous in terms of response variable y. The algorithm used to build the 

tree follow an approach of step-by-step optimization. To understand how it works, 

we must break down the deviance as follows:  

𝑫 = ∑ [𝒚𝒊 − 𝒇̂(𝒙𝒊)]
𝟐𝒏

𝒊=𝟏 = ∑ {∑ (𝒚𝒊 − 𝒄𝒉̂)𝟐
𝒊∈𝑹𝒉

}
𝑱
𝒉=𝟏 =∑ 𝑫𝒉𝒉                   (1) 
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where 𝑓(𝑥𝑖) is the predicted value for response variable y; 𝑐ℎ is the arithmetic mean 

of the observed 𝑦𝑖 having component 𝑥𝑖 falling in the subinterval; J is the global 

number of nodes and 𝑅1, … , 𝑅𝑗 are rectangles in the p-dimensional sense. The growth 

process of the tree starts with the root node h1 (so J=1; 𝑅𝑗 = ℝ𝑝; 𝐷 =

∑ [𝑦𝑖 − 𝑀(𝑦)]2𝑛
𝑖=1 ) with 𝑀(∙) average operator). And proceeds iteratively according 

to the following scheme: 

• Once a rectangle 𝑅ℎ is chose, the appropriate value of 𝑐ℎ is the average of the 

corresponding values 𝑐ℎ̂ = 𝑀(𝑦𝑖: 𝑥𝑖  ∈ 𝑅ℎ); 

• If we subdivide the region into two parts the deviance is replaced by 𝐷ℎ
∗ =

∑ (𝑦𝑖 − 𝑐ℎ̂′)2 +𝑛
𝑖∈𝑅ℎ′

∑ (𝑦𝑖 − 𝑐ℎ̂′′)2𝑛
𝑖∈𝑅ℎ′′

 with a gain of 𝑔ℎ = 𝐷ℎ − 𝐷ℎ
∗.  

• We can inspect all p explanatory variables and, for each of them, all the possible 

points of subdivision, selecting the variable and its point of subdivision that 

maximize 𝑔ℎ. 

The algorithm stops when all the leaves contain a number of sample elements 

that is less than a preassigned value, or when the relative fall of deviance is less than 

a prefixed threshold. A large tree is obviously not useful, so the branches of little 

importance have to be pruned. For this reason, a cost-complexity function can be 

considered:  

𝑪𝜶(𝑱) = ∑ 𝑫𝒉

𝑱

𝒉=𝟏
+ 𝜶𝑱 

where 𝛼 is a non-negative penalty parameter. For each 𝛼 there is a unique smallest 

tree minimizing 𝐶𝛼(𝐽). The algorithm sequentially eliminates one leaf at a time. At 

each step the leaf for which elimination causes the smallest increase in ∑ 𝐷ℎℎ  is se-

lected. The question is to choosing 𝛼: generally the cross-validation is used. Trees 

are frequently used in practice, but it is important to underline their advantages and 

disadvantages. They have in fact a logical simplicity and are easy to communicate; 

the step function has a simple, compact mathematical formulation in terms of infor-

mation to be stored; there is a speed of computation and the possibility to use discrete 

and categorical variables; a robust forms of deviance can be used; not particularly 

complicated variations can be introduced, which allow for missing values, in both 

tree construction and prediction; the method automatically selects the important var-

iables. On the other hand, there is instability of results and difficulty in upgrading 

the tree; difficulty of approximating some mathematically simple function; proce-

dures of statistical inference are not available and it is not simple to evaluate the 

order of importance of variables remaining in the pruned tree. (Breiman et al., 1984; 

Ripley, 1996; Venables & Ripley, 1997; AA.VV., 1995). 
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2.3 Bootstrap Aggregating (B) 

Regression trees suffer from high variance, which means that if you were to divide 

the calibration dataset into two random parts and fit a regression tree to both halves, 

the results that could be achieved would be quite different. Conversely, a procedure 

with low variance will produce similar results when applied repeatedly to separate 

datasets; linear regression tends to have a low variance if the ratio of n (number of 

observations) to “p” (number of predictors) is moderately large.  

Bootstrap AGGregatING, or BAGGING, is a general procedure for reducing the 

variance of a statistical learning method and is particularly useful, and often used, in 

the context of regression trees, although applied in different works (Gholizadeh et 

al., 2016; Viscarra-Rossel and Behrens, 2010). Briefly remembering that the vari-

ance of the mean of observations 𝑍̅ of a set of n independent observations Z1, … , Zn, 

each with variance σ2, is equal to the ratio of variance to the number of observations, 

it is statistically valid to say that the average of a series of observations reduces var-

iance. 

Hence a natural way to reduce variance and simultaneously increase the accuracy 

of predictions of a statistical learning method is to take many sub-samples of the 

"training" of the model from the population, build a separate forecasting model using 

each train-set, set and calculate the average of the resulting predictions. In other 

words, you could calculate f̂ 1(x), f̂ 2(x), … , f̂ B(x) using separate B training sets, me-

diate them into f̂avg(x) obtaining a single low-variance statistical learning model, 

expressed by: 

𝐟𝐚𝐯𝐠(𝐱) =
𝟏

𝐁
∑ 𝐟𝐛(𝐱)

𝐁

𝐛=𝟏
 

In general, this method is not widely applied, considering that everyone does not 

have easy access to multiple training datasets, for various reasons, such as the im-

possibility of replicating that phenomenon or for purely economic issues or lack of 

time available. In contrast, the bootstrap technique obtains reproductions of samples 

from the individual training dataset, generating different B "bootstrapped" train sam-

ples. Finally, the statistical method is trained through the bootstrap set b-th in such a 

way as to obtain f̂ ∗b(x), and mediate all the predictions to obtain f̂bag(x) like: 

𝐟𝐛𝐚𝐠(𝐱) =
𝟏

𝐁
∑ 𝐟∗𝐛(𝐱)

𝐁

𝐛=𝟏
 

So, this is the bagging procedure and to apply this algorithm to regression trees, 

you simply generate B trees using B bootstrapped train samples and mediate the 

resulting predictions. These trees are allowed to grow and are not subject to 
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"Pruning" procedures, i.e. pruning final observations. It has also been shown in other 

works (James et al., 2013) that to observe significant improvements in accuracy, the 

bagging procedure requires hundreds of tree replications in a single procedure. 

2.4 Random Forest (RF) 

Random forest is a method also applied in Viscarra-Rossel and Antoine Stevens 

(Viscarra-Rossel and Behrens, 2010; Stevens et al., 2013) and provides an improve-

ment over trees developed with the bagging procedure through a small modification 

that decorrelates the trees. As in bagging, we build a series of decision trees on 

booted training samples. But when you build these decision trees, whenever a divi-

sion in a tree is considered, a random sample of m predictors is chosen as candidates 

apart from the complete set of predictors.  A new sample of m predictors is taken at 

each division, generally m ≈  √p, which means the number of predictors considered 

in each division is roughly equal to the square root of the total number of predictors. 

In other words, in the construction of a random forest, with each division of the tree, 

the algorithm is not even allowed to consider most of the available predictors.  

This may sound crazy, but it has intelligent logic. Suppose you have a very pow-

erful predictor in your dataset, along with a number of other moderately strong pre-

dictors. So, in the collection of bagging trees, most or all trees will use this strong 

predictor in the upper-division (James et al., 2013). As a result, all bagging trees will 

look quite similar to each other, resulting in highly correlated predictions. Unfortu-

nately, the average of many highly correlated quantities does not lead to a large re-

duction in variance as the average of many unrelated quantities. In particular, this 

means that the bagging algorithm will not result in a substantial reduction in variance 

on a single tree in this setting. Random forests overcome this problem by forcing 

each division to consider only a subset of the predictors.  

Therefore, on average 
p−m

p
 divisions will not even consider the strong predictor, 

and therefore other predictors will have a better chance. You can think of this process 

as a decoration of the trees, thus making their average less variable and, therefore, 

more reliable. The main difference between bagging and random forests is the choice 

of the size of the predictor subset of m size. For example, if a random forest is con-

structed using m plus p, this is simply the same as bagging. On the data used, the 

random forests they use lead to a reduction in error compared to the m ≈  √p bag-

ging procedure. 

Using a small value of m in building a random forest will generally be useful 

when we have a large number of related predictors. As with bagging, random forests 
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do not adapt too much to the increase in the number of B iterations, but in practice, 

a value large enough to allow the error rate to stabilize has stabilized (James et al., 

2013). 

2.5 Boosting Regression (BR) 

Like the bagging algorithm, boosting, or "enhancement," is a general approach that 

can be applied to many statistical learning methods for regression or classification. 

Here we limit our discussion on incentive to the context of regression trees, as ap-

proached before by Gholizadeh, Brown and Stevens (Gholizadeh et al., 2016; Brown 

et al., 2006; Stevens et al., 2013). 

Remember that bagging involves creating multiple copies of the original training 

dataset using bootstrap, adapting a separate decision tree to each copy, and then com-

bining all the trees to create a single predictive model. In particular, each tree is based 

on a bootstrap dataset, independent of other trees. Boosting works in a similar way, 

except that trees are grown sequentially: each tree is grown using information from 

previously grown trees. The upgrade does not involve bootstrap sampling, but each 

tree adapts to a modified version of the original dataset. 

Considering the approach of the regressive technique, such as bagging, boosting 

also involves the combination of a large number of decision-making 

trees, f̂ 1(x), f̂ 2(x), … , f̂ B(x). The algorithm that governs the regressive approach of 

enhancement could thus be summarized as follow: 

1. Consider the relation between the dependent variable y and the explicative 

ones: 𝑦 = 𝑓(𝑥). 

2. Set  f̂(x) = 0  and  ri = yi  for each “i” in the train dataset; ri and yi are the 

residuals and the value of the response variable for the generic observation 

i, respectively. 

3. For b = 1, 2, … , B  repeat the following sub-process: 

a) Fit a tree f̂ b with d splits (i.e. d-1 terminal nodes) to the dataset train. 

b) Update f̂ to add in a reduced version of the new regression tree:      

f̂(x)  ←  f̂(x) + λf̂ b(x) where λ is a shrinking parameter.   

c) Update residuals as follows: ri   ←   ri −  λf̂ b(x). 

4. Get the boosted model, as: 

𝐟(𝐱) = ∑ 𝛌𝐟𝐛(𝐱)
𝐁

𝐛=𝟏
 

The idea behind this procedure is this: unlike adapting a single large decision tree 

to the dataset, which equates to forced and potentially excessive data fitting (it could 
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be affected by "overfit", that is, by overfitting the data by calibrating excessively 

correctly and validating less than enough), the enhancement approach allows for 

slow learning. Given the current model, it was preferred to adopt a regression tree to 

the remnants of the model. That is, we adapt a tree using the current residuals, instead 

of the variable Y, as an answer. You then add this new decision tree in the adapted 

function to update the residues. Each of these trees can be quite small, with a few 

terminal nodes, determined by the d parameter in the algorithm. By adapting small 

trees to the residues, we notice an improvement, albeit slow, of 𝑓 areas where it does 

not work well. The shrinking parameter λ further slows down the process, allowing 

more and different-shaped trees to attack the residues. In general, slow-learning sta-

tistical learning approaches tend to work well. Note that in upgrading, the construc-

tion of each tree depends heavily on the trees that have already been cultivated. It 

can then be summarized that boosting has three optimization parameters: 

1) The number of B trees. Unlike bagging and random forests, boosting can be 

oversized to the data if B is too large, although this oversizing tends to occur 

slowly if at all. 

2) The shrinking parameter λ, a small positive number, which controls the speed 

with which it learns boosting. Typical values are 0.01 or 0.001 and the right 

choice may be the problem. A very small value of λ requires the use of a very 

large value of B to achieve good performance. 

3) The number of divisions in each tree, which controls the complexity of the 

boosting set. Often d plus 1 works well, in case each tree is a "stump", consisting 

of a single division. In this case, the boosting set adapts to an additive model, 

because each term involves only a single variable. More generally, the d param-

eter can be interpreted as the depth of interaction and controls the interaction 

order of the boosting model, as d divisions can involve, at most, d variables. 

This highlights a difference between enhancement and random forests: in boost-

ing, given that the growth of a particular tree considers others that have already 

been trained, it can be trusted to trust the condition that smaller trees are suffi-

ciently adequate even in interpretation. For example, the use of stumps, men-

tioned above, leads to an additive pattern (James et al., 2013). 

2.6 Artificial Neural Network (ANN) 

The Artificial Neural Network (ANN) represents an artificial reproduction of a bio-

logical neural network of a human brain, including "neurons", nerve cells that are 

interconnected in a real network, and applied to predict soil contents, above all, by 

Kuang (Kuang et al., 2015). 
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However, it is important to note that in such a widespread network not all inter-

connections have the same specific weight in terms of importance; in fact, some have 

a high priority, associated with greater weight, than others. Like biological networks, 

artificial neural networks also have interconnected neurons and a pattern that faith-

fully reports the structure of a biological neural network. 

Historically, the earliest ANNs are The Perceptron, proposed by Rosenblatt (Ros-

enblatt, 1958) and the Artron due to R. Lee (Lee, 1959). Then the Adaline (Adaptive 

Linear Neuron) and The Madaline (Many Adaline), due to Widrow et al. (Widrow 

et al., 1960, 1988). The first one is an artificial neuron also known as the ALC (adap-

tive linear combiner), the ALC being its principal component. The second one is an 

ANN (network) formulation based on the Adaline above, but it is a multilayer NN. 

Principles of the above four neurons are common building blocks in almost all ANN 

architectures.  

Four major multi-layer general-purpose network architectures are:  

• The Back-Propagation network: a multi-layer Perceptron-based ANN, giving 

an elegant solution to hidden-layers learning (Rumelhart et al., 1986). Its com-

putational elegance stems from its mathematical foundation that may be con-

sidered as a gradient version of Richard Bellman’s Dynamic Programming 

theory (Bellman, 1954) 

• The Hopfield Network (Hopfield, 1982): this network is different from the 

earlier ANNs in many important aspects, especially in its recurrent feature of 

employing feedback between neurons. Hence, although several of its princi-

ples have been incorporated in ANNs based on the earlier four ANNs, it is to 

a great extent an ANN-class in itself. Its weight adjustment mechanism is 

based on the AM principle  

• The Counter-Propagation Network (Hecht-Nielsen, 1987): Kohonen’s Self-

OrganizingMapping (SOM) is employed to facilitate unsupervised learning, 

utilizing the WTA principle to economize computation and structure.  

• The LAMSTAR (LargeMemory Storage And Retrieval) network:  a Hebbian 

network that uses a multitude of Kohonen SOM layers and their WTA princi-

ple. It is unique in its employs these by using Kantian-based Link-Weights 

(Graupe and Lynn, 1969) to link different layers (types of stored information) 

The link weights allow the network to simultaneously integrate inputs of var-

ious dimensions or nature of representation and incorporating correlation be-

tween input words. Furthermore, the network incorporates (graduated) forget-

ting in its learning structure and it can continue running uninterrupted when 

partial data is missing.  
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In this paper we use the Back-propagation method.  

2.7 Multivariate Adaptive Regression Splines (MARS) 

Many of the classic regression models have only linear aspects, but they can be 

adapted to non-linear models in the data by manually adding nonlinear terms to the 

model; however, in order to do so, the analyst must know a priori the specific nature 

of non-linearities and interactions. Alternatively, there are many inherently non-lin-

ear algorithms. When using these models, the exact shape of the non-linearity should 

not be explicitly known or specified before the model is formed. Rather, these algo-

rithms will look for and discover non-linearities and interactions in data that help 

maximize predictive accuracy. 

An example of such algorithms is the Multivariate Adaptive Regression Spline 

(MARS) (Friedman, 1991), an algorithm that automatically creates a linear pattern 

that sometimes provides an intuitive approach to the non-linearity after grasping the 

concept of multiple linear regression. They provide a cost-effective approach to cap-

turing non-linear relationships in your data by evaluating breakpoints (nodes) similar 

to step functions. The procedure evaluates each data point for each predictor as a 

node and creates a linear regression model.  

The MARS procedure will first search for the single point through the x-value 

range where two different linear relationships between Y and X reach the smallest 

error. For a single node, the hinge function is of the type: 

𝒚 = {
𝛃𝟎 + 𝛃𝟏(𝐚𝟏 − 𝐱)           𝐱 <  𝐚𝟏

𝛃𝟎 + 𝛃𝟏(𝐱 − 𝐚𝟏)           𝐱 >  𝐚𝟏
 

Once the first node is found, the search continues for a second node. This pro-

cedure continues until many nodes are found, producing (potentially) a highly non-

linear forecast equation. Including many nodes can allow you to adapt a really good 

relationship with the available training data, but it could lead you not to generalize, 

and therefore predict, very well with new and/or unknown data. Therefore, once you 

have identified the complete set of nodes, you can sequentially remove nodes that do 

not contribute significantly to predictive precision. This process is known as "prun-

ing" and has been used to find the optimal number of nodes. There are two important 

optimization parameters associated with the MARS model: the maximum degree of 

interactions and the number of terms maintained in the final model. A grid search is 

necessary to identify the optimal mix of hyperparameters, i.e., the different combi-

nations of interaction complexity and the number of terms to keep in the final model. 
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The advantages of MARS models are numerous. First, they naturally manage 

mixed types of predictors (quantitative and qualitative), consider all possible binary 

partitions of categories for a quantitative predictor in two groups, thus generating a 

pair of indicative functions for the two categories. These templates also require min-

imal functionality design and automatically select the features. For example, because 

they scan each predictor to identify a subdivision that improves predictive accuracy, 

non-informational features will not be selected. What is more, highly correlated pre-

dictors do not prevent predictive accuracy as much as OLS models.  

However, one drawback of MARS models is that they are generally slower to 

train. Because the algorithm analyses each predictor value for potential breakpoints, 

computational performance can be affected by both increases in the number of obser-

vations and the number of variables. In addition, although related predictors do not 

necessarily hinder the model's performance, they can make it difficult to interpret. 

When two features are "almost perfectly" related, the algorithm will essentially select 

the first one that occurs when scanning features. Therefore, choosing one at random, 

the related function probably will not be included because it does not add any explan-

atory power to the analysis. (Gene et al., 1979). In soil environment, MARS are used 

to predict textures and contents by many authors (Volkan Bilgili et al., 2010; Viscarra-

Rossel and Behrens, 2010; Nawar et al., 2016; Stevens et al, 2013). 

3. Materials and methods 

3.1 Study area and soil sampling 

The area under investigation (Figure 1) is located in the north-western part of the 

Campania Region, in southern Italy (Coord. 41°01’00’’ N, 13°58’00’’ E), within a 

fertile agricultural land, mainly devoted to irrigated vegetal crops and fruit trees (Ge-

oportale Regione Campania, 2019). The climate is typically Mediterranean, with the 

wettest period between late autumn (October–November) and early spring (March–

April). Temperature and potential evapotranspiration temperatures show an inverse 

trend compared to rainfall, with the highest values during summer (June–August). 

The dominant soils types are Gleyic, Gleyic-Vertic, Calcari-Gleyic and Calcari-

Fluvic Cambisols, and Calcaric Gleysols (Di Gennaro, 2002). For this study, an ex-

isting soil database, made available CNR-ISAFoM, was used. The database contains 

information on soil organic carbon (OC) and particle size distribution (sand, silt, and 

clay), used in our application. Information about OC was available for ninety-six 
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samples, while those for sand, silt, and clay contents were available only for eighty-

two samples.  

Figure 1. Localisation of the study area in Southern Italy. 

 

 

The analytical data regarded surface soil samples randomly collected in 1999 

within the study area, air-dried, and ground to a size fraction passing a 2 mm sieve. 

Soil organic carbon and texture were determined according to the Italian Official 

Methods for Soil Analysis (MIPAF, 2000). Namely, total clay (soil separate with < 

0.002 mm particle diameter) and silt (soil separate with 0.002 to 0.05 mm particle 

diameter) contents were determined with the pipet method. Total sand content (soil 

separate with 0.05 to 2.0 mm particle diameter) was determined by wet sieving; OC 

content was determined using Walkey-Black methods. 

3.2 Vis-NIR spectroscopy 

The diffuse vis–NIR spectral reflectance was measured in the laboratory, on a residual 

fraction of soil samples, under controlled light conditions, using the procedure de-

scribed in Leone et al. (2019). Noisy portions of the measured reflectance spectra, be-

tween 350 and 399 nm and between 2451 and 2500 nm, were removed, leaving spectra 

in the range of 400-2450 nm for the analysis. The resulting reflectance spectra were 

normalised, using The continuum removal approach (Clark and Roush, 1984). To 

this end, a convex hull was fitted over the original spectral curve, then the absorption 

spectrum was calculated by taking the ratio between the original reflectance spec-

trum and the enveloping curve (Van der Meer, 1999; De Jong, 1992). 
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3.3 Statistical calibrations 

The selected statistical calibrations were performed to predict the investigated soil 

properties from reflectance spectra, using both the software “ParLeS” (Viscarra-Ros-

sel, 2008) and “R x64 3.6.3” (R Core Team, 2020). All models performed to calibrate 

the spectral data with the reference (laboratory) soil data have employed two-thirds of 

the available samples for calibration and the remaining third for independently vali-

dating them. For each variable, the selection of samples was carried out as follows: 

first, the samples were sorted following ascending order of the variable, then, sequen-

tially, every two samples were taken for calibration and the third for validation.  

To enhance the predictive power of these statistical calibration models, spectro-

scopic data were transformed and pre-processed prior to data analysis, with the aim of 

removing undesired variation in the data (Eriksson et al., 2006). In this study, we as-

sessed all the transformation and pre-processing methods, either alone or in combina-

tion, before calibrations.  

The combination of the following procedures provided the best results: reflec-

tance (R) to absorbance (A) transformation (A = log 1/R), wavelet detrending, median 

filtering, second derivative of absorbance, and data enhancement (mean centre). In 

particular, reflectance to absorbance transformation reduces nonlinearities (Viscarra-

Rossel, 2008), while wavelet detrending (Daubechies, 1992) corrects light scattering 

variation and baseline. The median filter, in addition (Viscarra-Rossel, 2008), reduces 

the effects of random spectral noise, thereby providing smoother spectra. Lastly, the 

second derivative removes additive and linear baseline effects (Burger and Geladi, 

2007), while amplifying absorption features, which are indicative of the contents of 

the soil materials. Mean centring is a commonly used method of data enhancement to 

reduce redundant information and better evaluate differences. 

Leave-one-out cross-validation (Efron and Tibshir, 1994) was then used to deter-

mine the number of factors to retain in the calibration models. To select the optimal 

cross-validated calibration model, we computed the root mean square error (RMSE) 

of predictions: 

RMSE = √
1

N
∑ (𝐲𝐩𝐫𝐞𝐝 − 𝐲𝐨𝐛)𝟐

N

i=1

 

in which N is the sample population size, 𝐲𝐩𝐫𝐞𝐝 is the predicted value, and 𝐲𝐨𝐛 is the 

observed value. In this case, the model with the lowest RMSE is selected. However, a 

more parsimonious model, i.e., a model with fewer factors representing the variability 
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in the data set, without causing overfitting, is preferred. For that purpose, the optimal 

selection of factors can be based on the penalizing Akaike Information Criterion (AIC) 

(Akaike, 1969; Li et al., 2002):   

AIC= N log (RMSE) + 2m. 

in which N is the sample population size and m is the number of model parameters 

(i.e., the number of factors). This criterion is applied after have verified that residuals 

have zero mean normal distribution. 

To evaluate the accuracy of models, the adjusted coefficient of determination 

(𝐑𝐚𝐝𝐣
𝟐 ) and the relative percent deviation (RPD), i.e., the ratio of the standard deviation 

of analysed data (i.e., the soil properties) to RMSE, was performed. In accordance with 

previous studies (Williams, 1987; Viscarra-Rossel, 2007) the quality of predictions 

expressed by RPD was classified as follows: RPD < 1.0 indicates very poor model/pre-

dictions and their use is not recommended; RPD between 1.0 and 1.4 indicates poor 

model/predictions where only high and low values are distinguishable; RPD between 

1.4 and 1.8 indicates fair model/ predictions which may be used for assessment and 

correlation; RPD values between 1.8 and 2.0 indicates good model/ predictions where 

quantitative predictions are possible; RPD between 2.0 and 2.5 indicates very good, 

quantitative model/ predictions, and RPD > 2.5 indicates excellent model/predictions. 

RPD statistic is also carried out to assess the performance of validation using the inde-

pendent data set. 

4. Results and discussion 

4.1 Descriptive statistics of soil properties 

The investigated soil variables were statistically described in terms of minimum, max-

imum, mean, coefficient of variation (CV), and skewness. Furthermore, a log-trans-

formation was performed for those variables that did not follow a normal distribution. 

Summary statistics of calibration and validation subsets are reported in Table 1. Or-

ganic carbon content ranges from 2.71 to 215.6 g Kg−1, and is on average moderate 

(21.5 g Kg−1). A slight difference in the average values can be observed between the 

calibration (22.5 g Kg−1) and validation (19.6 g Kg−1) sub-sets. Skewness always ex-

hibits high values: 4.57 g Kg−1 for the whole dataset; 4.52 and 3.74 g Kg−1, for the 

calibration and validation sub-stets, respectively, thus indicating a significant deviation 

from the normal distribution. 
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Table 1. Descriptive statistics of the selected soil properties for calibration and validation 

datasets. 

  n Mean Range CV Skewness 

OC 

(𝐠 𝐊𝐠−𝟏) 

Calibration 

Validation 

64 

32 

22.5 

19.6 

4.4 – 215.6 

2.8 – 121.4 

1.43 

1.12 

4.52 

3.74 

Sand 

(𝐠 𝐊𝐠−𝟏) 

Calibration 

Validation 

54 

28 

419.8 

423.6 

80.0 – 940.0 

70.0 – 950.0 

0.53 

0.56 

0.59 

0.64 

Silt 

(𝐠 𝐊𝐠−𝟏) 

Calibration 

Validation 

54 

28 

201.1 

201.1 

10.0 – 370.0 

10.0 – 390.0 

0.39 

0.43 

-0.35 

-0.23 

Clay 

(𝐠 𝐊𝐠−𝟏) 

Calibration 

Validation 

54 

28 

377.4 

378.9 

50.0 – 730.0 

10.0 – 770.0 

0.46 

0.50 

-0.14 

-0.09 

 

Soil separates, i.e., the size groups of mineral particles, is dominated by the 

sand, (421.1 g Kg-1), on average), followed by clay (377.7 g Kg-1) and silt (201.1 g 

Kg-1) fractions. The dominant, basic soil textural classes are: clay, clay-loam, sandy-

clay-loam, and sandy-loam. Extreme and mean values for all, sand, silt, and clay 

calibration and validation subsets are similar. Skewness was consistently low, thus 

indicating, for these variables, a frequency distribution close to the normal distribu-

tion. Differences between calibration and validation sub-sets are minimal, and the 

CV is moderate for both these variables. Skewness is consistently low. Considering 

that the mean and coefficient of variation (CV) for the calibration and validation sets 

are comparable for all the considered soil properties, the selection of both datasets 

can be considered representative (Ding et al., 2018). Figure 2 shows the average soil 

spectrum and the relative continuum removed reflectance of the investigated soil 

samples and their standard deviation.  

The average spectrum (Figure 2a) shows a typical convex shape and a moderate 

overall reflectance. The dispersion of the spectral intensity, as measured by the 

standard deviation, was evident. Many studies demonstrated that different soil 

properties, especially particle size distribution and organic carbon content, may 

affect the overall reflectance (Stenberg et al., 2010). Changes in slopes of different 

ranges in the visible region are also observed. Various studies have related visible 

reflectance slope to soil organic matter content (Summers et al., 2011). The average 

continuum removed spectrum (Figure 2b) shows several absorption bands across the 

entire vis-NIR region, which can be related to clay minerals, organic matter, iron 

oxides, water, and carbonate contents (Stenberg et al., 2010; Leone A.P., 2000). 
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Figure 2. Mean of spectral reflectance (a) and continuum removed spectral reflectance (b) 

of sampled soils. In (a) the position of spectral ranges where the various visible reflec-

tance slopes were calculated; in (b) the approximate positions of some fundamental soil 

constituents are shown. 

 

(a) (b) 

4.2 Multivariate and ensemble calibrations  

The capability of vis-NIR reflectance spectroscopy to predict the investigated soil 

properties among different statistical methods is summarised in Table 2, and shows 

that, as a general rule and considering both calibration and validation results, PLS 

gives the best results. The comparison among different models is immediately evi-

dent in Figure 3. However, the response of those methods in both Table 2 and Figure 

3 gives slightly different results depending on the variable considered. In any case, 

clay and organic carbon are the best-predicted variables. Specifically, PLSR applied 

to two-thirds of the available sample set revealed good correlations between soil 

reflectance spectra and the considered soil properties, except for silt content. Based 

on the RPD values , the calibration models were excellent for log-OC (RPD = 2.67) 

and clay (RPD = 2.59) and good for sand (RPD = 1.95). For clay, models including 

5 factors, based on the RMSE and AIC values, allowed to attain a cross-validation 

between predicted and measured data with Radj
2  of 0.855, 0.845 and 0.731, for log-

OC, clay and sand, respectively. For silt, the only calibration possible performed a 

poor model, with an Radj
2  of 0.314 and RPD of 1.22. 
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Figure 3. Histograms of calibration and validation RPD of all statistical models for soil var-

iables. 

 
Clay 

 
Sand 

 
Silt 

 
Organic carbon 

 

In some cases, increasing the number of factors gave slightly higher coefficients 

of regression (R2), but increased RMSE, thus reducing the stability of the calibration 

models (i.e., leading to over-fitting) (Vågen et al., 2006; Wise et al., 2003). 

Therefore, we selected the most parsimonious model in terms of number of factors, 

based on the values of AIC and RMSE.  

Leave-one-out calibration models constructed through vis-NIR reflectance 

spectroscopy and PLSR are empirical; therefore, validations of these models are 

better performed using a data set that is independent of the one used for calibration 

(Volkan Bilgili et al., 2010). Validation using the remaining one third of the available 

samples indicated excellent models for the prediction of clay (Radj
2  = 0.883 and RPD 

= 3.03), very good models for log-OC (Radj
2  = 0.827 and RPD = 2.41) and for sand 

(Radj
2  = 0.806 and RPD = 2.10), and a poor model for silt (Radj

2  = 0.177 and RPD = 

1.11). 
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Table 2. RMSE and RPD for different methods applied on calibration and validation sample 

for Clay, Sand, Silt and OC contents in soil samples. 

Variables Models 
Calibration sample Validation sample 

RMSE RPD RMSE RPD 

Clay 

PLSR 67.61 2.59 62.46 3.03 

Tree 125.18 1.40 152.51 1.24 

Bagging 86.31 2.03 95.76 1.97 

Random Forest 85.47 2.05 93.07 2.03 

Boosting 71.28 2.45 88.05 2.15 

A.N.N. 146.72 1.19 185.56 1.02 

M.A.R.S 74.70 2.34 100.54 1.88 

Sand 

PLSR 114.61 1.95 102.40 2.32 

Tree 120.02 1.86 134.17 1.77 

Bagging 116.83 1.91 117.16 2.03 

Random Forest 120.48 1.86 113.18 2.10 

Boosting 118.17 1.89 121.67 1.96 

A.N.N. 186.15 1.20 233.66 1.02 

M.A.R.S 117.48 1.90 135.04 1.76 

Silt 

PLSR 64.99 1.22 77.19 1.12 

Tree 60.20 1.31 73.19 1.18 

Bagging 52.99 1.49 73.03 1.19 

Random Forest 53.45 1.48 69.60 1.24 

Boosting 65.80 1.20 74.53 1.16 

A.N.N. 64.44 1.23 84.99 1.02 

M.A.R.S 41.09 1.93 97.90 0.88 

OC 

PLSR 0.12 2.67 0.13 2.41 

Tree 0.20 0.58 0.28 1.11 

Bagging 0.15 2.05 0.17 1.77 

Random Forest 0.14 2.30 0.15 1.98 

Boosting 0.13 2.35 0.19 1.61 

A.N.N. 0.09 3.42 0.15 2.10 

M.A.R.S 0.12 2.70 0.12 2.57 

 

To make the reader more comfortable with the results of PLSR prediction, 

scatterplots of the predicted vs measured values for these properties are shown in 

Figure 4. In this plot, the values of the Radj
2  and regression’s straight lines of both 

the datasets are also highlighted. In order to make exhaustive the discussion about 

the results of this work, the outcomes of the other models cannot be overlooked. 
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Figure 4. Scatterplots of observed vs predicted soil properties for calibration and validation 

data sets in PLSR. 

        
                                            (a)                                                                          (b) 

          
(b) (d) 

 

In particular, considering singularly all different models examined through the 

statistical-computational environment R (R Core Team, 2020), there are some 

models with behaviour similar to PLSR. One of these models is MARS, that has 

performed very good/excellent values in terms of RPD in Clay and OC (2.3 ≤ RPDcal 

≤ 2.7) and good ones in Sand and Silt. It is remarkable that MARS is better than 

PLSR to predict OC, as evidenced by the excellent values of RMSE and RPD in both 

calibration and validation datasets. In the validation phase, this model returns good 

outputs (1.8 ≤ RPDval ≤ 2.6), excluding Silt, in which predictions are not 

recommended (RPDval ≤ 1). The second model in order of goodness of predictions 

is Boosting, thanks to its good values of RPD in both calibration and validation terms 

(1.6 ≤ RPDcal,val ≤ 2.5). Also in this case, RPD for Silt variable have unacceptable 

values (RPDcal,val ≤ 1.2).  

Another good model in prediction of content of soils are RF, in fact in this case 

study, it has performed very good values of RPD both in calibration and validation 

sets for Clay, Sand and OC (2 ≤ RPDcal,val ≤ 2.3), while fair and poor ones for Silt 
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(1.2 ≤ RPDcal,val≤ 1.5). It is also very useful to highlight that RF has the best 

compromise, in RPD outcomes, to predict Silt among the various models performed.  

Bagging is an alternative model that has carried out good RPD values between 

1.5 and 2 for Clay, Sand, and OC, while between 1 and 1.5 for Silt. ANN instead, 

has performed lower values of RPD in Clay Sand and Silt, denoting itself as a poor 

model to predict soil texture but an excellent model in order to predict OC with 

values extremely good (RPDcal = 3.4 and RPDval = 2.1). The worst model performed 

is RT, which in all variables considered, carried out poor/slightly fair values of RPD 

in both calibration and validation datasets, but its usage is still not recommended.  

5. Conclusions 

This paper aims to evaluate the goodness of different multivariate and statistical 

ensemble methods in order to predict some soil properties.  

        Analogies and differences with our results appear in other papers, where authors 

applied similar techniques in different geographic areas, performing statistical 

calibration. For all properties we analyzed, PLSR is the technique that gived best 

results. This technique is the most complete and it is useful to predict many soil 

properties. Anyway, other alternative methods give good results. It would be worth 

if these techniques would be applied to deepen studies in soil properties predictions. 

Please refer to future studies in order to develop and broaden these issues, which are 

the subject of numerous papers. 
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