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Abstract: Background: Developmental and epileptic encephalopathies (DEE) are a group of disor-
ders often linked to de novo mutations, including those in the ATP6V1A gene. These mutations,
particularly dominant gain-of-function (GOF) variants, have been associated with a spectrum of
phenotypes, ranging from severe DEE and infantile spasms to milder conditions like autism spectrum
disorder and language delays. Methods: We aim to expand ATP6V1A-related disease spectrum by
describing a six-year-old boy who presented with a febrile seizure, mild intellectual disability (ID),
language delay, acquired microcephaly, and dysmorphic features. Results: Genetic analysis revealed
a novel de novo heterozygous pathogenic variant (c.82G>A, p.Val28Met) in the ATP6V1A gene. He
did not develop epilepsy, and neuroimaging remained normal over five years of follow-up. Although
ATP6V1A mutations have traditionally been linked to severe neurodevelopmental disorders, often
with early-onset epilepsy, they may exhibit milder, non-progressive phenotypes, challenging previous
assumptions about the severity of ATP6V1A-related conditions. Conclusions: This case expands the
known clinical spectrum, illustrating that not all patients with ATP6V1A mutations exhibit severe
neurological impairment or epilepsy and underscoring the importance of including this gene in
differential diagnoses for developmental delays, especially when febrile seizures or dysmorphic
features are present. Broader genotype–phenotype correlations are essential for improving predictive
accuracy and guiding clinical management, especially as more cases with mild presentations are
identified.

Keywords: ATP6V1A mutation; speech delay; intellectual disability

1. Introduction

Developmental and epileptic encephalopathies (DEEs) are a clinically and genetically
heterogeneous group of disorders in which seizures interfere with neurological and cogni-
tive development. DEEs often arise from de novo mutations (e.g., SCN1A, GLUT1, KNQ2)
with a broader phenotypic spectrum than initially believed, as demonstrated by various
Next Generation Study (NGS) studies [1,2]. Nevertheless, DEE diagnosis relies on clinical
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and neurophysiological criteria [3]. In particular, seizure activity can impact cognitive func-
tions, disrupt brain networking, especially in the hippocampus, and cause deficits in brain
plasticity [4]. There are numerous causative genes, and most of the mutations involved are
de novo. It has been widely demonstrated that in cases of non-consanguineous parents,
most patients with genetic syndromes present de novo mutations. This is particularly
true for developmental disorders, where nearly half of the affected patients have de novo
mutations in dominant autosomal genes [5,6]. One of these genes is the ATP6V1A gene,
whose dominant de novo heterozygous variants with gain-of-function (GOF) have been
recently linked to DEEs and neurodegeneration [7,8]. Through the years, ATP6V1A gene
mutations have been described in patients with other phenotypes, such as cutis laxa, arising
from recessive de novo or autosomal recessive loss-of-function (LOF) mutations [9], or
autism spectrum disorder [10] and cerebral visual impairment [11] arising from dominant
de novo GOF mutations. Moreover, mild phenotypes have been reported in the litera-
ture. Thus, a genetic variant in ATP6V1A does not necessarily imply a DEE [3]. Guerrini
et al. [12] described the biggest cohort of ATP6V1A gene variants patients, widening the
acknowledgment of this disease from a clinical and genetic/molecular point of view.

To date, it is clear that there is a need to expand the ATP6V1A-related disease spectrum
describing the specific clinical phenotype associated with novel mutations not previously
reported.

2. Case Presentation

We report the case of a six-year-old boy who presented in January 2018 at the pediatric
emergency department for a bilateral tonic-clonic febrile seizure during an Influenza A
infection (Table 1). The seizure lasted for five minutes and resolved spontaneously. The post-
critical phase was characterized by confusion, transient hypertonus with hyperreflexia, and
complete amnesia. He was born at term by elective Cesarian section from consanguineous
parents of Northern African origins after an uneventful pregnancy. Birth weight, length,
and head circumference (36 cm [+1 Standard Deviation, SD]) were within the normal ranges.
He attended kindergarten, and his psychomotor development was reported to be normal
until five years of age, when he was diagnosed with an expressive and receptive language
disorder and mild intellectual disability (ID) (total IQ = 64, verbal IQ = 55, performance
IQ = 76). Two years before, the parents reported a transient episode of “absence” during
a fever, with a temporary loss of consciousness lasting less than one minute that had not
been further investigated.

On examination, he had microcephaly (head circumference 48 cm, −2.2 SD) and
dysmorphic features (long face, mild malar hypoplasia, slightly down-slanting palpebral
fissures, mild hypotelorism, ears lifted, and enamel hypoplasia) (Figure 1). On neurological
examination, he presented signs of gross and fine motor dyspraxia. Cerebral spinal fluid
(CSF) chemical, physical, and microbiological investigations were normal. Prolonged video-
electroencephalography (EEG) recordings showed slow high-voltage theta background
activity, with bilateral multifocal spikes prevalent on the left hemisphere (Figure 2). Brain
magnetic resonance imaging (MRI) (Figure 3), audiometric testing, and complete abdomen
ultrasound were normal. Single nucleotide polymorphism (SNP) arrays were negative for
microdeletions or microduplications. NGS analysis of a multigene epilepsy panel detected
a de novo heterozygous variant c.82G>A (p.Val28Met) in the ATP6V1A gene. This variant is
absent from the Genome Aggregation Database (gnomAD) and is classified as pathogenic
based on the American College of Medical Genetics and Genomics (ACMG) criteria (PVS1,
PM2, PP2, PP3, PM6).
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Table 1. Summary of the clinical features of the patient.

Age (years), sex 8, male

De novo ATP6V1A mutations c.82G>A (p.Val28Met)

Clinical diagnosis Fever-induced seizures; expressive and receptive language
disorder and mild intellectual disability.

Dysmorphic features
Microcephaly, long face, mild malar hypoplasia, slightly
downloanting palpebral fissures, mild hypotelorism and
ears lifted and enamel hypoplasia

Head circumference At birth: 36 cm (+1 SD)
At 8 years: 49 cm (−2.4 SD)

Age/symptoms at first clinical
presentation 5 years, language delay, mild ID

Age at seizure onset 4 years

Seizures types Bilateral tonic-clonic febrile seizures

Interictal EEG Slow high voltage theta background activity with bilateral
multifocal spikes, prevailing on the left hemisphere

Brain MRI Normal at 6 years and 11 years

Clinical phenotype at last follow-up Mild ID (DQ: 64), mild language delay, minimal dyspraxic
notes and difficulties in executing the commands.

After five years of follow-up, the patient is seizure-free, still presents mild non-
progressive ID and language delay, minimal dyspraxic notes and difficulties in executing
the commands, did not develop any cerebral alterations at the MRI imaging of the brain,
and never developed any other neuropsychiatric comorbidities such as Attention Deficit
Hyperactivity Disorder (ADHD) or Oppositional Defiant Disorder (ODD).
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Figure 2. Standard 19-electrode EEG (20 s/pag—20 µV/mm). (a) first sleep EEG at the age of
5 years. Normal background sleep activity during N2 NREM phase, adequate representation of
the physiological spindles, with some superimposed delta waves on the fronto-temporal regions.
(b) The last follow-up wake EEG at the age of 11 years. Normal background activity with occipital
alfa rhythm at 8 Hz. No sign of slow or epileptiform abnormality.
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Figure 3. Magnetic Resonance Imaging (MRI) of the reported patient (a) sagittal Fluid Attenuated
Inversion Recovery (FLAIR) sequence; (b) axial T1-weighted inversion recovery (IR) sequence.
MRI showed no typical alterations of ATP6V1A patients (e.g., hypomyelination and encephalic
hypoplasia/atrophy).

3. Evidence from the Literature
3.1. Effects of ATP6V1A Mutations

The pathogenesis involves the effects of v-ATPase in lysosomal homeostasis and
neuronal connectivity. V-type proton (H+) ATPase (V-ATPase) is an ATP-dependent H+
pump that establishes and maintains the acidic environment of intracellular organelles
(including secretory granules, endosomes, and lysosomes) and extracellular compartments.
It is a fundamental component of the synaptic vesicles, where it allows neurotransmitter
loading and regulates synaptic transmission [7]. Pathogenic mutations might induce
specific synaptic defects, resulting in aberrant neural connectivity and altered synaptic
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plasticity, possibly causing seizures and cognitive impairment [13]. A physiological role
in the surveillance of synaptic integrity and plasticity is hypothesized for ATP6V1A, as
its depletion affects neurite elongation, stabilization, and function of excitatory synapses
and prevents synaptic rearrangement upon the induction of plasticity. These observations
might explain the associated neurodevelopmental diseases [14].

Notably, in vivo studies on knockdown zebrafish revealed several abnormalities, in-
cluding suppression of acid secretion from the skin, growth retardation, trunk deformation,
and loss of internal Ca2+ and Na+, highlighting the potential critical role of H+-ATPase in
embryonic acid secretion and ion balance [15].

Moreover, ATP6V1A mutations have also been associated with an autosomal reces-
sive form of metabolic cutis laxa syndrome. The intra-lysosomal environment V-ATPase-
mediated acidification is fundamental for normal vesicular trafficking and for the activation
of the enzymes involved in the glycosylation required for the assemblage of the extra-
cellular matrix (ECM). The disruption of these processes results in abnormal glycosylation
of serum proteins, intracellular accumulation of tropoelastin, reduced deposition of mature
elastin in the ECM, accumulation of abnormal lysosomes and multivesicular bodies, and
increased autophagy [9,16].

ATP6V1A is also a critical gene related to autophagy, which can induce autophagy
through the activation of the mTOR signaling pathway [17]. Moreover, ATP6V1A is also
reported to be involved in iron metabolism [18].

3.2. Clinical Phenotypes

De novo heterozygous ATP6V1A mutations have been recently associated with DEE,
infantile spasms, autism, and childhood focal epilepsy with favorable outcomes [7,8,12,19,20].

To date, only a few patients with de novo ATP6V1A mutations have been described,
with particular regard to Guerrini et al. [12], who reported 26 cases with de novo ATP6V1A
mutations. Among them, 81% exhibited epilepsy (mostly early-onset), with fever-induced
seizures as initial manifestations in 40%, while only one patient with fever-induced seizures
onset did not develop epilepsy.

Febrile seizures seem to be a quite typical epileptic feature in these patients. Patients
with epilepsy, in addition, often manifested mild to moderate developmental delay. DEEs
are the main clinical evolution in patients with epilepsy (76%), with infantile spasms
as the most common prominent seizures (85%). Moreover, severe developmental delay
characterized most patients with DEE (63%) [12].

Language impairment seems to be a prominent feature of this genetic condition. Of
note, not only the patients with epilepsy and DEE developed profound developmental
delay and/or non-verbal status but also patients with mild phenotypes, namely febrile
seizures or no seizures [12].

Moreover, acquired microcephaly and enamel dysplasia are frequently reported in
ATP6V1A-related disorders (35% and 38%, respectively) [12].

Xiaoquan et al. reported six related patients with epilepsy without any other neurode-
velopmental abnormalities. They were also proven to have good control with levetiracetam,
potentially being crucial for the development of such patients [20]. Also, Li et al. described
three new monoallelic ATP6V1A variants in people with childhood-onset focal epilepsy
with good treatment response and favorable outcomes [21].

3.3. Neuroimaging

The most common MRI findings in these patients are hypomyelination and mild to
severe local/diffuse encephalic hypoplasia/atrophy [7,12].

Only a few patients described had a normal brain MRI [8,12,20,21]. The few patients
reported with normal brain MRI in most of the cases developed epilepsy and/or psychi-
atric disorders (e.g., ADHD, obsessive-compulsive disorder). Focusing on those patients,
Kadwa et al. [8] reported a 7-month-old boy who presented with flexor spasms with
loss of the previously acquired milestones, acquired microcephaly, no dysmorphism EEG
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suggestive of hypsarrhythmia with multifocal interictal discharges. Within the cohort of
Guerrini et al. [12], five patients presented normal findings at brain MRI. The main clinical
manifestations were mild–moderate ID, mild to severe epilepsy, enamel dysplasia, poor
language/non-verbal status, and neuropsychiatric disorders. Of note, two of the patients
presented with severe hypotonia and died prematurely. Conversely, the patients who
presented with febrile seizures or who did not manifest seizures showed brain MRI abnor-
malities. Xiaoquan et al. [20] described a 9-month-old boy with non-drug-resistant epilepsy
that arose with febrile seizures. Li et al. [21] reported three young males with different
types of childhood-onset epilepsy with good clinical pharmacological treatment response.

4. Conclusions

We report a novel pathogenic ATP6V1A variant in a patient with a mild neurological
phenotype. Unexpectedly, our patient never developed epileptic encephalopathy. Still, he
presented febrile seizures and developed only language delay and mild non-progressive
ID without epilepsy nor abnormalities on brain MRI over the years. He also developed
acquired microcephaly and enamel dysplasia, which are frequently reported in ATP6V1A-
related disorders.

As ATP6V1A-related phenotypes are being better described, it is crucial to consider
both sides of the spectrum and highlight that not only severe neonatal encephalopathy
and DEE but also very mild non-progressive phenotypes are possible. As already experi-
enced with other monogenic causes of DEE, the initial phenotype descriptions tend to be
biased by the selection of more severe clinical presentations. However, a deeper knowledge
of the phenotypic spectrum is essential for future genotype–phenotype correlations, as
well as prognostic or reproductive counseling. Considering reproductive counseling, in
our case, we advised the family to perform prenatal invasive testing for potential future
pregnancies, as we cannot rule out germline mosaicism in the parents, thus leading to a
recurrence risk of 1–2% [22]. Moreover, the eventual new ATP6V1A variants, particularly
of unknown significance (VUS) or likely pathogenic, should be validated through func-
tional studies, like RNA-sequencing, that could enable researchers to further elucidate the
complex mechanisms of this genetic condition [23,24]. We strengthen the need to consider
ATP6V1A-related diseases in the differential diagnosis of developmental delay without
epilepsy (e.g., by including this gene in an NGS dedicated panel) when febrile seizures,
acquired microcephaly, and/or enamel dysplasia are present.
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