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Abstract

Deep learning has been extensively utilized in the domains of bioinformatics and
chemoinformatics, yielding compelling results. However, neural networks have
predominantly been regarded as black boxes, characterized by internal mechanisms
that hinder interpretability due to the highly nonlinear functions they learn. In
the biomedical field, this lack of interpretability is undesirable, as it is imperative
for scientists to comprehend the reasons behind the occurrence of specific diseases
or the molecular properties that make a compound effective against a particular
target protein. Consequently, the inherent closure of those models keeps their results
far from being trusted. To address this issue and make deep learning suitable for
bioinformatics and chemoinformatics tasks, there is the urge to develop techniques
for explainable artificial intelligence (XAI). These techniques should be capable
of measuring the significance of input features for predictions or determining the
strength of their interactions. The ability to provide explanations must be integrated
into the biomedical deep learning pipeline, which utilizes available data sources
to uncover new insights regarding potentially disease-associated genes, thereby
facilitating the repurposing and development of new drugs. In line with this objective,
this thesis focuses on the development of innovative explainability techniques for
neural networks and demonstrates their effective applications in bioinformatics and
medicinal chemistry. The devised models find their place in the pipeline, wherein
each component of the protocol generates effective and explainable results. These
results span from the discovery of disease genes to the repurposing and development
of drugs. However, deep learning lives in synergy with classical machine learning
models and network-based algorithms, which remain relevant in this field and,
therefore, hold a place within this thesis. Moreover, they offer the basis for proper
training of deep learning models and pave the way for the development of XAI
techniques for neural networks. The proposed work demonstrates how XAI can
benefit biomedicine, proving deep learning to be a powerful tool to solve biomedical
problems and that the obtained results can be explained. This contributes to the
delivery of not only accurate but also trustworthy results, fulfilling the need for
explainability of medical doctors, geneticists, and scientists in the life sciences and
leading toward a fully explainable biomedical deep learning pipeline.
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Chapter 1

Introduction

In recent years, deep learning [1] has raised the interest of scientists and practitioners
in the broader field of biomedicine. Given its performances, often superior to stan-
dard machine learning models and statistical techniques, researchers focused deeply
on developing and applying neural networks in bioinformatics, chemoinformatics,
and medicinal chemistry. However, neural networks have almost always been treated
as black boxes, as high-performing machine learning tools that can deliver accurate
results with no clear idea of how to interpret them. In fact, the highly nonlinear
functions learned by those models prevent the possibility of opening the model itself
and providing an interpretation of the results, unlike simpler models such as linear
regression and decision trees, from which one can extract the rules determining the
final prediction.

This behavior is not desirable in medical scenarios, in which medical doctors and
researchers are not only interested in the occurrence of a phenomenon (e.g., the
likelihood of a disease) but they need to know why the phenomenon happens, what
input features drove the prediction (e.g., the presence of a mutated gene). The
closure of those models kept the results obtained far from being trusted and limited
their effective use in medical fields [2, 3], such as genetics [4]. In this regard, fea-
ture importance and correlation between input and output become essential when
using machine learning models in life sciences. Given the huge interest in using
deep learning in this context, there has been a rising need for the development
of explainable artificial intelligence (XAI) [5] techniques that could cope with the
absence of interpretability. Even though neural networks are the most prominent
example of black-box machine learning models, this lack of interpretability is by no
means confined to deep learning but also invests other “classical” machine learning
algorithms, like support vector machines (SVMs) [6, 7]. Although support vectors
can give an idea of how the model behaves, they do not offer a comprehensive
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understanding of the role of each feature in the prediction; XAI techniques must
come into play [8, 9]. Furthermore, the development of explainability strategies for
classical machine learning models can also benefit deep learning, as the techniques
can be extended and adapted to suit neural networks.

After having analyzed the current scenario of biomedical deep learning, which this
thesis proposes to render explainable, we will present effective XAI methodologies
that allow the trustworthy usage of neural networks in biomedical applications, from
disease gene discovery to drug development. When considering biomedicine and
the usage of machine and deep learning models, we can think of a pipeline that,
starting from databases containing genetic, molecular, and chemical information,
allows researchers to devise models to a) discover genes involved in a disease’s
mechanisms, b) use the insights obtained to reuse known drugs for therapeutic
purposes on the disease, and c) develop new treatments starting from what was
discovered in the previous steps of the pipeline. If deep learning is used, its results
are only satisfactory if they can be explained. For instance, a deep learning model
suggesting a drug for a new treatment must also explain why the drug was chosen
(e.g., because of the presence of some specific properties or features). Thus, XAI can
help increase trust in predictive and diagnostic models, which otherwise would remain
obscure and not usable in biomedicine. At the same time, explainability can aid in
the extraction of new knowledge, for instance, by determining important features
driving model predictions, leading to insights that are unobtainable when using a
model in a black-box fashion. With this spirit, the work proposed in this thesis is
meant to render explainable the deep learning components of the pipeline depicted in
Figure 1.1. We will now describe it, introducing our solutions for each of its elements.

We can identify some key components in the proposed explainable biomedical deep
learning pipeline. The first component pertains to the training of a gene discov-
ery model (block 1). Disease gene discovery can be carried out in the context
of network-based gene–disease association (GDA) identification or genome-wide
association studies (GWAS). GDAs signify established associations between genes
and diseases, indicating the involvement of specific genes in disease etiology and
mechanisms. Bioinformatics and network medicine approach the problem via sta-
tistical, combinatorial [10, 11], or graph-based strategies [12]. Such methods rely
on data derived from protein–protein interaction (PPI) and gene–disease networks,
for which among the relevant databases we find BioGRID [13] and DisGeNET [14],
respectively. Nonetheless, more recently, machine learning and deep learning-based
approaches have emerged [15]. In contrast, GWAS [16] utilize patients’ complete
DNA set to ascertain whether a gene mutation’s presence correlates with a disease.
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Typically, this analysis is conducted with statistical instruments [17] using large-scale
databases, such as UK Biobank [18], containing genetic information from thousands
of individuals. After validation, the genes identified through these studies can be
incorporated into the databases employed in gene–disease association studies. GWAS
and network-based gene prediction share a common objective, adopting distinct data
types and methodologies.

3

BIOMEDICAL
DATABASES

DISEASE GENE
DISCOVERY

MODEL
EXPLANATION

FEATURE
IMPORTANCE

FEATURE
INTERACTION

1

2

PRIORITIZED
GENES

DRUG
REPURPOSING

AND DISCOVERY

GENERATIVE
DRUG DESIGN

CANDIDATE
DRUGS

MODEL
EXPLANATION

4

5

ADD TO

IMPORTANT FEATURES

USE

USE

ADD TO

Figure 1.1. The proposed explainable biomedical deep learning pipeline. Each block of
the pipeline finds a place within this thesis. Databases containing genetic information
are used to train models for disease gene discovery (block 1). Those models are then
explained, uncovering important features for predictions and possible interactions (block
2). The genes discovered in blocks 1 and 2 are integrated into the databases, augmenting
the knowledge in the field. Such genes are then used as drug targets to find treatments
for diseases (block 3), also exploiting information from chemical repositories. Block 4
pertains to the explanation of the drug discovery models. The important features found
can drive the generative development of novel drugs (block 5). The drugs identified in
blocks 3 and 5 are finally added to chemical drug–target databases, closing the pipeline.

When utilizing machine and deep learning to predict gene–disease associations, it
is crucial to obtain explainable outcomes (block 2). In this scenario, two facets of
explainability can be explored: feature importance and feature interaction. As the
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name implies, the former aims to identify the influence of individual features on
the prediction (e.g., the presence of a genetic mutation causing a trait). The latter
concentrates on unveiling potential interactions among input features (e.g., whether
two genes have a joint contribution to the likelihood of a disease). In this thesis, we
will address both forms of explainability for neural networks within the domain of
disease gene prediction.

Regarding this, we devised a methodology for feature importance to facilitate dis-
ease gene discovery by leveraging biological network data. The proposed method,
XGDAG [19], detailed in Section 3.2, employs graph neural networks (GNNs) [20] for
predicting associated genes while incorporating XAI techniques. This combination
not only yields explainable outputs but also enables the identification of new gene
associations in a novel utilization of the explainability concept. However, before
explanation, a deep learning model must undergo appropriate training. Training
in the field of bioinformatics poses challenges due to imbalanced datasets often
characterized by a positive–unlabeled (PU) structure [21]. To address this issue, we
have first devised a methodology for learning in PU settings, called NIAPU [22]
and presented in Section 3.1. This serves as the foundation for developing our
explainability strategy, as it enables proper learning for neural network models.

With regard to feature interaction, we will present EpiDetect, a comprehensive
solution for addressing it within the context of epistatic interaction detection from
GWAS data. Epistatic interactions [23] denote the nonlinear effect that two or
more genetic variants, resulting from modifications occurring on a gene, exert on
a phenotype or disease. Capturing these interactions is a nontrivial task since it
involves examining the effects of all possible combinations of gene mutations across
the DNA set. We relied on prior GWAS studies that narrowed down the potential
genes implicated in these interactions to address this complexity. Subsequently, we
employed a neural network to predict the occurrence of a disease. Lastly, as a main
contribution, we developed a strategy for neural network explainability to reveal
interactions among input genetic variants. We will present this work in Section 3.3.

Upon discovering disease-associated genes, it becomes possible to integrate them
into the data sources utilized during their identification, thereby augmenting the
knowledge pertaining to the investigated diseases and providing novel data for future
research. This also opens the possibility to explore novel treatments. For example,
it becomes feasible to repurpose existing drugs or design new ones to target the
newly discovered associated genes or proteins (block 3). This thesis also addresses
this issue in Section 3.4, considering primary biliary cholangitis (PBC) [24] as a case
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study for drug repurposing. PBC is an autoimmune liver disease characterized by a
lack of available treatments and was chosen as a target disease due to the significant
interest in discovering potential cures for this condition.

Various approaches can address the challenges of drug repurposing and discovery.
The approach we propose for PBC is bioinformatics-driven, where gene priori-
tization guides the identification of potential treatments. However, alternative
chemoinformatics-based approaches can be employed with annexed XAI solutions
(block 4). For example, machine learning or deep learning models can be trained to
determine the activity of a given molecular compound against a specific target, using
molecule structures or feature descriptors as input. Molecular activity prediction
is a fundamental task in drug discovery, making it a relevant aspect of this thesis.
Considering the graph-like nature of molecules, our chosen strategy involves training
a graph neural network model to extract information from the molecular compounds
and accurately predict their activity. We integrate explainability into our strat-
egy, developing a novel approach tailored to GNNs. In Section 4.1, we introduce
EdgeSHAPer [25], a new methodology that, first of its kind, approximates Shapley
values from game theory [26] as indicators of edge importance, thereby identifying
the most significant molecular substructures for the predictions.

Another paramount task in drug design, stickily related to molecular activity, in-
volves compound potency prediction in protein–ligand interactions. This task entails
evaluating the strength of the interaction between a molecular compound and a
target protein. It can be approached as a regression task within machine learning.
Given GNNs have been increasingly used in this domain, our research aimed to delve
deeper into what GNNs truly learn when trained for such a purpose. GNNs leverage
interaction graphs constructed from X-ray structures of protein–ligand interactions,
from which three key components emerge: ligand compound, target protein, and
intermolecular interactions. Existing literature suggests that ligand structures play
a major role in potency prediction tasks [27] and no real learning of interactions
occurs. Thus, our objective was to investigate more on this claim, utilizing the XAI
technique proposed in Section 4.1. The obtained results, presented in Section 4.2,
yielded unexpected findings and intriguing insights [28].

The studies above use our newly developed explainability strategy based on the
approximation of Shapley values. However, it is worth noting that approximated
Shapley values do not always yield satisfactory results. Notably, in the case of
molecular activity prediction using SVMs, evidence suggests that approximation
fails to accurately capture the true importance of molecular features [9]. With this
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in mind, we aimed to address this limitation and propose a technique for the exact
computation of Shapley values. Since SVM models are widely used in chemoin-
formatics, developing XAI methods for these has a high scientific relevance. The
SVERAD method [29], proposed in Section 4.3, was effective in both computing
Shapley values and reducing the expected running time of these calculations. At
the same time, working with SVMs allowed us to ease the complexity associated
with neural networks, laying the foundations for extending the exact computation of
Shapley values to deep learning models in future research endeavors (Chapter 5).

Identifying important features driving predictions serves not only as a means to
comprehend and rationalize model behavior but also as a starting point for devel-
oping new chemical compounds for drugs. This lays the basis of generative drug
design (block 5). While not explicitly examined in this thesis, we will point to this
aspect for future research perspectives. Generative artificial intelligence has recently
emerged as a breakthrough in various domains, including drug discovery [30, 31].
This field can benefit from the incorporation of generative models into its pipeline.
From generative adversarial networks [32, 33] to the advancements in large language
models [34, 35], generative deep learning tools can create new molecular structures
based on existing compounds and desirable drug properties. By combining this
capability with our proposed XAI approaches, it becomes possible to infuse expert
knowledge into these models, guiding the generation of novel drugs based on the
prioritized important features identified during the preceding steps of the pipeline.
Once the efficacy of the generated drugs has been validated, they can be integrated
into existing databases, thereby fueling future research and filling the last gap in
the explainable biomedical deep learning pipeline.

In light of the work it will present, this thesis is structured as follows. Chapter 2
will introduce the background and review the relevant literature on the main topics
addressed. Chapter 3 will focus on the bioinformatics aspects of the proposed
explainable biomedical deep learning pipeline, while Chapter 4 will analyze the
chemoinformatics components. Lastly, Chapter 5 will draw the conclusions and
discuss the central messages of this thesis while looking forward to future research
directions.
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Chapter 2

Background and Related Work

This chapter illustrates the background knowledge and related work of the main
topics covered by the research, describing the areas involved in the proposed pipeline.
We describe the challenges and how they have been tackled in the literature. This
chapter is meant to give the reader the necessary background to understand better
the proposed methods and the applications described in this thesis. As introduced,
the topics analyzed cover two interconnected macro-areas of the broader biomedicine
field: a) bioinformatics and network medicine, and b) chemoinformatics and medicinal
chemistry.

2.1 Bioinformatics and Network Medicine

The first macro-area of biomedicine that was dealt with in this thesis is bioinformat-
ics. This highly interdisciplinary field aims to investigate biological phenomena by
leveraging the strengths of life sciences, computer science, and engineering, thereby
creating specialized algorithms and methodologies tailored for analyzing biological
data.

Bioinformatics relies on the use of omics data [36, 37], which pertains to large-scale
biological datasets capturing comprehensive information about molecules and their
interactions within biological systems. Encompassing diverse fields such as genomics,
transcriptomics, proteomics, metabolomics, and epigenomics, each omics discipline
focuses on distinct types of molecules, offering valuable insights into the structure,
function, and regulation of biological systems.

In particular, genomics entails the study of an organism’s complete set of genes,
encompassing their sequences, organization, and variations. It offers a comprehen-
sive perspective on an individual’s genetic blueprint. Genomic data are typically
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generated through techniques such as DNA sequencing [38], enabling the identi-
fication of genetic variations associated with diseases, including single-nucleotide
polymorphisms (SNPs). The latter are substitutions of single nucleotides in a given
position in the genome (called locus). Nucleotides, which are adenine (A), cytosine
(C), guanine (G), and thymine (T), are the basic building blocks of DNA, forming
genes. Nucleotide substitutions may be involved in the mechanisms of diseases or
determine specific traits. SNPs are of particular interest in this thesis, and they will
be analyzed in Section 3.3.

Transcriptomics focuses on transcriptome analysis, which is the complete set of RNA
transcripts produced by the genome. There are various types of RNA. Messenger
RNA (mRNA) plays a critical role in creating proteins. In this process, mRNA is
transcribed from genes. Next, the mRNA transcripts are delivered to ribosomes in
the cell cytoplasm. The ribosomes translate the mRNA and assemble amino acids
into proteins. However, since not all genes code for proteins, not all RNA transcripts
do. In fact, other types of transcripts are tasked with influencing cell structure
and regulating genes. Transcriptomics provides insights into gene expression and
can help researchers understand how genes are regulated. Techniques such as RNA
sequencing [39] are commonly used to generate transcriptomic data.

Proteomics involves the investigation of the entire set of proteins present within a cell,
tissue, or organism, commonly referred to as the proteome. Proteomic data deliver
valuable insights into protein presence, modifications, and functional roles. Lately,
there has been an increasing interest in studying interactions between molecules
in cells, especially proteins, forming the so-called interactome. Interactomics deals
with studying and analyzing the interactions between proteins and among proteins
and other molecules in cells. These interactions form networks, like protein–protein
interaction (PPI) networks and gene regulatory networks. This led to the birth
of network medicine [12], a multidisciplinary science that leverages the knowledge
embedded in network representation of biological data to extract novel insights.

Additional omics data are represented by metabolomics and epigenomics. The for-
mer centers on the analysis of metabolites, molecules offering valuable insights into
metabolic pathways and biochemical processes. The latter explores modifications to
genes and their associated proteins that can influence gene expression and cellular
function. Epigenomics aims to understand gene expression regulation and the impact
of epigenetic changes on development, aging, and diseases.

Bioinformatics and network medicine harness the representative power of omics data
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and, using algorithms and computational strategies that go from combinatorial to
machine and deep learning-based approaches, aim to gather insights into biolog-
ical systems and enable researchers to uncover complex interactions and disease
mechanisms. Consequently, particularly effective are multi-omics approaches [40],
which combine information from different omics data sources in the creation of
multiplex networks [41], able to capture the knowledge embedded in the interactions
at (and between) different omics levels, trying to mimic the complexity of biological
organisms.

In this thesis, we made use mainly of interactomics and genomic data: the former
as gene–disease and PPI networks (Sections 3.1, 3.2, and 3.4) and the latter in the
form of DNA sequences and genetic mutations (Section 3.3). This represents the
first part of the explainable biomedical deep learning pipeline, whose task is to look
for disease-associated genes and interactions between them.

2.1.1 Gene–Disease Associations

In particular, discovering disease-associated genes is one of the central tasks ad-
dressed in bioinformatics and network medicine. This refers to the first important
block in our pipeline. Gene–disease associations (GDAs) refer to the connections or
relationships between specific genes and the occurrence or development of certain
diseases or medical conditions. GDAs are critical for understanding disease etiology
and tailoring effective interventions and treatments.

GDAs are established through various approaches, including genome-wide association
studies (GWAS) [42], linkage analysis [43], and genetic sequencing [44]. Given the
great computational power modern systems offer, GWAS have become particularly
popular in recent years. They involve analyzing the genetic variations across large
populations to identify common genetic markers or variants associated with specific
diseases. Differently, linkage analysis examines the inheritance pattern of diseases
within families to pinpoint genome regions that may contain disease-causing genes.
Genetic sequencing technologies have also advanced significantly, allowing researchers
to identify disease-causing mutations in specific genes.

Once GDAs are identified, they can have several practical applications. They can
aid in disease prediction and risk assessment by determining if an individual carries
genetic variations that increase their susceptibility to certain diseases. Furthermore,
GDAs can inform personalized medicine by guiding therapy decisions and drug
treatments (as discussed in Section 3.4). Targeted therapies can be developed to



2.1 Bioinformatics and Network Medicine 10

modulate the activity of disease-associated genes or proteins, potentially leading to
more effective cures.

The knowledge about GDAs gathered through the years gave birth to large databases,
free to use by the research community. Paring this knowledge on disease-associated
genes with insights from the network-like representation of biological phenomena (the
interactome), promising results in GDA discovery are coming from network medicine
approaches [12, 45] leveraging network data, such as PPI networks. Among the most
used PPIs, we find BioGRID [13], HuRI [46], and STRING [47]. In these networks,
nodes are proteins (or protein-coding genes) that are connected if an interaction
exists. The rationale behind using those data is that interaction mechanisms between
proteins can determine the pathogenesis of diseases. Thus, it is possible to study
those networks to find genes whose mutation may generate proteins involved in
disease mechanisms.

For gene discovery purposes, these interaction networks are extended with informa-
tion on disease associations, for which databases such as DisGeNET [48, 14] and
eDGAR [49] are typically used. Many gene detection techniques that rely on those
data have been developed. Among the most known approaches are DIAMOnD [50]
and DiaBLE [51], which rely on the concept of connectivity significance for finding
new candidate disease genes. This concept states that genes connected to associated
genes in an interaction network are more likely to be associated genes themselves.
Starting from a set of associated genes (seed genes), DIAMOnD assigns a value to
each neighbor based on its connectivity significance and determines a gene ranking.
In this way, it is possible to evaluate genes that have more connections to known
seed genes than expected. Using a statistical test, the most significant gene is
considered a putative gene and added to the set of seed genes. The discovery process
is repeated until the number of desired genes is retrieved. DiaBLE uses the same
rationale as DIAMOnD but introduces a new variant of the connectivity significance
score, relying on an adaptive gene universe for the statistical test. Instead of using
the whole interactome, as in DIAMOnD, it considers a smaller set of genes that
expands at any iteration as more candidates are found. This improved the retrieval
performances of associated genes compared to DIAMOnD [51].

Other gene discovery techniques, such as DOMINO [52], use machine learning to
determine associated genes. Another approach, Markov clustering [53, 54], is based
on the simulation of stochastic flow in graphs. Based on such principle, clusters are
created, and the presence of known disease genes in a cluster makes the other elements
putative disease genes. Another line of work uses random walks with restart [55, 56]
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for gene discovery. Following the guilt-by-association strategy [57] they explore the
PPI network vicinity of known disease genes based on the premise that nodes related
to similar functions tend to lie close to each other. GUILD [58] is based on the
hypothesis that the interconnections among disease genes in the interactome are
captured by taking into account the relevance of the paths connecting the disease
genes, using different topology-based ranking algorithms. ToppGene [59, 60, 61]
exploits a fuzzy-based similarity measure to compute the similarity between any two
genes based on semantic annotations, and ToppNet [61] uses extended versions of
the PageRank [62] and HITS [63] algorithms, applied over the interactome topology.

Furthermore, gene discovery can be framed as a positive–unlabeled (PU) learning
problem [21]. Differently from classic machine learning scenarios, in which a binary
dataset consists of positive and negative samples, in PU learning, instead of negative
samples, we have a set of unlabeled instances, which can be regarded as a set of
negative elements and some positive samples that have not yet been discovered.
A machine learning-based method for gene discovery working in a PU setting is
ProDiGe [64]. It uses biased begging support vector machines (SVMs) [65] trained
on positive and unlabeled instances. Training in a binary PU setting can impinge on
the quality of the model due to the noise introduced by unlabeled positive samples
treated as negative [66]. For this reason, different PU learning strategies approach
gene discovery using two-step techniques, such as PUDI [67] and EPU [68]. Those
techniques work by first identifying a set of highly likely negative genes and then
training a classifier. Pseudo-classes with different likelihoods of positiveness can
be introduced to ease the learning and give meaning to the unlabeled instances.
Introducing pseudo-classes enables proper learning for machine and deep learning
models to be used as gene discovery tools. In fact, training machine learning
models, in particular neural networks, in this scenario is made hard by the extremely
unbalancing of the dataset and the fact that the unlabeled samples may contain
possible positive genes. To cope with this, we propose a technique called NIAPU [22]
(Section 3.1) that assigns pseudo-labels to the unlabeled elements, enabling proper
learning. Then, we use this technique to train a graph neural network (GNN) as
the basis for XGDAG [19], our explainable artificial intelligence (XAI)-based gene
discovery tool (Section 3.2). Finally, we successfully apply the NIAPU pipeline for
GDA-driven drug repurposing [24], as shown in Section 3.4.

2.1.2 Epistatic Interactions

More complex than single gene–disease associations, two genes may interact, influenc-
ing a trait or disease in a nonlinear manner. This mechanism is known as epistatic
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interaction [23] (or epistasis) and refers to the phenomenon where the effect of one
allele is modified by other alleles. An allele is a version of a gene or DNA sequence
at a given locus. An individual inherits two alleles, one from each parent, which will
determine the genotype, which can be homozygous (same allele) or heterozygous
(different alleles). In epistasis, interactions between genes influence the expression
of a phenotype in a way that cannot be predicted solely based on the individual
effects of each gene. It is a common occurrence in genetics and can have significant
implications for understanding the genetic basis of complex traits and diseases that
are not only governed by one gene’s mutation.

There are different types of epistatic interactions [69], including positive epistasis
and negative epistasis. Positive epistasis occurs when the combined effect of two or
more genes is greater than the sum of their individual (marginal) effects. In this
case, the presence of one gene nonlinearly enhances the effect of another gene. It can
contribute to genetic buffering, where genetic variations that individually have mild
(or null) effects on a trait can produce a more noticeable impact when combined
or even create new phenotypes. Negative epistasis, on the other hand, refers to
situations where the effect of one gene masks or suppresses the effect of another gene.
In this case, the presence of one gene attenuates or counteracts the expression of
the other gene, resulting in a less pronounced (or absent) phenotype than expected
based on the individual effects of each gene.

Recent advances in GWAS and the significant increase of available data have helped
identify thousands of robustly associated loci and have provided novel insights about
biological pathways underpinning complex diseases and traits. However, the extent
to which potential epistatic interactions contribute to complex networks that dictate
the molecular mechanism underlying phenotypes remains to be determined. Studying
epistatic interactions can be challenging due to the large number of potential gene
combinations and the complexity of the underlying genetic networks. Researchers
have developed several approaches to examine epistatic interactions [70]. One of the
most known and effective is Multifactor Dimensionality Reduction (MDR) [71]. It
constructs a single attribute from variables, reducing data dimensionality. Geno-
types at different loci are pooled into high- and low-risk groups. This reduces the
dimensionality by creating a multilocus genotype variable, which can predict the
disease status and assess the joint effect of the merged genotypes. Unfortunately,
MDR suffers from a high computational cost due to the number of possible genotype
combinations. Another approach, Boolean Operation-based Screening and Testing
(BOOST) [72], relies on a logistic regression model that considers both marginal
and pairwise interaction effects. Relying on a boolean representation of the data for
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computational efficiency, this method can detect epistatic pairs quickly. Additional
methods proposed for epistasis detection are based on random forests (RFs) [73, 74]
and Bayesian networks [75].

A caveat of these approaches is that they are influenced significantly by marginal
(or main) effects. A marginal effect is the effect a genetic variant alone has on a
trait. This can confuse the models and make them believe that a merely additive
phenomenon caused by two high marginal effects can be an epistatic interaction.
Main effects can be tricky because they may lure algorithms into believing that
a nonlinear interaction exists, whereas it may just be the product of two additive
effects that act independently.

As described in Section 3.3, we addressed this problem by developing a neural
network-based pipeline powered by an XAI component to rationalize the predictions.
This method, called EpiDetect, opens the black box and finds interacting features
that determine the output, detecting epistatic pairs and filtering out possible marginal
effects.

2.2 Chemoinformatics and Medicinal Chemistry

After the discovery of genes associated with diseases, the second part of the ex-
plainable biomedical deep learning pipeline falls mainly in the domain of chemoin-
formatics [76, 77, 78]. This term dates back to 1998 and initially referred to the
information resources needed to optimize a molecule to render it a drug. However,
the more the field developed, the broader the definition became. Nowadays, it
relates to the development and application of computational methods and tools
for storing, organizing, retrieving, analyzing, and predicting chemical information,
encompassing a broad spectrum of topics, from data representation to structure and
property prediction and drug development. Chemoinformatics researchers use vast
amounts of chemical data to extract meaningful insights and knowledge to facilitate
decision-making processes and accelerate research and development in the chemical
domain, especially for medicinal chemistry applications [79].

Consequently, one of the primary areas of focus is the representation and encoding
of chemical structures and properties to be handled by computer programs. For this
purpose, chemical structures are typically represented using molecular graphs or
simplified line notations, such as the widely used Simplified Molecular Input Line
Entry System (SMILES) [80] or International Chemical Identifier (InChI) [81]. These
representations enable efficient storage, search, and retrieval of chemical information
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from databases for subsequent analysis with statistical and machine learning methods.

For medicinal chemistry research, chemoinformatics encompasses the development
of computational algorithms and models for analyzing and predicting chemical
properties and activities. Quantitative structure–activity relationship (QSAR) [82]
models, for example, correlate chemical structures with their biological or physico-
chemical properties, allowing researchers to predict the behavior of new compounds
based on existing data. Other approaches include molecular docking [83], molecular
dynamics simulations [84], and machine learning techniques to understand and
predict chemical interactions, binding affinities, and molecular behavior [85]. In this
regard, the relatively recent advent of more complex and accurate machine learning
models, including neural networks-based approaches that are emerging as leading
strategies [86, 87], increased the opportunities offered by computational methods in
medicinal chemistry research [88].

2.2.1 Drug Discovery

The cornerstone of chemoinformatics is represented by its applicability in drug
discovery [89, 90]. This is the first and highly interdisciplinary process in the
drug development pipeline, through which new candidate drugs are designed and
proposed for new treatments, to later undergo preclinical and clinical trials for
final approval. Computational methods have lately become fundamental to speed
up and optimize the process. The drug discovery pipeline is composed of several steps.

First, a potential target needs to be found. This target can be either a protein,
an enzyme, a gene, an RNA fragment, or a biological pathway that plays a key
role in the mechanisms of the investigated disease. As described previously, the
candidate target can be identified through bioinformatics-based strategies, such as
network-based approaches [91] or GWAS studies [92] for gene–disease association
discovery. The methods proposed in this thesis, NIAPU, XGDAG, and EpiDetect,
can be used for this purpose.

After identifying a target, several screening approaches are used to find a suitable hit
compound. Hit compounds are molecules able to interact and bind with the chosen
target. A first approach, called high-throughput screening (HTS) [93, 94, 95], aims at
rapidly identify compounds that can modulate the target of interest, heavily relying
on liquid-handling robots and automation processes to test in parallel large numbers
of molecules [96]. HTS can also be used for toxicity assays [97, 98]. Another solution
for hit compound identification is offered by virtual screening [99]. It involves using
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computational methods, including deep learning-based strategies [100], to screen
large databases of chemical compounds and suggest those with potential therapeutic
activity against the biological target. The selected compounds undergo subsequent
experimental validation. This approach helps perform molecular activity prediction
and assess toxicity, prioritizing compounds in a cost-effective manner saving time
and resources in the drug development pipeline. It is also possible to predict the
ADME properties (absorption, distribution, metabolism, and excretion) [101], which
describe how a drug is processed by the organism, of critical importance for its
effective use. Virtual screening is used to select promising hit compounds by lever-
aging libraries of chemical structures. Still, it also proves to be a powerful tool for
drug repurposing applications [102, 103, 104], screening against databases of already
available and approved drugs.

In this phase, compound activity and potency prediction are central tasks for which
a variety of computational methods are employed. The research community made
substantial efforts in developing computational methods to discover active com-
pounds and perform fast and accurate virtual screening. Those models can help
determine if a molecule is a hit compound or not, as a classification problem, or
predict its potency in the interaction, as a regression problem. Molecular activity
and potency prediction are two related and interconnected tasks in drug design.
Ligand-based studies rely on ligand molecule information to predict binding activity
or affinity. Differently, structure-based studies leverage the structural information of
the drug target, such as the binding sites. Both ligand and protein information can
be exploited, either independently (pair-based studies) or explicitly considering the
interaction between them (the so-called protein–ligand complex) in complex-based
studies.

In ligand-based design, computational methods include multiple linear regression
models for QSAR modeling [105, 106], SVM models, or RF regression [107, 108]. In
addition, deep learning is increasingly employed [85, 109, 110, 111]. In structure-
based design, ligand binding energies are roughly approximated using different
types of molecular mechanics-based scoring functions [112, 113, 114] or predicted
using quantum mechanics/molecular mechanics (QM/MM) [115] and alchemical
relative free energy perturbation calculations [116]. Similar to the situation with
ligand-based predictions, the increasing popularity of deep learning has also trig-
gered neural network applications in structure-based design, such as the use of
convolutional neural networks to predict ligand affinity from voxel representations
of ligand binding sites [117, 118]. Furthermore, GNNs including message-passing
neural networks (MPNNs) [119] have recently been investigated for the prediction
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of affinity from protein–ligand interaction graphs [27], which are usually obtained
from X-ray structures of protein–ligand complexes. We will now describe in more
detail some salient state-of-the-art machine and deep learning solutions for molecular
activity and binding affinity prediction.

Classic machine learning algorithms usually work with predefined features, such as
molecular or interaction fingerprints [120, 121, 122], among which we find the widely
used Morgan fingerprints [123]. Fingerprints are binary vectors describing whether a
molecular feature is present or not. Differently, deep learning models mostly leverage
molecular structures, either in the form of 3D grids or explicitly working on graph
representations. Machine learning algorithms, such as SVMs and RFs, have been
largely employed for compound activity prediction and established themselves as
mainstays in molecular machine learning, with many successful applications and
investigations [108, 124, 125, 126, 127, 128, 129, 130].

Focusing on deep learning approaches, simple multilayer perceptrons (MLPs) [131]
using fingerprints proved effective for classifying active molecules [132] and looking
for inhibitor compounds [133]. However, the most effective deep learning solutions
employ molecular or interaction structures, either in terms of 3D grids or graph
representations. Among the first strategies of this kind, we find AtomNet [134], a
convolutional neural network (CNN)-based model that operates on 3D grids con-
structed out of protein–ligand complexes to classify active compounds. This work
was the beginning of a series of successful CNN-based solutions for molecular activity
prediction. Indeed, in the same family of strategies, we find BindScope [135] and
Pafnucy [118], both employing as input voxelized representation of ligand and pro-
tein complex structures for compound activity and potency prediction, respectively.
DeepDTA [136] uses two CNNs applied to ligand and protein representation sepa-
rately, later concatenated in a combined representation for the final binding affinity
regression. This method was later extended to WideDTA [137], taking as input
ligand substructures information and protein motifs. DeepAtom [138] was later devel-
oped and, employing the same rationale as the previous complex-based approaches,
outperformed its counterparts in potency prediction. Another convolution-based
method is DeepConv-DTI [139], which uses Morgan fingerprints [123] for ligand rep-
resentation and raw protein sequences for activity prediction. Differently, recurrent
neural networks (RNNs) have also been employed. For instance, DeepAffinity [140]
is an autoencoder model unifying RNNs and CNNs in an effective strategy that,
taking as input protein as aminoacid sequences and ligand molecules as SMILES
representations, predicts the binding affinity of the complex.
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After the success of convolutional and recurrent models, GNNs have started to be
explored in molecular activity prediction endeavors in drug design [141]. Graph
structures of molecules or ligand–protein complexes are used as input to those mod-
els since GNNs can powerfully leverage network data representations and generate
embeddings for nodes and edges that can be used to derive predictions. Nodes can
contain features describing atomic properties and edges can represent intramolecular
or intermolecular bonds. For instance, GraphBAR [142] is a GNN-based strategy
that uses graph convolution applied to interaction graphs constructed from binding
pockets to predict the affinity value. Furthermore, GNNs with distance-aware graph
attention mechanisms [143] outperform previously developed CNN-based models,
such as AtomNet. Moreover, PotentialNet [144] leverages a gated graph attention
network to determine binding affinity using graph representations of protein–ligand
complexes aggregating information at different stages (from connectivity to spatial
information). Mixed models were also developed, for instance by merging RNNs with
graph convolution [145]. Pair-based strategies using GNNs were also particularly
effective. Graph convolution was applied to independent graph representations of
ligands and protein pockets, whose neural network embeddings were subsequently
merged for final binding classification [146], outperforming results obtained with
classic machine learning strategies and 3D convolution approaches. DGraphDTA
uses a similar strategy for affinity prediction [147]. Finally, MPNNs were used for
binding affinity prediction, employing graph representation of proteins, ligands, and
interaction complexes [27], also used in cascade with ARMA-based GNNs [148, 149].

One enormous advantage of deep learning is that it does not need predefined features
such as fingerprints. Conversely, the learning process extracts meaningful features
from input representations, like grids or graphs. The setback is, as we already
discussed, the lack of interpretability of neural networks. In this thesis, given the
promising results and the possibilities that GNNs offer, we decided to exploit their
representation power for the topical task of molecular activity prediction, pairing
them with a newly developed XAI strategy called EdgeSHAPer [25] (described in
Section 4.1). Initially created for activity classification, we extended this methodol-
ogy to potency regression, to investigate GNN applicability to the strictly related task
of protein–ligand affinity prediction and determine what GNNs truly learn when ap-
plied to interaction graphs obtained from protein–ligand complexes [28] (Section 4.2).

After finding the most promising hit compounds, they are refined to produce more
potent (with high binding affinity) and selective (avoiding undesirable targets)
compounds to be used with in vivo models: lead compounds are thus identified. This
is the hit-to-lead phase. The final drug design step is lead optimization [89, 150].
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It consists of modifying the molecular structure to reduce the deficits of the lead
compound, reducing the risk of adverse effects while, at the same time, maintaining
all the desirable drug properties. After optimization, a lead compound is selected as
a candidate drug for preclinical and clinical testing.

2.2.2 Drug Repurposing

Differently from de novo drug design, drug repurposing [151] consists of repositioning
existing drugs beyond their original therapeutic target as a cure for untreated diseases.
This thesis treats this task as a bridge between bioinformatics and chemoinformatics
since it can be tackled with both network-based and virtual screening-based strate-
gies, sometimes with evident overlaps between the methodologies that blur any clear
distinction between the areas. By leveraging the vast knowledge of already approved
drugs, it is possible to address unmet clinical needs more safely and cost-effectively,
capitalizing on drugs that have undergone preclinical and clinical tests, including
toxicity studies.

Computational drug repurposing can employ different strategies [152]. Genome-
based strategies, for instance, can leverage the knowledge about gene–disease as-
sociations and gene expression profiles (the activity of genes). The Connectivity
Map (CMap) [153] is a key resource for computational drug repositioning endeav-
ors. It contains genome-wide expression data that can be exploited to identify
associations between genes related to a specific disease or targeted by a specific
drug. This resource has been extensively used in cancer research with interest-
ing results [154, 155]. Differently from genome-focused drug repurposing, usually
exploited by bioinformatics approaches, chemical structure-based strategies use
molecular information assuming that drugs sharing similar structural properties may
modulate genes or proteins analogously; studying the chemical similarity between
drugs led to the discovery of unknown drug–target associations over the years [156].
Chemoinformatics approaches using chemical structure information, both in terms of
molecular fingerprints or three-dimensional information [157], have been extensively
used for drug repurposing applications [152]. A third family of strategies is the
phenome-based one. The phenome is the set of all phenotype information. This
strategy is based on the hypothesis that if two diseases share similar phenotypic
profiles and a drug is used to cure one disease, the same drug may be proposed as a
treatment for the other disease [158], also using side-effect similarities to understand
if two drugs share the same target [159].

Network-based strategies have been demonstrated to be effective among the compu-
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tational approaches to drug repurposing. Those solutions use biological networks
as input, enriched with drug information. Those networks may contain nodes rep-
resenting genes, proteins, phenotypes, or additional entities connected according
to different criteria. These approaches can give insights into how drug targets
work, thus discovering new cures for untreated conditions. We find many successful
network analysis solutions for drug repurposing in the literature. For instance, by
combining PPI networks with drug–target interaction networks in a bipartite graph,
it is possible to predict interactions between a target protein and a drug [160]. An-
other approach [161] employs drug–drug interaction networks for polypharmacology
side effects using chemical structure information and drug–target similarity. This
is an example of hybrid bioinformatics and chemoinformatics methodology since it
exploits both network science and molecular information. Additional network-based
approaches use clustering techniques on top of drug–disease networks [162] built
by using GDAs and drug–target networks to identify modules containing possible
candidate drugs for repurposing. Gene similarity and chemical structure information
can be used jointly to build drug–drug interactions in a hybrid approach [163], and
information from heterogeneous data sources can be exploited by network-based
prioritization models with compelling results [164]. Finally, network centrality mea-
sures can be employed to find potential drugs using networks built from molecular
data, drug–drug interactions, and additional sources [165, 166]. Lately, knowledge
graphs [167, 168] have gathered attention given the huge amount of information they
contain and their promising results [169, 170, 171]. The drug repurposing strategy
we will present in Section 3.4 is a network-based approach, and this is why it finds
its place in Chapter 3, dedicated to bioinformatics and network medicine. It works
by finding new disease-associated genes and proposing drugs targeting such genes as
candidate treatments.

Machine and deep learning are also extensively used for drug repositioning to unveil
unknown interactions between old drugs and novel targets. In this, approaches
similar to the ones used for compound activity and potency prediction can also be
employed since the tasks share some major common points, like the need for the
drug to be active against the new target. More in detail, classic machine learning
approaches, such as logistic regression leveraging chemical structures, side effects,
and disease–disease similarities, have been used [172]. RF models proved effective
for virtual drug screening in personalized medicine by using patient-specific ge-
nomic traits [173]. Moreover, SVMs have been employed using a drug similarity
matrix-based kernel [174]. Additional effective machine learning attempts are rep-
resented by causal inference-matrix factorization [175], collaborative filtering [176],
and recommendation systems [177]. The explosion of deep learning also hit drug
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repurposing. Paired with the extensive growth of the data available, needed to train
neural networks properly, many different accurate algorithms have been developed.
The ability of neural networks to learn the nonlinear relationships between input
features renders them suitable for learning associations between drugs and biological
entities in complex systems [88]. MLPs were used to predict drug properties and
find potential new indications for old drugs [178]. Leveraging data from gene ex-
pression profiles and biological pathways, such models outperformed classic machine
learning techniques like SVMs. Furthermore, one-shot learning strategies integrating
CNNs [179] and long short-term memory (LSTM) [180] aided in the training of
deep learning models when small amounts of data are available [181]. Another work
leverages CNNs taking as input drug structures and protein sequences to deter-
mine interactions between drugs and target proteins [182]. Moreover, variational
autoencoders [183] have been demonstrated to be powerful solutions to infer new
candidate drugs learning from drug databases, such as drug–drug, drug–disease,
and drug–target associations networks [184]. More recently, the impactful research
concerning graph neural networks [20] and the inherent graph-like structures of
molecules, from drugs to proteins, led to the development of deep learning solutions
based on GNNs. A method called Decagon [185], which is based on graph convolu-
tional networks (GCN) [186], can unveil side effects due to drug–drug interaction,
essential knowledge when repurposing drugs for novel treatments. GDRnet [187] is
a GNN that deals with drug repurposing as a link prediction problem: by working
on a graph interconnecting genes, drugs, diseases, and anatomy information, it can
predict novel drug–disease links.

Drug repurposing is particularly useful in time-sensitive scenarios where using an
old drug is faster and safer than designing a new one. Notably, this has been of
utmost importance in the pursuit of therapies for COVID-19 [188, 189], in which
computational methodologies found their place [190, 169, 191, 170, 192, 193].

Many solutions present in the literature merge the realms of bioinformatics and
chemoinformatics since those techniques, deep learning in particular, use multimodal
input data that go from genomics to chemical structure and biological networks
coalesced into a single complex knowledge base. Such complexity makes it hard
to rationalize the predictions made by deep learning models: none of the methods
mentioned can derive interpretable results. As extensively remarked, in any life
science-applied context, the black-box character of deep learning models limits
their effectiveness and trustworthiness. XAI solutions, like the already mentioned
EdgeSHAPer, need to be devised to rationalize the choices of the models and
enable their practical use in the drug development pipeline. Moreover, taking a step
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back from neural networks and given their consistent importance in pharmaceutical
research, we also propose an explainability strategy for SVMs called SVERAD [29],
which will be described in Section 4.3. The proposed XAI solutions find their
application in both de novo design and drug repurposing. When new drug–disease
links are established, the findings can be integrated into chemical databases at the
service of future medicinal chemistry research.

2.3 The Need for Explainability

The increasing popularity of neural network architectures across many areas of
science, including bioinformatics and chemoinformatics, has raised pros and cons.
On the one hand, deep learning has led to unprecedented progress in areas such as
computer vision, natural language processing, and network analysis and has opened
the door to new scientific applications going beyond the capacity of standard machine
learning. On the other hand, it has partly mystified machine learning and triggered
high expectations concerning the problem-solving ability of machines and their puta-
tive ability to arrive at decisions beyond human reasoning. A characteristic feature
of most machine learning methods, by no means confined to neural networks, is their
often quoted black-box character [194], meaning that the decisions of those models
remain machine-internal and are extremely hard to comprehend. The black box issue
has been on the machine learning agenda for decades, working against the acceptance
of machine learning results to guide experimental design in many areas, including
bioinformatics and medicinal chemistry [129, 195]. With increasingly complex neural
network architectures being employed for many scientific applications, the problem
has further increased in magnitude. In interdisciplinary research settings in life
sciences, including disease gene discovery and drug design, the natural reluctance of
experimentalists to rely on machine learning results that they cannot rationalize in
biological or chemical terms often limits the impact of machine learning research
in the field [129, 195]. Such limitations are being recognized and, as a consequence,
with the advent of deep learning, there are increasing discussions in the field about
the relationship between model complexity and interpretability and the tendency to
use models that are too complicated for prediction tasks at hand [196], which would
need to be backed up by explanation methods to be trusted [197]. Thus, increasing
attention is paid to explainable machine learning [198, 129] and the overarching
area of XAI [5, 199, 200, 201]. XAI refers to different categories of computational
approaches for rationalizing models and their decisions in different areas of basic
and applied research [5, 200, 201]. Importantly, XAI approaches should not only
help domain experts rationalize predictions, but model explanations should also be
accessible to non-expert investigators in interdisciplinary settings [202, 129]. Expla-
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nation methods are equally relevant for classification and regression models [203, 204].
Conceptually different XAI approaches include methods for feature weighting or
attribution [8, 205], causal methods [206], counterfactual and contrastive explana-
tions [207, 208], transparent probabilistic models, or graph convolution analysis
methods [199, 200]. While interest in XAI is steadily increasing, the field is far from
being mature, and relevant approaches are often still in early exploratory stages,
especially in life sciences [85, 200]. This calls for in-depth research and further
applications in the area.

The first attempts to explain neural network decisions date back to 1991 with Gar-
son’s algorithm [209], the first approach that tried to use neural network connection
weights to find important input features. This led later to some improved vari-
ants [210, 211], and other weight-based approaches [212, 213]. Consequently, more
sophisticated and accurate solutions were proposed, like computing partial derivatives
of the output with respect to the input neurons as an importance metric [214, 215]
or, more recently, taking into consideration the input gradients [216, 217] like in
Integrated Gradients [218]. In the literature, we also find examples of explainability
methods specific to certain types of neural networks. Convolutional neural net-
works can be studied via feature map visualization by visualizing the convolution
filters [219] and saliency maps [220], and some works tried to understand LSTMs by
extracting relationships between variable sequences [221]. Along with model-specific
approaches, model-agnostic solutions are particularly sought after, given their general
applicability to algorithms and models of varying complexity. One of the most used
approaches is Local Interpretable Model-agnostic Explanations (LIME) [222]. It
defines a local approximation model perturbing the input data to see how the predic-
tion is affected to investigate the relationships between input and output variables,
delivering instance-based explanations. The greatest success was obtained by Shapley
value-based explainers [26], such as Shapley additive explanations (SHAP) [8]. The
latter is a methodology that relies on game theory to determine feature importance,
featuring also a neural network-specific variant, DeepSHAP, which is based in turn
on another explainability method called DeepLIFT [205], which measures the impact
of a feature by comparing it to some reference neutral value. Given their impact on
XAI research, we will delve deeper into how Shapley values can be used for model
explanation and the methodologies employing them. More rare and less explored
in XAI is the study of feature interaction. Few approaches are available. Neural
Interaction Detection (NID) [223] uses neural network weights for this purpose, while
AutoInt [224] employs self-attention mechanisms to discover interacting features. As
also aforementioned, in Section 3.3, we will approach this uncharted area of XAI
by proposing a novel feature interaction detection method used in the context of
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epistatic interactions.

2.3.1 Explaining Graph Neural Networks

When approaching graph neural network explainability, we dive into a different world.
Although standard importance attribution methods can be used, they do not capture
the essence of graphs. They can deliver explanations in terms of important features,
but they don’t include the building blocks of graphs: nodes and edges. In this regard,
GNNExplainer [225] was the first XAI method designed explicitly for GNNs. It
works by learning a mask on edges and node features via an optimization process.
It obtains a subgraph that maximizes the mutual information between the GNN
prediction and the distribution of possible subgraphs. Later, PGExplainer [226]
was proposed as a generalization of GNNExplainer. It uses a neural network to
learn the parameters to use in the explanation process, enabling it to work in
inductive settings. It delivers edge-based explanations. In addition, a method
termed GNN Explanation Supervision has been reported that combines node- and
edge-based model explanation through graph regularization techniques, aiming to
achieve consistency between node- and edge-based explanations through supervised
adaptive learning [227]. For GCNs, edges important for model decisions have also
been identified using previously introduced agnostic local explanation models [228].
In addition, MPNN variants with self-attention mechanisms have been reported
to enable the extraction of learned attention weights [229, 230]. Furthermore, self-
explainable GNNs are investigated that aim to identify k-nearest labeled nodes for
each unlabeled node based on node and graph structural similarity to generate an
explainable node classification [231]. Moreover, LIME was extended to graphs with
GraphLIME [232]. It uses the Hilbert-Schmidt Independence Criterion Lasso [233]
for nonlinear feature selection, but it only delivers explanations in terms of node
features. Another methodology is PGM-Explainer [234]. This method looks for
nodes that are crucial for the model by using an interpretable Bayesian network that
approximates the real prediction. A different perspective is offered by XGNN [235].
It is a model-level explainer that uses reinforcement learning to train a generator to
derive a graph that maximizes the model’s prediction. The explanation is thus a
complete graph that gives insights into the GNN model behavior. Finally, several
methods leveraging Shapley values were also devised to explain GNN models. Due to
the topic’s relevance in this thesis, we will discuss those methodologies in a dedicated
section.



2.3 The Need for Explainability 24

2.3.2 The Shapley Value Concept

Shapley values were first introduced in cooperative game theory [26] to quantify
individual players’ contributions to a team’s performance. In a cooperative game,
players make an individual contribution toward a common goal (the team’s reward,
payout, or gain), working in coalition with each other. The Shapley value is a way
to fairly distribute the payout among the players according to their contribution
to the game; it represents the average marginal contribution of each player across
all possible player coalitions. This concept can be translated from game theory
to machine learning to explain model predictions [236]. In machine learning, the
game is the prediction task, the players are input features, and the model’s output
represents the reward. This makes it possible to rationalize the model’s decisions in
terms of salient features, with the Shapley value representing the feature’s marginal
contribution to the output (thus, the feature’s importance).

In order to compute the Shapley value for feature f , let F be the complete set of
features and S a coalition of features (a subset of F \ {f}). The contribution ϕf (v)
is computed by considering the difference in the value v (the model’s prediction) of
the coalition S with and without the assessed feature f , weighted by the inverse
multinomial coefficient

( |F|
1,|S|,|F|−|S|−1

)−1
, which is calculated as the number of per-

mutations of the coalition (|S|) multiplied by the number of features not contained
in the coalition (|F| − |S| − 1) and divided by the number of all possible feature
permutations (|F|!). This must be repeated and summed for all possible subsets S
of the F \ {f} features, obtaining the following equation:

ϕf (v) =
∑

S⊆F\{f}

|S|! (|F| − |S| − 1)!
|F|! (v (S ∪ f)− v (S)) . (2.1)

Shapley values are the only feature attribution method that satisfies some important
properties [237], namely efficiency, symmetry, dummy (or null player), and linearity
(or additivity). Those properties guarantee a fair distribution of the payout.

Efficiency states that the sum of all feature contributions (the Shapley values) must
add up to the difference between the prediction for input x and the average prediction
over the data points X (expected value):
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|F|−1∑
i=0

ϕi(v) = v(x)− EX(v(X)). (2.2)

According to the symmetry property, the contributions of two features i and j should
be equal if they contribute equally to all possible coalitions, so, if v(S ∪ {i}) =
v(S ∪ {j}) ∀S ⊆ F \ {i, j}, then ϕi(v) = ϕj(v).

The dummy property indicates that if a feature i has no impact on the value, re-
gardless of which coalition of features it is added to, it should have a Shapley value
of 0. So, if v(S ∪ {i}) = v(S) ∀S ⊆ F \ {i}, then ϕi(v) = 0.

Finally, the linearity property states that for a game with combined value functions
v and w, the Shapley values for feature i in v and w are such that

ϕi (v + w) = ϕi (v) + ϕi (w) ,

and, for any real number a, we have ϕi (av) = aϕi (v).

Shapley values have recently gained popularity in XAI as a model-agnostic frame-
work for rationalizing machine learning decisions. However, the high computational
demand of extensively enumerating all possible feature coalitions renders the exact
computation of Shapley values unfeasible for high-dimensional feature spaces, typical
of biology and chemistry. This led to the development of approximation methodolo-
gies, from Monte Carlo sampling approaches [236] to local model approximations [8],
as the already mentioned SHAP. Using Monte Carlo, the contribution ϕi(v) can be
approximated as

ϕ̂i(v) = 1
M

M−1∑
m=0

(
v(xm

+i)− v(xm
−i)
)

,

where xm
+i is the input feature vector in which a random number of features is

replaced with values from a randomly sampled instance, excluding the value of the
assessed feature i, and xm

−i is an identical vector, except for the value of feature
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i, which is taken from the sampled instance in this case. This procedure allows
us to calculate the marginal contribution of i and obtain an approximated version
of the Shapley values, also adjusting the trade-off between computation time and
approximation accuracy when needed by tweaking the number of sampling steps M .

Regarding SHAP, it approximates a complex machine model in the feature space
vicinity of a test instance with a simpler local model based upon a kernel function.
Along with approximation methods, SHAP offers the possibility of exactly com-
puting Shapley values for tree-based models, such as RFs, with its TreeSHAP (or
TreeExplainer) variant [238]. SHAP-based methodologies have also been introduced
and evaluated in chemoinformatics applications [239, 204]. When introducing SHAP,
the authors defined a set of desirable properties that must be satisfied by the additive
feature attribution methods, which include SHAP and LIME, thereby unifying those
methodologies under a common framework. Those properties are local accuracy,
missingness, and consistency. Given the original model to explain f̂ and a simplified
explanation model g, which is a linear function of binary variables x′

i indicating if
a feature i is present or not in the original input x, the local accuracy property states:

f̂(x) = g(x′) = ϕ0 +
|F|∑
i=1

ϕix
′
i, (2.3)

where ϕ0 indicates the model output when all features are missing (x′
i = 0 ∀i).

Note that by defining ϕ0 = EX(f̂(x)) and setting all features to be present (x′
i = 1

∀i), this definition is analogous to the efficiency property of the Shapley values
(Equation (2.2)).

According to the missingness properties, a missing feature (with simplified input
x′

i = 0) has an attribution of 0. If a feature is not present in any coalition, its
contribution is null. This property is needed to guarantee that missing features
won’t get an arbitrary attribution value. Even though the latter would not hurt the
local accuracy property (since multiplied by x′

i = 0) this property forces missing
features to have an attribution of 0 (which is correct since they have no impact on
the output value) in order to have a unique solution for Equation (2.3). In practice,
this property is relevant only for constant features, with no impact on the model
(similarly to the dummy property).

The final property is consistency. It asserts when a model changes such that the
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marginal contribution of a feature to the value increases or remains the same, its
attribution does not decrease. From this property, the Shapley value properties of
symmetry, dummy, and linearity follow [8]. Satisfying those properties, it is possible
to adapt additive feature attribution methods, like LIME and DeepLIFT, to let them
assign approximated versions of Shapley values as feature attributions (SHAP values).

However, approximating Shapley values is not always enough and fails to capture
feature importance in some scenarios, like in molecular activity prediction with
SVMs, as mentioned in the introduction. This partly motivated our research for the
development of a strategy for exact Shapley value computation (Section 4.3): the
aforementioned SVERAD methodology.

The Shapley value concept has recently also been extended to graph neural networks.
For example, GraphSVX [240] was introduced as a decomposition method for GNNs
that uses Shapley values to determine node and node feature contributions. The
technique offers post hoc local explanations using a surrogate linear model that
allows the approximation of Shapley values. Another method is SubgraphX [241].
It is the first method to be focused on the research of explanation subgraphs only
in terms of connected graphs, evaluating the importance that each of them has on
the prediction approximating Shapley values for each node coalition. It exploits a
Monte Carlo tree search to look for promising coalitions of connected nodes and
selects the one associated with the highest Shapley value as the explanation. Finally,
GRAPHSHAP [242] was explicitly developed as a motif-focused explanatory approach
for generic graph classification with node awareness [243]. This methodology is
based on motif masking and uses an approximation kernel for Shapley values to
assess the most influential motifs in the graph. None of the Shapley value-based
methods present in the literature account for edge importance, although edges
represent the links through which information is spread in graphs. Along with
the significance that molecular bonds (edges) hold in molecules, this motivated
our research in developing our novel edge-centric XAI methodology for GNNs, the
already mentioned EdgeSHAPer, presented in Section 4.1.
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Chapter 3

Bioinformatics and Network
Medicine

The first part of the explainable biomedical deep learning pipeline (Figure 1.1) falls
into the domain of bioinformatics and network medicine. Specifically, this chapter
covers blocks 1, 2, and partly 3 of the pipeline. As introduced, the first step consists
of identifying novel disease-associated genes. Our main goal was to develop a neural
network-based method and augment it with explainable artificial intelligence (XAI)
capabilities. However, we had to face the problem of training machine learning
models, particularly neural networks, in unconventional positive–unlabeled (PU)
settings. For this reason, we first had to develop a strategy that enabled proper
model learning, which we later used to train a graph neural network (GNN) for
disease gene discovery purposes. Interestingly, this training strategy proved effective
even as a standalone gene–disease association (GDA) discovery tool and in network-
based drug discovery. Therefore, In Section 3.1, we will introduce NIAPU, our PU
learning strategy; in Section 3.2, we will present XGDAG, our explainable GNN
approach for gene prioritization; and in Section 3.4 we demonstrate how NIAPU
can be successfully applied in the context of drug repurposing. Before this, in
Section 3.3, we will analyze the phenomenon of gene–gene interaction detection via
neural networks and XAI.

3.1 Network-Informed Adaptive Positive–Unlabeled
Learning for Disease Gene Identification

The discovery of GDAs is made difficult by incomplete knowledge of biological and
physiological processes. When approaching complex, multi-gene diseases and traits,
it is hard to disentangle the contribution of each gene, and computational biological
approaches for predicting GDAs [244, 245] can support and address experimental
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methods (e.g., genome-wide association—GWAS—or linkage studies, among others)
which are expensive and time-consuming. The fuzzy background of yet unknown or
truly unassociated genes makes the computational identification of disease genes chal-
lenging to carry out with accuracy. In machine learning, this setting translates into
the ability to identify new positive instances among a set of positive and unlabeled
samples, a task known as PU learning [246, 21]. Because associations may exist but
may not have been discovered yet, it is not safe to mark unknown associations as
negative. Moreover, PU datasets are usually highly unbalanced. In fact, only a small
fraction of the entire set of genes in the interactome are associated with a given
disease. Training on unbalanced datasets can negatively impinge on the performance
of machine and deep learning models, resulting in the need for specific methods for
unbalanced learning [247]. PU learning can be addressed through semi-supervised
learning algorithms trained using two approaches. In the first one, the set of un-
labeled instances is assumed to be a contaminated set of negative instances, and
the contamination is considered during the modeling process by weighting the data
points or adding penalties on misclassification [248, 65, 249, 250]. In the specific
case of gene discovery, this contamination is given by the possibility of the negative
instances of containing not yet discovered positive genes. The second approach,
called two-step technique, aims at relabeling the instances and then training a super-
vised learning algorithm [246, 251, 252]. For example, Yang et al. [251] introduced
a multi-class labeling procedure considering five different labels, namely positive
(P), likely positive (LP), weakly negative (WN), likely negative (LN), and reliable
negative (RN), based on a Markov process with restart [253], widely applied in
disease gene identification [254, 255, 256]. Then, a supervised learning algorithm is
trained on the relabeled data.

Inspired by previous work, we considered the multiclass labeling approach since
it allows identifying a set of originally unlabeled items, namely the LP set, whose
features are close to that of the items in P. This translates into identifying a small
set of genes more likely to contain true positive instances, hence providing a set of
new candidate disease genes for prioritization. Going beyond previous approaches,
we propose several significant modifications of the multiclass method regarding the
distance matrix defining the Markov process and the selection of the different classes.
Some of these modifications were needed in order to apply the method to general
PU datasets, while others were proposed to make the process of class formation
more rigorous and, at the same time, flexible. The approach considered here, being
a two-step technique, is based on the separability and smoothness assumptions [21],
which require that the features should be able to distinguish between positive and
negative instances and, at the same time, instances with similar features should
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be more likely to have the same label. Therefore, as a further contribution, we
propose the use of specific network-informed features, one of them introduced for
the first time, based on protein–protein interaction (PPI) data, which provide a
characterization of the topological relationships of all human genes with respect
to the set of disease genes. The use of such measures grants a much more precise
classification of genes than other topological measures. In particular, the set of
seed (positive) genes is identified very precisely as well as the genes closest and
farthest to them, as shown in Section 3.1.4.1. The Network-Informed Adaptive
Positive–Unlabeled (NIAPU) framework is therefore formed by two components:
the Network Diffusion and Biology-Informed Topological (NeDBIT) features and
the Adaptive Positive–Unlabeled (APU) labeling algorithm. A visual overview of
the workflow can be grasped in Figure 3.1.

Figure 3.1. The complete NIAPU pipeline. PPI and GDAs are used to obtain a
disease-related network. Features are extracted (Section 3.1.3), and APU is applied
(Section 3.1.2) to assign pseudo-labels to train machine learning (ML) models for the final
gene classification. The assigned pseudo-labels can be used for disease gene discovery
purposes (Section 3.1.4.3).

3.1.1 Data Sources and Preprocessing

The proposed methodology exploits two types of data, i.e., reliable PPIs and known
GDA data. PPI data provide valuable biological knowledge for the identification of
undiscovered disease genes [245, 257, 258, 259, 260]. Human PPI data, i.e., the human
interactome, were gathered from the BioGRID dataset (version 4.4.206) [261, 13].
The human interactome is obtained by choosing Homo sapiens genes (organism ID
9606), from which we extract a connected network consisting of 19,761 genes and
678,932 nonredundant, undirected interactions. GDAs were derived from DisGeNET
(version 7.0) [262, 48, 14], the already mentioned discovery platform containing one of
the largest publicly available collections of genes and variants associated with human
diseases together with a score denoting the association confidence and significance.
Ten diseases were considered: malignant neoplasm of breast (disease ID C0006142,
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1074 genes), schizophrenia (C0036341, 883 genes), liver cirrhosis (C0023893, 774
genes), colorectal carcinoma (C0009402, 702 genes), malignant neoplasm of prostate
(C0376358, 616 genes), bipolar disorder (C0005586, 477 genes), intellectual disability
(C3714756, 447 genes), drug-induced liver disease (C0860207, 404 genes), depressive
disorder (C0011581, 289 genes), and chronic alcoholic intoxication (C0001973, 268
genes). The selection criterion for these diseases was the highest cardinality of GDAs
in the DisGeNET curated dataset to ensure sufficient information for the classification
task, especially for neural network models. This dataset version contains GDAs from
reliable sources [263, 264, 265, 266, 267, 268]. Instead, to validate the gene discovery
results, we relied on the all genes DisGeNET dataset, which we refer to as extended
dataset. The latter contains associated genes from additional sources not present
in the curated version [269, 270, 271, 272], and forms a solid base to evaluate the
discovery efficacy of computational methods. We checked the presence of each gene
from DisGeNET in the BioGRID dataset and we removed the absent ones. After
data cleaning, we ended up having a set of associated genes for each disease, denoted
by Σ, with their association score S. The latter corresponds to the DisGeNET GDA
score, a value ranging from 0 to 1 computed using the number and type of sources
(level of curation and model organisms) and the number of publications supporting
the association [262]. In particular, we have 1025 genes for disease C0006142, 832 for
C0036341, 747 for C0023893, 672 for C0009402, 606 for C0376358, 451 for C0005586,
431 for C3714756, 320 for C0860207, 279 for C0011581, and 255 for C0001973.

3.1.2 Adaptive Positive–Unlabeled Labeling Algorithm

The APU labeling algorithm consists of a multiclass labeling procedure that relies on
the labels introduced in previous work [251]: P, LP, WN, LN, and RN. P instances
are the known disease genes, RN instances represent the genes whose features are
the furthest from the average features in the P set, while the remaining labels are
assigned through a Markov process with restart [253]. The novelty of the proposed
method is the construction of a new transition matrix starting from the distance
matrix between the features of the genes. The matrix needs to be normalized in
order to preserve the total transition probability of the state vector whose initial
value is different from zero only for genes in the P and RN classes. Moreover, the
class selection was made flexible using an adaptable quantile separation instead of
fixed thresholds. These characteristics were implemented to make the process of
class formation more rigorous and, at the same time, more flexible, hence easily
adaptable to different settings, datasets, and needs.

Let V be a set whose generic ith element vi=1,...,n is characterized by the couple
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(xi, yi) where xi ∈ [0, 1]d represent the feature vector, and yi ∈ {0, 1} the initial
label. The APU algorithm is defined by the following steps.

Step 1: Compute the matrix W , whose elements wij are defined as follows:

wij =

1− eij−m
M−m if i ̸= j

1 otherwise
,

where eij =
∑

k

(
xk

i − xk
j

)2
, m = minij {eij}, and M = maxij {eij}. The symmetric

matrix W contains the similarity score between elements i and j.

Step 2: Compute the reduced matrix W r as follows:

wr,ij =

wij if wij > qw

0 otherwise
.

The threshold qw is computed as a given quantile of the distribution of the elements
in the matrix W in order to exclude from the propagation process links between
poorly related elements. To obtain a proper Markov process, i.e., preserving the
probability distribution, the matrix W r must be normalized as W n = D−1W r,
where D is the diagonal matrix with elements dii =

∑
j wr,ij .

Step 3: Initialize the propagation process with the initial state vector g0 defined
as follows. Let |P | be the cardinality of P (set of seed genes) and x̂ =

(
x̂1, . . . , x̂d

)
,

where x̂k = 1/|P |
∑

i∈P xk
i , be the average features of P. The RN genes are chosen

to be the ones having the most distant features from x̂. |P | most distant genes from
x̂ can be selected in order to keep the classes balanced. Then, the i-th element of
g0 is defined as

g0,i =


1 if i ∈ P

−1 if i ∈ RN

0 otherwise

.
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When needed, a different number of RN genes can be selected. In this case, the
initial value of the RN genes in the state vector g0 must be set to −|P |/|RN | so
that the two distributions of positive and negative values are balanced in g0, with
the sum of its elements equal to zero.

Step 4: Define a Markov process with restart as

gr = (1− α) W t
ngr−1 + αg0, (3.1)

where the parameter α is usually set to 0.8 [251, 256]. Starting from the state vector
g0 the dynamics in Equation (3.1) converges in the stationary state g∞, numerically
reached when |gr − gr−1| < 10−6.

Step 5: Use g∞ to assign the remaining labels. Selecting only the elements that
belong neither to P nor to RN, the values of the asymptotic distribution of those
elements are sorted, and the ranking of the corresponding elements is used to form
the remaining classes: LP, WN, and LN. A simple rule is to divide the ranking into
three equal parts and identify LP samples with the first third, WN with the second
third, and LN with the third third. However, depending on the type of analysis and
the problem addressed, any ranking division can be considered acceptable.

Step 6: Classification. A machine learning classifier is trained over the dataset
with the new propagated labels. To test the efficacy of the method, three different
algorithms have been used: two classic approaches, namely random forest (RF) [107]
and support vector machine (SVM) [6, 7], and a neural network model, the multilayer
perceptron (MLP) [131].

3.1.3 NeDBIT Features

The APU labeling procedure can be used with any set of features. However, we
devised disease-specific features that adequately characterize the set of positive genes
and distinguish them from the rest of the classes. The NeDBIT features include
two network diffusion-based features, heat diffusion and balanced diffusion, and two
biology-informed topological metrics, NetShort and NetRing. Network diffusion
methods are widely used in disease gene discovery processes [273, 274, 275]. We
coupled network diffusion methods and innovative topological-based features to make
the most out of the combined predictive power of both approaches. Moreover, all the



3.1 Network-Informed Adaptive Positive–Unlabeled
Learning for Disease Gene Identification 34

features are computed exploiting the association score S. In this way, the NeDBIT
features, not assigning the same weight to all seed genes, are more significant for
the disease under investigation.

3.1.3.1 Heat Diffusion Feature

This feature is obtained using a heat diffusion process over the network [276]. Start-
ing with a distribution of weights, with positive values only on the seed genes, their
evolution is determined by using the diffusion equation on graph [277]

z′(t) + Lz(t) = 0, (3.2)

where L is the Graph Laplacian matrix, L = K−A, K is the diagonal matrix with
the degree of nodes on the diagonal, namely Kii = ki, and A is the adjacency matrix
of the PPI. The weights at time t are given by the formal solution of Equation (3.2):

z(t) = exp (−Lt) z(0), (3.3)

where exp is the exponential of the matrix. Regarding the initial distribution of
weights, we assign zi(0) = si for seed genes in Σ and 0 otherwise, where si is the
GDA score.

3.1.3.2 Balanced Diffusion Feature

This feature is obtained by using the diffusion in Equation (3.2) but with a different
version for the Graph Laplacian matrix, i.e., Lb = I−K−1A. The weights at time t

are obtained as in Equation (3.3) by using operator Lb, and the initial weights are
given as for the previous measure.

This form of the graph diffusion operator differs from the heat diffusion in the fact
that the operator L diffuses the same amount of score for each link, whereas Lb

diffuses the same amount of score for each node. This implies a different short-time
behavior of the diffusion process on the graph. In fact, in heat diffusion, well-
connected nodes are drained faster, while in balanced diffusion, all the nodes diffuse
information at the same pace.
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3.1.3.3 NetShort

The NetShort measure [278] is based on the idea that a generic node is topologically
important for a disease if a large number of seed nodes must be traversed to reach
it. For each node, the weights are assigned as follows:

wij = aij
2

s̃i + s̃j
, where s̃i =


si

max S if i ∈ Σ

α min S
max S if i /∈ Σ

,

where min S and max S are the minimum and the maximum association scores, α

is the penalization parameter given to non-seed nodes, and aij is the element in
position (i, j) in the adjacency matrix A. We use α = 0.5 so that all non-seed
nodes have normalized score s̃i = 1

2
min S
max S while seed nodes have normalized score

min S
max S ≤ s̃i ≤ 1. Then, the NetShort measure NSi for node i is defined as

NSi =
∑
j ̸=i

1
dij

,

where dij is the length of the weighted shortest path from i to j, computed using
the assigned weights. In this way, links connecting seed genes are favored and links
connecting non-seed genes are penalized.

3.1.3.4 NetRing

The NetRing measure, introduced for the first time with our methodology, is based
on the concept of ring structure [279] generalized to a set of seed nodes. Starting
from seed nodes, a partition of the graph in subgraphs, or rings, is introduced with
the following property:

R(l) ≡
{

j ∈ V | min
i∈Σ

lij = l

}
,

where lij is the (unweighted) shortest path length from i to j. R(l) contains all the
non-seed nodes with a minimal distance l from, at least, one seed node. From the
definition follows that R(0) ≡ Σ (set of seed nodes), R(l1) ∩R(l2) = ∅ if l1 ≠ l2 and
V =

⋃L
l=0 R(l), where L is the highest value of the minimal distance from non-seed
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nodes to seed nodes.

An initial rank defined by means of the association score S is computed as

r̂i =

1− si
max S if i ∈ Σ

1 otherwise
,

then the NetRing measure ri of node i is defined as

ri =



αr̂i + (1− α) 1
ki

∑
j|Aij ̸=0

r̂j if i ∈ Σ

li + 1
ki

∑
j∈Oi

r̂j +
∑

j∈Ri(li−1)
rj − (li − 1)

 otherwise

,

where the score for seed genes is a convex combination of the initial rank r̂i and the
average of the initial rank of the neighbors of the node so that seed nodes having
many seed nodes as neighbors have a higher rank. The rank of non-seed nodes is ob-
tained by summing the level of the ring and the average of two terms, i.e., the number
of genes belonging to the same or higher rings (Oi = {j /∈ R(li − 1)|Aij ̸= 0}) and
the sum of the rank of genes in the lower ring (Ri(li − 1) = {j ∈ R(li − 1)|Aij ̸= 0})
corrected by the ring level. The correction is introduced to make the rank rj compa-
rable with r̂j . This measure rewards non-seed nodes close to high-ranking nodes in
the previous ring and linked with a few nodes of the same or higher rings.

The ring concept leads to the introduction of a ranking between nodes, i.e., ring zero
includes all seed nodes, ring one includes all the nodes that are directly connected
to at least one seed node, and so on, as the ring level grows. But, when dealing with
seed nodes representing disease genes, it is also evident that not all the nodes in
each ring are equivalent. For example, there may be a node in the first ring that
has only one direct contact with a seed node, while another node in the first ring
may be directly connected to many seed nodes (it is to be noted that this concept
resembles and extends connectivity significance [50]). So, to rank nodes belonging
to the same ring, it is essential to consider the number of nodes on the lower ring a
node is connected to, together with their ranks.
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3.1.4 Results and Performance Analysis

The performance of NIAPU is tested on the ten disease datasets detailed in Sec-
tion 3.1.1. Section 3.1.4.1 is devoted to testing the performance of NIAPU (APU +
NeDBIT) against the implementation of the APU labeling algorithm with two dif-
ferent sets of features commonly used when dealing with disease gene identification.
Section 3.1.4.2 analyzes the performance of NIAPU in identifying candidate disease
genes. To this end, a subset of seed genes is masked out (prior to the computation of
the NeDBIT features and the application of the APU algorithm) to see whether such
genes are predicted as LP. Section 3.1.4.3 compares NIAPU with other disease gene
identification algorithms, while Section 3.1.4.4 presents results from an enrichment
analysis of the candidate disease genes obtained by the NIAPU methodology. For
our experiments, we set the threshold qw for the removal of weak links (see Step 2
of Section 3.1.2) to 0.05 and defined the RN set to contain 20% of the genes.

3.1.4.1 Classification with NeDBIT Features

The effectiveness of the NeDBIT features is tested by comparing NIAPU against the
implementation of the APU labeling algorithm with two different sets of features:
the first (PUDI), computed following previous work [251], is based on topological
features [280] and functional information based on the semantic similarity of Gene
Ontology (GO) terms [281]. The latter are indicative of gene functions in terms of
molecular function, biological process, and cellular component. The second set of
features (TFO) includes simple topological, functional, and ontological features like
degree, degree centrality, betweenness centrality, eigenvector centrality, clustering
coefficient, closeness centrality, current closeness, and GO terms from the biological
process domain [282]. The comparison is carried out in terms of out-of-sample classi-
fication performance; namely, the ten datasets were split into training set (70%) and
test set (30%), keeping class balance. Then, we trained the three machine learning
algorithms defined in Step 6 of Section 3.1.2 for the three different applications of the
APU algorithm. We report in Figure 3.2 the results for malignant neoplasm of breast.

The comparison among TFO, PUDI, and NeDBIT features shows that the latter
are far superior. The joint usage of APU and NeDBIT features (NIAPU) success-
fully discriminates the class P from the rest of the genes and better separates the
pseudo-classes LP, WN, LN, and RN. Regarding the pseudo-classes, the identification
performances were also satisfying using TFO and PUDI features, even if with a drop
in accuracy compared to NeDBIT. This highlights the effectiveness of the APU
label assignment. RF and MLP delivered the best performances. Regarding SVM,
LN samples were sometimes misclassified as WN or RN.
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(a) MLP + TFO features (b) MLP + PUDI features (c) MLP + NeDBIT features

(d) RF + TFO features (e) RF + PUDI features (f) RF + NeDBIT features

(g) SVM + TFO features (h) SVM + PUDI features (i) SVM + NeDBIT features

Figure 3.2. Confusion matrices for multiclass classification on malignant neoplasm of
breast (C0006142). The APU labeling and the newly defined NeDBIT features allow
for a better and clearer distinction of the P class and the pseudo-classes.

Overall, for P and RN classes, NIAPU classification is almost perfect since the
NeDBIT features allow those classes to be coherently separated from the others since
they grasp the topological aspects of the set of seed genes as a whole, assigning lower
and lower weights to genes that are progressively “far” from the set of seed genes.
The usage of TFO and PUDI features fails in the identification of the class P. This
is due to the fact that such sets of features are too general and cannot capture the
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specificity of a given disease. For the rest of the classes, the performances are good,
but some genes are misclassified. This is due to the label assignment via quantiles,
which obviously introduces some arbitrary noise at the boundaries.

3.1.4.2 Performances in Disease Gene Identification

We tested the ability of NIAPU to identify new candidate genes. We performed a
validation by excluding 20% of seed genes, setting them as unlabeled in the compu-
tation of the NeDBIT features and in the APU labeling algorithm. We repeated
the procedure five times with non-overlapping gene sets. We investigated whether
NIAPU was able to classify the removed positive genes as LP. The results for
malignant neoplasm of breast are reported in Table 3.1.

Table 3.1. Labeling of the unlabeled seed genes by NIAPU for malignant neoplasm of
breast (C0006142). Results are intended as average with standard deviation over the
five runs (GDAS: association score S).

Label Genes (%) Genes (number) GDAS mean GDAS median GDAS mode

LP 45.659 ± 1.362 93.600 ± 2.793 0.383 ± 0.016 0.346 ± 0.019 0.320 ± 0.045
WN 27.415 ± 0.636 56.200 ± 1.304 0.343 ± 0.013 0.318 ± 0.011 0.300 ± 0.000
LN 17.659 ± 4.436 36.200 ± 9.094 0.324 ± 0.012 0.303 ± 0.004 0.300 ± 0.000
RN 9.268 ± 3.650 19.000 ± 7.483 0.322 ± 0.013 0.303 ± 0.004 0.300 ± 0.000

On average, around 46% of unlabeled seed genes fell in the LP class, while the rest
fell in a decreasing classification trend toward the RN class. We also observed a
clear correspondence between the labeling and the association score: the higher the
score, the more likely the gene will be found in the LP class. This underlines the
influence of scores on the NeDBIT features. Analogous results were obtained for the
rest of the diseases. Furthermore, aggregated results related to machine learning
classification for all the diseases are reported in Table 3.2. RF and MLP identified
all the classes with high scores, while SVM reported lower metrics, particularly for
the LN class. Therefore, NIAPU proved robust also in more challenging settings
with reduced seed gene sets.

3.1.4.3 Comparison with Gene Prioritization Tools

We compared the predictive performance of NIAPU in the identification of candi-
date disease genes against known gene discovery algorithms, already introduced in
Section 2.1, namely DIAMOnD [50], Markov clustering (MCL) [283, 54], random
walk with restart (RWR) [254, 56], ToppGene [60], and two variants of GUILD [58],
one exploiting the NetCombo measure and the other based on Functional Flow
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Table 3.2. Classification scores as pooled mean and standard deviation (over all the
diseases). Five runs were performed for each disease, masking out 20% of seed genes.

Label Precision Recall F1 score

MLP
P 0.994 ± 0.011 0.998 ± 0.007 0.996 ± 0.007
LP 0.972 ± 0.013 0.972 ± 0.016 0.972 ± 0.012
WN 0.955 ± 0.020 0.915 ± 0.022 0.933 ± 0.019
LN 0.835 ± 0.021 0.744 ± 0.042 0.782 ± 0.019
RN 0.731 ± 0.037 0.860 ± 0.036 0.788 ± 0.024

Macro avg 0.898 ± 0.008 0.898 ± 0.007 0.894 ± 0.008
Weighted avg 0.884 ± 0.009 0.876 ± 0.009 0.876 ± 0.009

Accuracy 0.876 ± 0.009

RF
P 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
LP 0.984 ± 0.005 0.984 ± 0.005 0.984 ± 0.005
WN 0.977 ± 0.007 0.976 ± 0.007 0.977 ± 0.006
LN 0.982 ± 0.005 0.986 ± 0.004 0.984 ± 0.004
RN 0.991 ± 0.003 0.987 ± 0.004 0.989 ± 0.003

Macro avg 0.987 ± 0.003 0.987 ± 0.003 0.987 ± 0.003
Weighted avg 0.984 ± 0.004 0.984 ± 0.004 0.984 ± 0.004

Accuracy 0.984 ± 0.004

SVM
P 0.998 ± 0.004 1.000 ± 0.000 0.999 ± 0.002
LP 0.845 ± 0.043 0.719 ± 0.071 0.767 ± 0.032
WN 0.635 ± 0.135 0.726 ± 0.108 0.625 ± 0.102
LN 0.625 ± 0.191 0.559 ± 0.026 0.419 ± 0.025
RN 0.366 ± 0.224 0.500 ± 0.004 0.38 ± 0.011

Macro avg 0.694 ± 0.066 0.701 ± 0.013 0.638 ± 0.022
Weighted avg 0.641 ± 0.077 0.642 ± 0.017 0.568 ± 0.029

Accuracy 0.642 ± 0.017

(fFlow) [284]. For this analysis, we relied on the extended GDA dataset provided
by DisGeNET. We assigned the labels using NIAPU on the curated version of the
dataset. Then, we investigated whether the seed genes contained in the extended
version (but not in the curated one) fell into the LP class. We considered the ranking
retrieved by NIAPU at different quantile thresholds. In Figure 3.3, we report the
results of this comparison in terms of F1 score.

Most of the time, our methodology outperformed or was at par with the state-of-
the-art algorithms, being often the best-performing method when looking for a large
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(a) Malignant neoplasm of breast (C0006142)
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(b) Schizophrenia (C0036341)
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(c) Colorectal carcinoma (C0009402)
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(d) Malignant neoplasm of prostate (C0376358)
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(e) Bipolar disorder (C0005586)
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(f) Intellectual disability (C3714756)

Figure 3.3. Gene discovery performances in terms of F1 score. Results are reported for
six representative diseases at increasing numbers of candidate genes considered as a
percentage of the total number of associated genes in the extended dataset, which is
different for each disease.

number of candidate genes and of comparable performances for lower ones. Indeed,
DIAMOnD performs at its best when considering a low ratio (10-20%) of predicted
genes. In contrast, NIAPU performs well for low and high percentages of candidate
genes, outperforming DIAMOnD in the latter case. In fact, as stated by the authors
themselves, DIAMOnD becomes unreliable when exceeding 200 predicted genes [50].
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3.1.4.4 Enrichment Analysis

To further evaluate our results, we performed an enrichment analysis of the first 100
predicted genes in the LP class from the validation on the extended GDA dataset.
Enrichment analysis is a process used to identify genes that are over-represented in
a given disease network, biological pathway, or gene ontology, and that can have
significant associations with specific phenotypes. This can bring further interesting
insights that can validate methodologies and experiments or lead to new discoveries.
This is useful to understand if the genes retrieved by our methodology are involved
in biological pathways, gene ontologies, or other disorders related to the investigated
diseases. This analysis was performed using the Enrichr online tool [285, 286, 287].

Notably, the LP genes selected for enrichment do not correspond to any of the
curated GDA disease genes; therefore, among the enriched diseases, we cannot
expect to find the same disease for which the gene discovery process is carried out.
Instead, among the enriched terms (diseases, GO terms, or pathways), we should be
able to find diseases and biological processes that are related to the disease under
scrutiny. We report the enrichment analysis results in Table 3.3. In particular, we
present the top enriched diseases or biological processes for each analyzed disease,
together with literature references that endorse such relevant links. The fact that
there is evidence in the literature of relationships and shared biological mechanisms
between the analyzed diseases and enriched terms is additional proof of the validity
and efficacy of the NIAPU disease gene discovery process.

3.1.5 Observations

In this section, we presented the first contribution of this thesis, the NIAPU algo-
rithm, which fits the typical problem of the computational identification of previously
unknown disease genes in the context of positive–unlabeled learning. The advantage
of the proposed method is that it allows accurate characterization of the positive
samples (P set)—via the NeDBIT features—and refined control of the likely positive
samples (LP set)—via the APU labeling procedure—which, extracted from the set
of unlabeled elements, contains, with the highest probability, elements related to the
disease of interest. Moreover, NIAPU turned out to be an effective labeling proce-
dure, allowing machine and deep learning models to be trained appropriately and
deliver highly accurate classification performances. As for disease gene identification,
NIAPU proved efficient in two experiments. In the first one, masking out a subset
of seed genes, it turned out that ~46% of those fell in the LP class. In the second
one, assigning labels using NIAPU on the curated version of the DisGeNET dataset
and then searching for the seed genes of the extended version only, the predictive
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Table 3.3. Enrichment analysis of the LP genes predicted for the ten diseases of interest.
The top enriched diseases, GO terms, and pathways are reported, along with notes about
disease relationships and main reference articles.

Disease Enriched disease/GO/pathway Relationships and references

C0036341
Schizophrenia

KEGG
GO:0042981
Regulation of
apoptotic processes

Apoptotic engulfment pathway
involved in schizophrenia
(increased risk) [288].

C0005586
Bipolar
disorder (BD)

KEGG
GO:0042981
Regulation of
apoptotic processes

Observed relationship between
mitochondrial dynamics
and dysfunction and the
apoptotic pathway activation
and the pathophysiology of BD [289].

C0006142
Malignant
neoplasm of
breast

Leukaemia
Therapy-related myeloid neoplasms
may be part of a cancer-risk syndrome
involving breast cancer [290].

C0009402
Colorectal
carcinoma
(CRC)

Ovarian cancer (OC)

GCNT3 might constitute a prognostic
factor also in OC
and emerges as an essential
glycosylation-related molecule
in CRC and OC progression [291].

C0011581
Depressive
disorder

Parkinson

Neurobiological investigations suggest
that depression in Parkinson’s
disease may be mediated by
dysfunction in mesocortical/prefrontal
reward, motivational, and
stress-response systems [292].

GO:0043066
Negative regulation
of apoptotic
processes

Evidence of local inflammatory,
apoptotic, and oxidative stress
in major depressive disorder [293].

C0023893
Liver
cirrhosis

Parkinson
Parkinson’s disease among the
neurological complications in advanced
liver cirrhosis mediated by manganese [294].

C0376358
Malignant
neoplasm of
prostate

Melanoma
Diagnoses of cutaneous melanoma
may be associated with prostate
cancer incidence [295].

C3714756
Intellectual
disability

Dementia
People with intellectual disability are
at higher risk of dementia
than the general population [296].

C0860207
Chronic
alcoholic
intoxication

Ovarian cancer (OC)

Alcohol consumption might be associated
with the risk of OC in specific
populations or in studies
with specific characteristics [297].

KEGG Estrogen
signaling pathway

Association of increased estrogen level and
increased alcohol use in females [298].

C0001973
Drug-induced
liver disease

Leigh Syndrome (LS)

Valproate, listed as a cause of
drug-induced acute liver failure,
can cause mitochondrial dysfunction
and should be avoided in LS patients [299].
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performance of the method outperformed or was at par with the state-of-the-art
algorithms for disease gene discovery.

Methodologies like NIAPU are meant to prioritize genes for subsequent experimental
validation. Computational prioritization methods aim at reducing the pool of genes
to test in clinical or laboratory studies by providing a ranking of candidate genes
with a higher likelihood of association with the disease.

It is worth noting that the NeDBIT features are designed to be able to use link-
weighted and node-weighted graphs and that, by having increasingly accurate PPIs,
we expect increasingly good results from the application of NIAPU. On the other
hand, the NIAPU methodology is clearly influenced by the reliability of seed genes,
the association score assigned to them, and the background network topology (here,
the PPI network and its reliability). Indeed, GDA datasets may be affected by
disease–gene association bias due to the quantity of research on a given disease or
trait. In this regard, a recent systematic review [300] demonstrated that 87.7% of all
genes could be associated with cancer. This indicates that given the massive amount
of research focused on cancer, which also applies to other types of diseases, the defi-
nition “associated with” is to be checked carefully and critically. The use of datasets
that are as error-free, unbiased, and reliable as possible (e.g., using an interactome
validated in the specific pathological context, as we will see in Section 3.4, possibly
with weighted PPIs) could improve the classification performance of the method [301].

NIAPU delivered accurate and promising results, and its label propagation procedure
allowed proper training of machine learning models in PU settings, particularly
for gene prioritization purposes. For these reasons, as the next section will show,
we relied on NIAPU as the foundation of XGDAG, our explainable graph neural
network strategy for disease gene discovery. NIAPU was published in Bioinformatics
by Oxford University Press [22].

3.2 Explainable Gene–Disease Association via Graph
Neural Networks

The work just presented showed that framing gene discovery as a PU learning
problem is strategic. The effectiveness of labeling propagation methods allows for
proper training of machine and deep learning models, as we demonstrated with
NIAPU. For those reasons, we relied on the NIAPU capabilities for the definition
of the node features and the label propagation system to serve as the base for our
explainable deep learning model. Given the network-like nature of biological datasets,
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such as PPIs, the methodology presented in this section for gene prioritization is
based on GNNs. As we explained in Chapter 2, those models are able to leverage
graph-structured data and capture the information flowing throughout the network.
However, we need to enable proper learning for the GNN in the PU setting of gene
discovery: we use NIAPU for this purpose. After applying NIAPU, we trained
a GraphSAGE [302] model over the propagated labels using the NeDBIT features.
Then, an explanation phase generates the explanation subgraph for the associated
genes that we use to expand the set of candidate genes for further analysis. We
make the hypothesis that this set may contain newly associated genes, following
the connectivity significance principle [50], according to which a seed gene is likely
to be connected to other seed genes. At first, we explore different XAI methods to
determine the top-performing ones, and then we compare those selected with several
state-of-the-art methods for disease gene identification. We call our proposed method
XGDAG (eXplainable Gene–Disease Associations via Graph neural networks).

To the best of our knowledge, XGDAG is the first method to use an XAI-based
solution in the context of PU learning for disease gene prioritization with GNNs. Its
main novelty lies in the innovative use of the explainability results. Commonly, XAI
is used as a passive tool to support and rationalize model decisions. In our case,
explainability tools have an active role in the computation of the final ranking, given
that the new candidate genes are directly extracted from the explanation subgraphs
(see Section 3.2.1.3). This approach drastically diverges from previous attempts to
use XAI for GNNs for a similar task. Indeed, previous work [303] proposed the use
of XAI to weight patient-specific PPIs before applying clustering for disease module
detection. Even in this case, the use of XAI can be regarded as a support tool to
enhance the output of other methods rather than an active tool to produce the final
results.

The PPI, the GDA data sources, and the diseases considered in this study are the
same used in Section 3.1 to allow for a coherent comparison with NIAPU and other
strategies.

3.2.1 Methodology

As aforementioned, we frame gene discovery as a PU learning problem. Our method
is a three-step procedure that consists of (i) applying the NIAPU label propagation
methodology to assign pseudo-labels to enable proper PU learning, (ii) training
a GNN GraphSAGE model, and (iii) using explainability strategies for GNNs to
compute explanation subgraphs for gene prioritization and define new putative
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disease genes. We now explain these steps, depicted in Figure 3.4.
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Figure 3.4. The XGDAG framework. A graph based on a PPI network enriched with GDA
information, node features, and pseudo-labels is fed into a graph neural network. After
the network has been trained, the predictions for the positive (P) genes are explained
using an XAI methodology. Next, the nodes that appear in both the explanation subgraph
and in the likely positive (LP) set are marked as candidate genes for prioritization.

3.2.1.1 Label Propagation

Our dataset is a PU dataset, in which a gene can be associated with a disease
(positive) or not (unlabeled). Given the already stressed problems of working with
PU data, label propagation procedures are used to assign pseudo-labels to unlabeled
instances, with a two-fold benefit: avoid the bias introduced by setting the unlabeled
instances as negative and obtain a more balanced dataset.

Using NIAPU, we assign pseudo-labels to unlabeled genes according to the likelihood
of association: likely positive (LP), weakly negative (WN), likely negative (LN),
and reliably negative (RN), as in Section 3.1. We make use of the whole pipeline as
described in Section 3.1.2, using the NeDBIT features (Section 3.1.3). We remind
that the NeDBIT features used in NIAPU are computed taking into account the
seed genes (represented by the class P). For this reason, for each disease, we have
a different set of features assigned to the genes able to properly characterize the
disease itself.
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3.2.1.2 Graph Neural Network Model and Training

After the label propagation, we obtain a dataset in which previously unlabeled items
are labeled with the most suitable pseudo-label. As Step 6 of the NIAPU pipeline, we
train a GraphSAGE [302] model. It works with an inductive learning procedure that
learns the embedding of a node, assuming that the nodes in the same neighborhood
have similar features. It does that by learning aggregator functions that generate
node embeddings relying upon a node’s features and neighbors. A GraphSAGE layer,
as defined in the PyTorch Geometric implementation we used [304], that generates
the embedding x′

i for node i, after the application of a nonlinear activation function
σ, has the following formula:

x′
i = σ

(
W1xi + W2 ·meanj∈N(i)xj

)
, (3.4)

where W1 and W2 are the weights learned by the neural network, xi is the feature
vector for node i, N(i) is the 1-hop neighborhood of node i, and xj is the feature
vector for the neighbor node j. The mean function aggregates information from all
the neighboring nodes without applying any sampling. In our case, σ is a ReLU
function [305]. The use of this GNN is also suitable for dynamic graphs, as it is able to
generate embeddings of new nodes without the need to retrain the model; only node
features and neighbor node information are needed. Because a single layer aggregates
information at a distance of 1 hop and the diameter of our network is 7, we employ
a 7-layer GraphSAGE GNN to gather the information flowing through the whole
network. Working with deep GNNs may cause oversmoothing [306], which consists
in the degradation of the model’s performance as the number of layers increases.
To guarantee that this does not occur in our case, we tested different architectures
with different depths, obtaining the best performance with 7 GraphSAGE layers
via a competitive study. We trained the model using Adam optimizer [307] with
learning rate set to 1e − 3 and weight decay to 5e − 4 for a maximum of 40,000
epochs, employing an early stopping procedure when the loss reaches a plateau. To
train and evaluate the model, we split the dataset into training (70%), validation
(15%), and test sets (15%), maintaining the balance of the classes between the sets.
The performances of the GNN on the test set are summarized in Table 3.4.

3.2.1.3 Explainability Phase

The next step, after the training of the model, is to explain its predictions. For
that, we have tested several XAI techniques on top of XGDAG. These methods
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Table 3.4. Average results with standard deviation over the ten diseases for the GNN
model.

Label Precision Recall F1 score

P 0.956 ± 0.033 0.962 ± 0.064 0.958 ± 0.040
LP 0.876 ± 0.082 0.911 ± 0.077 0.888 ± 0.046
WN 0.861 ± 0.068 0.815 ± 0.110 0.831 ± 0.059
LN 0.868 ± 0.046 0.835 ± 0.066 0.850 ± 0.044
RN 0.858 ± 0.055 0.886 ± 0.060 0.871 ± 0.047

Macro avg 0.884 ± 0.027 0.882 ± 0.026 0.879 ± 0.028
Weighted avg 0.869 ± 0.031 0.863 ± 0.034 0.862 ± 0.035

Accuracy 0.863 ± 0.034

output a subgraph of the original graph, the explanation subgraph, which contains
the most influential nodes for the prediction. Our method applies one explainability
technique to the positive genes P. For each explained node n, we thus obtain the
explanation subgraph Gn. Every node in Gn has an importance score assigned
(which depends on the XAI method used). Gn may contain nodes belonging to
different pseudo-classes. To enhance the accuracy of the results, we filter Gn by
keeping only the genes that the GNN predicted to be LP, which are more likely to
be associated genes according to the NIAPU labeling. We thus obtain a reduced
explanation subgraph, the candidate subgraph GLP

n . We repeat this process for
every node in P. If a node i appears in more candidate subgraphs, it is more likely
to be associated with the disease, as per the connectivity significance principle [50].
We take this into account as follows: we keep track of the number Mi of subgraphs
in which node i appears and of its cumulative importance score Si, obtained by
summing all the importance scores sij that node i has in the prediction of each node
j—we assume that sij = 0 if i is not in Gj . Every gene i is then assigned a tuple
(Mi, Si). Finally, we obtain a ranking of candidate genes by sorting all the genes in
the candidate subgraphs according to (Mi, Si). A graphical representation of the
XGDAG prioritization mechanism is shown in Figure 3.5.

Explainability methods for graph neural networks In our study, we made
use of three XAI methods for GNNs. Each one of them relies on a different rationale
to obtain explanation subgraphs. We will briefly remind their main characteristics,
already described in Section 2.3. The first method is GNNExplainer [225]. It works
by learning a mask on the adjacency matrix by maximizing mutual information. Its
output is a subgraph of nodes that are relevant for the prediction (along with a
subset of node features). Its predictions are edge-oriented. Another method we used
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Figure 3.5. Graphical representations of the XGDAG prioritization mechanism. The
output graph from the GNN is fed into an XAI method. For each P gene, we generate
an explanation subgraph. This contains the nodes that were influential in the prediction
of the node as P. We pool the subgraph by filtering out non-LP nodes, obtaining a final
candidate subgraph. sij is the importance score assigned by a given explanation method
to i for the prediction of node j. Assuming the cumulative importance score for node
C to be greater than the one of node A (SC > SA), we obtain the gene ranking in the
picture, with G as the top-ranked node because it appears in two candidate subgraphs.

is GraphSVX [240], which uses a surrogate model to approximate Shapley values [26]
as indicators of node importance. This puts GraphSVX explanations on a solid and
robust theoretical background. It delivers node-centric explanations. Finally, the
third strategy we employed is SubgraphX [241], a subgraph-centric strategy that ap-
proximates Shapley values to determine the most relevant fully connected subgraph
for predictions. The selected explanation subgraph is the one associated with the
highest Shapley value. The three methods explain the predictions leveraging the
three different key components of a graph: edges, nodes, and subgraphs, respectively.
This allows us to have comprehensive explanations of the GNN predictions.

To use XAI methods as independent tools for prioritization for comparison purposes,
we employ them in a PU learning setting. Indeed, we use them to explain models
trained on binary PU data devoid of any prior label propagation. As a result, they
lack the assistance provided by the classes generated during the label propagation
phase, which can be considered as a preliminary prioritization. Without the aid of
the LP class, the entire explanation subgraph is considered for prioritization without
any node pooling. This introduces noise into the results and reduces the accuracy of
the final ranking, as shown in Section 3.1.4 when comparing XGDAG-based variants
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with standalone XAI tools. In more detail, for any node n, the GLP
n set is absent

in standalone XAI-based prioritization. Instead, we use the set GU
n , which includes

genes that are present in the explanation subgraph and that were predicted as
unlabeled (U) by the GNN trained in the binary PU setting. Then, we proceed with
the scoring and ranking criteria as proposed in Section 3.2.1.3. As mentioned earlier,
using the entire set of genes predicted as unlabeled for prioritization introduces noise,
as it may result in prioritizing genes that are highly unlikely to be associated with
the disease, specifically the genes that would be predicted as RN by the GNN trained
on the propagated labels. Conversely, the incorporation of label propagation in
XGDAG brings additional value by facilitating the learning through pseudo-classes
and assisting in the discovery of candidates through LP genes.

3.2.2 Results and Performance Analysis

To validate the obtained results, we performed both a numerical evaluation and
an enrichment analysis. With the former, we compared, in terms of F1 score, the
retrieval effectiveness of XGDAG with other methodologies for gene discovery; we
compute the F1 score taking into consideration the number of associated genes
in extended DisGeNET dataset that each method is able to detect. Seed genes
present in the curated set are not considered for this purpose since they were used as
positive genes for the training. This validation setting allows us to test whether our
model was able to retrieve genes that had been discovered by previous research. In
enrichment analysis, we inspected whether the set of genes prioritized by XGDAG
was connected with the diseases under examination, namely whether the genes
were enriched in pathways, gene ontologies, or other diseases associated with the
considered ones.

3.2.2.1 Numerical Evaluation

First, in Figure 3.6, we compare the performance of XGDAG against the single
XAI methods on which it is based, used as standalone tools. Notice that the PU
learning-based XAI approach achieves higher performances with respect to its plain-
explainability counterpart. Indeed, the use of the preliminary prioritization, obtained
with the LP set from the label propagation phase, helps in the identification of the
pool of possible new candidate genes.

We thus selected the best performing XGDAG variants in terms of overall F1 score.
Given their at-par performance, we chose the GraphSVX- and the GNNExplainer-
based approaches. The very similar behavior of the two strategies may be due to the
fact that both GNNExplainer and GraphSVX identify important (and possibly over-
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Figure 3.6. F1 score (y-axis) comparison for four representative diseases. The metrics
are reported at increasing numbers of retrieved genes (x-axis). Dashed lines indicate
the standalone XAI method and solid lines the XGDAG version. We notice that using
explainability techniques on top of a PU learning prioritization strategy significantly
improves the retrieval accuracy of the methods.

lapping) explanation subgraphs for the positive genes—noted also by inspecting the
results of GNNExplainer and GraphSVX alone, yielding similar scores. Intersecting
such explanation subgraphs with the LP set, effective prioritization is obtained. We
thus compared them against state-of-the-art methodologies for gene prioritization,
namely DIAMOnD, MCL, RWR, two variants of GUILD (fFlow and NetCombo),
NetRank (based on the ToppNet algorithm of the ToppGene prioritization suite [61]),
and also with NIAPU. The plots in Figure 3.7 show that XGDAG is more effective
and robust than the other strategies. As we increase the number of retrieved genes,
it is able to keep high the number of associated genes retrieved. On the contrary,
methodologies such as DIAMOnD may be more effective in the retrieval when a small
number of candidates are searched. However, they lose their reliability when higher
numbers of candidate genes are considered, as also pointed out by DIAMOnD’s
designers [50] and previously in Section 3.1.4.3. In this, XGDAG proved to be the
best solution even when looking for larger sets of candidate genes.

Results on a high-quality curated dataset By inspecting the results, we
noticed the very high accuracy of DIAMOnD on small sets of candidate genes. The
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Figure 3.7. F1 score comparison for four representative diseases for the two best-performing
XGDAG variants (GNNExplainer and GraphSVX) with known gene discovery method-
ologies. We notice that when the number of retrieved genes is small, the various
approaches perform comparably. However, as the number of genes increases, XGDAG
remains the most stable and robust method, whereas most of the compared strategies
tend to become less accurate in the retrieval.

dataset we used, even in its curated version, contains a relatively high number of
associated genes, some of them absent in other manually curated datasets. We were
interested in exploring whether training on datasets with a higher level of curation
and smaller numbers of associated genes would change these results.

We performed this additional experiment using the highly curated dataset by Ghias-
sian et al. [50]. This is the dataset on which DIAMOnD was trained and evaluated in
the original publication. The PPI network used here was built considering physical
interactions validated experimentally and gathered from different sources [308]. The
GDAs were retrieved from OMIM (Online Mendelian Inheritance in Man) [309]
and GWAS from PheGenI [310]. Because of the high-quality level of curation of
these GDAs and PPI network, they were used in several gene prioritization experi-
ments [260, 311, 312].

We used the PPI and the GDAs of the aforementioned dataset, which we call
OMIM+PheGenI dataset, to train the algorithms. We then validated the mod-
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els on the GDAs from the extended DisGeNET dataset. The goal was to first
train the algorithms on high-quality and unbiased data and then test them on an
external dataset. For this task, we considered the diseases in common between
the two datasets: malignant neoplasm of breast (C0006142), colorectal carcinoma
(C0009402), and liver chirrosis (C0023893). A comparative analysis of the F1 score
is shown in Figure 3.8.
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Figure 3.8. F1 score comparison for the OMIM+PheGenI dataset (dashed line) and the
DisGeNET dataset (solid line). Even for a small number of genes, in this experiment
XGDAG is competitive against DIAMOnD. The performances on the OMIM+PheGenI
dataset are far superior to the DisGeNET ones.

The inspection of the results indicates that training on smaller but better-curated
datasets is beneficial for XGDAG, whereas DIAMOnD suffers from training on
smaller sets of seed genes. This further highlights the robustness of XGDAG whose
results are accurate even when the number of seed genes is small. However, the
different results obtained when using different datasets demonstrate that data quality
plays a major role in gene discovery and prioritization tasks and that a particular
focus should be put on the definition of high-quality GDAs and less biased interaction
networks [301].
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3.2.2.2 Enrichment Analysis

As a further analysis to enhance the validity of our methodology, we checked
whether the candidate genes retrieved from XGDAG were enriched in biological
pathways, gene ontologies, or other diseases related to the diseases of interest. We
provide this analysis for the genes of the DisGeNET dataset prioritized by XGDAG-
GNNExplainer. We considered the top 200 genes in our ranking as a reasonable
cutoff. We performed the analysis using the Enrichr web tool [285, 286, 287] and
selecting the most statistically significant results according to Fisher’s exact test. For
disease C0006142 (malignant neoplasm of breast) several significant gene ontologies
and pathways were found. Figure 3.9 shows the ten most significant GOs for the
biological process domain.

Figure 3.9. Top 10 significant gene ontologies for disease C0006142 (malignant neoplasm of
breast) in the GO Biological Process 2021 database found with Enrichr. Breast cancer-
related GOs are retrieved, further proving the effectiveness of XGDAG. Each item is
statistically significant and reported with its p-value (*significant adjusted p-value).

Indeed, among the most significant GOs retrieved, protein modification was found to
be a potential biomarker in breast cancer [313]. Moreover, dysregulated programs in
DNA transcription are related to certain behaviors in cancer cells [314]. Furthermore,
apoptotic process regulation plays an important role in cancer progression and
therapies [315, 316, 317]. Enrichment analysis proved genes retrieved by XGDAG
to have meaningful associations with the disease. Summarized results for the ten
studied diseases providing the most enriched pathway, ontology, or associated disease
and reference papers confirming the findings can be found in Table 3.5.
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Table 3.5. Enrichment analysis for the considered diseases. We report the most enriched
GO, pathway, or disease, with a description of the relationships and reference articles.

Disease Enriched GO/pathway/disease Relationships and references

C0006142
Malignant
neoplasm of
breast

GO:0032446
Protein modification by
small protein conjugation

Protein modification was
found to be a biomarker in
breast cancer [313].

C0036341
Schizophrenia

Androgen receptor
signaling pathway

Altered androgen receptor
activity may impact stress in
men with schizophrenia [318].

C0023893
Liver
cirrhosis

GO:0042981
Regulation of
apoptotic process

Apoptosis is a typical pathological
feature of liver diseases
and excessive apoptosis can
generate acute liver injuries [319, 320].

C0009402
Colorectal
carcinoma

GO:0006464
Cellular protein
modification process

Protein synthesis deregulation
is a frequent event in cancer, and
many colorectal cancer
mutations are responsible
for the deregulation
of translational processes [321].

C0376358
Malignant
neoplasm of
prostate

GO:0043066
Negative regulation of
apoptotic process

The ability of cells to
avoid apoptosis is crucial
in cancer development and
anti-apoptotic pathways play a
major role in the development of
effective treatments [322, 323].

C0005586
Bipolar
disorder

Amyotrophic
lateral sclerosis (ALS)

Hospitalized patients with
bipolar disorder and
psychiatric conditions were
significantly associated with a
first ALS diagnosis within a year [324].

C3714756
Intellectual
disability

Neurodevelopmental
disorder
(Au-Kline Syndrome)

Au-Kline syndrome affects
different body systems
leading to intellectual disability,
hypotonia, and delayed development [325].

C0860207
Drug-induced
liver disease

Messenger RNA processing

A consistent number of circulating
Messenger RNA and other microRNAs in
plasma collected from drug-overdosed
animals are found to be
highly expressed in the liver [326].

C0011581
Depressive
disorder

GO:0043066
Negative regulation of
apoptotic process

Major depressive disorder
shows evidence of local
inflammatory, apoptotic, and
oxidative stress [327].

C0001973
Chronic alcoholic
intoxication

Dementia
Chronic abuse of alcohol can cause
structural and functional brain damage,
leading to alcohol-related dementia [328].
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3.2.3 Observations

In this section, we presented a new methodology, XGDAG, which relies on PU
learning, GNNs, and explainability to detect novel gene–disease associations by
providing a prioritization of candidates. XGDAG uses the effective NeDBIT fea-
tures defined in Section 3.1.3 to enable PU learning by assigning pseudo-classes to
unlabeled instances via the NIAPU pipeline. This information is then leveraged
by our GNN, which is able to generate network topology-aware embeddings that
allow for high-accuracy predictions. In this context, accurate but black-box models
do not provide any additional information than what we already know about gene
associations. Thus, given that the reliability of the explanations will depend on
the quality of the model itself, an accurate model is the base from which we start
our explanation phase. The application of several XAI techniques (among which
GNNExplainer and GraphSVX are the most effective) opens the black box on the
GNN by determining the most influential nodes for the prediction. Some of these
nodes are present in the set of genes predicted as LP: these nodes are selected as
new candidate genes.

This is a novel use of XAI. Generally, the main goal of explainability is to gain insights
into the decision process of a model. Diversely, in our approach, we exploit XAI meth-
ods to draw the final ranking of candidate genes, with the added value of having an
explainable output. This is a novelty that presents XAI not only as a tool that opens
the black box of deep neural networks but also as an analysis component directly
incorporated into the GDA discovery pipeline tasked with producing the final output.

The method outperforms state-of-the-art methodologies for gene discovery, demon-
strating the effective synergy of PU learning and explainability on GNN models.
XGDAG’s results are stable and robust, even considering large numbers of candidate
genes.

It is interesting to point out that by using datasets with an in-depth level of manual
curation, such as the one by Ghiassian et al. [50], the retrieval performance of
XGDAG increases, demonstrating both the robustness of the approach and the
importance of curated data.

Additionally, enrichment analysis uncovers associated pathways, ontologies, and
traits linked to the selected diseases, backing up the accuracy of the gene ranking
obtained with XGDAG and further proving its effectiveness as a gene discovery
strategy.
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Our approach is based on the analysis of general graph-structured data, so it can
be used in various settings based on network modeling. It is thus possible to apply
XGDAG on multiplex networks [41] and multi-omics data [40]. Notably, datasets
such as the Omics Discovery Index [36, 37] and ConsensusPathDB [329, 330, 331]
combine information from proteomics, metabolomics, genomics, and other interaction
networks; expanding the study to encompass this type of data can further enhance
the insights acquired through our methodology.

Finally, our study suggests that efforts can be put into the development of PU
learning and XAI techniques devoted to GNNs for gene discovery purposes, giving
the rewarding results that the joint use of such methods can obtain. The main limi-
tation, as we observed in Section 3.2.2.1 is the requirement of high-quality data [301],
also discussed in Section 3.1.5. This is shared by all data-based computational
approaches; however, as more genes are discovered and validated, the results will
be more trustworthy. The results of XGDAG were published in Bioinformatics by
Oxford University Press [19].

Sections 3.1 and 3.2 were devoted to the development and analysis of techniques
(NIAPU and XGDAG) to retrieve and prioritize candidate disease-associated
genes. Moreover, we saw how NIAPU can ease learning for GNN models, enabling
effective use of XGDAG via label propagation. In the next section, we will instead
analyze possible interactions that can arise among those genes, the so-called epistatic
interactions, and we will present EpiDetect, our explainable deep learning-based
solution to detect them.

3.3 Explainable Deep Learning for Network Analysis of
Epistatic Interactions

Differently from single gene–disease associations, traits or diseases in complex or-
ganisms may be regulated by the interaction of two or more genes. We are talking
about epistatic interactions, introduced in Section 2.1.2. Two or more genes can
interact, creating the phenomenon known as epistasis. The detection of epistatic
genes is of extreme importance in genetics since it can help unveil mechanisms of
diseases that are still unknown. Many computational methods have been developed
for the purpose [71, 72, 74, 73, 75]. However, as introduced, those methods are
negatively influenced by the presence of marginal (or main) effects. A main effect is
the effect that a genetic variant alone has on the trait. Marginal effects can confuse
a model that may detect as an epistatic interaction the presence of two independent,
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strong contributions. In this thesis, we try to address this problem by developing a
framework based on neural networks and explainability.

As remarked, despite their superior performance in various applications, their black-
box character limits the use of deep learning models in genetics [4]: the complicated,
highly nonlinear functions they learn make it difficult to understand how they
operate, and thus render them unsuitable when it is needed to know why a partic-
ular output has been produced. Epistatic interaction detection is not immune to this.

To cope with this problem, we developed EpiDetect, a new framework for discov-
ering potential epistatic interactions. The core element of EpiDetect is EpiCID
(Epistatic Cosine Interaction Detection), a novel neural network-based algorithm
that opens the black box and leverages the power of neural networks to discover
complicated and hidden interactions between input single-nucleotide polymorphisms
(SNPs), actually explaining the neural network predictions. EpiCID is a method
specialized at directly detecting purely interacting input features without relying
on the marginal effect that a single SNP may have on the trait under considera-
tion. We remind that SNPs are genetic variants occurring when a nucleotide (A,
C, G, T) is substituted with another nucleotide in a given gene or DNA region
(locus). Our method is designed to deliver global explanations. In contrast with
most methodologies, including the other XAI strategies presented in this thesis,
which are local instance-based explainers that discover critical features for specific
predictions, EpiCID determines the impact (in terms of interaction strength) that
pairs of features have globally on the behavior of the model.

Given the high relevance and impact of the research in the field, we selected blood
pressure regulation as a case study [332]. We designed three regression models based
on an MLP for detecting high systolic (SBP), diastolic (DBP), and pulse pressure
(PP), and we evaluated the weights of the layers inside the neural networks and
the effect that these weights have on the final output (the blood pressure value).
For each pair of SNPs (our method can also be extended to subsets of more than
two SNPs), we obtained an interaction score, which captures the strength of the
interaction among the two SNPs of the pair, as well as the effect that this interaction
has on the final regression function. Then, each SNP is mapped to the corresponding
gene. Subsequently, we identified the genes/SNPs with the most interactions by
creating a network and connecting those with a high interaction score. From this
network, we identified the most central genes that significantly affect SBP, DBP,
or PP. This allowed us to discover potentially novel pathways that affect blood
pressure and cardiovascular risk. To compare our approach, we evaluated it against
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other widely used epistasis detection frameworks such as the mentioned Multifactor
Dimensionality Reduction (MDR) [71] and Boolean Operation-based Screening and
Testing (BOOST) [72]. We also compared it with Neural Interaction Detection
(NID) [223], a methodology specific to neural networks that we adapted to work with
genetic inputs. Our results showed that our strategy outperformed these methods
and minimized the influence of marginal effects.

We hereby present our proposed framework. Given subject patients’ genotype (SNPs)
and phenotype (blood pressure value), our system identifies genes correlated with
the phenotype expression based on their interaction. EpiDetect consists of three
main components: i) the EpiCID neural network explainability module that de-
tects candidate epistatic pairs, ii) the design of a gene–gene network and centrality
analysis, and iii) enrichment analysis. We present a graphical representation of the
workflow of our approach in Figure 3.10.

SNPs Neural Network
Training EpiCID Algorithm

SNPs to Genes

Epistatic Pairs

Epistatic NetworkCentrality AnalysisCentral GenesEnrichment Analysis

Enriched Ontologies,
Pathways, and

Diseases

1

23

Figure 3.10. The workflow of the EpiDetect framework. The numbers in the blocks
indicate the three components of the pipeline. A neural network is trained and explained
with EpiCID (block 1) to find interacting pairs that are mapped to genes and used
to build an epistatic network and perform centrality analysis (block 2). The central
genes are used for enrichment analysis (block 3), which determines associated ontologies,
pathways, and diseases.

We applied our EpiDetect framework to the three blood pressure traits. Herein,
we report the results obtained and compare them to those of the other approaches
(MDR, BOOST, and NID). In Section 3.3.1, we describe how we gathered and
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processed genetic information. Then, in Section 3.3.2, we delve deeper into the
methodology, describing the neural network models and the EpiCID algorithm
(block 1 of Figure 3.10), the network and centrality analysis (block 2), and the final
enrichment analysis (block 3). The complete EpiDetect pipeline provides an output
at different levels, from lists of interacting SNP pairs to central genes and biological
pathways. Therefore, in Section 3.3.3, we perform a three-level analysis: first, we
describe the results of the centrality analysis, which recovered the most promising
genes from the EpiCID ranking, and then we delve into the results of the enrichment
analysis phase to understand the biological relevance of our findings. Finally, we go
back to EpiCID to analyze its output ranking and evaluate its robustness.

3.3.1 Data Curation

For our study, we retrieved individuals’ genotype and phenotype information from
UK Biobank [333, 18], a large population-based cohort in the UK that includes
around half a million volunteers aged 40 to 69 years. For our analysis, we selected
SNPs that were found to be robustly associated with SBP, DBP, and PP, taking
into account genome-wide significant signals for those traits derived from the largest
GWAS on blood pressure [332]. This allows us to narrow down the pool of possible
epistatic SNPs, reducing the complexity associated with those studies. Thus, we
ended up having 264 SNPs for SBP, 342 for DBP, and 283 for PP. We created three
datasets, one for each trait, in which an array of SNPs describes each individual,
and the target variable is the blood pressure value of interest. We calculated the
mean SBP, DBP, and PP values from two automated or, wherever needed, manual
measurements. We further performed quality control, excluding individuals with
more than 10% of missing genotype. After the quality control, we ended up with
456,057 individuals. Every patient in the three datasets is described by an array of
SNPs. The SNPs were encoded in a one-hot encoding fashion to be suitable to be
fed to a neural network model. Each SNP is a three-element vector in which the
one-valued element indicates the genotype:

• [1, 0, 0]: homozygous for the major allele.

• [0, 1, 0]: heterozygous.

• [0, 0, 1]: homozygous for the minor allele.

The major allele is the most frequent in the population, while the minor is the least
occurring.
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3.3.2 Methodology

As introduced, EpiDetect is composed of three main elements. The first one,
EpiCID, takes in input a trained neural network and outputs interacting pairs
of SNPs/genes. The second component, the network analysis, retrieves the most
important genes in the epistatic network and finally, the enrichment analysis, looks
for pathways or ontologies associated with the disease or trait under scrutiny. We
will analyze each component of the framework in detail.

3.3.2.1 Neural Network Model and Training

Our methodology is based on the usage of an MLP. The use of this simple type
of neural network is aligned with the necessity in genetics to develop simple and
explainable models rather than complex and obscure ones [197]. Our network is
composed of two fully connected layers with 200 and 50 neurons each, followed by a
dropout layer (probability of dropout set to 0.3). For each blood pressure trait (SBP,
DBP, and PP), the network was trained for 40 epochs using Adam optimizer [307]
with a learning rate of 1e − 4 and a batch size of 16, generating three different
models. The three blood pressure datasets were split into training (70%) and test
sets (30%). The average mean absolute error on the test set of the networks was
around 10 mmHg (the unit of measurement for blood pressure). The trained neural
network is the base for the explanation phase. As a note, even though the regression
error may seem high, it is important to point out that, with this study, we are
capturing only the genetic components of blood pressure regulation without taking
into account other important factors like patients’ habits and lifestyles that have an
impact on the traits.

3.3.2.2 Epistatic Cosine Interaction Detection

The core of EpiDetect is the Epistatic Cosine Interaction Detection (EpiCID)
algorithm. Our idea is that to find interacting pairs of input features, it is possible
to consider their correlation in the vector space. Thus, one possible metric to employ
in order to measure feature correlation is cosine similarity. From this follows the
need to represent a feature as a vector, using a sort of “feature vector of a feature”.
This vector should describe how the feature is represented and internally seen by the
neural network. It can be thought of as a fingerprint or embedding of the feature
itself. We can build this vector by using the weights the neural network learned
during its training. To construct this vector, we consider the first-layer weights (the
ones connecting the input with the first-layer neurons) and the influence that hidden
units exert on the output. The latter can be taken into account using the concept of
aggregated weight introduced by NID authors [223]. This is computed by cumulative
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matrix multiplications of the absolute values of weight matrices and indicates the
influence hidden units have on the output. The aggregated weights of the units at
layer l are defined as

z(l) = |wy|T · |W(L)| · |W(L−1)| . . . |W(l+1)|, (3.5)

where wy are the weights at the output layer, W(j) is the weight matrix at hidden
layer j and L is the network depth (i.e., the number of hidden layers). Thus, each ele-
ment zk(l) indicates the aggregated weight at unit k of layer l. As demonstrated [223],
this definition is an upper bound of the gradient magnitude. It can be used as
an approximation of the importance of the hidden units, as gradients have been
commonly employed as importance measures in neural networks [220, 334, 217], as
also indicated in Section 2.3. Now that we have all the elements needed, we can
define the neural feature vector ξ(i) for input feature i as follows:

ξ(i) = |W(1)
i | ⊙ z(1), (3.6)

where ⊙ indicates the Hadamard product of two vectors, W(1)
i is the vector of the

weights between feature i in the input and the first hidden layer units, and z(1) is the
aggregated weight vector at the first hidden layer, as defined in Equation (3.5). Every
element ξ

(i)
k is given by the product between the connection weight from feature i to

unit k of the first hidden layer and the aggregated weight at such unit. The vector
defined above is an embedding of the feature, a hidden representation created by
the network during the learning process, implicitly considering its contribution to
the output throughout the network.

Cosine interaction strength Now, we know how to represent a feature in the
vector space as embedded by the neural network. We can exploit this to compute
the interaction strength between two or more features. We decided to consider the
correlation of the feature in the vector space as a measure of interaction importance
using the cosine similarity measure, defining the cosine interaction strength between
features i and j as
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ϕ(i, j) = cos(ξ(i), ξ(j)) = ξ(i) · ξ(j)∥∥ξ(i)
∥∥ ∥∥ξ(j)

∥∥ , (3.7)

where ξ(i) and ξ(j) are the neural feature vectors describing features i and j. Notice
that ϕ(i, j) ∈ [0, 1] since ξ

(i)
k ≥ 0 and ξ

(j)
k ≥ 0 for every k, as per Equations (3.5) and

(3.6). The rationale behind this measure is that a high cosine similarity between two
neural feature vectors indicates that two features interact in the network. However,
this measure alone does not capture the real magnitude of the interaction, but
it is only able to detect if an interaction is present. Early experiments showed
this measure could find interacting pairs of features but failed to determine the
interaction strength properly. For that reason, we improved the definition of cosine
interaction strength, defining a more appropriate one that was able to differentiate
between weak and strong interactions.

In order to do that, we took into consideration where the interaction is created, i.e.,
between the input and the first hidden layer. Inspired by NID, given features i and j,
we consider their connection weights to the first hidden layer units. Differently from
Equation (3.6), in which the effect of a single feature on the network is considered,
we now analyze the joint effect of the two features on the first hidden layer. For
each first-layer unit k, we apply the min averaging function to the absolute values
of the weights connecting k to i and j. The choice of this function is justified
by previous work [223], which demonstrated its effectiveness in detecting feature
influence in neural networks. Then, we sum all over the units to obtain what we
defined first-layer interaction influence:

η(i, j) =
∑

k
min(|W (1)

i,k |, |W
(1)
j,k |). (3.8)

The rationale behind the choice of the minimum is that an interaction is strong (at
the first hidden layer) when its η is large. When the minimum of the two weights
is large (i.e., when both weights have a high value) for a consistent number of
hidden units, η will be high, indicating the rise of strong interaction. Conversely,
the previously defined ϕ in Equation (3.7) helps understand how the interaction
evolves when passing throughout the network up to the output; an interaction may
start strong at the first hidden layer but lose its importance toward the output layer,
or a mild interaction may preserve its strength, having a relevant impact on the
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prediction. Given those observations and merging Equations (3.7) and (3.8), we
obtain the new definition of cosine interaction strength:

Φ(i, j) = η(i, j)ϕ(i, j). (3.9)

The measure defined in Equation (3.9) can describe the interaction completely and
coherently, from its rise from the input to the first hidden layer and considering its
evolution toward the output through the network.

Finally, in our application, given that a SNP is represented by a three-element
one-hot-encoded vector (see Section 3.3.1), it follows that it is described by three
different neural feature vectors (one for each feature), which need to be aggregated
before computing the interaction strength. We merged them into a single one by
performing an element-wise sum of the vectors. The same aggregation was used for
the first-layer weights to compute the first-layer interaction influence of a SNP. Once
we have the vectors, it is possible to obtain the cosine interaction strength for a pair
of SNPs as in Equation (3.9). Notably, EpiCID can be extended to sets of more
than two SNPs.

3.3.2.3 Network and Centrality Analysis

After having trained the MLP three times (once for each trait; SBP, DBP, and PP)
and applied EpiCID, we obtained a ranked list of highly interacting (as measured by
EpiCID) pairs of SNPs. We next mapped these SNPs to genes, obtaining a ranking
of interacting genes. The mapping is performed via the following steps:

1. We map a SNP to a protein-coding gene according to the Consensus Coding
Sequence Project (CCDS) [335], which provides very high-quality annotations
for protein-coding genes.

2. If no reference in CCDS is found, we map using Genecode [336].

In cases where a SNP is annotated in a genome region with more than one gene
present, we followed the process:

1. We map to a coding gene if present.

2. If more than one coding gene is present, we choose a mapping already appearing
in the literature.
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3. If no coding genes are present, we look up different sources, such as dbSNP [337]
and Ensembl [338], to choose the most suitable mapping.

Whenever we do not find a mapping, we assign the SNP to the closest gene according
to Genecode, giving a preference for coding genes.

We used the interactions identified by EpiCID to create an epistatic interaction
gene–gene network for each of the three blood pressure traits and discover the most
central genes by studying the top 1000 interactions [339, 340]. For comparison
purposes, to investigate the effectiveness of the proposed methodology, we also
analyzed the central networks obtained by using the other algorithms for epistatic
interaction detection. The central genes, i.e., those with a degree higher than the
average degree in the top-1000 network, are chosen for enrichment analysis. The
degree, corresponding to the number of direct neighbors to a given node, allows
an immediate evaluation of the regulatory relevance of a node and can be used to
validate centrality in different kinds of networks, such as signaling and metabolic
networks [341].

3.3.2.4 Enrichment Analysis

We performed enrichment analysis for central genes of the epistatic networks using
again the Enrichr online tool [285, 286, 287]. We compared gene sets from each
algorithmic approach (EpiCID, MDR, BOOST, and NID) to the datasets available
in the databases of the Gene Ontology Consortium [342], DisGeNET discovery
platform [262, 48, 14], GWAS Catalog [343], and UK Biobank [333, 18], to understand
the biological relevance of the epistatic networks obtained for the three blood pressure
traits.

3.3.3 Analysis of the Results

We hereby present the results of the application of the EpiDetect pipeline. Given
that validating epistatic interactions is rather challenging due to the complex nature
of the phenomenon and the absence of consistent ground truth, we proceed with a
three-fold analysis to have a thorough evaluation of our methodology. We will first
describe the network and centrality analysis of the interacting pairs found by EpiCID
and compare them with results obtained with other algorithms (Section 3.3.3.1).
Then, we delve into the enrichment analysis, which provides important biological
insights (Section 3.3.3.2). Finally, Section 3.3.3.3 is dedicated to the analysis of
the EpiCID output to investigate its reliability and robustness, mainly focusing on
marginal effects and interaction distributions.
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3.3.3.1 Centrality Analysis Results

The top 1000 interactions provided by EpiCID involved 195, 168, and 185 interacting
genes, while centrality analysis resulted in 49, 48, and 53 central genes for the SBP,
DBP, and PP traits, respectively. Next, we looked for common genes among the
EpiCID-derived network and the networks obtained from BOOST, MDR, and NID
(Figure 3.11).
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Figure 3.11. Common central genes from SNPs associated with SBP (a), DBP (b), and
PP (c), following analysis with different algorithms.

Thirty-one out of 49, 33 out of 48, and 37 out of 53 central genes obtained by
EpiCID for SBP, DBP, and PP, respectively, were common to the central genes
obtained by at least one or more other approaches. EpiCID had the most common
genes with NID, compared to other methods, namely 30, 29, and 35 for SBP, DBP,
and PP, respectively. MDR contained an intermediate but low number of common
central genes with EpiCID and the other strategies, 3 out of 7, 10 out of 33, and 3
out of 5. BOOST had the least common genes to the other three approaches; we
found 5, none, and 2 common genes for SBP, DBP, and PP, respectively. EpiCID
led to a high percentage of common central genes with methodologies adopting
similar architecture (i.e., NID), whereas BOOST and MDR led to more divergent
sets of central genes.

3.3.3.2 Enrichment Analysis Results

Centrality analysis led to a gene set that contained only a fraction of the total genes
of the epistatic network, which are assumed to play a central role in the trait/disease
network under consideration. A critical question is which epistatic network may
more accurately represent the affected intracellular pathways that alter organismal
physiology and lead to a trait/disease. In the enrichment analysis, we queried for
the traits that are most significantly associated with each of the sets of central
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genes returned by the four approaches (EpiDetect, NID, MDR, and BOOST) as
a means to discover which method returns a core network for each trait. So, we
examined whether SBP, DBP, and PP traits were found as associated traits and,
if yes, in which position in the enrichment ranking; we report the position for the
different approaches in Table 3.6. From the ranking of the Enrichr results, we can
observe that the networks obtained by EpiDetect can represent core networks
on each associated trait more accurately compared to the other algorithms. With
the exception of the PP trait in DisGeNET and UK Biobank, where none of the
algorithms predicted the trait, EpiDetect-associated traits were ranked first in all
cases. NID had slightly lower accuracy, with DBP in UK Biobank ranking third.
Finally, MDR and BOOST had the lowest accuracy among the methods tested, as
the relevant traits were ranked in lower positions. This difference can be quantified
by a Point Penalty Score that we defined, which penalizes the approaches that
perform worst (see Table 3.6) considering the ranking among the proposed strategies.
The method ranking the trait higher than the others gets 0 penalty points, the
second method gets 1 point, and so on (ties get the same penalty score). A lower
score is better. No penalty is assigned if no method ranks the trait among the top
10 enriched terms. EpiDetect scores 0, being always the top-performing approach
able to retrieve gene networks representative of the analyzed disease.

Table 3.6. Association of central genes to the respective trait (N/A: not associated among
the top 10 terms). We also present the results of our framework when we substitute the
first component (EpiCID) with BOOST, MDR, and NID for comparison. The rank
indicates the position of the trait in the retrieved ranking of traits/diseases associated
with the central genes of each algorithmic approach in each of the three databases. Each
method is presented with its Point Penalty Score.

Algorithm Rank
Point

Penalty
Score

DisGeNET GWAS Catalog UK Biobank

SBP DBP PP SBP DBP PP SBP DBP PP

EpiDetect 1 1 N/A 1 1 1 1 1 N/A 0
BOOST 1 1 N/A 1 1 1 1 N/A N/A 2
MDR 5 1 N/A 3 1 N/A 3 1 N/A 4
NID 1 1 N/A 1 1 1 1 3 N/A 1

Having verified the specificity of EpiDetect, we next analyzed for enriched gene
ontologies (GO Biological Process databases) found using the central genes of the
epistatic networks. We performed a ranking of the pathways found, based on the ob-
tained p-value, following Fisher’s exact test; the top results are shown in Figure 3.12.
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The enrichment of the SBP network revealed associations with GOs related to the
regulation of synaptic transmission (GO:0050806) and other nervous system-related
ontologies (GO:0014020 and GO:0001843, among others), in line with the evidence
of its connection with blood pressure regulation [344, 345], as well as established
associations between hypertension and wound healing processes (GO:0061045) [346]
and plasma membrane abnormalities (GO:0120035) [347]. DBP-central genes were
enriched in MAPKs and MAPK signaling (GO:0051403 and GO:0031098) pathways
known to be associated with blood-pressure traits [332]. A novel finding is that
cellular sodium ion homeostasis (GO:0006883) and similar GOs (GO:0055078 and
GO:0030004) were found enriched based on EpiDetect epistatic network genes.
In the PP network of central genes, among the known associations were that of
regulation from RNA-polymerase II (GO:0045944) [348] and cardiac muscle fiber
development (GO:0048739) [332]. Also, sarcomere organization (GO:0045214) was
found to be enriched and in line with previous studies [349]. Among others, an
interesting association is that of the Notch signaling pathway (GO:0008593). In
summary, EpiDetect-derived epistatic networks provide supporting evidence for
known pathways associated with blood pressure traits, as well as the potential for
discovering novel pathways.

3.3.3.3 Marginal Effect Analysis

A complete evaluation of our results involves the entire pipeline of the EpiDetect
framework. Yet, here, we want to investigate possible bias in the output rankings of
the various algorithms for epistasis detection caused by the presence of marginal
effects. We can notice this bias by looking at the rankings and examining whether
they are dominated by the influence of a small number of SNPs that appear to
interact with an exceedingly high number of other SNPs; such a result would be
quite unusual in a ranking with nonlinearly interacting pairs [339]. By inspecting the
degree of the 5 most interacting SNPs in the top-1000 interaction network for SBP
(Table 3.7), we notice how in the BOOST and MDR output only a small number of
SNPs is involved in almost all the top-1000 interactions.

For BOOST, 5 SNPs are involved in 782 of the top 1000 interactions. This concen-
tration is much more evident with MDR, with 972 interactions. In contrast, the top
5 SNPs are involved in 575 interactions for NID and even less for EpiCID (466).
Thus, neural network-based methods, especially EpiCID, exhibit more variability in
the distribution of the interacting SNPs. This suggests that these methodologies are
less affected by the marginal effects of single SNPs. We can observe this behavior
also in Figure 3.13.
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(a) SBP

(b) DBP

(c) PP

Figure 3.12. Gene Ontology Biological Process enriched terms (databases 2018 and 2021)
in EpiDetect central genes from SBP (a), DBP (b), and PP (c) epistatic networks.
Every term is statistically significant and reported with its p-value (*significant adjusted
p-value).

Next, we compared the different algorithms with respect to the distribution of the
SNPs with the highest number of interactions at different levels. Figure 3.14 shows
stacked bar charts visualizing the most interacting SNPs in the top-100, top-500, and
top-1000 interaction networks. In the first 100 interactions, BOOST is characterized
by only one SNP interacting with all the rest of the SNPs, suggesting a presence
of bias toward this particular SNP, presumably caused by a strong marginal effect
(Figure 3.14a). MDR has just 3 SNPs dominating the top 100 interactions, and almost
80 interactions show the presence of the same SNP. On the contrary, for NID and
EpiCID, 5 and 6 different SNPs are involved in the top 100 interactions, respectively.
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Table 3.7. Distributions of the 5 most interacting SNPs in first 1000 interactions for
SBP (the number of interactions corresponds to the degree in the top-1000 interaction
network) and the total number of interactions in which they are involved.

BOOST

Rank SNP Gene Interactions
1 rs1012089 AC138627.1 226
2 rs9667596 OR4A44P 180
3 rs7023828 AL358074.1 157
4 rs10224002 PRKAG2 130
5 rs1694068 ARL15 89

Total number of interactions 782

MDR

Rank SNP Gene Interactions
1 rs17477177 AC004917.1 263
2 rs17249754 ATP2B1 263
3 rs11191548 CNNM2 237
4 rs1173771 NPR3 163
5 rs17367504 MTHFR 46

Total number of interactions 972

NID

Rank SNP Gene Interactions
1 rs77413490 PTEN 163
2 rs1126930 PRKAG1 115
3 rs7331680 CDC16 114
4 rs28621435 GRIN2B 92
5 rs139354822 FARP2 91

Total number of interactions 575

EpiCID

Rank SNP Gene Interactions
1 rs77413490 PTEN 150
2 rs1126930 PRKAG1 118
3 rs75961402 HNF4GP1 68
4 rs7331680 CDC16 66
5 rs10437954 ARHGEF25 64

Total number of interactions 466

We obtained similar insights with the top 500 interactions (Figure 3.14b). For
BOOST and MDR, we found 4 top-interacting SNPs, 10 for NID and 14 for EpiCID.
This is further confirmed by the top-1000 chart (Figure 3.14c), which shows 9 top
SNPs for BOOST, only 6 for MDR, 14 for NID, and 20 for EpiCID. Given the
tendency of standard algorithms to be more strongly affected by marginal effects,
they may wrongly detect spurious interactions as pure ones, impinging on the output
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Figure 3.13. Graphical representation of the distribution of the 5 highest-degree SNPs in
the first 1000 interactions for SBP.

and resulting in unusual rankings with small numbers of SNPs, also reflected in
the centrality analysis. On the contrary, neural networks-based models, especially
EpiCID, returned a more variable output in the number of interacting SNPs, which
is what we would expect in nature, probably providing a more accurate depiction
of several interactions that underlie complex traits [350]. Analogous results were
obtained for DBP and PP, available in Appendix A.

3.3.4 Observations

In this section, we have seen that complex traits are typically influenced by multiple
genetic factors, making their analysis challenging. We thereby developed EpiDetect,
a novel explainable deep learning-based method, and we provided a step-by-step
protocol to detect epistatic effects and create epistatic gene networks. Our approach
detected meaningful epistatic interactions, delivering results that are more accurate
than the ones of the other approaches that we compared with (MDR, BOOST, and
NID). EpiDetect consists of three major components. First, EpiCID, a novel
algorithm that calculates epistatic interactions relying on the inner mechanics of
neural networks, properly unveiled by our explainability scheme. Next, a network
analysis component is used to extract central genes. Finally, we apply an enrich-
ment analysis process to those central genes. The framework provides a three-level
output: ranked interactions of SNPs, central genes, and pathways/ontologies. This
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(b) Top 500 interactions.
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(c) Top 1000 interactions.

Figure 3.14. Highest-degree SNPs in the top 100 (a), top 500 (b), and top 1000 (c)
interactions for SBP. On the x-axis, we have the method for detecting interactions, and
on the y-axis, the number of interactions in which the most popular SNPs are involved
(corresponding to the degree in each top-n interaction network).

multilevel output helps provide a more differentiated view of the results, that would
be otherwise hard to evaluate given the complexity of the epistasis phenomenon and
the lack of a consistent ground truth.

The first component of the framework identifies purely interacting features, minimiz-
ing marginal effects of single SNPs, which can lead algorithms to detect spurious
interactions; this represents a novelty even in the field of neural network explainabil-
ity. Interaction detection approaches usually rely on importance metrics of single
features to compute interaction scores [351]; this may leave out interactions for
which the main effects are negligible. EpiCID exploits the neural network weights
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learned and optimized during the training process and, by extracting feature embed-
dings in terms of the newly defined neural feature vector, is able to determine how
an interaction is created and evolves in the neural network, and its effect on the
output. The result of the EpiCID component is a list of ranked epistatic interactions.

The second component is a network analysis workflow, which calculates a gene–gene
network based on the top-ranked SNP–SNP interactions previously obtained. This
process is in agreement with the concept that a holistic, systems biology approach
is needed to explain gene–gene interactions, which explain epistasis and complex
phenotypes [352, 353, 354, 355]. It uses centrality analysis to calculate the most
significant/central genes in the EpiCID-derived networks [356]. Central genes were
identified using the degree measure, which was proven to be effective in the analysis
of biological networks. A protein with a high degree interacts with several other
proteins, suggesting a possible central regulatory role. There is convincing evidence
that proteins with a central regulatory role, or hubs, have been elucidated to be cen-
tral oncogenes or tumor suppressor genes with clinical significance in cancer-related
networks [357, 358, 359, 360]. However, our workflow can be perfectly adapted to
use other notions of centrality measures [361]. We validated the proposed approach
by repeating the workflow using a number of epistatic analysis algorithms, namely
MDR, BOOST, and NID. The accuracy of our strategy was assessed by comparing
it with the final central gene networks from the other methods. In all three traits
(SBP, DBP, and PP), EpiCID had more common genes with NID, whereas MDR
and BOOST networks featured more unique genes. EpiCID resulted in a large set of
shared central genes with the compared strategies. The fact that EpiCID identified
genes that were also found by other methods highlights its robustness. At the same
time, the discovery of unique genes found using EpiCID may be more reliable and
likely to represent the actual gene networks underlying these traits (confirmed by
the subsequent enrichment analysis). This may indicate that it might depict the
underlying regulatory network more accurately, rendering the unique genes found
more reliable. The common, as well as the unique genes found by EpiCID, might
have a significant role in the actual mechanism of pathogenesis. In that sense, the
results we observed with EpiCID suggest it may represent a more accurate depiction
of the “biological truth.”

The third component of EpiDetect is the enrichment analysis using Enrichr to
explore how accurately our approach depicted the core gene regulatory network
underlying each trait. Central genes obtained with EpiCID performed similarly
to NID, whereas MDR and BOOST lacked accuracy in the association with the
respective traits. Interestingly, the degree of common genes between EpiDetect
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and NID was also informative of their performance after enrichment analysis. Both
approaches had the best performances. However, EpiDetect was slightly more
accurate in predicting the associated traits. These results also indicate the ad-
vantage of neural network approaches compared to classical statistical methods
in predicting epistatic interactions that lead to complex traits. Further pathway
analysis of EpiDetect-derived central genes offered insight into the possible un-
derlying mechanisms of complex traits. GO analysis revealed both known and
novel pathways associated with SBP, DBP, and PP. Regarding SBP, associations
with ontologies related to the nervous system, such as synaptic transmission, brain
development, and neural tube formation and closure, were found. This is in line
with previous studies with evidence of increased activation of the central nervous
system as a contributor to hypertension [345] and impact of brain and nervous
system development on blood pressure regulation [344]. Further enriched terms
are confirmed by research linking hypertension with delayed wound healing [346]
and plasma membrane defects [347]. MAPK signaling was found to be associated
with DBP central genes. This result replicates previous studies [332] and provides
further evidence of the significance of stress-associated p38-MAPK signaling in
hypertension in experimental models of hypertensive mice and rats [362, 363]. A
novel finding was that cellular sodium ion homeostasis was found to be associated
with DBP. The latter may explain secondary hypertension in individuals suffering
from other pathologies, such as aldosterone-producing adenomas [364] and kidney
disease [365]. Regarding PP, regulation from RNA-polymerase II [348] and cardiac
muscle fiber development [332] are GOs with an established role in PP that were
found to be associated with PP EpiDetect-derived central genes. Moreover, sar-
comere organization was found to be enriched. Indeed, sarcomere gene mutations
are the main genetic cause of hypertrophic cardiomyopathy [366], which can lead
to higher PP in patients with an abnormal blood pressure response [349]. Notch
signaling pathway was a significant finding that independently replicated findings of
altered Notch activity during TNFα-induced hypertension [367], as well as hypoxic
pulmonary vasoconstriction [368]. All the aforementioned data may provide evidence
of the biological utility of EpiDetect-derived epistatic networks in both replicating
previous findings and potentially discovering novel significant pathways in complex
phenotypes. The accuracy of EpiDetect might also warrant further investigation
of the aforementioned novel pathways.

The main limitation of the approach lies in the scaling of the EpiCID component
with respect to the number of SNPs analyzed. As the number of SNPs increases,
the number of parameters that the network requires to learn increases, as well as
the number of pairwise interaction strength computations to be done. Therefore,
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this shows the importance of a prior filter on robust genome-wide significant signals
to reduce the number of analyzed genetic variants. However, the computation time
required for our studies, with the provided datasets described in Section 3.3.1, was
more than reasonable. As an indicative measure for reference, on a machine with
an Intel Core i7-12700H with 4.70 GHz of maximum clock speed, an NVIDIA RTX
3060 GPU with 6 GB of dedicated memory, and 16 GB of RAM, the training of
the neural network took on average 30 minutes. The EpiCID explanation phase
required less than 9 seconds (as average on SBP, DBP, and PP traits). At the time of
writing, the work on EpiDetect was under consideration in a peer-reviewed journal.

Up to now, we have seen the first part of the explainable biomedical deep learning
pipeline that concerns discovering disease-associated genes and determining their
possible interactions. Once those genes have been found, they become part of the
knowledge usable for further experiments and research. These can include additional
disease gene prioritization studies, or the newly found genes can be leveraged for drug
repurposing and discovery endeavors. We are thus advancing in the pipeline, going
toward block 3 of Figure 1.1. As also described in Chapter 2, drug repurposing can
be dealt with through both bioinformatics and chemoinformatics approaches. In this
thesis, we will explicitly tackle drug repurposing from a bioinformatics perspective,
employing NIAPU for the task, and this is why the work we are about to present
finds its place within this chapter. However, the chemoinformatics methodologies
that will be proposed in Chapter 4 for molecular activity and potency prediction are
suitable for both drug repurposing and de novo design. The work we will present
in the next section shows an effective application scenario for NIAPU as part of a
drug repurposing pipeline. The same goal can also be achieved using XGDAG.

3.4 Network Proximity-Based Drug Repurposing for
Primary Biliary Cholangitis

Upon the discovery of associated genes, it is possible to use them as targets for
drug repurposing. This is what we did with primary biliary cholangitis (PBC).
This disease lacks effective treatments, so finding new pathways and associated
genes that can be used as drug targets is paramount. For those reasons, we
chose PBC as a case study for the application of NIAPU as a means for drug
repositioning. PBC is a chronic, cholestatic, immune-mediated, and progressive liver
disorder that can also lead to malignant tumors [369], with a large percentage of
transplants that are not successful [370]. Treatment to prevent the disease from
advancing into later and irreversible stages is still an unmet clinical need. From a
therapeutic standpoint, ursodeoxycholic acid (UDCA) is the first-line therapy for
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all PBC patients and has been shown to slow the disease progression [371, 372].
However, only a small percentage of patients respond positively to the cure [373].
Obeticholic acid is the sole second-line therapy for patients who do not respond to
UDCA [374, 373], and other drugs once deemed useful later proved to be ineffective
and even dangerous [375, 376, 377, 378]. So, there is still room for research on
novel possible treatments. Accordingly, we set up a drug repurposing framework
to find potential therapeutic agents targeting relevant pathways derived from an
expanded pool of genes involved in different stages of PBC. Starting with updated
human PPI data and genes specifically involved in the early and late stages of PBC,
NIAPU was used to provide a PBC gene ranking. When combined with already
known PBC-associated genes, the top genes in the ranking resulted in a final set
of genes most involved in the disease. Finally, a drug repurposing strategy was
implemented by mining and utilizing dedicated drug–gene interaction and druggable
genome information knowledge bases (e.g., the DrugBank [379, 380] repository). We
identified several potential drug candidates interacting with PBC pathways using
both known and NIAPU-detected genes. We found specific drugs as potential
therapies targeting the distinct stages of the disease. The whole NIAPU-based
pipeline is a robust and transparent selection mechanism for prioritizing already
approved or investigational medicinal products for repurposing based on recognized
unmet medical needs in PBC, helping identify a subset of drugs that could undergo
clinical trials for specific usage with PBC in the future, in a safer and faster manner
than the development of new medicines.

3.4.1 Methodology

This study was carried out via the following steps: i) literature search to gather
known associated genes, ii) application of NIAPU to discover new candidate disease
genes, and iii) drug repositioning using drug–target databases via enrichment analysis,
backed up by pathway analysis of genetic information to determine the targeted
pathways. We now report the details of each step.

3.4.1.1 Disease-Associated Gene Retrieval

A thorough search and filtering of the literature and databases were performed to
compile a comprehensive genetic landscape of PBC. To gather gene–disease associa-
tions for PBC, both manual curation (relying on publications from MEDLINE and
PubMed repositories) and automated retrieval (using DisGeNET [262, 48, 14]) were
performed. The retrieved genes were also labeled by disease stage (early or late PBC)
when clinically feasible according to studies or as unspecified stages (US) otherwise.
The identification of features that characterize disease-associated genes, namely
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genes experimentally associated with a specific disease, is critical for determining
a complete genetic description of the pathology, assisting in the discovery of its
etiology and potential treatments. Given a starting set of seed genes, the presence
of characteristic patterns in their genetic, functional, or topological features can be
used to better understand the disease’s characteristics and to uncover new associated
genes. A total of 1498 curated seed genes were found, which were then reduced to
1121 after data cleaning (duplicated removal after correcting gene symbol names to
the HGNC human gene symbol standard [381]—a gene can have different names due
to different naming conventions). These 1121 seed genes were then labeled according
to their PBC stage: 238 early-stage genes, 183 late-stage genes, and 728 US genes,
depending on the information provided by the specific article.

Each gene is assigned a relevance score that represents the degree of certainty that
a seed gene is relevant to the disease. This score is assigned a value equal to the
DisGeNET GDA score (also used in Section 3.1) for those genes present in the
DisGeNET database. We remind the GDA score is a value ranging from 0 to 1,
computed using the number and type of sources and the number of publications
supporting the association [262]. With regard to the remaining manually curated
genes, we assigned as score the maximum GDA score of the corresponding PBC
disease stage (i.e., early stages, late stages, US). This choice was made in order
to assign a higher weight to manually curated genes, which, thanks to the specific
selection process, can be associated with the disease more reliably and robustly.
Such genes have a major impact on the NIAPU network diffusion process (see
Section 3.1.2). This manual curation answers the need for high-quality, more reliable,
and better-curated GDA data [301], also discussed in Sections 3.1.5 and 3.2.2.1.

3.4.1.2 Network-Based Disease Gene Prioritization

Following the identification of the set of seed genes, we collected PPI data from
BioGRID [13] as the first step to proceed with gene prioritization. As described also
in Section 3.1, network medicine approaches exploit topological information deriving
from the reconstruction and the analysis of PPI networks, as well as other features,
to provide insights about the role of the gene in the onset and the development of the
disease [259, 258]. Specifically, we applied NIAPU to provide a PBC-association gene
ranking, using the manually curated and DisGeNET seed genes as the positive set P
for the label propagation phase (stratified in three stage-related subsets). Consistent
with the NIAPU system, we used the NeDBIT features to characterize the genes.
Then, the label propagation phase yields a set of reliably putative disease-associated
genes for any disease stage: the likely positive (LP) genes. The top 150 genes in
the NIAPU ranking for each PBC stage were selected as LP genes and identified as
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potential candidates for drug repurposing and pathway analysis, in addition to the
original seed genes used as input.

3.4.1.3 Enrichment Analysis

WebGestalt (Web-based Gene Set Analysis Toolkit) [382] was used to perform
functional enrichment analysis. Homo sapiens was chosen as the model organism,
KEGG [383] and Reactome [384] were used as data sources for pathway enrichment
analysis, and DrugBank [379, 380] and GLAD4U [385] resources were selected for
drug repurposing gene–target analysis. Fisher’s exact test-based over-representation
enrichment analysis was conducted. Figure 3.15 depicts the analysis workflow from
the initial curated genes (from the literature review and the DisGeNET database)
to the LP genes obtained from the application of the NIAPU-based disease gene
prioritization algorithm up to the drug repurposing and pathway analysis.

GDA gathering
(manual curation + DisGeNET) PPI retrieval Network construction

Seed genes + LP genesEnrichment analysis

Label propagation

Drug repurposing + pathwaysIn vitro/vivo testing

Figure 3.15. Workflow of the NIAPU-based drug repurposing pipeline. GDAs are gathered
from DisGeNET and manually curated using PubMed and MEDLINE. PPI data from
BioGRID are used to create a PBC-related network with the previously selected seed
genes (in yellow). The network is fed to NIAPU for label propagation, which enlarges
the set of associated genes with LP genes (in green). Enrichment analysis is performed
with WebGestalt using seed and LP genes, yielding associated pathways and candidate
drugs for future in vitro/vivo testing and clinical trials. The label propagation is repeated
for every PBC stage.

3.4.2 Drug Repurposing Results

We will hereby present the results of the drug repurposing, considering separately the
sets of already known seed genes and the LP set prioritized by NIAPU, stratifying
the repurposed drugs by disease stage. For seed genes, the results of the most
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significant drug–gene associations for each PBC stage are shown in Table 3.8, along
with the number of genes responsible for repurposing the drugs.

Table 3.8. Drug repurposing results for seed genes. The most significant enriched drugs
are reported, along with the number of genes by which they were repurposed and their
p-value. The results are stratified by PBC stage.

Drug PBC stage Genes p-value

Abciximab Early 4 1.13e-5
Muromonab Early 4 1.54e-5
Artenimol Early 7 3.08e-5
Epipodophyllotoxin Late 13 1.94e-10
TNF-α inhibitors Late 14 2.26e-9
Interleukin inhibitors US 74 < 3.33e-16
Protein kinase inhibitors (PKIs) US 61 < 3.33e-16
Monoclonal antibodies US 59 < 3.33e-16
Specific immunoglobulins US 57 < 3.33e-16
Antineovascularisation agents US 47 < 3.33e-16
TNF-α inhibitors US 47 < 3.33e-16
Taurocholic acid (TUDCA) US 27 3.77e-15
Anakinra US 16 1.98e-13

Along with the drugs shown in Table 3.8, additional treatments were repurposed,
regardless of the PBC stage. For instance, antivirals for systemic use and specific
antirheumatic agents were significant findings (repurposed by 28 and 25 genes,
respectively). Moreover, other significant and enriched results were etanercept and
mycophenolate mofetil (13 and 9 genes). Furthermore, enzyme inhibitors (62 genes),
drugs for musculoskeletal system disorders (28 genes), and corticosteroids, potent
(group III) (6 genes) were repurposed. Additional results included antigout prepara-
tions (9 genes), biguanides (9 genes), simvastatin (14 genes), doxorubicin (20 genes),
tamoxifen (12 genes), EGFR inhibitors (8 genes), and finally macrolides (13 genes).
The same type of analysis was performed on the LP genes obtained using NIAPU,
propagated from early-stage, late-stage, and US PBC seed genes. The most enriched
drugs targeting LP genes are shown in Table 3.9.

The repurposed drugs have a clinical significance with validated therapeutic effects
that will be discussed in Section 3.4.4.
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Table 3.9. Drug repurposing results for LP genes. The most significant enriched drugs
are reported, along with the number of genes by which they were repurposed and their
p-value. The results are stratified by PBC stage.

Drug PBC stage Genes p-value

L-lysine Early 45 < 3.33e-16
L-threonine Early 40 < 3.33e-16
Protein kinase inhibitors (PKIs) Early 34 < 3.33e-16
Antineovascularisation agents Early 22 9.35e-14
Enzyme inhibitors Early 25 5.78e-11
L-serine Early 35 1.98e-12
Erlotinib Late 11 3.24e-14
EGFR inhibitors Late 12 3.43e-13
Geldanamycin Late 11 1.38e-12
Protein kinase inhibitors (PKIs) US 53 < 3.33e-16
Geldanamycin US 16 < 3.33e-16
Staurosporine US 17 1.33e-15
Anti-estrogens US 12 1.10e-09
Genistein US 9 8.99e-10

3.4.3 Pathway Analysis Results

After having identified possible drugs targeting PBC-associated genes, including
already known and newly found LP genes, pathway analysis was performed to back
up the validity of the findings determining the pathways targeted by the repurposed
drugs. In terms of the seed genes, the gene–pathway analysis accurately targeted a
wide range of existing pathways, shown in Table 3.10.

Additional significant pathways discovered, regardless of the PBC stage, were measles
(enriched by 34 genes), NF-κB signaling pathway (32 genes), Toll-like receptor (TLR)
signaling pathway (31 genes), inflammatory bowel disease (IBD) (31 genes), and
Th17 cell differentiation (30 genes). Moreover, for late-stage PBC, the IL-18 sig-
naling pathway was significantly enriched by 20 genes. Likely, the same pathway
analysis was performed on the LP genes propagated from the seed genes (Table 3.11).

In the following section, we will discuss the relevance of the pathways identified for
PBC, along with the drugs by which they are targeted.

3.4.4 Observations

In this section, we have seen how to use NIAPU as the core of a drug repurposing
pipeline. This strategy has several advantages over developing an entirely new
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Table 3.10. Pathways found to be associated with seed genes. The most significant enriched
pathways are reported, along with the number of genes involved in the enrichment and
their p-value. The results are stratified by PBC stage.

Pathway PBC stage Genes p-value

Innate immune system Early 37 4.64e-12
Toll-like receptor cascade Early 13 3.36e-9
Complement and coagulation cascades Early 10 4.25e-9
Monoclonal antibodies Late 26 < 3.33e-16
Epstein–Barr virus infection Late 20 6.66e-16
Pathways in cancer Late 29 1.22e-15
Immunoglobulins Late 32 7.99e-15
Immune system US 203 < 3.33e-16
Cytokine signaling in the immune system US 114 < 3.33e-16
Signaling by interleukins US 84 < 3.33e-16
Pathways in cancer US 77 < 3.33e-16
Cytokine–cytokine receptor interaction US 73 < 3.33e-16

Table 3.11. Pathways found to be associated with LP genes. The most significant enriched
pathways are reported, along with the number of genes involved in the enrichment and
their p-value. The results are stratified by PBC stage.

Pathway PBC stage Genes p-value

Androgen receptor signaling pathway Early 14 < 3.33e-16
Integrated breast cancer pathway Early 18 3.88e-14
Ubiquitin-mediated proteolysis pathways Early 17 6.84e-14
Complement and coagulation cascades Late 15 9.78e-9
Allograft rejection pathway Late 7 9.99e-5
Intestinal immune network for IgA production Late 7 4.47e-4
Neurotrophin signaling pathway US 19 3.33e-16
B-cell receptor signaling pathway US 16 3.33e-16

drug for a specific indication. The risk of failure, for example, is reduced; because
the repurposed drug has previously been demonstrated to be sufficiently safe in
preclinical models and human trials, it is less likely to fail in later effectiveness
trials, at least from a safety perspective. Furthermore, because the majority of
preclinical testing, safety assessments, and, in some cases, formulation development
will have already been completed, the time frame for drug development can be
reduced. As we described, few cures are available for PBC, and those are not always
effective. Based on these premises, establishing a drug repurposing framework to
find potential therapeutic agents in PBC is highly relevant. We based our study on
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the identification of drugs targeting relevant pathways derived from an expanded
pool of genes by NIAPU involved in different stages of the disease, relying on a
robust base of previously validated PBC disease genes. We reasoned that developing
a drug repurposing framework would be extremely useful in identifying potential
therapeutic agents in PBC, so we identified drugs targeting relevant pathways to aid
in the understanding of the PBC molecular landscape, as well as the identification
of genes that are not directly associated with it.

Our methodology reported both drugs previously evaluated with PBC and completely
novel candidates. Concerning the interaction with seed genes, we identified several
drug classes, including inhibitors of interleukin, protein kinase (PKIs), and TNF-α,
as well as medications for musculoskeletal issues, TUDCA, immunosuppressants,
antirheumatic agents, and simvastatin, as potential treatments for PBC, regardless of
the disease stage. We also found that the immune system, cancer-related pathways,
interleukin signaling, and cytokine receptor interactions, are closely linked to PBC.
Additionally, pathways involving Th17 cell differentiation, TLRs, NF-κB signaling,
and IBD were highly involved in PBC. NF-κB signaling is an important pathway
because a substantial body of evidence suggests it plays a role in immunity, inflam-
mation, cancer development, and nervous system function [386]. Indeed, in studies
with mice, PBC has been shown to activate the NF-κB signaling pathway, leading to
the release of inflammatory molecules and an increase in apoptotic proteins, resulting
in liver injury [387]. Among interleukin inhibitors, ustekinumab, which is used to
treat ulcerative colitis and Crohn’s disease [388] was associated with modest benefits
in PBC [389]. Anakinra, another repurposed drug, was effective in the treatment
of patients with severe bacterial sepsis [390]. However, no clinical trials on PBC
are currently underway. In a short-term trial, a PBC patient who didn’t respond
to UDCA (the standard treatment, as introduced) showed a significant response
to the PKI baricitinib, despite potential side effects [391]. Moreover, our findings
confirmed the already known efficacy of TUDCA in PBC [392, 393, 394]. Drugs that
may modulate immunological abnormalities in PBC have been investigated, showing
promise in slowing disease progression [395], confirming the immune system to be a
relevant pathway in PBC. Lastly, drugs for musculoskeletal issues [396], particularly
those targeting the RANK-RANKL axis, have shown potential with PBC, given
their role in bile duct injury. In this, denosumab, a drug used to treat osteoporosis
by inhibiting RANKL, might have the potential to preserve liver function in PBC,
although it hasn’t been investigated in this context.

From PBC early stages, the most enriched and significant pathways for seed genes
were the innate immune system, TLR cascades, and complement and coagulation
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cascades. For late stages, monoclonal antibodies, Epstein–Barr virus infection,
cancer pathways, immunoglobulins, and the IL-18 signaling pathway were the most
enriched and significant discoveries. Regarding the drugs repurposed, abciximab
and muromonab were the most likely candidates for early PBC stages, whereas
epipodophyllotoxin was a possibility for late stages. Abciximab, used in the past to
reduce myocardial ischemic complications, may help due to its anti-inflammatory
properties [397]. Muromonab blocks human T-cell functions and could benefit
patients undergoing organ transplants [398, 399]. Epipodophyllotoxin derivatives,
like etoposide and teniposide [400], are cancer drugs that inhibit specific enzymes
with activity against drug-sensitive and drug-resistant cancer cells. Recently, etopo-
side has also been considered for treating cytokine storms in COVID-19 patients [401].

When we looked at the LP genes, we discovered different potential agents depending
on the disease stage. For early stages, antineovascularization drugs, branched-chain
amino acids (BCAAs), l-lysine and l-threonine, and enzyme inhibitors seemed promis-
ing. In late stages, drugs targeting the epidermal growth factor receptor (EGFR),
such as erlotinib, were significant. Geldanamycin and staurosporine were poten-
tial treatments for unspecified stages of PBC. Notably, patients with PBC exhibit
abnormal levels of BCAAs [402]. In particular, diminished levels of these amino
acids (particularly l-phenylalanine and l-tyrosine) have been linked to chronic fatigue
in PBC [403]. With regard to enzyme inhibitors, curcumin, a natural compound,
has shown promise in addressing cholestasis, a condition where bile flow from the
liver is impaired. It has also been found to play an antifibrosis role [404] and was
recently evaluated for its safety and efficacy in patients with PSC (primary sclerosing
cholangitis), whereas no previous or ongoing studies have evaluated its activity in
PBC. Geldanamycin, an inhibitor of a protein called Hsp90, has shown potential in
treating rheumatoid arthritis, a chronic inflammatory joint disorder (an autoimmune
disease, like PBC). It works by specifically inhibiting the growth and inflammation
of cells involved in rheumatoid arthritis. Geldanamycin has been studied in clinical
trials for various types of blood and solid cancers and could be an interesting and
promising candidate for PBC. Moreover, no data concerning the potential use for
PBC were found with regard to staurosporine, a natural product with anticancer
properties.

Another intriguing result is the enrichment found for anti-estrogens (tamoxifen may
work similarly to UDCA [405], but there are no clinical trials testing anti-estrogen
potential activity in PBC at the moment), along with androgen and integrated
breast cancer signaling pathways for LP genes, regardless of their stages. In women
and men, the immune system reacts differently. Adult females have higher innate
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and adaptive immune responses than adult males. Women are more likely than men
to develop autoimmune disorders, such as rheumatoid arthritis, multiple sclerosis,
autoimmune liver diseases, and PBC, despite having a lower risk of developing most
infectious diseases with a higher viral clearance [406]. The significance of estrogens
in autoimmune illnesses has been thoroughly examined, and several lines of evidence
and clinical observations indicate that sex hormones play a key role in disease
etiology. Emerging proof suggests immunosuppressive effects of androgens [407].
The discovery of alterations in testosterone serum levels in mice connected to the
intestinal microbiota should pique interest in the function of the microbiome in sex
differences in autoimmune liver disorders, which are linked to an altered intestinal
microbiota. The intestinal immune network for IgA production signaling and IBD
pathways were found to be enriched for LP genes for PBC late stages. The most
striking finding is the high prevalence of IgA anti-calreticulin antibodies and its class
pattern in PBC patients, suggesting a reactivity of the gut-associated immune system,
which could imply that a yet-to-be-identified gut-derived bacterial agent could be a
potential actor in the onset of PBC. Also related to sex-dependent immune response,
genistein, a bioflavonoid, was also found to be enriched from LP genes, regardless of
their disease stage. Among its mechanisms, genistein has shown a growth-inhibitory
effect on human cholangiocarcinoma cells. Despite such compounds being found to
decrease liver fibrosis and cholestasis in rats [408], genistein has not yet been studied
in a clinical trial setting.

In summary, using NIAPU, we conducted a study on a large dataset of PBC-curated
genes from credible and publicly available sources obtaining a list of new potential
disease genes. These genes were then enriched for biological pathways and drugs
to obtain new potential insights for PBC pathogenesis and treatment, proposing
potential drug candidates for distinct stages of the disease. We identified novel
therapeutic targets for prioritization in PBC and new pathogenic pathways using
a framework that provides a better definition of the PBC molecular landscape.
We provided a robust and transparent selection mechanism for prioritizing already
approved medicinal or investigational products for repurposing based on recognized
unmet medical needs in PBC and sound preliminary data in order to identify research
priorities for a better understanding of the mechanisms of action of drug candidates
via future ad hoc, in vitro, and in vivo tests and clinical trials.

The identification of multiple non-specific liver pathways may shed new light on
the extrahepatic pathogenesis of PBC, where gut microbiota, sex hormone-receptor
interactions, and bone marrow interplay may all play a role, to varying degrees, at
different stages of the disease. In the first phase, BCAAs, geldanamycin, taurour-
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sodeoxycholic acid, bioflavonoids (particularly genistein), anti-estrogens, curcumin,
monoclonal antibodies, antineovascularisation, and antirheumatic agents are the
most interesting therapeutic candidates worthy of evaluation in PBC experiments.
Moreover, pharmacological categories such as specific interleukin/EGFR/TNF-α
inhibitors could be tested in particularly advanced disease stages. The results of our
drug repurposing studies were published in Biomedicines [24].

The successful application of NIAPU as a means for prioritizing genes for drug
repurposing allowed us to present an example of a bioinformatics-driven drug repur-
posing framework. As we anticipated, the same pipeline can feature XGDAG in
lieu of NIAPU for disease gene prioritization to leverage the power of graph neural
networks and XAI for drug repositioning in the future.

With this work, we concluded the description of the bioinformatics components of
the explainable biomedical deep learning pipeline. In the next chapter, we will dive
into the chemoinformatics part, starting with a GNN-based strategy for molecular
activity prediction, usable in drug development for de novo design or repurposing.
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Chapter 4

Chemoinformatics and
Medicinal Chemistry

In the previous chapter, we presented the bioinformatics part of the pipeline. This
chapter is dedicated to the second and last macro-area: chemoinformatics. We will
now focus on molecular activity prediction and protein–ligand interaction, pillar
tasks in drug discovery. The methods proposed will fall in block 3 of the explainable
biomedical deep learning pipeline in Figure 1.1, which can be considered as a bridge
between bioinformatics and chemoinformatics, and in block 4, which covers the
explainability solutions for deep learning methods for drugs development. We will
start by presenting EdgeSHAPer, our strategy to explain graph neural networks
(GNNs) using approximated Shapley values in the context of compound activity
prediction (Section 4.1), and then we will use it to uncover what GNNs really
learn when applied to the task of potency prediction in protein–ligand interactions
(Section 4.2). Finally, in Section 4.3, we will take a step back from neural networks
in favor of simpler support vector machine (SVM) models; this will allow us to devise
an innovative explainable artificial intelligence (XAI) methodology based on exact
Shapley value computation rather than on their approximation, solving the issues
related to the latter.

4.1 Shapley Value-Based Explanation Method for Graph
Neural Networks in Molecular Activity Prediction

As anticipated, a central task in drug design is the prediction of molecular activity.
Once a possible drug target for a disease is identified, for instance, using proposed
techniques like the NIAPU or XGDAG, it is time to look for a candidate compound
that can be the starting point of the drug to be developed. This molecular compound
has to be active on the target and be able to bind and modulate it. Classification
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models can be trained to predict if a given molecule is active against the target of
interest. Virtual screening can be used to find active compounds. As we described
in Section 2.2, many successful machine and deep learning applications have been
employed, such as SVMs, random forests (RFs), and deep learning strategies, from
simple mutlilayer perceptrons (MLPs) to more complex convolutional (CNNs) and
recurrent neural networks (RNNs) [100]. These methodologies rely on precomputed
features or grid-like representations obtained from molecular structures and atomic
information. Along with these models, GNNs represent an increasingly popular
class of neural networks for deep learning in drug design, with message-passing
neural networks (MPNNs) being a prominent example [20, 119]. This is partly
due to their ability to learn directly from graph representations, which alleviates
the need for predefined features and descriptor engineering. These GNNs are
particularly attractive for representation learning in chemistry [119], given that
molecular graphs are the primary data structure for conveying molecular information,
implicit structure-based properties, or molecular interactions. In a typical molecular
graph, nodes represent atoms and edges represent bonds between atoms. For our
study, we decided to use GNNs to explicitly exploit the molecule structure and
capture the knowledge embedded in molecular graphs. Like other neural networks,
GNNs have a black-box character, which also confines their acceptance in chemistry.
This is why we now report the development and assessment of a new explanation
method for GNNs, which we called EdgeSHAPer, able to quantify edge importance
for GNN predictions using an effective Shapley value approximation based on Monte
Carlo sampling.

4.1.1 Scientific Context

The EdgeSHAPer approach introduced herein was devised to assess edge im-
portance for GNN predictions using Shapley values. As described in the related
work in Section 2.3.1, in literature, we find few XAI methods for GNNs that fo-
cus their explanations on edge importance. For instance, GNNExplainer, the first
GNN explanation method developed, learns a mask on node features and on the
adjacency matrix applied to identify the subgraph for an object determining its
prediction [225]. In addition to GNNExplainer, PGExplainer was introduced as a
parameterized strategy suitable for inductive settings [226]. However, there are only
a few more approaches currently available to aid in rationalizing GNN learning, as
introduced and also further discussed below, which employ the Shapley value concept.

EdgeSHAPer was originally conceptualized for assessing the importance of bond
information for graph-based compound activity prediction, representing a novel
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approach, and was specifically evaluated in this context. Compound activity pre-
diction is a central task for machine learning in chemoinformatics and medicinal
chemistry. Bonds between atoms are key elements in a molecule, and determining
edge importance in molecular graphs can help identify substructures responsible for
compound activity. However, our new methodology is generalizable and applicable
to many tasks in GNN learning where edge distribution plays a role, including any
node degree-sensitive MPNNs.

4.1.1.1 Shapley Values in Explainable Machine Learning

EdgeSHAPer makes use of Shapley values, introduced in game theory [26] to
quantify the contributions of individual players to the performance of a team. As
described in Section 2.3.2, the Shapley value concept was adapted to be used in
XAI as a model-agnostic framework to rationalize predictions of machine learning
models. In this context, Shapley values are calculated to quantitatively assess
feature importance for individual predictions. Since the calculation of Shapley values
depends on the order of players (features) and is thus combinatorial in nature, it
becomes computationally demanding in high-dimensional feature spaces (typically
used in chemoinformatics applications). Therefore, the Shapley additive explana-
tions (SHAP) approach has been introduced, which approximates a machine learning
model in the feature space vicinity of a test instance relying on a local model based
on a kernel function [8]. SHAP can be perceived as Shapley value-based extension
of the Local Interpretable Model-agnostic Explanations (LIME) approach [222].
SHAP-based methodologies have also been introduced and evaluated for compound
activity, multi-target activity, and potency predictions [239, 204]. While SHAP-
based explanations have been proposed for rationalizing different types of activity
predictions in chemoinformatics, they have exclusively been applied to machine and
deep learning models trained using precomputed descriptors [129], but never on
graph representations.

The Shapley value concept has recently been applied to graphs in other fields. We
remind GraphSVX [240] was introduced as a decomposition method for GNNs that
relies on a linear approximation of Shapley values to determine node and node feature
contributions. In addition, SubgraphX [241] was developed as a subgraph-centric
method. It approximates Shapley values to find the most critical fully connected
subgraph for the prediction, being the first methodology to consider connected
graphs as explanations. Finally, GRAPHSHAP [242] was devised as a motif-focused
XAI approach for graph classification with node awareness [243].

While these SHAP-based methodologies produce explanations focused on nodes,
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subgraphs, or motifs, none of them quantifies edge importance, although graph
information is primarily distributed through edges. The missing SHAP-dependent
quantification of edge importance for GNN predictions has partly motivated the
development of our new approach in the context of molecular graphs. The principal
methodological differences between EdgeSHAPer, as introduced herein, and the
other SHAP-based explanatory approaches for graph learning preclude a meaningful
direct comparison. However, in light of edge centricity, the results of EdgeSHAPer
applications can be compared to those of GNNExplainer, although the approaches
are also conceptually distinct. Moreover, we compare EdgeSHAPer explanations
against another Shapley value-based strategy, the TreeExplainer variant of SHAP
applied to a random forest model.

4.1.2 The Algorithm

The Shapley value concept has been adapted for EdgeSHAPer using the following
analogies: we consider a setting in which players corresponding to edges in a graph
work collaboratively toward a team (graph) reward, which represents the probability
of a prediction for a test instance obtained with a machine learning model. Each
player makes an individual contribution to the reward (payout), which is represented
by its Shapley value and computed as the average marginal contribution over all
possible feature coalitions (orderings). Since enumerating all possible coalitions be-
comes computationally hard for larger feature sets, Shapley values are approximated
for machine learning applications.

In our approach, each edge of a graph has its own payout contribution to the
predicted output probability (value v). Adapting the Shapely value definition from
Equation (2.1) in Section 2.3.2 using edges as features/players, the Shapley value
for edge j is computed as:

ϕj(v) = 1
|E|

∑
S⊆E\{j}

v (S ∪ {j})− v(S)(|E|−1
|S|

) , (4.1)

where E is the set of all edges and |E| its cardinality, S indicates all the possible
subsets of edges excluding j and |S| its cardinality, v(S) is the value achieved
by subset S, and v(S ∪ j) is the value obtained when edge j joins the subset S

(considering the edge’s marginal contribution).
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4.1.2.1 Monte Carlo Sampling of Edges

In machine learning, the practical inability to compute Shapley values directly in
many cases requires the use of approximation methods. We developed a Monte
Carlo sampling strategy for graph edges, which is central to the EdgeSHAPer
algorithm. Instead of randomly sampling a data point from a dataset [236], which
is not applicable in this context, we generate a random graph Z that contains the
same number of nodes as the explained graph G according to a binomial probability
distribution. If an edge e exists in G, it exists in Z with a probability equal to some
P . The density of graph G, which is analogous to the probability for an edge to exist
in this graph, proved to be a meaningful choice for P , as further described below.
At any Monte Carlo step, a new graph Z is generated. The complete pseudocode for
the EdgeSHAPer algorithm with Monte Carlo sampling is provided in Algorithm 1.

Algorithm 1 EdgeSHAPer with Monte Carlo sampling

Require: G(N, E), j, P, M, f̂

1: cumulativeϕj
(G)← 0

2: for each m ∈ {0, . . . , M − 1} do
3: Nz ← N

4: Emask
z ← binomial(P, |E|)

5: π ← permutation(|E|)
6: jπ ← π(j)
7: Emask ← list(1, |E|)
8: Eπ ← π(Emask)
9: Eπ

z ← π(Emask
z )

10: Emask
+j ← (eπ

0 , . . . , eπ
jπ , zπ

jπ+1, . . . , zπ
|E|−1)

11: Emask
−j ← (eπ

0 , . . . , eπ
jπ−1, zπ

jπ , zπ
jπ+1, . . . , zπ

|E|−1)
12: E+j ← select_from_mask(π(E), Emask

+j )
13: E−j ← select_from_mask(π(E), Emask

−j )
14: ϕm

j (G)← f̂(Nz, E+j)− f̂(Nz, E−j)
15: cumulativeϕj

(G)← cumulativeϕj
(G) + ϕm

j (G)
16: end for
17: ϕj(G)← cumulativeϕj

(G)/M

18: return ϕj(G)

Here, G is the graph to explain, E the list of edges of this graph, and N are the nodes;
j is the edge for which the current Shapley value is computed, P the probability of an
edge from E to exist in graph Z (density of G in our implementation), M the number
of Monte Carlo steps (corresponding to the number of randomly generated graphs
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Z), and f̂ is the function learned by the GNN. Emask
z is a binary mask indicating if

an edge from E is present in graph Z. As we can notice, there is no need to explicitly
define Z in the algorithm since we will only need its edges for the subsequent steps.
Hence, EdgeSHAPer creates a random permutation π and sorts the edges of G and
Z according to this permutation creating permuted masks defining the presence or
absence of edges (Eπ and Eπ

z ). Then, still relying on binary masks, two edge lists are
created by appending edges from the two permuted lists, considering the permuted
position of j, jπ, as a split point: in E+j edge j originates from the original graph
G, while in E−j its counterpart originates from Z. Thereby, the contribution of an
edge to the output is calculated. The algorithm is repeated for each edge in the graph.

It is possible to express the EdgeSHAPer algorithm in a more compact and concise
way, as shown in Algorithm 2. However, the pseudocode proposed in Algorithm 1,
with the usage of binary masks, resembles the actual implementation more closely.

Algorithm 2 EdgeSHAPer with Monte Carlo sampling - Alternative

Require: G(N, E), j, P, M, f̂

1: cumulativeϕj
(G)← 0

2: for each m ∈ {0, . . . , M − 1} do
3: Nz ← N

4: Emask
z ← binomial(P, |E|)

5: Ez ← select_from_mask(E, Emask
z )

6: π ← permutation(|E|)
7: E+j = {e : e ∈ E ∧ π(e) ≤ π(j)} ∪ {e : e ∈ Ez ∧ π(e) > π(j)}
8: E−j = {e : e ∈ E ∧ π(e) < π(j)} ∪ {e : e ∈ Ez ∧ π(e) ≥ π(j)}
9: ϕm

j (G)← f̂(Nz, E+j)− f̂(Nz, E−j)
10: cumulativeϕj

(G)← cumulativeϕj
(G) + ϕm

j (G)
11: end for
12: ϕj(G)← cumulativeϕj

(G)/M

13: return ϕj(G)

Notably, the random graph used for Monte Carlo sampling is not an Erdős–Rényi
random graph [409]. Here, an edge exists with probability P in the generated
random graph only if it also exists in the original molecular graph. This enables the
quantification of specific edge contributions in coalitions with other edges and, thus,
the determination of the importance of a particular bond in a given compound. The
underlying idea is the use of random graphs starting from a test molecule to define
information baselines relative to which the contribution of each edge/bond can be
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quantified. Moreover, the use of this specifically generated random graph enables
the generalization of EdgeSHAPer for applications in different domains.

Consistent with GNN learning, EdgeSHAPer considers both directions for edges.
This is in line with how information is diffused in GNNs. When a graph is undi-
rected, information flows in both directions; hence, each direction will have its own
contribution to the model’s prediction (of course, in the case of directed graphs,
only one direction is considered). Thus, given the additivity property of Shapley
values [26] (Section 2.3.2), the total contribution of an edge can be calculated by
summing the Shapley values for the two directions. The final output of the algorithm
is a ranking of edges on the basis of approximated Shapley values.

To study the evolution of the approximation over sampling steps and determine
the number of steps required for a reliable approximation value, we analyzed the
variance and convergence for EdgeSHAPer. The random variable was given by
the sum of Shapley values ϕj(G) for any edge j of the graph and the expected value
by the difference between the output probability and the average prediction. In fact,
as per the efficiency property [26] (see Section 2.3.2), the sum of Shapley values
corresponds to the deviation of the actual prediction from the average. In our specific
case, however, the average prediction is to be intended on the randomly generated
graphs Z. Since we are interested in the contributions to the prediction of active
compounds, the average prediction for the random graphs to be active is close to
zero. Consequently, the sum of Shapley values corresponds to the output probability
in this case. Figure 4.1a shows the evolution of the variance, and Figure 4.1b shows
the quadratic error for a test compound representing the deviation between the
predicted probability and the sum of Shapley values.

Increasing numbers of Monte Carlo sampling steps yielded an accurate and stable
approximation of the prediction probability as the sum of the Shapley values. Dur-
ing sampling, the variance decreased asymptotically against 0 (Figure 4.1a), and
the quadratic error was already very close to 0 after only 100 steps (Figure 4.1b).
Therefore, given the need to evaluate EdgeSHAPer on a large set of samples,
M = 100 was considered a proper choice, providing a favorable compromise between
approximation accuracy and computational time requirements. In addition, a termi-
nation criterion was implemented for the sampling procedure, defining a permitted
deviation between the sum of the Shapley values and the predicted probability.

Specific evaluation metrics To quantitatively evaluate the performance of GNN
explanation methods, two metrics were introduced including FID+ (Fidelity) and
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(a) Variance of Shapley values.

(b) Error convergence.

Figure 4.1. EdgeSHAPer variance and error convergence. Shown are variance (a) and
error convergence (b) for an exemplary test compound over increasing numbers of Monte
Carlo sampling steps.

FID− (Infidelity) [410]. These metrics evaluate the quality of unimportant and
important features, respectively, and are defined as
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FID+ = 1
n

n−1∑
i=0

(f(Gi)− f(Ui))

and

FID− = 1
n

n−1∑
i=0

(f(Gi)− f(Ii)) ,

where Gi is the original graph, Ui is the graph obtained from Gi exclusively con-
taining unimportant features (nodes, edges, or node/edge features), Ii is the graph
obtained by Gi exclusively containing important features, and n is the number of
samples (graphs) for which the metric is computed. Herein, the probability version
of FID+ and FID− was used, as introduced previously [410]. A deep learning model
with meaningful feature representation should tend to produce high FID+ and low
FID− scores.

In our work, we used an adapted version of these metrics relying on minimal sets
of relevant features. The pertinent positive set (PP OS) [411, 412] represents the
minimal set of features required for a given class label prediction of an instance.
Moreover, we defined the minimal top-k set (Tk) as the minimal set of features that
must be removed to invert the class label (here from active to inactive). Those sets
comprise the features with the highest Shapley value estimates from EdgeSHAPer.
PP OS is created in an inductive manner by adding edges with the highest Shapley
values one by one to the graph until a test compound is correctly predicted to
be active. By contrast, Tk is obtained following a deductive approach; starting
from a compound correctly predicted to be active, the most important edges are
removed until the molecule is classified as inactive. The consideration of such
minimal feature sets determining class label predictions is related to the concept of
contrastive explanations [413, 208]. This feature selection scheme ensured that the
most influential features for predictions were identified on the basis of (molecular)
graphs with varying numbers of edges (bonds). FID+ and FID− are computed using
Tk and PP OS , respectively.

4.1.3 Compound Classification

To provide a meaningful basis for the assessment and comparison of explanation
methods, we selected a test case that was expected to yield high classification
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accuracy based on prior experience. Therefore, compounds with activity against
the dopamine D2 receptor were selected. Compounds and corresponding exact
standard potency measurements (Ki, Kd, or IC50) of at least 10 µM were obtained
from ChEMBL (version 29) [414, 415, 416]. Those are measures used to evaluate,
with different criteria, the binding affinity of a compound with a target. Ki is the
inhibition constant, which measures the reduction in the activity of the target; Kd is
the dissociation constant and measures the equilibrium between the ligand–protein
complex and the dissociated components; IC50 stands for inhibitory concentration
50%, meaning the concentration of inhibitor needed to halve the biological activity of
the target. Only direct interactions against human wild-type proteins at the highest
target confidence level were retained. Using publicly available filters [417, 418, 419],
molecules exceeding a mass of 1000 Da were removed along with potential assay in-
terference compounds. Based on this protocol, 4174 active compounds were obtained
and complemented with an equal number of randomly selected compounds (omitting
ligands with activity against functionally related G protein-coupled receptors). The
compound dataset was divided into training (80%), validation (10%), and test (10%)
sets.

Graph convolutional network model Any GNN model can be explained using
EdgeSHAPer. For our proof-of-concept study, we used a graph convolutional
network (GCN) [186] due to its increasing popularity in chemistry [420]. The model
was constituted of four convolutional layers with 256 hidden units and a rectified
linear unit (ReLU) as an activation function to introduce nonlinearity. Global mean
pooling and dropout with a probability of 0.5 were considered. The GCN was trained
for 100 epochs with a batch size of 32, Adam optimizer [307], and a learning rate of
0.001. The model was implemented in PyTorch [421] using the PyTorch Geometric
library [304]. The GCN operator is defined as

X′ = D̂−1/2ÂD̂−1/2XΘ, (4.2)

where Â is the adjacency matrix considering self-loops (Â = A+I), D̂ is the diagonal
degree matrix of Â (D̂ii =

∑
j=0 Âij), and Θ are the neural network weights.

Random forest classifier The RF algorithm [107] consists of an ensemble of
decision trees built with bootstrapping and feature bagging. The scikit-learn RF
implementation was utilized [422]. For RF classification, structural features of
compounds were generated and hashed using the RDKit implementation of the
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Morgan fingerprint with a bond radius of 2 [423, 419]. The presence or absence of
generated features was recorded in a binary feature vector in which features were
mapped to unique positions. RF classifiers with different hyperparameter settings
were derived. The grid search included hyperparameters as the number of decision
trees, the minimum number of samples per node split, and the minimum number
of samples per leaf node. Hyperparameter value combinations with the highest
balanced accuracy over ten independent training/validation partitions were used
to derive the final classifier on the complete training set. Exact Shapley values for
comparison for predicted class probabilities of RF classifier (fraction of positive
predictions in the tree ensemble) were calculated using the TreeExplainer algorithm
with the interventional feature perturbation approach, for which the training data
served as a background sample [8, 239].

We applied GCN and RF models to a compound classification task aiming to
systematically distinguish between dopamine D2 receptor ligands and other randomly
selected compounds. A balanced accuracy of 0.99 for the RF model was obtained for
the test set. Furthermore, 99% of the active compounds were successfully identified
while maintaining a high precision of 0.99. The GCN model also achieved a high
balanced accuracy of 0.97 for the test set. In addition, to evaluate the stability of
the predictive performance and model explanations, the training set was divided
into three disjoint subsets, and the GCN was re-trained on each of these size-reduced
partitions. Despite the smaller number of training samples, only a slightly lower mean
classification balanced accuracy of 0.95 was obtained. Hence, these results confirmed
the stability of the GCN predictions. The high level of classification accuracy
achieved by RF and alternative GCN models provided a sound basis for explaining
compound activity predictions and comparing different methods. Predictions of these
models were first used to evaluate the consistency of EdgeSHAPer explanations,
followed by orthogonal feature mapping analysis in comparison to TreeExplainer for
RF as well as quantitative and qualitative comparisons to GNNExplainer.

4.1.4 Explaining Graph Convolutional Network Predictions

We will now analyze the explanations returned by EdgeSHAPer. Firstly, we will
investigate their robustness and consistency; then, we will compare them against
GNNExplainer and TreeExplainer outputs to evaluate their accuracy.

4.1.4.1 Consistency of the Explanations

Initially, we evaluated EdgeSHAPer explanations and their consistency for training
sets of different sizes and compositions. EdgeSHAPer was applied to multiple
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GCN models derived on the basis of a complete training set or random training
data subsets. These explanation results were quantitatively and qualitatively com-
pared. Quantitative comparisons were carried out on the basis of the FID+ and
FID− metric variants to assess minimal feature sets determining correct predic-
tions of active compounds. Qualitative comparison with feature visualizations was
also obtained by mapping minimal feature sets on correctly predicted test compounds.

Edges prioritized by EdgeSHAPer were mapped on test compounds (Figure 4.2).
In this and the following figures, coloring identifies the most important edges repre-
senting covalent bonds. Red coloring indicates positive (supporting the prediction)
and blue negative contributions (opposing the prediction)—the intensity of the
color scales with increasing edge importance. For test compounds belonging to
different chemical series, depicted in Figures 4.2a and 4.2b, respectively, feature
mapping revealed that edges prioritized by EdgeSHAPer consistently formed the
same coherent substructures in test compounds predicted with GCN models derived
on full and partial training sets. Minor differences between features prioritized
using non-overlapping subsets with distinct compounds are expected. Importantly,
for each chemical series, the same coherent substructures responsible for correct
predictions were identified in different test compounds using distinct subsets of
only one-third of the size of the original training set, indicating the stability of the
EdgeSHAPer results. For GCN models generated with different training subsets
of reduced size, the identified substructures were slightly smaller than for the model
trained on the complete training set due to the lower number of training instances
and features in subsets. It is emphasized that the formation of coherent substructures
of limited size by prioritized features in both compound series revealed that these
features delineated chemically meaningful substructures determining the predictions.
Furthermore, as also shown in Figure 4.2, positive contributions clearly dominated
correct compound activity predictions, with only very little balancing influence of
negative contributions.

Visual analysis was complemented and confirmed by the quantitative assessment in
Table 4.1, reporting differences based on FID+ and FID− values and the cardinal-
ities of the minimally informative sets. Hence, EdgeSHAPer explanations were
non-ambiguous, consistent, and stable.
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EdgeSHAPer (complete training set) EdgeSHAPer (training subset 1)

EdgeSHAPer (training subset 2) EdgeSHAPer (training subset 3)

(a) Compound C#Cc1ccc2sc(C(=O)NCCCCN3CCN(c4ccccc4OC)CC3)cc2c1

\
EdgeSHAPer (complete training set) EdgeSHAPer (training subset 1)

EdgeSHAPer (training subset 2) EdgeSHAPer (training subset 3)

(b) Compound Cc1ncsc1-c1nnc(SCCCN2CCC3(CC3c3ccc(C(F)(F)F)cc3)C2)n1C

Figure 4.2. In (a) and (b), explanations are provided for exemplary test compounds.

Table 4.1. Mean test set FID+ and FID− scores for EdgeSHAPer and the complete
training set as well as non-overlapping subsets of the training set and the mean number
of edges comprising the minimal sets.

FID+ FID− Edges in PP OS Edges in Tk

Training set 0.934 0.137 12.85 3.75
Training subset 1 0.886 0.108 5.50 4.80
Training subset 2 0.851 0.245 7.20 3.75
Training subset 3 0.926 0.120 7.45 4.10
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4.1.4.2 Comparison with TreeExplainer

An orthogonal qualitative comparison of features determining GCN and RF pre-
dictions was also carried out. Therefore, the EdgeSHAPer and TreeExplainer
methods were applied to rationalize GCN and RF predictions, respectively. In this
case, substructures delineated by principally distinct molecular features, that is,
predefined structural features for RF and the representation learned by GCN, were
compared. For this analysis, RF models were implemented in combination with
TreeExplainer since it enables exact (rather than locally approximated) calculation
of Shapley values for decision tree methods and is node (atom)-centric, in contrast to
EdgeSHAPer, which is edge (bond)-centric. Figure 4.3 shows representative results.

Atom-centric explanations by
TreeExplainer

Bond-centric explanations by
EdgeSHAPer

(a) Compound C#Cc1ccc2sc(C(=O)NCCCCN3CCN(c4ccccc4OC)CC3)cc2c1

Atom-centric explanations by
TreeExplainer

Bond-centric explanations by
EdgeSHAPer

(b) Compound Cc1ncsc1-c1nnc(SCCCN2CCC3(CC3c3ccc(C(F)(F)F)cc3)C2)n1C

Figure 4.3. In (a) and (b), mappings are shown for exemplary test compounds comparing
explanations from EdgeSHAPer and TreeExplainer.
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Even if applied to different machine learning algorithms relying on learned rep-
resentation features against predefined descriptors (GCN and RF, respectively),
EdgeSHAPer bond-centric and TreeExplainer atom-centric explanations delin-
eated overlapping yet distinct substructures responsible for correct predictions.
While these results were not necessarily expected, they supported the relevance
and robustness of the SHAP/Shapley value-based explanatory framework. Notably,
substructures identified by EdgeSHAPer explanations were smaller than those
found by TreeExplainer, which either resulted from the different features used or
corresponded to the higher resolution of EdgeSHAPer explanations, focusing on
substructures decisive for predictions.

4.1.4.3 Comparison with GNNExplainer

EdgeSHAPer was then compared to GNNExplainer, which also exclusively con-
siders edges for model explanation and does not employ other local approximation
methods. The same quantitative/qualitative analysis scheme as above was applied.
Table 4.2 reports the quantitative comparison. EdgeSHAPer identified smaller
pertinent positive sets of chemical bonds required for accurate predictions, similar to
the abovementioned observations. Furthermore, EdgeSHAPer yielded higher FID+
scores than GNNExplainer and identified smaller minimal top-k sets. GNNExplainer
produced low FID− scores since it identified minimal sets with larger numbers of
edges. Indeed, pertinent positive sets with increasing numbers of features rendered
predicted probabilities close to the original probability of a prediction, which led to
decreasing FID− values. However, EdgeSHAPer scores were of lower magnitude,
showing that its smaller pertinent positive sets conveyed important information.
Table 4.3 shows the comparison of the explanations for the training subsets, again
confirming the stability of the results and higher resolution of the EdgeSHAPer
explanations.

Table 4.2. Mean test set FID+ and FID− scores for EdgeSHAPer and GNNExplainer
for the complete training set and mean number of edges comprising the minimal sets.

FID+ FID− Edges in PP OS Edges in Tk

EdgeSHAPer 0.934 0.137 12.85 3.75
GNNExplainer 0.813 0.154 31.10 15.55

Feature mapping gave consistent results (Figure 4.4). As observed in the comparisons
discussed above, EdgeSHAPer identified small coherent substructures in test com-
pounds driving correct predictions, whereas features prioritized by GNNExplainer
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Table 4.3. Mean test set FID+ and FID− scores for EdgeSHAPer and GNNExplainer
for the training subsets and mean number of edges comprising the minimal sets of the
subsets.

FID+ FID− Edges in PP OS Edges in Tk

EdgeSHAPer 0.888 0.158 6.72 4.22
GNNExplainer 0.782 0.176 22.40 21.83

frequently covered entire compounds, making it difficult to rationalize and differenti-
ate between predictions. As discussed above, the formation of coherent substructures
by features prioritized by EdgeSHAPer that were much smaller than the ones
delineated by GNNExplainer clearly indicated that chemically meaningful structural
motifs were driving the predictions, as identified by EdgeSHAPer.

Taken together, the results indicated that EdgeSHAPer distinguished between
bonds of different relevance for correct predictions at a higher resolution than
GNNExplainer. Moreover, Tk edges found by EdgeSHAPer were critically impor-
tant for the predictions. Removal of these bonds eliminated substructural coherency
while determining PP OS edges using EdgeSHAPer revealed how salient substruc-
tures evolved, representing a high level of consistency between feature importance
assessment and mapping.

We also determined the correlation between edge/bond importance derived using
the different explanation methods. Since the absolute values from the different
techniques could not be directly compared, we computed different rank correlation
coefficients for importance-based edge rankings, including Spearman’s ρ, Pearson’s
r, and Kendall’s τ coefficients [424], as reported in Table 4.4. For both the complete
ranking and the top 25% of ranked edges, correlation coefficients were generally
close to 0, indicating the presence of largely distinct rankings produced with the
different methods. These findings also reinforced the need for feature mapping
and identification of coherent substructures determining the predictions, which are
indicative of meaningful bond ensembles prioritized for model explanation, as shown
for EdgeSHAPer above.



4.1 Shapley Value-Based Explanation Method for Graph Neural Networks in
Molecular Activity Prediction 102

EdgeSHAPer explanations EdgeSHAPer minimal top-k set EdgeSHAPer pertinent positive set

GNNExplainer explanations GNNExplainer minimal top-k set GNNExplainer pertinent positive set

(a) Compound C#Cc1ccc2sc(C(=O)NCCCCN3CCN(c4ccccc4OC)CC3)cc2c1

EdgeSHAPer explanations EdgeSHAPer minimal top-k set EdgeSHAPer pertinent positive set

GNNExplainer explanations GNNExplainer minimal top-k set GNNExplainer pertinent positive set

(b) Compound Cc1ncsc1-c1nnc(SCCCN2CCC3(CC3c3ccc(C(F)(F)F)cc3)C2)n1C

Figure 4.4. In (a) and (b), mappings are shown for exemplary test compounds comparing
explanations from EdgeSHAPer and GNNExplainer, focusing on the minimal informa-
tive sets retrieved by the two approaches.
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Table 4.4. Rank correlation coefficients for EdgeSHAPer compared to TreeExplainer
and GNNExplainer for the complete ranking and the most important edges (top 25%),
reported as the mean over the test set.

Spearman’s ρ Pearson’s r Kendall’s τ

Complete ranking
TreeExplainer 0.097 0.097 0.070
GNNExplainer −0.010 −0.010 0.022
Top 25%
TreeExplainer 0.013 0.055 0.022
GNNExplainer 0.012 0.012 0.016

4.1.5 Computational Complexity Analysis

The computational complexity of EdgeSHAPer with Monte Carlo sampling for a
single graph, without considering the complexity of the underlying neural network
model, is O(|E|2) ·O(M), as derived below.

In Algorithm 1, the loop starting at line 2 contains operations with cost O(N)
(line 3) and O(|E|) (lines 4, 5, 7, 8, 9, 10, 11, 12, and 13). The cost of the
remaining operations is constant. Importantly, we note that the complexity of
the GNN forward pass at line 14 is omitted from the analysis, given that it is
highly dependent on the architecture used. Thus, operations in the loop have an
asymptotic cost of O(|N |) + O(|E|). Given that the loop is iterated M times, the
overall cost for a single edge becomes O(M) · (O(|N |) + O(|E|)). Furthermore,
given that the number of nodes and edges in a molecular graph typically is of
comparable magnitude, we can approximate |N | ∼ |E|, obtaining an asymptotic
cost of O(M) · 2O(|E|) = O(M) ·O(|E|). Since the operation must be repeated for
all the edges in a molecular graph, the overall asymptotic cost is O(|E|2) · O(M).
For the alternative Algorithm 2 the asymptotic cost is analogous.

4.1.6 Observations

With EdgeSHAPer, we have introduced a novel methodology devised to assess
the importance of edge information for GNN-based predictions. Even though GNNs
are increasingly popular in many fields, including chemoinformatics and medicinal
chemistry, they are among the most challenging machine learning models to ex-
plain [425]. EdgeSHAPer combines the Shapley value concept from cooperative
game theory and a novel Monte Carlo sampling strategy. Shapley values deter-
mining predictions are estimated for each edge of a graph. By analyzing Shapley
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value contributions, informative graph pathways can be identified. Given its edge-
centric nature, EdgeSHAPer is particularly attractive for chemical applications
where edges correspond to bonds connecting atoms in a molecular graph. However,
EdgeSHAPer is by no means confined to rationalizing compound predictions but
generally applicable to any GNN-based task.

In our proof-of-concept investigation, machine learning-based compound activity pre-
dictions were carried out and explained. Feature attributions from EdgeSHAPer
were compared to a popular SHAP method for explaining decision tree models
(TreeExplainer) and another edge-centric explanation method currently available,
representing one of the most used XAI strategies in the field (GNNExplainer). For
correct predictions, EdgeSHAPer yielded high fidelity scores and the smallest
pertinent positive feature sets. Although GNNExplainer is designed to identify the
subgraph determining an individual prediction, EdgeSHAPer produced smaller
edge sets driving correct model decisions, leading to simpler interpretations.

Feature mapping on compound structure representations provides intuitive access
to predictions for chemists. Substructures delineated by edges determining correct
predictions can be interpreted in molecular terms. Such visualizations revealed the
formation of coherent substructural motifs by bonds prioritized by EdgeSHAPer.
The reference methods identified larger feature sets responsible for activity pre-
dictions, which often encompassed nearly complete compound structures. These
findings indicated higher resolution of EdgeSHAPer explanations.

Our analysis clearly showed that GNN-based molecular predictions can be ratio-
nalized on the basis of edge/bond information rather than node/atom information,
which has mostly been attempted thus far. This might be especially interesting for
MPNNs centered on bonds instead of atoms, which avoid unnecessary loops during
the message passing phase, as proposed for molecular property prediction [426].
Taken together, our findings indicate that EdgeSHAPer further extends the spec-
trum of current XAI approaches for chemical applications and beyond and should
merit further consideration.

To these ends, we extended EdgeSHAPer from compound activity classification to
the regression task of potency prediction for drug discovery. In this, we aimed to
understand the learning characteristics of GNNs when applied to this context and
unveil what they truly learn when predicting protein–ligand interaction affinities.
Previous studies argued that memorization effects are in place instead of a genuine
learning process of the interactions [27]. In the next section, we will delve deeper
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and analyze if and to what extent this is true, discussing the applicability of deep
learning for this task. The work on EdgeSHAPer was published in iScience by
Cell Press [25].

4.2 Learning Characteristics of Graph Neural Networks
Predicting Protein–Ligand Affinities

Along with determining the activity of a compound, the prediction of the potency
of interaction between a ligand molecule, which is the core of a drug, and its target
protein, gene, or enzyme is paramount in the research of promising hit compounds
in drug design. Clearly, this presents as a more challenging task than activity
prediction since the deep learning model has to predict the actual affinity value as
accurately as possible. As introduced in Section 2.2.1, compound potency predic-
tion has been tackled in machine learning with SVM and RF models [106], even
if lately the panorama has been dominated by deep learning, including CNNs and
RNNs [110] in both ligand-based and structure-based studies. However, more re-
cently, the rise of graph-based models led to the employment of GNNs for potency
prediction from protein–ligand interaction graphs, which are simplistic, artificially
built graphs representing interactions using information from X-ray structures of
protein–ligand complexes. Various GNN affinity prediction models have been re-
ported [27, 149, 141, 142, 427], as described in Section 2.2.1. For such models, a
strong correlation between predicted and experimental ligand affinities has often been
observed, leading to suggestions that GNNs might be capable of learning protein–
ligand interactions and associated energetics. While it is hard to conceive that
physical foundations and thermodynamics of protein–ligand interactions could possi-
bly be learned from relatively simple graph representations, the apparent prediction
accuracy achieved by GNNs raised high hopes for graph-based affinity predictions in
structure-based drug design. On the other hand, results of these affinity predictions
are also controversially viewed [27, 428, 429]. For example, in GNN predictions,
different training data volumes have often yielded similar correlation with experi-
mental data, which is counterintuitive for deep learning, whereas different partitions
of training and test data caused significant differences in model performance, also
giving rise to concerns [428, 429]. Furthermore, Volkov et al. [27] have used MPNNs
to predict ligand affinities from different versions of interaction graphs, including
full graphs and subgraphs considering only the ligand or protein. Strikingly, MPNN
models based upon only the ligand or protein graph were more accurate than models
trained on full interaction graphs, indicating that the MPNNs mostly memorized
ligand and protein training. Furthermore, the authors generated simple non-MPNN
models that predicted the potency of ligands in complexes as the average of the
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potency of most similar training set ligands. These baseline models approached
the accuracy of the best graph-based models, providing corroborating evidence for
memory effects in MPNN predictions [27].

In light of controversial views in the field concerning the apparent accuracy and
relevance of GNN affinity predictions, we have been interested in determining what
GNNs really learn when predicting protein–ligand affinity from interaction graphs.
Therefore, we have systematically predicted affinities using different types of GNNs.
On the basis of these results, we have applied EdgeSHAPer, now extended to
regression problems, as an XAI tool to rationalize these predictions in detail, going
beyond previous investigations and uncovering unexpected findings.

4.2.1 Study Concept and Methodological Framework

For our analysis, we implemented six different GNNs, systematically predicted
protein–ligand affinities with each GNN, and explained the predictions to deter-
mine and compare GNN learning characteristics. GNNs with different architectures
included a GCN [156], graph attention network (GAT) [430], graph isomorphism
network (GIN) [431] and an edge-including variant (GINE) [432], a GNN for induc-
tive representation learning (GraphSAGE) [302], and another GNN employing the
graph convolutional (GraphConv) operator [433], termed herein GC-GNN. These
networks were derived to systematically predict affinities on training (7301 curated
protein–ligand complexes) and validation (658 curated complexes) sets of protein–
ligand interaction graphs [27] generated from X-ray structures and affinity data
available in the PDBbind database [434, 435] (details are provided later in Sec-
tion 4.2.2). As test data, we employed the 2016 core set (186 curated complexes)
from the PDBbind archive comprising high-quality interactions covering a wide
range of affinities and the 2019 hold-out set (2542 curated complexes) [436] that
were used as standards in previous investigations [118, 27]. The prediction accuracy
of the different GNNs was compared to literature data reported for MPNN [27] as
an immediate reference for the performance level achieved by GNNs on these datasets.

For XAI analysis, the information content of interaction graphs needs to be con-
sidered. Commonly used interaction graphs consist of edges connecting ligand
pseudo-atoms and protein pseudo-atoms. Ligand pseudo-atoms represent ligand
atoms or intermediate positions between atoms forming intramolecular non-covalent
interactions, and protein pseudo-atoms represent amino acid residues [437, 438].
Interaction edges account for different types of non-covalent intermolecular interac-
tions (hydrogen bonds or hydrophobic/van der Waals interactions) [437, 438]. The
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assessment of edge importance is a generally applicable approach for explaining
predictions based on interaction graphs. Node importance might also be considered
but only implicitly accounts for interaction information. Therefore, to rationalize
the prediction outcomes of different GNN models, we applied EdgeSHAPer, which
is GNN model-agnostic and is able to quantify the importance of edges in graphs for
GNN learning, identifying edges that are most important for individual predictions.
This made it possible to directly determine which parts (subgraphs) of interaction
graphs were responsible for model decisions.

The analysis with EdgeSHAPer reveals in a non-ambiguous manner to which
extent GNNs learn protein–ligand interactions from graph representations for affinity
predictions. GNNs can only learn information that is contained in interaction graphs.
In a graph, protein–ligand interaction information is only captured by interaction
edges. Therefore, if the predictions depend on learning interactions between ligands
and proteins, intermolecular interaction edges must dominate the predictions. By
contrast, if intramolecular ligand or protein edges make significant contributions,
GNN learning focuses on ligand or protein information memorized from training data,
such as structurally similar ligands having a similar affinity for the same or different
proteins. Accordingly, ligand or protein memorization means that GNNs would pre-
dict affinities by recalling values associated with ligand or protein training instances
without learning interactions. Figure 4.5 summarizes the workflow of the analysis.
Interaction graphs were constructed from structures of protein–ligand complexes.
The GNNs were derived, optimized, and evaluated using interaction graphs of the
training and validation sets and then used to predict numerical affinity (pKi) values
for the external core and hold-out sets. This measure represents the negative decadic
logarithm of the inhibition constant (pKi = − log10(Ki)). A unitary change in pKi
indicates a change of an order of magnitude in Ki. High pKi values correspond
to strong interactions. As a performance measure, the conventional root mean
square error (RMSE) of predicted relative to experimental affinity values was calcu-
lated. Then, the EdgeSHAPer algorithm was used to quantify edge importance
and identify edges (and corresponding subgraphs) determining individual predictions.

4.2.2 Data and Methods

In this section, we will illustrate the data used in the study and how they were
processed. Moreover, we will describe the graph neural network architectures used.
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Figure 4.5. Rationalizing affinity predictions based on protein–ligand interaction graphs.
The schematic representation summarizes the different stages of the analysis, including
the generation of interaction graphs from X-ray structures for training and testing a GNN
to predict numerical affinity values, followed by the determination of edge importance
for predictions and delineation of subgraphs determining the predictions.

4.2.2.1 Structural and Affinity Data

From PDBbind (2019 version) [434, 435], training and validation sets (9962 and
903 protein–ligand complexes and associated affinities, respectively) were extracted,
as described [27]. As test sets, the 2016 core and 2019 hold-out sets (257 and
3393 complexes, respectively) [436] were retrieved from PDBbind. From these non-
overlapping training, validation, and test sets, complexes with error-prone affinity
annotations including very low (negative logarithmic) potency values of less than
5 pKi or unusually high potency values of more than 11 pKi were removed. In
addition, complexes for which the generation of interaction graphs failed [27] due to
the presence of structural ambiguities were discarded. The final curated training,
validation, core, and hold-out sets consisted of 7301, 658, 186, and 2542 complexes,
respectively.

4.2.2.2 Protein–Ligand Interaction Graphs

For these complexes, interaction graphs made publicly available by Volkov et al. [27]
were obtained, and exemplary samples were reproduced based on distances and
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interaction types determined with IChem (version 5.2.9) [439] using NetworkX [440].
Following the original protocol [27], ligand pseudo-atoms and protein pseudo-atoms
were defined as described below and connected via an edge if they were located within
a distance of less than 6 Å. This distance threshold took into account that entire
protein residues were represented as pseudo-atoms and increased the number of
interaction edges compared to 4 Å, leading to lower RMSE values for predictions using
interaction graphs, as reported in previous studies [27]. In addition, two ligand or
protein pseudo-atoms were connected if their distance was less than 4 Å (considering
both covalent and non-covalent intramolecular interactions). Edges were annotated
with interaction distances that were scaled according to interquartile ranges of the
global distance distribution [441]. As node features, one-hot encoded representations
were used in which the one-valued entry indicated the type of non-covalent interaction
involving the pseudo-atom [438, 27]: CA, hydrophobic; NZ, ionic (interacting protein
atom, positively charged); N, hydrogen bond (interacting protein hydrogen-bond
donor atom); OG, hydrogen bond (interacting protein hydrogen-bond acceptor and
donor atom); O, hydrogen bond (interacting protein hydrogen-bond acceptor atom);
CZ, aromatic; OD1, ionic (interacting protein atom, negatively charged); ZN, metal
coordination.

4.2.2.3 Graph Neural Network Architectures

Different GNNs were implemented using PyTorch [421] and PyTorch Geometric
(PyG) [304] libraries. The following models were generated.

Network with graph convolutional operator GC-GNN comprised seven PyG
GraphConv layers representing the graph convolutional operator introduced by
Morris et al. [433]. Each layer contained 256 hidden units and employed the max
aggregator. The ReLU activation function was applied following each convolutional
layer to introduce nonlinearity. The final network component was a global additive
pooling layer, followed by a dropout layer (with a probability of 0.5) to avoid over-
fitting and a linear layer for regression. The GraphConv operator is defined as follows:

x′
i = W1xi + W2 max

j∈N (i)
(ej,ixj),

where W1 and W2 are the neural network weights, ej,i represents the edge weight
from node j to node i, xi and xj are the feature vectors for nodes i and j, respectively,
and N (i) is the neighborhood of node i.
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Graph convolutional network The GCN model we employed consisted of four
convolutional layers [186], each with 256 hidden units. The ReLU activation function
was used to introduce nonlinearity following each layer. After the last GCN layer,
global mean pooling was carried out, followed by a dropout layer with a probability
of 0.5 and a linear layer for the regression task. The definition of the GCN operator
was given in Equation (4.2) when describing EdgeSHAPer (Section 4.1.3).

Graph attention network The GAT we devised was composed of seven atten-
tion layers [430], each of which contained 256 hidden channels, followed by a ReLU
activation function. Global additive pooling and dropout (with a probability of 0.5)
were applied. The GAT operator is defined as

x′
i = αi,iΘxi +

∑
j∈N (i)

αi,jΘxj ,

where αi,j are the attention coefficients as defined in the original publication [430]
and Θ the neural network weights.

Graph isomorphism network with or without edge weights The GIN model
employed four convolutional operators [431]. The GIN layer is defined as

x′
i = hΘ

(1 + ϵ) xi +
∑

j∈N (i)
xj

 ,

where ϵ is a real number as defined in the original publication [431] and hΘ is a
neural network. In our case, a multilayer perceptron with two fully connected layers
with 256 hidden channels each was used, followed by batch normalization and the
ReLU activation function. Following the convolutions, a global additive pooling
layer, dropout layer (with a probability of 0.5), and final linear layer for regression
were added.

A network variant taking graph edge weights for the aggregation into account
(GINE) [432] was also derived. In this case, the summation term becomes ReLU(xj+
ej,i), where ej,i denotes the attribute (weight/distance) of the edge connecting node
j to node i, transformed to match xj dimensions.
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GraphSAGE The GraphSAGE model is analogous as introduced in Section 3.2.1.2
with Equation (3.4) when presenting XGDAG. In this implementation, the network
contained seven GraphSAGE layers with 256 hidden channels and the mean aggre-
gation function. ReLU was used as a nonlinear activation function after each layer.
The GNN architecture terminated with a global additive pooling layer, followed by
a dropout layer with a probability of 0.5 and a linear layer for regression.

The different networks were trained for 100 epochs using Adam optimizer [307]. The
learning rate was set to 1e− 3, weight decay to 5e− 4, and batch size to 32. During
parameter optimization, the network weights were iteratively adjusted to minimize
the RMSE loss function, and the models with the lowest RMSE for the validation
set were selected as the final models for test set predictions. All the networks were
monitored to prevent oversmoothing, as in Section 3.2.1.2.

4.2.2.4 Model Explanation

All predictions were first explained using EdgeSHAPer by identifying edges de-
termining predictions. In each case, we used 100 sampling steps as defined in
the EdgeSHAPer protocol. Edges in test graphs were ranked by Shapley val-
ues, and alternative sets of top k edges were selected by varying k from 5 to
25 (in increments of 5). Explanations were visualized using NetworkX and dis-
play features of EdgeSHAPer. Model explanations were also calculated using
GNNExplainer for comparison purposes. GNNExplainer is methodologically distinct
from EdgeSHAPer, as thoroughly described in this thesis. It identifies edges
forming a compact subgraph that maximizes the mutual information between the
network prediction and the distribution of possible subgraphs. Differently from
EdgeSHAPer, GNNExplainer requires training to learn the mask and generate
explanations. Hence, this approach is more hypothetical and can be sensitive to
different training conditions and parameter settings. To enable an unbiased compar-
ison, we trained GNNExplainer using the same number of epochs and learning rate
as the GNN models and default parameter settings [225].

4.2.3 Predictive Performance

The GNNs were trained and evaluated on interaction graphs from the training and
validation sets and then used to predict potency values for the core and hold-out sets,
used as external datasets. Table 4.5 reports the performance of the GNN models
compared to MPNN [27] as a reference. For GCN, GAT, GIN, GINE, GraphSAGE,
and GC-GNN, lower RMSE values were obtained than reported for the reference
MPNN (the training and test sets used in the independent studies were largely
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overlapping but not identical to the ones used in previous work with MPNN [27]).
However, the differences between these models were generally small. For the large
hold-out set, the largest RMSE difference between any pair of models was only
0.397 (MPNN vs. GAT). Furthermore, RMSE differences between the different GNN
architectures we investigated were very small. For the hold-out set, the largest
difference between any pair of GNN models was only 0.161 (GINE vs. GAT). Thus,
independently derived models achieved comparable accuracy in affinity predictions
based on interaction graphs with very small differences between the models. For our
XAI analysis, this was an important aspect, providing a sound basis for explaining
the predictions of different GNN variants in the presence of comparable model
performance.

Table 4.5. Test set predictions. For the core and hold-out sets, RMSE values are reported
for GCN, GAT, GIN, GINE, GraphSAGE, GC-GNN, and reference MPNN literature
data. All six GNN models reported herein were trained and evaluated on identical
training, validation, and test sets.

Method
Core set
RMSE

Hold-out set
RMSE

MPNN 1.605 1.563
GCN 1.397 1.218
GAT 1.321 1.166
GIN 1.318 1.290
GINE 1.398 1.327
GraphSAGE 1.277 1.173
GC-GNN 1.329 1.280

4.2.4 Explanation Results

For each prediction, the k most important edges were identified using EdgeSHAPer,
that is, the top k edges having the highest absolute Shapley values. Edges belonged
to three different categories including (i) intramolecular edges formed between lig-
and pseudo-atoms (termed ligand edges), (ii) intramolecular edges formed between
protein pseudo-atoms (protein edges), and (iii) intermolecular edges formed between
ligand and protein pseudo-atoms (interaction edges). For model explanation, the
hold-out set was used as a test set. Predictions of test instances falling into different
affinity sub-ranges including low affinity (pKi < 6), medium affinity (pKi ∈ [6.5, 7.5]),
and high affinity (pKi > 8) were then separately analyzed. To clearly differentiate
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between these potency sub-ranges and avoid representing a continuous affinity range
prone to boundary effects, test instances falling into intermittent intervals of 0.5 pKi
units between these affinity sub-ranges were excluded from the analysis. The low-,
medium-, and high-affinity sub-ranges that were separately analyzed contained 533,
698, and 615 test instances, respectively. The medium-affinity sub-range included
the mean affinity value of all complexes (pKi = 7.15).

We determined that the proportions of ligand and protein nodes in all interaction
graphs (including training and test data as well as test instances falling into dif-
ferent potency sub-ranges) consistently were ~60% and ~40%, respectively (with
differences of only 1-2% between data sets). On average, the relative proportion of
ligand and protein nodes participating in interactions was 49% and 51% across all
interaction graphs, respectively. Furthermore, the relative proportion of inter- and
intra-molecular edges was nearly constant across all affinity sub-ranges, with ~30%
and ~70%, respectively (and only ~1% differences across the different sub-ranges).
Intra-molecular edges included ~64% and ~6% ligand and protein edges, respectively.
Hence, many more ligand than protein edges were available. Comparison of the
proportions of ligand vs. protein pseudo-atoms and ligand vs. protein edges in
interaction graphs indicated that ligand subgraphs were more densely connected
than protein subgraphs, as expected (since each protein pseudo-atom can at most
be connected to two others, except in the rare case of an additional disulfide bond).
Using EdgeSHAPer, we then identified the edges making the largest contributions
to all predictions. Figure 4.6 compares the proportions of protein, ligand, and
interaction edges among the top 25 edges determining the predictions of different
GNN models for the three affinity sub-ranges. These values account for the relative
contributions of ligand, protein, and interaction edges to affinity predictions. All
values are also reported in Table 4.6, including results from GNNExplainer for an
immediate comparison.

The results in Figure 4.6 and Table 4.6 revealed clear and consistent trends for
the predictions. Ligand edges dominated predictions across different affinity levels,
with an average of ~65% of the top 25 edges. Protein edges made much smaller
contributions, mostly only representing ~10% of the top 25 edges across all affinity
sub-ranges. This might be due to the much lower propensity of protein edges than
ligand edges in the graphs, as discussed above. However, all GNN models also
learned interaction information, corresponding to ~20% of the top edges for four of
six GNNs. Interestingly, two GNNs displayed different relative edge contributions for
increasing affinity. For GIN, protein edges increased from 10.8% to 22.4% from low
over medium to high affinity, and interaction edges increased from 16.8% to 30.0%,
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Figure 4.6. Relative proportions of edges determining predictions for different affinity
sub-ranges. Color-coded bars compare mean proportions of protein, ligand, and inter-
action edges among the top 25 edges determining test set predictions prioritized by
EdgeSHAPer. Relative proportions are separately compared for test instances falling
into the three affinity sub-ranges.

whereas ligand edges decreased from 72.4% to 47.6% for increasing affinity. Moreover,
for GC-GNN, protein contributions were constantly small, with only 11-12% of the
top 25 edges. Ligand edges dominated low-affinity predictions, with more than half
of the top edges, but then decreased when predicting increasing affinity whereas the
proportion of interaction edges increased. For the high-affinity set, the top edges
contained 36.6% ligand and 51.6% interaction edges. When monitored across the
entire potency range, ligand and interaction edges nearly equally contributed to
GC-GNN predictions with, on average, 44.8% ligand and 43.6% interaction edges,
in the presence of inverse relative contributions for varying affinity.

The analysis was repeated with the conceptually distinct GNNExplainer explanation
method, also capable of quantifying edge importance. For four of six networks (GAT,
GINE, GraphSAGE, and GC-GNN), closely corresponding trends were detected with
both explanation methods, as detailed in Table 4.6. For the remaining two networks,
GCN and GIN, the explanation methods prioritized ligand and interaction edges in
different ways. For GCN, GNNExplainer increasingly prioritized interaction edges
from low- over medium- to high-affinity predictions (from 25.2% to 53.2%) and depri-
oritized ligand edges (from 69.8% to 36.0%) while EdgeSHAPer consistently priori-
tized ligand edges (with an average of 69.9%). For GIN, EdgeSHAPer increasingly
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Table 4.6. Mean proportions (%) of protein, ligand, and interaction edges among the
top 25 edges determining test set predictions as prioritized by EdgeSHAPer and
GNNExplainer (in parentheses). The average at the bottom is calculated for all three
affinity sub-ranges. In addition, the RMSE on the test set for each GNN model and
sub-range is reported. All models were derived using identical training sets and tested
on the same test set (hold-out set). Predictions were then separately analyzed for test
instances falling into different affinity sub-ranges.

Affinity Set Edges RMSE

Protein Ligand Interaction
GCN

Low 4.8% (5.0) 75.0% (69.8) 20.2% (25.2) 1.735
Medium 8.8% (7.2) 64.2% (47.0) 27.0% (45.8) 0.531
High 7.0% (10.8) 70.6% (36.0) 22.4% (53.2) 1.561
Average 6.9% (7.6) 69.9% (50.9) 23.2% (41.4) 1.276

GAT
Low 10.4% (6.5) 72.8% (67.5) 16.8% (26.0) 1.570
Medium 11.2% (9.2) 60.6% (62.0) 28.2% (28.8) 0.541
High 13.0% (8.2) 63.4% (61.0) 23.6% (30.8) 1.563
Average 11.5% (8.0) 65.6% (63.5) 22.9% (28.5) 1.225

GIN
Low 10.8% (7.9) 72.4% (68.0) 16.8% (24.1) 1.667
Medium 14.8% (7.0) 58.4% (67.6) 26.8% (25.4) 0.902
High 22.4% (6.2) 47.6% (71.6) 30.0% (22.2) 1.544
Average 16.0% (7.0) 59.5% (69.1) 24.5% (23.9) 1.372

GINE
Low 6.7% (3.6) 65.3% (77.9) 28.0% (18.5) 1.583
Medium 11.8% (4.2) 59.4% (68.8) 28.8% (27.0) 0.900
High 10.6% (5.4) 62.2% (65.2) 27.2% (29.4) 1.729
Average 9.7% (4.4) 62.3% (70.6) 28.0% (25.0) 1.404

GraphSAGE
Low 10.3% (7.1) 70.2% (70.8) 19.5% (22.1) 1.471
Medium 9.8% (7.6) 67.6% (59.4) 22.6% (33.0) 0.667
High 10.2% (8.6) 69.8% (56.4) 20.0% (35.0) 1.564
Average 10.1% (7.8) 69.2% (62.2) 20.7% (30.0) 1.234

GC-GNN
Low 11.1% (6.9) 55.2% (52.3) 33.7% (40.8) 1.607
Medium 12.0% (6.4) 42.6% (40.4) 45.4% (53.2) 0.831
High 11.8% (6.2) 36.6% (35.6) 51.6% (58.2) 1.622
Average 11.6% (6.5) 44.8% (42.8) 43.6% (50.7) 1.353

prioritized interaction edges, as discussed above, while GNNExplainer consistently
prioritized ligand edges (with an average of 69.1%). Thus, EdgeSHAPer and
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GNNExplainer explanations revealed affinity-dependent utilization of interaction
edges for two of six networks: GIN and GC-GNN (EdgeSHAPer), GCN and
GC-GNN (GNNExplainer).

Taken together, the results of the analysis demonstrated that different types of GNNs
did not consistently and exclusively learn protein–ligand interaction information from
graphs to arrive at apparently accurate affinity predictions. However, interaction
edges were prioritized to varying extents. In addition, while it is not known how
many interaction edges might be required to correctly predict a given ligand affinity,
the results showed that ligand memorization dominated the predictions overall.
Accordingly, GNNs can often predict ligand affinity values with reasonable accuracy
without prioritizing interaction edges and learning protein–ligand interactions by
recalling affinities of similar training compounds. Notably, for increasing affinity,
different relative contributions of protein, ligand, and interaction edges were observed
for GNN variants with distinct architecture. Among these, the strongest systematic
contributions of protein–ligand interaction edges to accurate predictions of increasing
affinity were detected for GC-GNN with both explanation methods. Hence, this
GNN architecture was most sensitive to the inclusion of interaction information
to accurately predict high affinity. Therefore, we further analyzed the GC-GNN
learning characteristics compared to other GNNs. Figure 4.7 details trends observed
for GC-GNN predictions by monitoring the proportions of edges for increasing values
of k, where k is the number of top edges considered.
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(a) Low-affinity interactions.
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(b) Medium-affinity interactions.
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(c) High-affinity interactions.

Figure 4.7. Varying numbers of edges determining GC-GNN predictions. Monitored are
the proportions of protein, ligand, and interaction edges among the top k edges for the
low- (a), medium- (b), and high-affinity (c) set and increasing k values.
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For predictions of low affinity and increasing k values (Figure 4.7a), ligand contri-
butions began to outweigh interaction contributions when the top 10 edges were
considered and then reached a plateau at the top 15 edges above 50%, dominating the
predictions, while interaction contributions decreased in a mirror image-like fashion.
For predictions of medium affinity and small k values, interaction contributions also
dominated (Figure 4.7b). For increasing values of k, ligand contributions increased,
while contributions of interactions decreased until the contributions became compa-
rable in magnitude for the top 25 edges. By contrast, for high-affinity predictions,
relative contributions of ligands and interactions to the predictions essentially re-
mained constant over the entire range, with the largest relative contributions of
interactions, followed by ligands, and only minor contributions of proteins (Fig-
ure 4.7c). For all sets, contributions of protein edges to predictions were consistently
small. Consistent with the results in Figure 4.6, predictions of other networks were
dominated mainly by ligand edges, as shown in Figure 4.8 for GraphSAGE as a rep-
resentative example. Here, ligand edges dominated the predictions across all affinity
levels, while interaction and protein edges made modest contributions. For values of k
greater than 10, interaction edges became slightly more important than protein edges.
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(a) Low-affinity interactions.
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(b) Medium-affinity interactions.
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(c) High-affinity interactions.

Figure 4.8. Edges determining GraphSAGE predictions. Monitored are the proportions of
protein, ligand, and interaction edges among the top k edges for the low- (a), medium-
(b), and high-affinity (c) set and increasing k values.
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As shown in Figures 4.9 and 4.10, edges determining affinity predictions can also
be mapped back from interaction graphs to actual protein–ligand interactions. Fig-
ure 4.9a shows an example explanation of a GC-GNN prediction of a low-affinity
complex (pKi = 5.06) formed between a viral (H1N1) polymerase acidic endonuclease
and an N-acylhydrazone inhibitor. In this case, the prediction was largely driven by
ligand memorization since edges corresponding to essentially all (but one) bonds in
the ligand determined the prediction. Interactions played a minor role here, mostly
focusing on the side chain of LYS134 that was in hydrogen bonding distance to several
ligand atoms. The dominance of ligand information was already apparent by high-
lighting important edges in the interaction graph and was resolved at the structural
level by mapping edge information back to the protein, ligand, and protein–ligand
interactions. Figure 4.9b shows the explanation of the same interaction predicted
by GraphSAGE. The visualization reveals that the GraphSAGE prediction was
driven by memorizing disjoint substructures of the ligand. By contrast, only two
interactions involving residues GLU26 and LYS34 were detected.

Figure 4.10 explains predictions of an exemplary high-affinity complex (pKi = 9.96)
formed between the human beta chemokine receptor type 9 and a marketed antagonist
(vercirnon) using GC-GNN (Figure 4.10a) and GraphSAGE (Figure 4.10b). The
visualization further illustrates the different learning characteristics. For GC-GNN,
the prediction was mostly determined by hydrophobic protein–ligand contacts, while
ligand contributions only played a minor role. By contrast, for GraphSAGE, ligand
edges again dominated the prediction, with only a minimal contribution of interaction
edges different from those prioritized by GC-GNN.

4.2.5 Observations

In this section, we have investigated GNN-based affinity predictions based on protein–
ligand interaction graphs from an XAI perspective. In drug design, such GNN-based
affinity predictions have received increasing attention. However, the putative ability
of GNNs to learn protein–ligand interactions from graphs has also been called into
question, for example, by noting unusual training vs. test behavior or ligand mem-
orization effects. Therefore, we have carried out such predictions using six GNNs
with different architectures and explored underlying learning characteristics via XAI.
Initially, different types of GNN models were derived and evaluated on widely used
benchmark sets, reaching comparably high accuracy in the prediction of affinity
values (also compared to previously reported MPNN results). By quantifying edge
importance in interaction graphs, we then analyzed how these affinity predictions
were determined. The interactions were classified according to different affinity



4.2 Learning Characteristics of Graph Neural Networks Predicting
Protein–Ligand Affinities 121

LYS134

GLU26 LYS34

(a) Important edges - GC-GNN.

GLU26 LYS34

(b) Important edges - GraphSAGE.

Figure 4.9. Mapping of edges determining predictions of a low-affinity complex. For the
GC-GNN prediction (a), a subgraph of the interaction graph comprising the top 25 edges
is displayed (left). Red and light blue nodes represent ligand and protein pseudo-atoms,
respectively. Edges connecting ligand or protein pseudo-atoms are colored red and blue,
respectively, and interaction edges are colored green. The top 25 edges were mapped
back on ligand structure, protein structure, and protein–ligand interactions applying
the same color code (right). Solid lines represent van der Waals interactions and dotted
lines hydrogen bonds. For the GraphSAGE prediction of this complex (b), a subgraph
of the interaction graph comprising the top 25 edges is shown and the corresponding
protein–ligand interactions are displayed.

levels. The results clearly showed that the GNN predictions did not exclusively
depend on learning protein–ligand interactions, but that ligand memorization effects
often dominated the predictions. Hence, the similarity of ligands having comparable
affinity in different protein environments played a critically important role. These
memorization effects can be perceived as a form of model overfitting. By contrast,



4.2 Learning Characteristics of Graph Neural Networks Predicting
Protein–Ligand Affinities 122

TYR73

LEU87

VAL259

ASP84

THR83

PHE243

ALA255
ARG323ASP84

(a) Important edges - GC-GNN.
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Figure 4.10. Mapping of edges determining predictions of a high-affinity complex. A
subgraph of the interaction graph comprising the top 25 edges is shown and the corre-
sponding protein–ligand interactions are displayed for GC-GNN (a) and GraphSAGE
(b). The same color coding as Figure 4.9 applies.

protein memorization did not substantially contribute to the prediction. Importantly,
however, all GNN models also learned interaction edges for affinity predictions, as
revealed by edge importance analysis using two distinct XAI methods. Although
the relative proportions of ligand and interaction edges varied depending on GNN
model architecture, for three of six GNNs (GAT, GINE, GraphSAGE), interaction
edges constituted ~20% of the most important edges for the predictions of different
affinity sub-ranges. For the three other GNNs (GCN, GIN, GC-GNN), predictions
of low-, medium-, and high-affinity values were determined in different ways, as
revealed by explanations from EdgeSHAPer and GNNExplainer: an unexpected
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finding. In these cases, model explanation identified distinct contribution patterns
for predictions at different affinity levels. Low-affinity interactions were largely
determined by ligand edges. For GCN and GIN, the importance of protein and
interaction edges then increased for predictions of increasing affinity, whereas the
importance of ligand interactions decreased. For GC-GNN, protein contributions
were consistently small, but ligand and interaction edges had opposing effects on
predictions of increasing affinity. For medium-affinity prediction, ligand and inter-
action contributions were balanced. However, for high-affinity predictions, more
than half of the most important edges were interaction edges. From this point of
view, GC-GNN was the most sensitive graph-based learning architecture for affinity
predictions, as shown by consistent explanations from different methods.

Our findings for a variety of GNN models demonstrate that predictions of affinity
based on interaction graphs do not represent showcase examples for deep learning of
physical reality. However, neither are they merely “Clever Hans” predictors [442, 443],
which yield promising predictions for other than anticipated reasons. Rather, the
emerging picture is more differentiated. The observation that affinity predictions
of different GNNs only partly depend on learning protein–ligand interaction edges
from graphs is reassuring from a rigorous scientific perspective. This is the case
because interaction graphs describing the endpoints of complex binding processes in
a static and very simplified manner contain no thermodynamically relevant informa-
tion that could potentially be exploited for learning of enthalpic or entropic effects
determining ligand affinities. Instead, ligand memorization effects consistently play
an important role in affinity predictions using GNNs of different architectures. The
importance of ligand memorization can at least partly be attributed to the fact
that structural analogues often have comparable potency (with activity cliffs being
an infrequent exception). This represents an artificial feature of these predictions
that strictly depends on benchmark settings that could, in principle, intrinsically
limit the applicability of GNNs for prospective applications. However, our findings
also demonstrate that some GNNs, such as GIN and, in particular, GC-GNN, learn
interaction patterns, especially for predicting high affinities. Interaction patterns
represent the most specific information contained in interaction graphs, setting
interactions apart from recurrent protein and ligand information.

The observation that interaction information becomes particularly relevant for the
prediction of high affinities using GNN architectures, such as GC-GNN, also offers
an interesting and exciting perspective for further methodological developments.
Clearly, predicting highly potent compounds is most important for practical purposes
in drug design. To this end, new types of interaction graphs might be designed that
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specifically emphasize interaction patterns while including only fuzzy ligand (and
protein) components. For GNN predictions, these graph characteristics would work
against ligand memorization and more strongly focus on interaction information
determining high affinity. Thus, pairing the design of more expressive and representa-
tive interaction graphs with the ability of GNNs to learn interaction-related content
can guarantee those models a deserved place in the drug development pipeline. The
study described in this section was published in Nature Machine Intelligence [28].

4.3 A Step Toward Exact Shapley Value Computation

In Section 4.1, we have seen the development of EdgeSHAPer, our methodol-
ogy that performs Shapley value approximation to determine edge importance for
GNN predictions in molecular activity. Subsequently, in Section 4.2, we used it to
rationalize the behavior of GNNs for interaction affinity prediction. However, the
approximation of Shapley values is not a panacea for all explainability problems.
For instance, there is evidence that approximation-based strategies cannot entirely
capture the importance of input features when using SVMs for compound activity
prediction [9]. So, in light of the work on XAI presented so far in this thesis, we
thought it would be interesting to explore this aspect and try to add an exact Shapley
value computation component to the proposed pipeline, enhancing its trustworthi-
ness. Moreover, initially approaching this task by using less complicated machine
learning models can offer a simplified view to tackle such a challenging problem and
lay the foundations for a future extension to neural networks, as we will hint in
the future perspectives in Chapter 5. Furthermore, as we introduced in Chapters 1
and 2, classic machine learning models are valid tools in chemoinformatics, and the
development of XAI solutions for those is, therefore, of high scientific relevance.

As a last work presented in this thesis, we will describe SVERAD, an algorithm
able to calculate Shapley values for SVMs in an exact manner relying on the radial
basis function (RBF) kernel. So, we will take a step back from neural networks to
take a step forward toward exact Shapley value computation.

4.3.1 Scientific Context and Motivation

As extensively remarked in this thesis, machine learning has become a key com-
ponent of computer-aided drug discovery. Fast-growing volumes of chemical and
biological discovery data provide a sound basis for the derivation of models for
practical applications. The data deluge also causes a need for predictive modeling
in support of experimental programs. In early-phase drug discovery, many ma-
chine learning applications focus on the prediction of candidate compounds with
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desired biological activity. This is usually paired with the requirement to rationalize
predictions for experimental design, leading to the development and usage of XAI
methods to open the machine and deep learning black boxes [194, 5]. Moreover, we
described the Shapley value concept [26] from collaborative game theory, adapted
for quantifying feature importance in machine learning [236]. In the XAI adaptation,
players correspond to features and the game is the prediction of a test instance.
Given the need to enumerate and calculate the marginal contribution of a feature
in each possible coalition, the computational requirements scale exponentially with
increasing numbers of features. Hence, it becomes infeasible for machine learning
models based on large feature sets. Therefore, approximations were introduced,
as described in Section 2.3.2, and explored in this thesis with EdgeSHAPer in
Section 4.1. In contrast, calculation of exact Shapley values has thus far only been
accomplished for deriving local explanations of decision tree-based models [238]
such as RFs, and for SVMs in combination with the Tanimoto kernel [444, 445],
as recently reported [9]. The Tanimoto kernel is a similarity measure related to
the Jaccard similarity and is mostly used in chemistry applications. The deci-
sion tree- and SVM-based Shapley value approaches were termed TreeSHAP (or
TreeExplainer) [238], already introduced in this thesis, and Shapley Value-Expressed
Tanimoto similarity (SVETA) [9], respectively. Both RF and SVM have for long
been among the most popular machine learning methods in pharmaceutical research
and other scientific fields, which often rival the performance of deep neural networks
on sets of structured data with well-defined features (such as fingerprints) [129, 238],
for example, in molecular property and activity prediction [446]. Accordingly, ra-
tionalizing SVM black-box predictions is also of considerable interest. Notably,
there was only limited correlation between exact Shapley values calculated for the
SVM/Tanimoto kernel combination and corresponding SHAP values, indicating that
the local approximation might not be suitable for reliable model explanations in
this case [9]. Given that the Tanimoto kernel is a special kernel function mostly
applied to account for chemical similarity, we devised a methodology for calculating
exact Shapley values for SVM models based on the more generally applied RBF
kernels (including the popular Gaussian kernel). Herein, we report the develop-
ment and proof-of-concept application of the Shapley-Value Expressed Radial basis
function (SVERAD) approach yielding exact Shapley values for the SVM/RBF
combination in a computationally efficient manner (requiring quadratic computa-
tional time with respect to the number of input features rather than exponential).
Comparison of SVERAD and SHAP values revealed limited correlation, hence re-
inforcing the need for calculation of exact Shapley values to explain SVM predictions.

We first develop the theory and mathematical foundations of SVERAD and then
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demonstrate the calculation of exact Shapley values using SVERAD based on a
model system. In addition, compound activity predictions are carried out using
SVM and RF models, and features determining the predictions are identified with
SVERAD (SVM), KernelSHAP [8], the general applicable SHAP approximation
(SVM, RF), and TreeSHAP [238] (RF). These calculations enabled a direct compari-
son of SVERAD and SHAP and an additional comparison of corresponding SVM
and RF predictions and their explanations. Furthermore, features prioritized for
SVM and RF predictions were mapped onto the structures of correctly predicted
test molecular compounds to complement numerical analysis and compare chem-
ically intuitive graphical explanations. Finally, XAI analysis is complemented by
computational complexity analysis for SVERAD.

4.3.2 Data Processing and Predictive Models

For compound-based Shapley value calculations and activity predictions, we used
a set of 287 adenosine receptor A3 ligands from ChEMBL [414, 415, 416] with
curated high-confidence activity annotations, as reported previously [9]. As negative
(inactive) examples, an equally sized set of other ChEMBL compounds was randomly
selected. Compounds were represented as a keyed Morgan fingerprint [123] with
bond radius 2 (that is, a binary feature vector in which each bit position represents
a unique feature) [121] calculated using RDKit [419]. The fingerprint comprises
compound-specific numbers of layered atom environments, which represent topo-
logical structural features [423]. Each compound is described by 5487 binary features.

Compound activity predictions were carried out using SVM and RF models, relying
on the Scikit-learn implementations [422]. The data set comprising active and ran-
dom compounds was divided into training (50%) and test (50%) sets. The training
set was then used for grid search hyperparameter optimization via cross-validation by
randomly partitioning the compounds ten times into training (50%) and validation
(50%) subsets, preserving class balancing. Specifically, for the SVM models, the
parameters γ (used to control nonlinearity, see later) and C were optimized. C

controls the applied regularization. Smaller values of C favor generalization but
increase the risk of training errors. Large values lead to a harder margin and strict
misclassification penalties instead, thereby improving the classification accuracy of
training samples but potentially limiting the generalization ability. After grid search
optimization, the best model with γ = 0.01 and C = 10 produced an accuracy of
93% on the test set. As for the RF model, three hyperparameters were optimized,
accounting for i) the number of decision trees, ii) the minimum number of samples
required to split an internal node, and iii) the minimum number of samples required
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to reach a leaf node. The parameters control overfitting, model complexity, and
smoothing. The best values selected via grid search were 500, 2, and 1, respectively.
The final model reached an accuracy of 92% on the test set.

The Python SHAP [8] package was used for KernelSHAP and TreeSHAP calculations.
For both SVM and RF, the KernelSHAP background sample was composed of 100
randomly selected training instances. For TreeSHAP, the entire training set was
used as background sample, and interventional feature perturbation was used to
control input feature correlation [447].

4.3.3 Methodology

Even if introduced in Section 2.3.2 with Equation (2.1) and provided in its adapted
edge-centered version in Equation (4.1), we report hereby again for immediate refer-
ence the Shapley value formula, as we will use it for the subsequent calculations:

ϕf (v) =
∑

S⊆F\{f}

|S|! (|F| − |S| − 1)!
|F|! (v (S ∪ f)− v (S)) .

In this formula, f is the assessed feature, F is the complete set of features, S is a
coalition (a subset of F \ {f}), and v is the coalition value.

4.3.3.1 Radial Basis Function Kernel

SVMs rely on kernel functions for implicitly mapping data distributions into higher-
dimensional feature space representations if linear separation of data with different
class labels is not possible in a given feature space (the so-called “kernel trick” [448]).
For this purpose, alternative kernel functions can be used, depending on the particu-
lar applications. Our methodology considers the widely used RBF kernel defined as

K
(
x, x′) = e− d(x,x′)2

2σ2 ,

where d (x, x′) is the Euclidean distance between vectors x and x′:

d
(
x, x′) = ||x− x′|| =

√∑
i
(xi − x′

i)
2.
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The parameter σ is a free parameter used to control the level of nonlinearity of the
SVM model that will determine the decision boundary. An alternative definition of
the RBF uses the parameter γ = 1

2σ2 , obtaining the equivalent equation

K(x, x′) = e−γ||x−x′||2 .

Larger values of γ will lead to a more complex decision boundary, while smaller
values will render it smoother. Notably, the RBF function considered is the Gaussian
RBF, as it is the most common function employed in kernelized methods and has
become a standard in SVM implementations [6]. RBFs are a family of functions
with radial symmetry; the Gaussian one is expressed as

φ(r) = e−γr2
,

where r is the radial distance, which usually corresponds to the Euclidean distance
(as in our case).

In pharmaceutical research, SVM models are mostly derived for molecular property
predictions based on chemical structures and therefore employ structural features of
compounds as input. As already seen, structural features are conventionally encoded
in a binary vector format (fingerprints) [121], that is, a feature can be present or
absent in test instances, corresponding to bit settings of 1 or 0, respectively. In the
chemoinformatics domain, SVMs are currently essentially exclusively employed with
binary fingerprint descriptors. Moreover, binary input vectors are also common for
other SVM modeling tasks. Therefore, we consider the binary encoding of features
as a basis for Shapley value calculations. Moreover, we define I as the number of
intersecting (common) features between the two feature vectors and D as the number
of features in the symmetric difference (present in either one vector or the other).
Ni and Nd will be the number of intersecting and symmetric difference features in a
given coalition, respectively. As we show below, the computation of Shapley values
using SVERAD only relies on the number of intersecting and symmetric difference
features.
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4.3.3.2 Shapely Values for the Radial Basis Function Kernel

In order to express feature contributions as Shapley values via the SVERAD for-
malism, we first need to assess the contribution of features to the Euclidean distance.
We notice that features with the same value (intersecting or absent features) do not
increase the distance; in fact, (xi − x′

i) = 0 if xi = x′
i. Of course, this is also true for

non-binary features. Then, features with different values (features with symmetric
difference) increase d (x, x′)2 by ∆d = (0− 1)2 = (1− 0)2 = 1. This leads to having
d (x, x′) =

√
Nd and d (x, x′)2 = Nd, indicating that only features with symmetric

difference determine the distance (and kernel) value:

e−
d(x,x′)2

2σ2 = e−
Nd
2σ2 .

This allows for a fast calculation of the kernel. Now, we consider a coalition of
features S whose value v (S) is the RBF kernel value. If S contains intersecting
features only (Nd = 0) we have v (S) = e− Nd

2σ2 = e0 = 1. This is true for any
value of I (size of the intersection). Differently, for a coalition with features with
symmetric difference only (or with a mixture of intersecting and symmetric difference
features), the value v (S) = e− Nd

2σ2 must be calculated given Nd and σ (or γ), as
aforementioned. Finally, for the empty coalition S = ∅, we set v (S) = 0, conforming
to the Shapley value formalism for the empty set [26, 8]. As a note, the choice of
setting v (∅) = 0 is arbitrary, but will have an effect on the subsequent calculation of
the Shapley values. Setting it to 0 will allow us to both simplify the calculations and
conform to the Shapley value formalism. However, different values can be assigned
to the empty set; this could be helpful in scenarios in which feature contribution is
hard to interpret using v (∅) = 0.

To obtain Shapley values for the RBF kernel, we need to compute the change in
the kernel value when a feature from the intersection f+, or a feature from the
symmetric difference f−, are added to the coalition S with Ni intersecting features
and Nd features with symmetric difference. For f+ we have

∆vf+ (Ni, Nd) = e− Nd
2σ2 − e− Nd

2σ2 = 0. (4.3)
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Adding a feature from the intersection does not change the distance, thus not the ker-
nel value. This is always true except if f+ is added to the empty coalition (v(∅) = 0).
In this case, the kernel value when adding the features becomes 1 (Nd = 0), and so

∆vf+ (0, 0) = 1.

Then, for a symmetric difference feature f−, we have

∆vf− (Ni, Nd) = e− Nd+1
2σ2 − e− Nd

2σ2 .

When adding a feature with symmetric difference, the squared Euclidean distance
increases by 1 (as shown). The change in the kernel value must be calculated
consequently. When the subtracted term represents the empty coalition, its value is
set to 0.

Notably, a feature that is neither present in the intersection nor the symmetric
difference is a missing feature not present in any coalition. So, its contribution to the
value is 0, coherently with the missingness property of additive feature attribution
methods [8] (Section 2.3.2).

Once we have computed the value change, we need to calculate the number of
occurrences for each possible coalition with Ni intersecting features and Nd features
with symmetric difference. For f+ we thus consider all possible combinations of Ni

elements in a set of I − 1 elements (the assessed feature is not part of the coalition)
and Nd elements in a set of D elements:

Cf+ (Ni, Nd) =
(

I − 1
Ni

)(
D

Nd

)
.

Likely, for f− we consider all possible combinations of Ni elements in a set of I

elements and Nd elements in a set of D − 1:
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Cf− (Ni, Nd) =
(

I

Ni

)(
D − 1

Nd

)
.

Once we have all the elements, we can compute the Shapley values as the sum of the
products of ∆vf , Cf , and the inverse multinomial coefficient. For an intersecting
feature, the Shapley value (ϕf ) for the RBF kernel will be computed as

ϕf+ =
I−1∑

Ni=0

D∑
Nd=0

∆vf+(Ni, Nd) · Cf+(Ni, Nd) ·
(

I + D

1, Ni + Nd, I + D −Ni −Nd − 1

)−1
.

As previously shown in Equation (4.3), ∆vf+(Ni, Nd) is always 0, except if f+ is
added to the empty coalition (Ni = Nd = 0). In this case, the kernel value changes
from 0 to 1, thus ∆vf+(0, 0) = 1. So, we can easily compute the Shapley value
considering only the addition to the empty coalition:

ϕf+ = ∆vf+(0, 0) · Cf+(0, 0) ·
(

I + D

1, Ni + Nd, I + D −Ni −Nd − 1

)−1

= 1 · 1 · (Ni + Nd)!(I + D −Ni −Nd − 1)!
(I + D)!

= (I + D − 1)!
(I + D)! .

Analogously, for a symmetric difference feature, we obtain

ϕf− =
I∑

Ni=0

D−1∑
Nd=0

∆vf− (Ni, Nd) · Cf− (Ni, Nd) ·
(

I + D

1, Ni + Nd, I + D − Ni − Nd − 1

)−1

=
I∑

Ni=0

D−1∑
Nd=0

(
e

− Nd+1
2σ2 − e

− Nd
2σ2

)
·
(

I

Ni

)(
D − 1

Nd

)
· (Ni + Nd)! (I + D − Ni − Nd − 1)!

(I + D)!

=
I∑

Ni=0

D−1∑
Nd=0

(
e

− Nd+1
2σ2 − e

− Nd
2σ2

)
· I!

(I − Ni)!Ni!
· (D − 1)!

(D − Nd − 1)!Nd!

· (Ni + Nd)! (I + D − Ni − Nd − 1)!
(I + D)! .
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The computation can be further simplified by aggregating common factors. The pos-
sible coalitions to which f− can be added include the empty coalition (Ni = Nd = 0,
Equation (4.4)), coalitions with intersecting features only (Nd = 0 and v(S) = 1,
Equation (4.5)), and coalitions with intersecting and symmetric difference features,
or with symmetric difference features only (Ni ∈ [0, I] and Nd ∈ [1, D − 1], Equa-
tion (4.6)). We thus obtain

ϕf− = e− 1
2σ2 · (I + D − 1)!

(I + D)! (4.4)

+
(

e− 1
2σ2 − 1

)
·

I∑
Ni=1

(
I

Ni

)
· Ni! (I + D −Ni − 1)!

(I + D)! (4.5)

+
I∑

Ni=0

D−1∑
Nd=1

(
e− Nd+1

2σ2 − e− Nd
2σ2

)
·
(

I

Ni

)(
D − 1

Nd

)
(4.6)

· (Ni + Nd)! (I + D −Ni −Nd − 1)!
(I + D)! .

4.3.3.3 Proof of Concept

To establish initial proof of concept for the approach, we calculate Shapley values
for the RBF kernel with two exemplary vectors x and y using SVERAD:

x = [1 0 0 1 0] ,

y = [1 0 1 1 1] .

Notably, these vectors are only used to illustrate the SVERAD calculations and do
not represent (high-dimensional) molecular fingerprints. The model vectors share
two features (set to 1, intersecting features), so I = 2, have a unique feature each
(set to 0 and 1, respectively, symmetric difference), so D = 2, and lack a feature
(set to 0). For the exemplary calculation, we set σ = 1. Table 4.7 and Table 4.8
show the steps needed to compute the Shapley values for intersecting and symmetric
difference features, respectively.
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As discussed, the calculation of the kernel value only depends on the number of
features with symmetric difference, resulting in equation

K (x, y) = e− Nd
2 = e−1 = 0.368.

Table 4.7. Calculation of the Shapley value for the RBF kernel for an intersecting feature.

Ni Nd v(S) v(S ∪ f+) ∆vf # coalitions
Inverse

multinomial
coefficient

∆vf

· # coalitions
· inv. mult. coeff.

0 0 0 1 1 1 · 1 = 1 1/4 = 0.25 0.25
0 1 e− 1

2 e− 1
2 0 1 · 2 = 2 1/12 = 0.083 0

0 2 e−1 e−1 0 1 · 1 = 1 1/12 = 0.083 0
1 0 1 1 0 1 · 1 = 1 1/12 = 0.083 0
1 1 e− 1

2 e− 1
2 0 1 · 2 = 2 1/12 = 0.083 0

1 2 e−1 e−1 0 1 · 1 = 1 1/4 = 0.25 0

Table 4.8. Calculation of the Shapley value for the RBF kernel for a symmetric difference
feature.

Ni Nd v(S) v(S ∪ f−) ∆vf # coalitions
Inverse

multinomial
coefficient

∆vf

· # coalitions
· inv. mult. coeff.

0 0 0 e− 1
2 e− 1

2 1 · 1 = 1 1/4 = 0.25 0.1516
0 1 e− 1

2 e−1 e−1 − e− 1
2 1 · 1 = 1 1/12 = 0.083 −0.0199

1 0 1 e− 1
2 e− 1

2 − 1 2 · 1 = 2 1/12 = 0.083 −0.0656
1 1 e− 1

2 e−1 e−1 − e− 1
2 2 · 1 = 2 1/12 = 0.083 −0.0398

2 0 1 e− 1
2 e− 1

2 − 1 1 · 1 = 1 1/12 = 0.083 −0.0328
2 1 e− 1

2 e−1 e−1 − e− 1
2 1 · 1 = 1 1/4 = 0.25 −0.0597

The sum of the Shapley values for all features yields the kernel value. To compute
the Shapley value for a feature in the intersection and a feature with a symmetric
difference, ∆vf is multiplied by the number of coalitions and the inverse multinomial
coefficient, and the sum over all coalitions is calculated. Given that any feature
from the same set (intersection or symmetric difference) makes the same contribu-
tion to the kernel value, we need to multiply the Shapley value obtained for one
representative feature of each set by I and D to obtain the total contribution of the
intersecting and symmetric difference features, respectively. In our example, the



4.3 A Step Toward Exact Shapley Value Computation 134

Shapley value for an intersecting feature is 0.25, and for a feature with symmetric
difference it is −0.066. The set of intersecting features (I = 2) yields a sum of
Shapley values of 0.5, while symmetric difference features (D = 2) contribute to the
kernel value for −0.132. Features not present in either set give no contribution. The
sum of these values is 0.368, which is exactly the kernel value.

As an exemplary calculation, we consider 20 random binary vectors with a small
number of features (|F | = 15) so that Shapley values can be computed explicitly by
enumerating all possible coalitions. SVERAD yields the same Shapley values as pro-
duced by the exhaustive computation, thus demonstrating the validity of the method.
This is also evident in Table 4.9, which shows a comparison of SVERAD Shapley
values with the SHAP approximation (for the calculations, we set γ = 1

2σ2 = 1).

Table 4.9. Comparison of exact Shapley values, SVERAD, and SHAP values using
Pearson’s r correlation coefficient with standard deviations.

Exact Shapley values SVERAD SHAP

Exact Shapley values 1.0± 0.0 1.0± 0.0 0.72± 0.43
SVERAD 1.0± 0.0 1.0± 0.0 0.72± 0.43
SHAP 0.72± 0.43 0.72± 0.43 1.0± 0.0

The correlation coefficient of 1 for SVERAD Shapley values and exact Shapley
values confirms that both calculations return the same values (the associated error
resulting from the imprecision in the representation of very small numbers is smaller
than 10−10). This differs from exact Shapley values vs. SHAP, for which a Fisher-
transformed correlation coefficient of 0.72±0.43 is obtained, reflecting the underlying
local approximation of SHAP values.

4.3.3.4 Shapley Values for Support Vector Machine Predictions

In an SVM model, the distance of a vector x from the separating hyperplane is
defined by the support vectors V n and is given by

dist (x) = b +
Nv−1∑
n=0

ynwnK(x, V n),

where Nv is the number of support vectors, yn (-1 or 1) is the class label of the
support vector V n, wn is the weight by which the class label is scaled, and K(x, V n)
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is the kernel value comparing the support vector and the predicted instance x.
Finally, b is a bias value.

To compute the Shapley value for the distance for each feature f , we first substitute
the kernel value with the sum of the Shapley values for the RBF kernel between vec-
tor x and the support vector V n (ϕf,n) and scale the sum by the label and the weight:

dist (x) = b +
Nv−1∑
n=0

ynwnK (x, V n) = b +
Nv−1∑
n=0

ynwn

|F |−1∑
f=0

ϕf,n

= b +
|F |−1∑
f=0

Nv−1∑
n=0

ynwnϕf,n.

Then, given the additivity property of Shapley values [26] (Section 2.3.2), the Shapley
value for a feature f is obtained by summing up the Shapley values of f for the RBF
kernel values comparing vector x with all the support vectors, properly scaled:

ϕf =
Nv−1∑
n=0

ynwnϕf,n,

which gives the contribution of feature f with respect to the distance from the
separating hyperplane. Finally, we consider the bias as an additional feature whose
value b is its Shapley value and express the distance as

dist (x) = ϕb +
|F |−1∑
f=0

ϕf .

Expressing feature contributions as log odds values The distance from the
hyperplane can be transformed into probability estimates using Platt scaling [449]:

p (x) = 1
1 + eA·dist(x)+B

.
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Given that Shapley values for probabilities cannot be calculated from Shapley values
for the distance from the hyperplane, we need to compute the logits (log odds):

logit (p (x)) = log

(
p (x)

1− p (x)

)
= · · · = log

( 1
eA·dist(x)+B

)
= −A · dist (x)−B.

We can express dist (x) as the sum of the Shapley values for the distance:

logit (p (x)) = −A ·

ϕb +
|F |−1∑
f=0

ϕf

−B = − (A · ϕb + B)−
|F |−1∑
f=0

A · ϕf .

Logits are a linear transformation of the distance. Hence, Shapley values for the
logits are obtained as a linear transformation of the Shapley values for the distance
(scaling by −A). Moreover, by scaling ϕb by −A and offsetting it by −B, the Shapley
value for the additional feature is obtained, analogously to the Shapley value for
the distance bias b, previously calculated. The term − (A · ϕb + B) is regarded as
an expected value since it does not depend on other features. The sum of the
Shapley values −

∑|F |−1
f=0 A · ϕf represents the difference between the actual value

and the expected value, conforming to the efficiency property of the Shapley value
formalism [26, 8] (Section 2.3.2). It also follows that the predictive performance of
original SVM models is not affected through the Shapley value modification because
it exactly accounts for the RBF kernel value, as demonstrated above, and the SVM
computational classification criteria do not change.

4.3.4 Results on Compound Activity Prediction

Once we have defined how to compute exact Shapley values for the RBF kernel
and then use those to derive Shapley values for SVM predictions, we present the
application of the methodology in a pharmaceutically relevant context. First, we
compute feature contribution to the RBF kernel for selected compounds, and then
we perform a more in-depth study by calculating Shapley values for SVM predictions
on active and inactive molecular compounds to determine the most crucial features
for the activity or inactivity of compounds. Compared to other feature importance
methods adapted for the interpretation of quantitative structure–activity relationship
(QSAR) models in chemoinformatics, a hallmark of the Shapley value approach is that
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it can quantify contributions of features that are present or absent in test instances to
their prediction, which distinguishes it from other feature weighting approaches and
renders them particularly suitable with predictions relying on molecular fingerprints.
It is important to underline and make clear that an absent feature, in this context,
is not a missing feature as defined by the missingness properties of additive feature
attribution methods [8]. The former is a feature whose value is set to 0 in the input
sample, while the latter concept applies to features that are constant, similar to the
dummy feature of the original Shapley values [26], as described in Section 2.3.2. In
our case, a feature is considered missing when it is missing from the input sample
and all the support vectors (the feature contribution to the kernel value is 0, so,
coherently, its Shapley value corresponds to 0). Indeed, this feature is neither in the
intersection nor symmetric difference, so it does not take part in the calculations at
all, as pointed out in Section 4.3.3.2. The feature is not part of any coalition, so it
has no impact on the game, in line with the cited missingness property.

4.3.4.1 Feature Contributions to The Radial Basis Function Kernel

For a direct comparison, SVERAD and SHAP values were calculated for 50 randomly
selected adenosine receptor A3 ligands that we also used for compound activity
predictions. Compounds were represented using topological structural features,
that is, systematically calculated pathways originating from atoms with a constant
bond radius, as described in Section 4.3.2. The RBF kernel was computed for
all possible compound pairs, and for each pair, exact Shapley values calculated
using SVERAD were compared to corresponding SHAP values from KernelSHAP.
For a value γ = 1

2σ2 = 0.005 as a representative example, a mean Pearson’s r

correlation coefficient after Fisher transformation of 0.36± 0.18 was obtained. The
low correlation indicated that the SHAP approximation was limited in its ability
to explain RBF-based similarities and that calculation of exact Shapley values was
preferred.

4.3.4.2 Rationalizing Compound Activity Predictions

To apply the SVERAD approach to pharmaceutically relevant predictions and
compare model explanations for different Shapley value/SHAP calculation variants,
we derived SVM and RF classification models based on distinguishing A3 ligands from
other randomly selected compounds (see Section 4.3.2). The SVM and RF classifiers
achieved a comparably high prediction accuracy of 93% and 92%, respectively. We
then analyzed these predictions in detail.
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Feature contributions to classification models For SVM predictions, Shapley
values and SHAP values were calculated with SVERAD and KernelSHAP, and for
RF predictions with TreeSHAP and KernelSHAP. In Table 4.10, median Pearson’s r

correlation coefficients are reported for feature contributions and all combinations of
classification models and corresponding Shapley value/SHAP calculation methods. In
addition, Figure 4.11 shows the corresponding distributions of correlation coefficients.

Table 4.10. Median Pearson’s r correlation coefficient between feature contributions from
different models and explanation strategies.

SVM -
SVERAD

SVM -
KernelSHAP

RF -
TreeSHAP

RF -
KernelSHAP

SVM - SVERAD 1.000 0.120 −0.040 −0.010
SVM - KernelSHAP 0.120 1.000 0.758 0.750
RF - TreeSHAP −0.040 0.758 1.000 0.994
RF – KernelSHAP −0.010 0.750 0.994 1.000
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Figure 4.11. Distributions of Pearson’s r correlation coefficient. Box plots represent the
distributions of correlation coefficients for feature contributions from different models
and explanation strategies.

There was only very low correlation between SVERAD Shapley values and SHAP
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values (0.120), which reflected the limited ability of SHAP calculations to approximate
Shapley values for SVM. Notably, the correlation for the SVM/RBF combination was
much lower than previously determined for the SVM/Tanimoto kernel combination
(0.682) [9], which clearly reinforced the need for calculating exact Shapley values if
the widely applied RBF kernel is used. By contrast, for RF, there was nearly perfect
correlation between KernelSHAP and TreeSHAP (0.994), which uses exact Shapley
values for deriving local explanations. When comparing exact Shapley values from
SVERAD and TreeSHAP for corresponding predictions, essentially no correlation
was observed (−0.040), indicating that different features were determining SVM and
RF predictions in the presence of comparably high prediction accuracy. However, in
this case, potential correlation was also principally limited because the calculations
were based on different metrics (log odds scores for SVM and class probabilities
for RF). Furthermore, SHAP values for SVM and RF displayed relatively high
correlation (0.758). Taken together, the results showed that SVERAD values were
more accurate for SVM using the RBF kernel than the SHAP approximation, whereas
TreeSHAP and KernelSHAP values were strongly correlated for RF.

Model explanations and feature mapping For the SVM and RF predictions,
SVERAD and TreeSHAP values were calculated, respectively, and separately ana-
lyzed for features that were present or absent in correctly predicted test compounds.
Figure 4.12 shows the distribution of cumulative Shapley values for these features in
test compounds for log odds scores from SVERAD and probabilities from TreeSHAP.
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Figure 4.12. Distribution of feature contributions. Box plots show the distributions
of cumulative Shapley values of features present or absent in correctly predicted test
instances for SVERAD/SVM (a) and TreeSHAP/RF (b).

The analysis explained model decisions and revealed different prediction charac-
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teristics for SVM and RF. For SVM, features present in active compounds made
strong positive contributions to correct predictions, whereas absent features made
only minor contributions to incorrect predictions. For random compounds, present
features made small contributions to incorrect predictions (of activity), while absent
features made essentially no contributions (with cumulative Shapley values close to
zero). Hence, correct predictions of inactive compounds can only be rationalized
by taking the expected value into account, as discussed in detail below. For RF,
features present in active compounds determined their correct predictions, while
the absence of these features in random/inactive compounds was decisive for their
correct predictions. By contrast, features absent in active and present in inactive
compounds made only very little or no contributions.

Overall, for active compounds, the average sum of the SVERAD Shapley values
for SVM of present features was 11.65, indicating strong positive contributions to
predictions far beyond the expected value (−4.61). On the contrary, absent features,
with an average sum of Shapley values of −1.79, made small negative contributions.
RF displayed a similar behavior for active but not for inactive compounds. Here,
the average sum of the Shapley values for present and absent features was 0.51
and −0.07, respectively, and the expected value was 0.49. Accordingly, for inactive
compounds, SVM predictions were largely determined by the expected value, given
that features present in these compounds slightly opposed correct predictions (with
average positive contributions of 1.46) while the effect of absent features was negligi-
ble (−0.008). By contrast, for RF absent features made strong contributions (−0.40
with respect to the expected value), while the average contribution of present features
was only modest (0.018). Features with the largest contributions to predictions were
visualized by mapping them on the corresponding atoms in correctly predicted test
compounds, as shown in Figure 4.13.

For SVM and RF, features present in active compounds mostly had large positive
Shapley values (red) and hence supported correct predictions (despite different value
distributions, as discussed above). By contrast, for random compounds, different
contributions of present features were observed. While some features supported
correct predictions (blue), others opposed them (red). In active test compounds,
present features supporting correct predictions with SVM and RF delineated very
similar substructures.



4.3 A Step Toward Exact Shapley Value Computation 141

(a) Mapping for SVM (left) and RF (right) for active compounds.

(b) Mapping for SVM (left) and RF (right) for inactive com-
pounds.

Figure 4.13. Feature mapping. Features present in exemplary active (a) and ran-
dom/inactive compounds (b) correctly predicted by SVM and RF models are mapped
on corresponding atoms. For active compounds, red and blue coloring indicates positive
and negative contributions toward the prediction of activity. For inactive compounds,
blue indicates support toward the prediction, while red indicates opposition.

4.3.5 Computational Complexity

For SVERAD, the computation of the Shapley values for a given instance has at
most O

(
|F |2

)
complexity, with |F | being the total number of features.
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We consider U the number of features present in the union between the explained
sample and a support vector (U = I + D). No computation is needed for features
not present in either the intersection or the difference (ϕf = 0). However, in the
worst case, all features are present in the union, so U = |F | for all the support vectors.

For each support vector, we need to compute the Shapley value for one feature from
the intersection and one feature from the symmetric difference. This computation
requires O (1) for the intersection (one only needs to calculate the inverse multino-
mial coefficient, as shown in Section 4.3.3.2), and O (D · (I + 1)) = O (D · I) for the
symmetric difference. Here, D · (I + 1) represents the size of the Cartesian product
describing unique combinations of intersecting and symmetric difference features,
also considering the empty coalition. The highest complexity would result from
D = |F |

2 and I = |F |
2 , leading to O

(
|F |
2 ·

|F |
2

)
= O

(
|F |2

4

)
= O

(
|F |2

)
.

The step above must be repeated and summed up for each support vector. Hence
the complexity becomes O

(
|F |2

)
·Nv. Assuming the number of support vectors Nv

to be a constant and given that the rest of the operations are products and sums
with constant values, the final complexity will be O

(
|F |2

)
.

Notably, for sparse input vectors such as for the calculations reported herein, the
number of features in the union U was, on average, two orders of magnitude smaller
than the total number of features |F |. Accordingly, the highest possible complexity
is unlikely to occur in such cases. In this case, considering U as the average number
of features in the union between the input sample and the support vectors, the
computations require on average O

(
U2).

It follows that SVERAD has, at most, quadratic time requirements with respect to
the number of features |F | instead of the exponential computation time typically
required for systematic Shapley value calculations.

As a reference measurement, executing SVERAD on the whole dataset with a
machine with an Intel Core i7-12700H with 4.70 GHz of maximum clock speed and
16 GB of RAM took around 22 seconds, analogously to TreeSHAP, while running
KernelSHAP calculations took more than 5.5 hours. This is further proof of the
usability and computational efficiency of the proposed method.
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4.3.6 Observations

As a final contribution of this thesis, we have presented SVERAD, a novel method-
ology for the computationally efficient calculation of exact Shapley values for SVM
predictions with RBF kernels. The study follows and further extends a previous
investigation determining exact Shapley values for the SVM/Tanimoto kernel combi-
nation, which is preferentially used for applications focusing on the assessment of
chemical similarity. The SVM/RBF kernel combination (including the Gaussian ker-
nel) is more widely applied. In the XAI field, the Shapley value concept experiences
increasing interest in rationalizing predictions of machine learning models. Due to
the complexity of explicit Shapley value calculations, approximations are typically
required, for which the SHAP approach has been a pioneering development. However,
low correlation between exact Shapley values calculated with SVERAD for the
RBF kernel and SHAP values clearly indicated the need to use exact Shapley values
for explaining SVM predictions, in marked contrast to RF. Comparative Shapley
value/SHAP analysis also revealed that highly accurate SVM and RF compound
predictions were determined by different relative contributions of features present or
absent in active and random test compounds. However, features present in active test
compounds that consistently contributed to correct predictions with both algorithms
delineated corresponding substructures.

Taken together, the results reported herein indicate that SVERAD substantially
aids in rationalizing SVM predictions in pharmaceutical research and other scientific
fields. Therefore, in future endeavors, we aim to use SVERAD as a base to devise
an exact Shapley value XAI strategy suitable also for neural networks. We will
present some ideas about this extension in the next conclusive chapter. The work
about SVERAD was published in Scientific Reports (Nature Portfolio) [29].
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Chapter 5

Conclusions and Future
Perspectives

Deep learning is a valuable asset that can be employed in biomedicine with com-
pelling outcomes. However, the lack of transparency and interpretability renders its
usage not broadly accepted. It is current research to understand the theory behind
the superiority of neural networks, but the current results are preliminary and often
limited to shallow models [450, 451]. This is why explainability techniques come into
play to cope with this and provide solutions that can open the black box, explaining
the results in terms of important input features.

In this thesis, we have shown the proposal of an explainable biomedical deep learning
pipeline, depicted in the Introduction (Chapter 1) in Figure 1.1. In particular,
we analyzed the salient components of this framework and described the proposed
approaches available in the literature in Background and Related Work (Chapter 2).
Then, in Chapters 3 and 4 we presented our solutions to deal with the bioinformatics
and chemoinformatics elements of the pipeline, respectively.

In particular, we started our journey by describing the problem of detecting disease-
associated genes (block 1 of the pipeline). Our first proposal to tackle this problem
was NIAPU (Section 3.1), a network-informed adaptive positive–unlabeled learning
system with a twofold outcome: delivering an accurate prioritization of disease genes
while, at the same time, allowing machine and deep learning models to be effectively
trained and applied in the challenging scenario of positive–unlabeled (PU) learning
for disease gene discovery. Solving the issue of training in PU settings was indeed the
first problem to tackle to have effective and meaningful models worth explaining. As
a consequence, NIAPU plays a fundamental role in the XGDAG framework with its
label propagation that enables proper learning of the graph neural network (GNN),
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which otherwise would remain challenging, leading to meaningful predictions. This
highlights the importance that network-based solutions hold in the proposed pipeline
since they enable the practical use of deep learning models in gene prioritization.

With XGDAG (Section 3.2), we are in the second block of the pipeline, where
explainability comes into play. Once the graph neural network has been properly
trained thanks to the aid of NIAPU, explainable artificial intelligence (XAI) tech-
niques are used to explain the prediction of positive (disease-associated) genes. The
explanation subgraphs obtained are exploited in combination with the likely positive
set by NIAPU to derive a gene prioritization ranking. The coherence of the genes
detected by XGDAG was verified with an enrichment analysis, which confirmed the
effective synergy of XAI and PU learning for GNNs in disease gene discovery. We
showed how XAI can be used not only to explain the model’s output but also as
an active tool providing a ranking of candidate disease genes. XGDAG is the first
method of its kind, merging XAI for graphs and PU learning in this context. As we
described throughout the thesis, and especially in Section 2.1 and in Chapter 3, these
techniques exploit the huge amount of omics data and gene–disease associations
offered by online databases, such as BioGRID [13], STRING [47], DisGeNET [14],
and eDGAR [49]. Once new associated genes are detected and verified, it is pos-
sible to integrate the discoveries back into these databases, thereby fueling future
research studies. Even though already publicly available as software tools, as future
development, we are planning to release a web interface to allow the use of NIAPU
and XGDAG in a more straightforward and user-friendly way, increasing the reach
and adoption of the systems. NIAPU was developed in collaboration with the
National Research Council of Italy, and both NIAPU and XGDAG were published
in Bioinformatics by Oxford University Press [22, 19].

In Section 3.3, we have studied that the mechanics underlying diseases may be more
complex than single-gene associations and involve intricate interactions of multiple
genes, which, on the contrary, may not affect the trait when considered alone, making
their analysis challenging. We are referring to the genetic phenomenon of epistatic
interaction. By developing our novel XAI-based pipeline, EpiDetect, that detects
central genes and pathways in an epistatic network obtained via neural network
explanation, we aim to offer researchers a tool to identify the most influential genetic
factors and pathways that contribute to the trait of interest. This information
can provide valuable insights into the underlying biology of the trait, inform the
development of new treatments, and potentially lead to the discovery of novel drug
targets. The newly discovered epistatic interactions can become part of gene–disease
association databases, augmenting the knowledge in the field at the service of future
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research. This approach has the potential to be applied to a wide range of complex
traits, including cardiovascular diseases, cancer, and neurological disorders, among
others. We provided evidence supporting that our proposed framework may act
as a guide to disease-associated experimental research or an independent approach
to validate experimental observations, increasing the possibilities offered by deep
learning strategies in genetics thanks to explainability solutions. At the time of
writing, this work was under consideration in a peer-reviewed journal. This research
was possible thanks to a collaboration with the University of Ioannina in Greece.

Upon the identification of genes involved in a disease’s etiology and regulation, it be-
comes possible to use those as novel drug targets. In this, both drug repurposing and
de novo drug design are employed processes. We are in block 3 of our pipeline. In this
thesis, we have shown how one of our methods, NIAPU, fits in a drug repurposing
study (Section 3.4) focused on primary biliary cholangitis (PBC), an autoimmune
liver disease orphan of treatments. NIAPU helped in augmenting the pool of genes
associated with PBC, thereby providing new possible drug targets. Using new and
known disease genes, we queried public databases such as DrugBank [380] to look for
already-developed drugs able to target the associated genes and related pathways.
The candidate drugs were relevant and meaningful for PBC, proving this approach
effective and opening new possibilities for research. In fact, once new drugs are dis-
covered or repositioned, their integration into drug–target databases offers new data
for further research endeavors. Moreover, the repurposing of drugs is advantageous
from both time development and safety profile perspectives. In future applications, it
is possible to use XGDAG in lieu of NIAPU in the drug repositioning pipeline for a
completely explainable deep learning-based drug repurposing solution. A preliminary
version of this work was presented at a conference on digestive and liver diseases [452]
and then, in its ultimate and complete version, published in Biomedicines [24] in
collaboration with the National Institute of Gastroenterology “Saverio de Bellis”
Research Hospital, the University of Bari, and the National Research Council of Italy.

The drug repurposing approach used for PBC is bioinformatics-driven, meaning
that we relied on biological networks such as protein–protein interaction data and
gene–disease associations. As we also explained in Chapter 2, drug repurposing can
be perceived as a bridge task that can involve both bioinformatics and chemoin-
formatics tools, even employed jointly. In fact, as a prospective study, we aim to
use XGDAG as a basis for a drug repurposing protocol, but we also intend to
exploit knowledge graphs in the workflow. These graphs contain data gathered from
different sources, ranging from gene–disease associations to drug–target links, from
drug side effects to molecular structure data and genome sequences. These kinds
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of graphs coalesce biological and chemical information. A GNN trained on these
integrated data sources can learn novel drug–target pairs relying on knowledge that
could not be exploited if working with simpler input data. By using XAI, it is
possible to determine information relevant for the prediction, possibly unveiling new
insights on the regulation of drug–target interactions from a holistic perspective.

After bioinformatics, in Chapter 4, we proposed chemoinformatics-based solutions to
tackle the tasks of compound activity and potency prediction, which are paramount
in drug design and repurposing. Given the graph-like nature of chemical data, we
employed a GNN for compound activity prediction enriched by a new explainability
strategy. With this, we are moving to block 4 of the pipeline, which concerns the
explanation of deep learning models for drug development. In Section 4.1, we defined
EdgeSHAPer, a novel edge-centric Shapley value-based explanation method for
GNNs. By using a new Monte Carlo sampling strategy for graphs to approximate
Shapley values, EdgeSHAPer delivered accurate and chemically relevant explana-
tions, outperforming state-of-the-art methodologies like GNNExplainer, being the
first XAI tool ever to use Shapley values for edge importance in GNNs. This work
was published in iScience by Cell Press [25].

Notably, it is well known that accurate reporting of research methods and repro-
ducibility of the experiments is still an open issue in scientific research [453]. Pairing
this with the difficulty of using overcomplicated software tools by non-software
experts may render it challenging to reproduce other scientists’ results. A way to
cope with this can lay in the publication of detailed research protocols that provide
an in-depth description of the research methodology, from data processing to the
step-by-step usage of software packages. Thus, in the spirit of open research, we
published a protocol related to the use of EdgeSHAPer in STAR Protocols (Cell
Press) [454].

In Section 4.2 EdgeSHAPer was further extended from molecular activity de-
tection to compound potency prediction. This work was motivated by previous
studies that showed controversial and thought-provoking results. On the one hand,
extremely high accuracy for GNN models for affinity prediction tasks was repeatedly
reported. On the other hand, there was evidence that GNNs may not properly
learn protein–ligand interactions but memorize proteins and ligands with shared
structures, typical of chemical datasets, to arrive at apparently high-accuracy out-
comes [27]. We decided to let XAI cut the Gordian knot. After having trained and
optimized several GNN models, we applied EdgeSHAPer to explain the prediction
determining the salient edges defining important subgraphs. Our results were not
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totally expected. If there was clear evidence that GNNs could not comprehensively
learn protein–ligand interaction from simplistic graph representations of complex
biochemical phenomena, we also noticed how some models prioritized interaction
edges, especially for predicting high-potency compounds. This led to the conclusion
that GNNs are indeed capable of detecting interaction patterns, provided they are
fed with graphs containing interaction-relevant information, including only limited
ligand and protein details that would work against memorization effects and favor
learning behavior. For those reasons, efforts can be made in the definition of novel
interaction graph representations able to leverage the power of GNNs. This research
was published in Nature Machine Intelligence [28].

Given their ability to learn from graph data, there is still open research on GNNs and
XAI. For instance, future directions can involve the development of a self-explainable
GNN laying on the solid theoretical ground of Shapely values. In this, graph atten-
tion networks (GATs) can be a key. Attention coefficients in GATs can be perceived
as a sort of importance metric [230]. Driving GATs to learn an approximation of the
Shapley values as attention coefficients can lead to having a self-explainable model
backed up by the robustness of the theory behind Shapley values.

Even though the proposed pipeline is deep-learning centered, neural networks live
with other machine learning tools in the world of biomedicine. For instance, support
vector machines (SVMs) are widely used tools in chemoinformatics with comparable
outputs. Moreover, some of those models also present a black-box structure and need
to be explained, raising the interest of researchers. Furthermore, developing XAI
strategies for classic machine learning algorithms can also represent a stepping stone
for future extensions to neural network models, helping in the creation of the explain-
able biomedical deep learning pipeline. In particular, Shapley value approximation
has been widely employed to explain classic machine learning models. However, this
falls short in given scenarios, like compound activity prediction using SVMs. From
this, the need to obtain an exact computation of Shapley values to correctly assess
input features’ contribution led us to develop SVERAD, a methodology suited
for SVMs with the radial basis function kernel. It delivers exact computation in
quadratic time rather than exponential, rendering it a trustworthy and fast solution
not only in the chemistry context but also generally applicable to any SVM prediction
task. The work concerning SVERAD was published in Scientific Reports (Nature
Portfolio) [29], and a protocol paper was underway at the time of writing, along
with an extension of the methodology to additional kernels. The research related to
EdgeSHAPer, SVERAD, and the protein–ligand interaction studies was carried
out in a long-lasting collaboration with the University of Bonn in Germany.
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As a prospective endeavor, we can use SVERAD as the starting point to devise an
exact Shapley value computation strategy for deep learning models. It was demon-
strated that many types of neural networks at the infinite-width limit initialized with
random weights and biases correspond to Gaussian processes [455, 456, 457, 458]
and that their behavior can be expressed by the neural tangent kernel [459], which
is a kernel that describes the neural network evolution during the training. Those
findings render it possible to use the theory behind kernel methods to analyze deep
learning models and understand them in a more in-depth and theoretical manner.
Ideally, even if challenging, by using insights from SVERAD, it would be interesting
to devise a Shapley value computation strategy that leverages the kernel of the
neural network Gaussian process in a similar manner as seen in SVERAD in order
to compute Shapley values for features in neural networks.

In this thesis, we have seen all the components of the proposed explainable biomed-
ical deep learning pipeline, with the exception of block 5: generative drug design.
Instead of relying on known drugs or molecular compounds serving as the basis
for de novo drug design, generative development goes beyond. By using neural
network models, new compounds and drugs are designed in silico, thereby facilitating
and speeding up pharmaceutical research in an unprecedented way. It is current
research to use deep generative approaches to devise new compounds and drugs [30].
Many strategies like recurrent neural networks, variational autoencoders, and gen-
erative adversarial networks demonstrated their effectiveness in generative drug
design [460, 461]. However, to properly find their place in our pipeline, those models
must be explainable. Efforts are starting to be made for the purpose, but only a
few examples are found in literature, and research in this area is far from being
mature [462, 463]. For this reason, there is high scientific interest in developing XAI
strategies for generative models, especially in biomedicine. Moreover, explainability
strategies like EdgeSHAPer and SVERAD can drive the development of deep
generative models based on expert knowledge. The important features or molecular
structures identified in block 4 of the pipeline can be used to constrain generative
models to obey some specific rules and include molecular components that are known
to be relevant for the activity or the presence of a desired property, leading to a
more accurate and effective generative drug design, backed up by previous studies.
Finally, the novel-generated molecules can find their place in chemical databases,
sustaining further research and filling the last gap in the explainable biomedical
deep learning pipeline.

To conclude, this thesis was a journey through the world of biomedicine from the point
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of view of explainable artificial intelligence for deep learning models. We proposed
a pipeline that, going from bioinformatics to chemoinformatics, demonstrated how
every component was fundamental for its coherent functioning. Network-based and
classic machine learning solutions pave the way for more complex and advanced deep
learning strategies. Deep learning alone is powerful, but its predictions cannot be
trusted, given the black-box character of neural networks. This is why explainability
is the cornerstone of this thesis. We presented different XAI solutions working at
every step of the pipeline, thereby enhancing the trustworthiness of neural networks
in bioinformatics and chemoinformatics, giving birth to new research ideas and going
toward explainable biomedical deep learning.
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Appendix A

Marginal Effect Analysis for
DBP and PP

We hereby report additional results for the marginal effect analysis of the EpiCID
component of EpiDetect (Section 3.3) for diastolic blood pressure (DBP) and
pulse pressure (PP), which yield analogous observations as the analysis on systolic
blood pressure (SBP) (Section 3.3.3.3). Figure A.1 and Table A.1 show the dis-
tribution of the top 5 SNPs with the highest degree in the top-1000 network for DBP.
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Figure A.1. Graphical representation of the distribution of the 5 highest-degree SNPs in
the first 1000 interactions for DBP.

Analogously to the analysis reported in Section 3.3.3.3, we notice how neural
network-based approaches, especially EpiCID, show a more variable ranking than
the compared strategies and are less affected by marginal effects. Comparing the
different algorithms with respect to the distribution of the SNPs with the highest
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Table A.1. Distributions of the 5 most interacting SNPs in first 1000 interactions for
DBP (the number of interactions corresponds to the degree in the top-1000 interaction
network) and the total number of interactions in which they are involved.

BOOST

Rank SNP Gene Interactions
1 rs1821295 AC011518.1 323
2 rs7134060 CDK17 247
3 rs4364717 MTAP 183
4 rs12579720 LINC02398 120
5 rs12374077 SENP2 98

Total number of interactions 971

MDR

Rank SNP Gene Interactions
1 rs1378942 CSK 252
2 rs3184504 SH2B3 228
3 rs16998073 FGF5 181
4 rs167479 RGL3 139
5 rs6429422 SDCCAG8 72

Total number of interactions 872

NID

Rank SNP Gene Interactions
1 rs12184466 CCDC63 161
2 rs13107325 SLC39A8 122
3 rs3861113 DACH1 102
4 rs12563539 RPS27 87
5 rs11026586 AC055878.1 77

Total number of interactions 472

EpiCID

Rank SNP Gene Interactions
1 rs73033340 ZFAND2A 121
2 rs6681713 MIR4421 79
3 rs75902664 SLC7A2 76
4 rs751984 LRRC10B 70
5 rs3861113 DACH1 69

Total number of interactions 415

number of interactions at different levels (top 100, 500, and 1000 interactions), shows
that the top interactions feature the presence of few high-degree SNPs for BOOST
and MDR, while more SNPs are present in NID and EpiCID rankings, confirming the
analysis reported for SBP. This can be seen in Figure A.2, which shows stacked bar
charts visualizing the most interacting SNPs in the top-100, top-500, and top-1000
interaction networks.

Analogous results were obtained for PP, reported in Table A.2. The analysis confirms
that EpiCID is less affected by the presence of marginal effects of single SNPs, given
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(b) Top 500 interactions.
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Figure A.2. Highest-degree SNPs in the top 100 (a), top 500 (b), and top 1000 (c)
interactions for DBP.

that the top 5 SNPs are involved in a smaller number of interactions than the rest of
the methods. This can also be observed in Figure A.3, which plots the distribution
of the top 5 interacting SNPs in the top 1000 interactions.

Finally, Figure A.4 complements the analysis by showing the distributions of the
SNPs with the highest number of interactions in the top-100, top-500, and top-1000
interaction networks, which confirm the observations reported so far.
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Table A.2. Distributions of the 5 most interacting SNPs in first 1000 interactions (the
number of interactions corresponds to the degree in the top-1000 interaction network)
for PP and the total number of interactions in which they are involved. *Note that the
total number of interactions may be more than 1000 since an interaction between two of
the top 5 SNPs is counted twice (once for each SNP).

BOOST

Rank SNP Gene Interactions
1 rs832890 AC069368.1 212
2 rs10732433 NEBL 160
3 rs4553000 UBAP1 149
4 rs2978456 SLC20A2 139
5 rs2400509 SPINK7 92

Total number of interactions 752

MDR

Rank SNP Gene Interactions
1 rs4811601 KIAA1755 282
2 rs452036 MYH6 282
3 rs17287293 AC087312.1 282
4 rs12705090 TRIP6 151
5 rs11154027 RNU4-35P 10

Total number of interactions 1007*

NID

Rank SNP Gene Interactions
1 rs114275780 AL355499.1 178
2 rs17287293 AC087312.1 98
3 rs7977311 FGD6 63
4 rs138877676 SPIB 63
5 rs10418305 NOTCH3 56

Total number of interactions 458

EpiCID

Rank SNP Gene Interactions
1 rs114275780 AL355499.1 130
2 rs62270945 GATA2 103
3 rs17287293 AC087312.1 85
4 rs2498323 HGFAC 60
5 rs12705090 TRIP6 59

Total number of interactions 437
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Figure A.3. Graphical representation of the distribution of the 5 highest-degree SNPs in
the first 1000 interactions for PP.
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Figure A.4. Highest-degree SNPs in the top 100 (a), top 500 (b), and top 1000 (c)
interactions for PP.



156

Bibliography

[1] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature, 521
(2015), 436–444.

[2] Wang, F., Kaushal, R., and Khullar, D. Should health care demand
interpretable artificial intelligence or accept “black box” medicine? Annals of
Internal Medicine, 172 (2020), 59–60.

[3] Quinn, T. P., Jacobs, S., Senadeera, M., Le, V., and Coghlan, S.
The three ghosts of medical ai: can the black-box present deliver? Artificial
Intelligence in Medicine, 124 (2022), 102158.

[4] Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W.,
and Mostafavi, S. Obtaining genetics insights from deep learning via
explainable artificial intelligence. Nature Reviews Genetics, 24 (2023), 125–137.

[5] Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang,
G.-Z. XAI — explainable artificial intelligence. Science Robotics, 4 (2019),
eaay7120.

[6] Cortes, C. and Vapnik, V. Support-vector networks. Machine Learning,
20 (1995), 273–297.

[7] Drucker, H., Burges, C. J., Kaufman, L., Smola, A., and Vapnik, V.
Support vector regression machines. Advances in neural information processing
systems, 9 (1996).

[8] Lundberg, S. M. and Lee, S.-I. A unified approach to interpreting model
predictions. Advances in Neural Information Processing Systems, 30 (2017).

[9] Feldmann, C. and Bajorath, J. Calculation of exact Shapley values for
support vector machines with Tanimoto kernel enables model interpretation.
iScience, 25 (2022), 105023.



Bibliography 157

[10] Moreau, Y. and Tranchevent, L.-C. Computational tools for prioritizing
candidate genes: boosting disease gene discovery. Nature Reviews Genetics,
13 (2012), 523–536.

[11] Zolotareva, O. and Kleine, M. A survey of gene prioritization tools for
mendelian and complex human diseases. Journal of Integrative Bioinformatics,
16 (2019), 20180069.

[12] Barabási, A.-L., Gulbahce, N., and Loscalzo, J. Network medicine:
a network-based approach to human disease. Nature Reviews Genetics, 12
(2011), 56–68.

[13] Oughtred, R., et al. The BioGRID interaction database: 2019 update.
Nucleic Acids Research, 47 (2019), D529–D541.

[14] Piñero, J., Ramírez-Anguita, J. M., Saüch-Pitarch, J., Ronzano, F.,
Centeno, E., Sanz, F., and Furlong, L. I. The DisGeNET knowledge
platform for disease genomics: 2019 update. Nucleic Acids Research, 48 (2020),
D845–D855.

[15] Le, D.-H. Machine learning-based approaches for disease gene prediction.
Briefings in Functional Genomics, 19 (2020), 350–363.

[16] Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries, J., Okada,
Y., Martin, A. R., Martin, H. C., Lappalainen, T., and Posthuma,
D. Genome-wide association studies. Nature Reviews Methods Primers, 1
(2021), 59.

[17] Wang, M. H., Cordell, H. J., and Van Steen, K. Statistical methods
for genome-wide association studies. In Seminars in Cancer Biology, vol. 55,
p. 53–60. Elsevier (2019).

[18] Bycroft, C., et al. The UK Biobank resource with deep phenotyping and
genomic data. Nature, 562 (2018), 203–209.

[19] Mastropietro, A., De Carlo, G., and Anagnostopoulos, A. XGDAG:
explainable gene–disease associations via graph neural networks. Bioinformat-
ics, 39 (2023), btad482.

[20] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Mon-
fardini, G. The graph neural network model. IEEE Transactions on Neural
Networks, 20 (2008), 61–80.

[21] Bekker, J. and Davis, J. Learning from positive and unlabeled data: a
survey. Machine Learning, 109 (2020), 719–760.



Bibliography 158

[22] Stolfi, P., Mastropietro, A., Pasculli, G., Tieri, P., and Vergni,
D. NIAPU: network-informed adaptive positive-unlabeled learning for disease
gene identification. Bioinformatics, 39 (2023), btac848.

[23] VanderWeele, T. J. Epistatic interactions. Statistical Applications in
Genetics and Molecular Biology, 9 (2010).

[24] Shahini, E., Pasculli, G., Mastropietro, A., Stolfi, P., Tieri, P.,
Vergni, D., Cozzolongo, R., Pesce, F., and Giannelli, G. Network
proximity-based drug repurposing strategy for early and late stages of primary
biliary cholangitis. Biomedicines, 10 (2022), 1694.

[25] Mastropietro, A., Pasculli, G., Feldmann, C., Rodríguez-Pérez,
R., and Bajorath, J. EdgeSHAPer: bond-centric Shapley value-based
explanation method for graph neural networks. iScience, 25 (2022), 105043.

[26] Shapley, L. S. A value for n-person games. In Contributions to the Theory
of Games II (edited by H. W. Kuhn and A. W. Tucker), p. 307–317. Princeton
University Press (1953).

[27] Volkov, M., Turk, J.-A., Drizard, N., Martin, N., Hoffmann, B.,
Gaston-Mathé, Y., and Rognan, D. On the frustration to predict binding
affinities from protein–ligand structures with deep neural networks. Journal
of Medicinal Chemistry, 65 (2022), 7946–7958.

[28] Mastropietro, A., Pasculli, G., and Bajorath, J. Learning charac-
teristics of graph neural networks predicting protein–ligand affinities. Nature
Machine Intelligence, 5 (2023), 1427–1436.

[29] Mastropietro, A., Feldmann, C., and Bajorath, J. Calculation of
exact Shapley values for explaining support vector machine models using the
radial basis function kernel. Scientific Reports, 13 (2023), 19561.

[30] Zeng, X., et al. Deep generative molecular design reshapes drug discovery.
Cell Reports Medicine, 3 (2022), 100794.

[31] Vert, J.-P. How will generative ai disrupt data science in drug discovery?
Nature Biotechnology, 41 (2023), 750.

[32] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative
adversarial nets. Advances in Neural Information Processing Systems, 27
(2014).



Bibliography 159

[33] Abbasi, M., et al. Designing optimized drug candidates with generative
adversarial network. Journal of Cheminformatics, 14 (2022), 40.

[34] Ferruz, N., Schmidt, S., and Höcker, B. ProtGPT2 is a deep unsuper-
vised language model for protein design. Nature Communications, 13 (2022),
4348.

[35] Chen, H. and Bajorath, J. Designing highly potent compounds using a
chemical language model. Scientific Reports, 13 (2023), 7412.

[36] Perez-Riverol, Y., et al. Discovering and linking public omics data sets
using the Omics Discovery Index. Nature Biotechnology, 35 (2017), 406–409.

[37] Perez-Riverol, Y., et al. Quantifying the impact of public omics data.
Nature Communications, 10 (2019), 3512.

[38] Heather, J. M. and Chain, B. The sequence of sequencers: the history of
sequencing DNA. Genomics, 107 (2016), 1–8.

[39] Wang, Z., Gerstein, M., and Snyder, M. RNA-Seq: a revolutionary tool
for transcriptomics. Nature Reviews Genetics, 10 (2009), 57–63.

[40] Krassowski, M., Das, V., Sahu, S. K., and Misra, B. B. State of the
field in multi-omics research: from computational needs to data mining and
sharing. Frontiers in Genetics, 11 (2020), 610798.

[41] Halu, A., De Domenico, M., Arenas, A., and Sharma, A. The multiplex
network of human diseases. NPJ Systems Biology and Applications, 5 (2019),
15.

[42] Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy,
M. I., Brown, M. A., and Yang, J. 10 years of GWAS discovery: biology,
function, and translation. The American Journal of Human Genetics, 101
(2017), 5–22.

[43] Pulst, S. M. Genetic linkage analysis. Archives of Neurology, 56 (1999),
667–672.

[44] Umlai, U.-K. I., Bangarusamy, D. K., Estivill, X., and Jithesh, P. V.
Genome sequencing data analysis for rare disease gene discovery. Briefings in
Bioinformatics, 23 (2022), bbab363.

[45] Lee, L. Y.-H. and Loscalzo, J. Network medicine in pathobiology. The
American Journal of Pathology, 189 (2019), 1311–1326.



Bibliography 160

[46] Luck, K., et al. A reference map of the human binary protein interactome.
Nature, 580 (2020), 402–408.

[47] Szklarczyk, D., et al. The STRING database in 2021: customizable
protein–protein networks, and functional characterization of user-uploaded
gene/measurement sets. Nucleic Acids Research, 49 (2021), D605–D612.

[48] Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán,
A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F., and
Furlong, L. I. DisGeNET: a comprehensive platform integrating information
on human disease-associated genes and variants. Nucleic Acids Research, 45
(2016), D833–D839.

[49] Babbi, G., Martelli, P. L., Profiti, G., Bovo, S., Savojardo, C., and
Casadio, R. eDGAR: a database of disease-gene associations with annotated
relationships among genes. BMC Genomics, 18 (2017), 25–34.

[50] Ghiassian, S. D., Menche, J., and Barabási, A.-L. A disease mod-
ule detection (DIAMOnD) algorithm derived from a systematic analysis of
connectivity patterns of disease proteins in the human interactome. PLoS
Computational Biology, 11 (2015), e1004120.

[51] Petti, M., Bizzarri, D., Verrienti, A., Falcone, R., and Farina, L.
Connectivity significance for disease gene prioritization in an expanding uni-
verse. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
17 (2019), 2155–2161.

[52] Quinodoz, M., Royer-Bertrand, B., Cisarova, K., Di Gioia, S. A.,
Superti-Furga, A., and Rivolta, C. DOMINO: using machine learning
to predict genes associated with dominant disorders. The American Journal
of Human Genetics, 101 (2017), 623–629.

[53] Enright, A. J., Van Dongen, S., and Ouzounis, C. A. An efficient
algorithm for large-scale detection of protein families. Nucleic Acids Research,
30 (2002), 1575–1584.

[54] Sun, P. G., Gao, L., and Han, S. Prediction of human disease-related gene
clusters by clustering analysis. International Journal of Biological Sciences, 7
(2011), 61.

[55] Köhler, S., Bauer, S., Horn, D., and Robinson, P. N. Walking the
interactome for prioritization of candidate disease genes. The American Journal
of Human Genetics, 82 (2008), 949–958.



Bibliography 161

[56] Valdeolivas, A., Tichit, L., Navarro, C., Perrin, S., Odelin, G.,
Levy, N., Cau, P., Remy, E., and Baudot, A. Random walk with restart
on multiplex and heterogeneous biological networks. Bioinformatics, 35 (2019),
497–505.

[57] Petsko, G. A. Guilt by association. Genome Biology, 10 (2009), 104.

[58] Guney, E. and Oliva, B. Exploiting protein-protein interaction networks
for genome-wide disease-gene prioritization. PLOS ONE, 7 (2012), e43557.

[59] Chen, J., Xu, H., Aronow, B. J., and Jegga, A. G. Improved hu-
man disease candidate gene prioritization using mouse phenotype. BMC
Bioinformatics, 8 (2007), 392.

[60] Chen, J., Aronow, B. J., and Jegga, A. G. Disease candidate gene
identification and prioritization using protein interaction networks. BMC
Bioinformatics, 10 (2009), 73.

[61] Chen, J., Bardes, E. E., Aronow, B. J., and Jegga, A. G. Toppgene
suite for gene list enrichment analysis and candidate gene prioritization. Nucleic
Acids Research, 37 (2009), W305–W311.

[62] Page, L., Brin, S., Motwani, R., and Winograd, T. The PageRank
citation ranking: bring order to the web. Tech. rep., Technical Report, Stanford
University (1998).

[63] Kleinberg, J. M. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM), 46 (1999), 604–632.

[64] Mordelet, F. and Vert, J.-P. ProDiGe: prioritization of disease genes
with multitask machine learning from positive and unlabeled examples. BMC
Bioinformatics, 12 (2011), 389.

[65] Mordelet, F. and Vert, J.-P. A bagging SVM to learn from positive and
unlabeled examples. Pattern Recognition Letters, 37 (2014), 201–209.

[66] Scott, C. and Blanchard, G. Novelty detection: unlabeled data definitely
help. In Artificial Intelligence and Statistics, vol. 5, p. 464–471. PMLR (2009).

[67] Yang, P., Li, X.-L., Mei, J.-P., Kwoh, C.-K., and Ng, S.-K. Positive-
unlabeled learning for disease gene identification. Bioinformatics, 28 (2012),
2640–2647.



Bibliography 162

[68] Yang, P., Li, X., Chua, H.-N., Kwoh, C.-K., and Ng, S.-K. Ensemble
positive unlabeled learning for disease gene identification. PLOS ONE, 9
(2014), e97079.

[69] Miko, I. Epistasis: gene interaction and phenotype effects. Nature Education,
1 (2008), 197.

[70] Niel, C., Sinoquet, C., Dina, C., and Rocheleau, G. A survey about
methods dedicated to epistasis detection. Frontiers in Genetics, 6 (2015), 285.

[71] Hahn, L. W., Ritchie, M. D., and Moore, J. H. Multifactor dimen-
sionality reduction software for detecting gene–gene and gene–environment
interactions. Bioinformatics, 19 (2003), 376–382.

[72] Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X., Tang, N. L., and
Yu, W. BOOST: a fast approach to detecting gene-gene interactions in
genome-wide case-control studies. The American Journal of Human Genetics,
87 (2010), 325–340.

[73] Jiang, R., Tang, W., Wu, X., and Fu, W. A random forest approach to the
detection of epistatic interactions in case-control studies. BMC Bioinformatics,
10 (2009), S65.

[74] Yoshida, M. and Koike, A. SNPInterForest: a new method for detecting
epistatic interactions. BMC Bioinformatics, 12 (2011), 469.

[75] Beam, A. L., Motsinger-Reif, A., and Doyle, J. Bayesian neural
networks for detecting epistasis in genetic association studies. BMC Bioinfor-
matics, 15 (2014), 368.

[76] Brown, F. K. et al. Chemoinformatics: what is it and how does it impact
drug discovery. Annual Reports in Medicinal Chemistry, 33 (1998), 375–384.

[77] Bunin, B. A., Siesel, B., Morales, G., and Bajorath, J. Chemoinfor-
matics theory. Springer (2007).

[78] Polanski, J. Chemoinformatics. In Comprehensive Chemometrics (edited by
S. D. Brown, R. Tauler, and B. Walczak), pp. 459–506. Elsevier (2009).

[79] Schneider, G. Computational medicinal chemistry. Future Medicinal Chem-
istry, 3 (2011), 393–394.

[80] Weininger, D. SMILES, a chemical language and information system.
1. introduction to methodology and encoding rules. Journal of Chemical
Information and Computer Sciences, 28 (1988), 31–36.



Bibliography 163

[81] Heller, S. R., McNaught, A., Pletnev, I., Stein, S., and
Tchekhovskoi, D. InChI, the IUPAC international chemical identifier.
Journal of Cheminformatics, 7 (2015), 23.

[82] Gad, S. QSAR. In Encyclopedia of Toxicology (Third Edition) (edited by
P. Wexler), pp. 1–9. Academic Press (2014).

[83] Meng, X.-Y., Zhang, H.-X., Mezei, M., and Cui, M. Molecular docking:
a powerful approach for structure-based drug discovery. Current Computer-
Aided Drug Design, 7 (2011), 146–157.

[84] Durrant, J. D. and McCammon, J. A. Molecular dynamics simulations
and drug discovery. BMC Biology, 9 (2011), 71.

[85] Vamathevan, J., et al. Applications of machine learning in drug discovery
and development. Nature Reviews Drug Discovery, 18 (2019), 463–477.

[86] Korotcov, A., Tkachenko, V., Russo, D. P., and Ekins, S. Compar-
ison of deep learning with multiple machine learning methods and metrics
using diverse drug discovery data sets. Molecular Pharmaceutics, 14 (2017),
4462–4475.

[87] Askr, H., Elgeldawi, E., Aboul Ella, H., Elshaier, Y. A., Gomaa,
M. M., and Hassanien, A. E. Deep learning in drug discovery: an integra-
tive review and future challenges. Artificial Intelligence Review, 56 (2023),
5975–6037.

[88] Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., and Blaschke,
T. The rise of deep learning in drug discovery. Drug Discovery Today, 23
(2018), 1241–1250.

[89] Hughes, J. P., Rees, S., Kalindjian, S. B., and Philpott, K. L.
Principles of early drug discovery. British Journal of Pharmacology, 162
(2011), 1239–1249.

[90] Mohs, R. C. and Greig, N. H. Drug discovery and development: role of
basic biological research. Alzheimer’s & Dementia: Translational Research &
Clinical Interventions, 3 (2017), 651–657.

[91] Ma, J., Wang, J., Ghoraie, L. S., Men, X., Liu, L., and Dai, P.
Network-based method for drug target discovery at the isoform level. Scientific
Reports, 9 (2019), 13868.

[92] Cao, C. and Moult, J. GWAS and drug targets. BMC Genomics, 15
(2014), S5.



Bibliography 164

[93] Avery, V. M., Camp, D., Carroll, A. R., Jenkins, I. D., and Quinn,
R. J. The identification of bioactive natural products by high throughput
screening (HTS). In Comprehensive Natural Products III (Third Edition), p.
410–429. Elsevier (2010).

[94] Macarron, R., et al. Impact of high-throughput screening in biomedical
research. Nature Reviews Drug Discovery, 10 (2011), 188–195.

[95] Attene-Ramos, M., Austin, C., and Xia, M. High throughput screening.
In Encyclopedia of Toxicology (Third Edition) (edited by P. Wexler), pp.
916–917. Academic Press (2014).

[96] Szymański, P., Markowicz, M., and Mikiciuk-Olasik, E. Adaptation
of high-throughput screening in drug discovery—toxicological screening tests.
International Journal of Molecular Sciences, 13 (2011), 427–452.

[97] Lee, M.-Y., Park, C. B., Dordick, J. S., and Clark, D. S. Metabolizing
enzyme toxicology assay chip (MetaChip) for high-throughput microscale
toxicity analyses. Proceedings of the National Academy of Sciences, 102
(2005), 983–987.

[98] Lee, M.-Y., Kumar, R. A., Sukumaran, S. M., Hogg, M. G., Clark,
D. S., and Dordick, J. S. Three-dimensional cellular microarray for high-
throughput toxicology assays. Proceedings of the National Academy of Sciences,
105 (2008), 59–63.

[99] Lavecchia, A. and Di Giovanni, C. Virtual screening strategies in drug dis-
covery: a critical review. Current Medicinal Chemistry, 20 (2013), 2839–2860.

[100] Kimber, T. B., Chen, Y., and Volkamer, A. Deep learning in virtual
screening: recent applications and developments. International Journal of
Molecular Sciences, 22 (2021), 4435.

[101] M Honorio, K., L Moda, T., and D Andricopulo, A. Pharmacokinetic
properties and in silico ADME modeling in drug discovery. Medicinal Chemistry,
9 (2013), 163–176.

[102] Khan, A., et al. Combined drug repurposing and virtual screening strategies
with molecular dynamics simulation identified potent inhibitors for SARS-CoV-
2 main protease (3CLpro). Journal of Biomolecular Structure and Dynamics,
39 (2021), 4659–4670.

[103] ElHefnawi, M., Jo, E., Tolba, M. M., Fares, M., Yang, J., Shahbaaz,
M., and Windisch, M. P. Drug repurposing through virtual screening and



Bibliography 165

in vitro validation identifies tigecycline as a novel putative HCV polymerase
inhibitor. Virology, 570 (2022), 9–17.

[104] Gan, J.-h., Liu, J.-x., Liu, Y., Chen, S.-w., Dai, W.-t., Xiao, Z.-X.,
and Cao, Y. DrugRep: an automatic virtual screening server for drug
repurposing. Acta Pharmacologica Sinica, 44 (2023), 888–896.

[105] Akamatsu, M. Current state and perspectives of 3D-QSAR. Current Topics
in Medicinal Chemistry, 2 (2002), 1381–1394.

[106] Lewis, R. A. and Wood, D. Modern 2D QSAR for drug discovery. Wi-
ley Interdisciplinary Reviews: Computational Molecular Science, 4 (2014),
505–522.

[107] Breiman, L. Random forests. Machine learning, 45 (2001), 5–32.

[108] Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P.,
and Feuston, B. P. Random forest: a classification and regression tool for
compound classification and QSAR modeling. Journal of Chemical Information
and Computer Sciences, 43 (2003), 1947–1958.

[109] Lavecchia, A. Machine-learning approaches in drug discovery: methods and
applications. Drug Discovery Today, 20 (2015), 318–331.

[110] Kim, J., Park, S., Min, D., and Kim, W. Comprehensive survey of
recent drug discovery using deep learning. International Journal of Molecular
Sciences, 22 (2021), 9983.

[111] Bajorath, J. Deep machine learning for computer-aided drug design. Fron-
tiers in Drug Discovery, 2 (2022), 829043.

[112] Guedes, I. A., Pereira, F. S., and Dardenne, L. E. Empirical scoring
functions for structure-based virtual screening: applications, critical aspects,
and challenges. Frontiers in Pharmacology, 9 (2018), 1089.

[113] Liu, J. and Wang, R. Classification of current scoring functions. Journal of
Chemical Information and Modeling, 55 (2015), 475–482.

[114] Li, H., Sze, K.-H., Lu, G., and Ballester, P. J. Machine-learning
scoring functions for structure-based virtual screening. Wiley Interdisciplinary
Reviews: Computational Molecular Science, 11 (2021), e1478.

[115] Gleeson, M. P. and Gleeson, D. QM/MM calculations in drug discovery:
a useful method for studying binding phenomena? Journal of Chemical
Information and Modeling, 49 (2009), 670–677.



Bibliography 166

[116] Williams-Noonan, B. J., Yuriev, E., and Chalmers, D. K. Free energy
methods in drug design: prospects of “alchemical perturbation” in medicinal
chemistry. Journal of Medicinal Chemistry, 61 (2018), 638–649.

[117] Jiménez, J., Skalic, M., Martinez-Rosell, G., and De Fabritiis,
G. KDEEP: protein–ligand absolute binding affinity prediction via 3D-
convolutional neural networks. Journal of Chemical Information and Modeling,
58 (2018), 287–296.

[118] Stepniewska-Dziubinska, M. M., Zielenkiewicz, P., and Siedlecki,
P. Development and evaluation of a deep learning model for protein–ligand
binding affinity prediction. Bioinformatics, 34 (2018), 3666–3674.

[119] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl,
G. E. Neural message passing for quantum chemistry. In International
Conference on Machine Learning, p. 1263–1272. PMLR (2017).

[120] Deng, Z., Chuaqui, C., and Singh, J. Structural interaction fingerprint
(SIFt): a novel method for analyzing three-dimensional protein- ligand binding
interactions. Journal of Medicinal Chemistry, 47 (2004), 337–344.

[121] Maggiora, G., Vogt, M., Stumpfe, D., and Bajorath, J. Molecular
similarity in medicinal chemistry. Journal of Medicinal Chemistry, 57 (2014),
3186–3204.

[122] Zagidullin, B., Wang, Z., Guan, Y., Pitkänen, E., and Tang, J. Com-
parative analysis of molecular fingerprints in prediction of drug combination
effects. Briefings in Bioinformatics, 22 (2021), bbab291.

[123] Morgan, H. L. The generation of a unique machine description for chemical
structures - a technique developed at chemical abstracts service. Journal of
Chemical Documentation, 5 (1965), 107–113.

[124] Zhao, C., Zhang, H., Zhang, X., Liu, M., Hu, Z., and Fan, B. Applica-
tion of support vector machine (SVM) for prediction toxic activity of different
data sets. Toxicology, 217 (2006), 105–119.

[125] Sorgenfrei, F. A., Fulle, S., and Merget, B. Kinome-wide profiling
prediction of small molecules. ChemMedChem, 13 (2018), 495–499.

[126] Sato, T., Honma, T., and Yokoyama, S. Combining machine learning and
pharmacophore-based interaction fingerprint for in silico screening. Journal of
Chemical Information and Modeling, 50 (2010), 170–185.



Bibliography 167

[127] Ballester, P. J. and Mitchell, J. B. A machine learning approach
to predicting protein–ligand binding affinity with applications to molecular
docking. Bioinformatics, 26 (2010), 1169–1175.

[128] Rodríguez-Pérez, R., Vogt, M., and Bajorath, J. Support vector
machine classification and regression prioritize different structural features
for binary compound activity and potency value prediction. ACS Omega, 2
(2017), 6371–6379.

[129] Rodríguez-Pérez, R. and Bajorath, J. Explainable machine learning
for property predictions in compound optimization. Journal of Medicinal
Chemistry, 64 (2021), 17744–17752.

[130] Siemers, F. M. and Bajorath, J. Differences in learning characteristics
between support vector machine and random forest models for compound
classification revealed by Shapley value analysis. Scientific Reports, 13 (2023),
5983.

[131] Haykin, S. Neural networks: a comprehensive foundation. Prentice Hall PTR
(1994).

[132] Tian, K., Shao, M., Wang, Y., Guan, J., and Zhou, S. Boosting
compound-protein interaction prediction by deep learning. Methods, 110
(2016), 64–72.

[133] Li, F., et al. Deep neural network classifier for virtual screening inhibitors of
(S)-adenosyl-l-methionine (SAM)-dependent methyltransferase family. Fron-
tiers in Chemistry, 7 (2019), 324.

[134] Wallach, I., Dzamba, M., and Heifets, A. AtomNet: a deep convolutional
neural network for bioactivity prediction in structure-based drug discovery.
CoRR, abs/1510.02855 (2015). arXiv:1510.02855.

[135] Skalic, M., Martínez-Rosell, G., Jiménez, J., and De Fabritiis, G.
PlayMolecule BindScope: large scale CNN-based virtual screening on the web.
Bioinformatics, 35 (2019), 1237–1238.

[136] Öztürk, H., Özgür, A., and Ozkirimli, E. DeepDTA: deep drug–target
binding affinity prediction. Bioinformatics, 34 (2018), i821–i829.

[137] Öztürk, H., Olmez, E. O., and Özgür, A. WideDTA: prediction of drug-
target binding affinity. CoRR, abs/1902.04166 (2019). arXiv:1902.04166.

http://arxiv.org/abs/1510.02855
http://arxiv.org/abs/1902.04166


Bibliography 168

[138] Li, Y., Rezaei, M. A., Li, C., and Li, X. DeepAtom: a framework
for protein-ligand binding affinity prediction. In 2019 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), p. 303–310. IEEE
(2019).

[139] Lee, I., Keum, J., and Nam, H. DeepConv-DTI: prediction of drug-target
interactions via deep learning with convolution on protein sequences. PLoS
Computational Biology, 15 (2019), e1007129.

[140] Karimi, M., Wu, D., Wang, Z., and Shen, Y. DeepAffinity: interpretable
deep learning of compound–protein affinity through unified recurrent and
convolutional neural networks. Bioinformatics, 35 (2019), 3329–3338.

[141] Xiong, J., Xiong, Z., Chen, K., Jiang, H., and Zheng, M. Graph
neural networks for automated de novo drug design. Drug Discovery Today,
26 (2021), 1382–1393.

[142] Son, J. and Kim, D. Development of a graph convolutional neural network
model for efficient prediction of protein-ligand binding affinities. PLOS ONE,
16 (2021), e0249404.

[143] Lim, J., Ryu, S., Park, K., Choe, Y. J., Ham, J., and Kim, W. Y.
Predicting drug–target interaction using a novel graph neural network with 3D
structure-embedded graph representation. Journal of Chemical Information
and Modeling, 59 (2019), 3981–3988.

[144] Feinberg, E. N., et al. PotentialNet for molecular property prediction.
ACS Central Science, 4 (2018), 1520–1530.

[145] Gao, K. Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., Zhang, P.,
et al. Interpretable drug target prediction using deep neural representation.
In IJCAI, vol. 2018, p. 3371–3377 (2018).

[146] Torng, W. and Altman, R. B. Graph convolutional neural networks for
predicting drug-target interactions. Journal of Chemical Information and
Modeling, 59 (2019), 4131–4149.

[147] Jiang, M., Li, Z., Zhang, S., Wang, S., Wang, X., Yuan, Q., and Wei,
Z. Drug–target affinity prediction using graph neural network and contact
maps. RSC Advances, 10 (2020), 20701–20712.

[148] Bianchi, F. M., Grattarola, D., Livi, L., and Alippi, C. Graph neural
networks with convolutional arma filters. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44 (2021), 3496–3507.



Bibliography 169

[149] Shen, H., Zhang, Y., Zheng, C., Wang, B., and Chen, P. A cascade
graph convolutional network for predicting protein–ligand binding affinity.
International Journal of Molecular Sciences, 22 (2021), 4023.

[150] Ashenden, S. K. Lead optimization. In The Era of Artificial Intelligence, Ma-
chine Learning, and Data Science in the Pharmaceutical Industry, p. 103–117.
Elsevier (2021).

[151] Pushpakom, S., et al. Drug repurposing: progress, challenges and recom-
mendations. Nature Reviews Drug Discovery, 18 (2019), 41–58.

[152] Jarada, T. N., Rokne, J. G., and Alhajj, R. A review of computational
drug repositioning: strategies, approaches, opportunities, challenges, and
directions. Journal of Cheminformatics, 12 (2020), 46.

[153] Lamb, J., et al. The Connectivity Map: using gene-expression signatures to
connect small molecules, genes, and disease. Science, 313 (2006), 1929–1935.

[154] Vidović, D., Koleti, A., and Schürer, S. C. Large-scale integration
of small molecule-induced genome-wide transcriptional responses, kinome-
wide binding affinities and cell-growth inhibition profiles reveal global trends
characterizing systems-level drug action. Frontiers in Genetics, 5 (2014), 342.

[155] Subramanian, A., et al. A next generation connectivity map: L1000
platform and the first 1,000,000 profiles. Cell, 171 (2017), 1437–1452.

[156] Keiser, M. J., et al. Predicting new molecular targets for known drugs.
Nature, 462 (2009), 175–181.

[157] David, L., Thakkar, A., Mercado, R., and Engkvist, O. Molecular
representations in AI-driven drug discovery: a review and practical guide.
Journal of Cheminformatics, 12 (2020), 56.

[158] Dudley, J. T., Deshpande, T., and Butte, A. J. Exploiting drug–disease
relationships for computational drug repositioning. Briefings in Bioinformatics,
12 (2011), 303–311.

[159] Campillos, M., Kuhn, M., Gavin, A.-C., Jensen, L. J., and Bork, P.
Drug target identification using side-effect similarity. Science, 321 (2008),
263–266.

[160] Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kanehisa,
M. Prediction of drug–target interaction networks from the integration of
chemical and genomic spaces. Bioinformatics, 24 (2008), i232–i240.



Bibliography 170

[161] Kinnings, S. L., Liu, N., Buchmeier, N., Tonge, P. J., Xie, L., and
Bourne, P. E. Drug discovery using chemical systems biology: repositioning
the safe medicine comtan to treat multi-drug and extensively drug resistant
tuberculosis. PLoS Computational Biology, 5 (2009), e1000423.

[162] Wu, C., Gudivada, R. C., Aronow, B. J., and Jegga, A. G. Compu-
tational drug repositioning through heterogeneous network clustering. BMC
Systems Biology, 7 (2013), S6.

[163] Tan, F., et al. Drug repositioning by applying ‘expression profiles’ generated
by integrating chemical structure similarity and gene semantic similarity.
Molecular BioSystems, 10 (2014), 1126–1138.

[164] Martinez, V., Navarro, C., Cano, C., Fajardo, W., and Blanco, A.
DrugNet: network-based drug–disease prioritization by integrating heteroge-
neous data. Artificial Intelligence in Medicine, 63 (2015), 41–49.

[165] Rakshit, H., Chatterjee, P., and Roy, D. A bidirectional drug repo-
sitioning approach for parkinson’s disease through network-based inference.
Biochemical and Biophysical Research Communications, 457 (2015), 280–287.

[166] Yang, C. C. and Zhao, M. Mining heterogeneous network for drug reposi-
tioning using phenotypic information extracted from social media and phar-
maceutical databases. Artificial Intelligence in Medicine, 96 (2019), 80–92.

[167] Hogan, A., et al. Knowledge graphs. ACM Computing Surveys (Csur), 54
(2021), 71.

[168] Ioannidis, V. N., Song, X., Manchanda, S., Li, M., Pan, X., Zheng,
D., Ning, X., Zeng, X., and Karypis, G. DRKG - drug repurposing
knowledge graph for Covid-19. https://github.com/gnn4dr/DRKG/ (2020).

[169] Al-Saleem, J., Granet, R., Ramakrishnan, S., Ciancetta, N. A.,
Saveson, C., Gessner, C., and Zhou, Q. Knowledge graph-based ap-
proaches to drug repurposing for COVID-19. Journal of Chemical Information
and Modeling, 61 (2021), 4058–4067.

[170] Zhang, R., Hristovski, D., Schutte, D., Kastrin, A., Fiszman, M.,
and Kilicoglu, H. Drug repurposing for COVID-19 via knowledge graph
completion. Journal of Biomedical Informatics, 115 (2021), 103696.

[171] Bang, D., Lim, S., Lee, S., and Kim, S. Biomedical knowledge graph
learning for drug repurposing by extending guilt-by-association to multiple
layers. Nature Communications, 14 (2023), 3570.

https://github.com/gnn4dr/DRKG/


Bibliography 171

[172] Gottlieb, A., Stein, G. Y., Ruppin, E., and Sharan, R. PREDICT: a
method for inferring novel drug indications with application to personalized
medicine. Molecular Systems Biology, 7 (2011), 496.

[173] Menden, M. P., Iorio, F., Garnett, M., McDermott, U., Benes,
C. H., Ballester, P. J., and Saez-Rodriguez, J. Machine learning
prediction of cancer cell sensitivity to drugs based on genomic and chemical
properties. PLOS ONE, 8 (2013), e61318.

[174] Napolitano, F., Zhao, Y., Moreira, V. M., Tagliaferri, R., Kere,
J., D’Amato, M., and Greco, D. Drug repositioning: a machine-learning
approach through data integration. Journal of Cheminformatics, 5 (2013), 30.

[175] Yang, J., Li, Z., Fan, X., and Cheng, Y. Drug–disease association
and drug-repositioning predictions in complex diseases using causal inference–
probabilistic matrix factorization. Journal of Chemical Information and Mod-
eling, 54 (2014), 2562–2569.

[176] Lim, H., Poleksic, A., Yao, Y., Tong, H., He, D., Zhuang, L., Meng,
P., and Xie, L. Large-scale off-target identification using fast and accurate
dual regularized one-class collaborative filtering and its application to drug
repurposing. PLoS Computational Biology, 12 (2016), e1005135.

[177] Ozsoy, M. G., Özyer, T., Polat, F., and Alhajj, R. Realizing drug
repositioning by adapting a recommendation system to handle the process.
BMC Bioinformatics, 19 (2018), 136.

[178] Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., and
Zhavoronkov, A. Deep learning applications for predicting pharmacological
properties of drugs and drug repurposing using transcriptomic data. Molecular
Pharmaceutics, 13 (2016), 2524–2530.

[179] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification
with deep convolutional neural networks. Advances in Neural Information
Processing Systems, 25 (2012).

[180] Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural
Computation, 9 (1997), 1735–1780.

[181] Altae-Tran, H., Ramsundar, B., Pappu, A. S., and Pande, V. Low
data drug discovery with one-shot learning. ACS Central Science, 3 (2017),
283–293.



Bibliography 172

[182] Hu, S., Zhang, C., Chen, P., Gu, P., Zhang, J., and Wang, B. Predict-
ing drug-target interactions from drug structure and protein sequence using
novel convolutional neural networks. BMC Bioinformatics, 20 (2019), 689.

[183] Kingma, D. P. and Welling, M. Auto-encoding variational bayes. In 2nd
International Conference on Learning Representations, ICLR 2014, Conference
Track Proceedings (edited by Y. Bengio and Y. LeCun) (2014).

[184] Zeng, X., Zhu, S., Liu, X., Zhou, Y., Nussinov, R., and Cheng, F.
deepDR: a network-based deep learning approach to in silico drug repositioning.
Bioinformatics, 35 (2019), 5191–5198.

[185] Zitnik, M., Agrawal, M., and Leskovec, J. Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics, 34 (2018),
i457–i466.

[186] Kipf, T. N. and Welling, M. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Conference Track Proceedings (2017).

[187] Doshi, S. and Chepuri, S. P. A computational approach to drug repurposing
using graph neural networks. Computers in Biology and Medicine, 150 (2022),
105992.

[188] Chakraborty, C., Sharma, A. R., Bhattacharya, M., Agoramoorthy,
G., and Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide
very effective therapeutic combinations: lessons learned from major clinical
studies. Frontiers in Pharmacology, 12 (2021), 704205.

[189] Rodrigues, L., Bento Cunha, R., Vassilevskaia, T., Viveiros, M.,
and Cunha, C. Drug repurposing for COVID-19: a review and a novel
strategy to identify new targets and potential drug candidates. Molecules, 27
(2022), 2723.

[190] Stolfi, P., Manni, L., Soligo, M., Vergni, D., and Tieri, P. Designing
a network proximity-based drug repurposing strategy for COVID-19. Frontiers
in Cell and Developmental Biology, 8 (2020), 545089.

[191] Smith, D. P., Oechsle, O., Rawling, M. J., Savory, E., Lacoste, A.,
and Richardson, P. J. Expert-augmented computational drug repurposing
identified baricitinib as a treatment for COVID-19. Frontiers in Pharmacology,
12 (2021), 709856.



Bibliography 173

[192] Galindez, G., Matschinske, J., Rose, T. D., Sadegh, S., Salgado-
Albarrán, M., Späth, J., Baumbach, J., and Pauling, J. K. Lessons
from the COVID-19 pandemic for advancing computational drug repurposing
strategies. Nature Computational Science, 1 (2021), 33–41.

[193] Mohamed, K., Yazdanpanah, N., Saghazadeh, A., and Rezaei, N.
Computational drug discovery and repurposing for the treatment of COVID-
19: a systematic review. Bioorganic chemistry, 106 (2021), 104490.

[194] Castelvecchi, D. Can we open the black box of AI? Nature News, 538
(2016), 20.

[195] Rodríguez-Pérez, R. and Bajorath, J. Chemistry-centric explanation of
machine learning models. Artificial Intelligence in the Life Sciences, 1 (2021),
100009.

[196] Rudin, C. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1
(2019), 206–215.

[197] Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., and
Telenti, A. A primer on deep learning in genomics. Nature Genetics, 51
(2019), 12–18.

[198] Belle, V. and Papantonis, I. Principles and practice of explainable machine
learning. Frontiers in Big Data, 4 (2021), 688969.

[199] Gunning, D., Vorm, E., Wang, Y., and Turek, M. DARPA’s explainable
AI (XAI) program: a retrospective. Authorea Preprints, (2021).

[200] Jiménez-Luna, J., Grisoni, F., and Schneider, G. Drug discovery
with explainable artificial intelligence. Nature Machine Intelligence, 2 (2020),
573–584.

[201] Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., and Zhu, J.
Explainable AI: a brief survey on history, research areas, approaches and
challenges. In Natural Language Processing and Chinese Computing: 8th CCF
International Conference, NLPCC 2019, Proceedings, Part II 8, p. 563–574.
Springer (2019).

[202] Feng, J., Lansford, J. L., Katsoulakis, M. A., and Vlachos, D. G.
Explainable and trustworthy artificial intelligence for correctable modeling in
chemical sciences. Science Advances, 6 (2020), eabc3204.



Bibliography 174

[203] Letzgus, S., Wagner, P., Lederer, J., Samek, W., Müller, K.-R.,
and Montavon, G. Toward explainable artificial intelligence for regression
models: a methodological perspective. IEEE Signal Processing Magazine, 39
(2022), 40–58.

[204] Rodríguez-Pérez, R. and Bajorath, J. Interpretation of machine learning
models using Shapley values: application to compound potency and multi-
target activity predictions. Journal of Computer-Aided Molecular Design, 34
(2020), 1013–1026.

[205] Shrikumar, A., Greenside, P., and Kundaje, A. Learning important fea-
tures through propagating activation differences. In International Conference
on Machine Learning, p. 3145–3153. PMLR (2017).

[206] Beckers, S. Causal explanations and XAI. In Conference on Causal Learning
and Reasoning, p. 90–109. PMLR (2022).

[207] Wachter, S., Mittelstadt, B., and Russell, C. Counterfactual expla-
nations without opening the black box: automated decisions and the GDPR.
Harv. JL & Tech., 31 (2017), 841.

[208] Jacovi, A., Swayamdipta, S., Ravfogel, S., Elazar, Y., Choi, Y.,
and Goldberg, Y. Contrastive explanations for model interpretability. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, p. 1597–1611. Association for Computational Linguistics (2021).

[209] Garson, G. D. Interpreting neural-network connection weights. AI Expert,
6 (1991), 46–51.

[210] Goh, A. T. Back-propagation neural networks for modeling complex systems.
Artificial Intelligence in Engineering, 9 (1995), 143–151.

[211] Maozhun, S. and Ji, L. Improved garson algorithm based on neural network
model. In 2017 29th Chinese Control And Decision Conference (CCDC), p.
4307–4312. IEEE (2017).

[212] Özesmi, S. L. and Özesmi, U. An artificial neural network approach to
spatial habitat modelling with interspecific interaction. Ecological Modelling,
116 (1999), 15–31.

[213] Olden, J. D., Joy, M. K., and Death, R. G. An accurate comparison
of methods for quantifying variable importance in artificial neural networks
using simulated data. Ecological Modelling, 178 (2004), 389–397.



Bibliography 175

[214] Dimopoulos, Y., Bourret, P., and Lek, S. Use of some sensitivity criteria
for choosing networks with good generalization ability. Neural Processing
Letters, 2 (1995), 1–4.

[215] Dimopoulos, I., Chronopoulos, J., Chronopoulou-Sereli, A., and
Lek, S. Neural network models to study relationships between lead concen-
tration in grasses and permanent urban descriptors in Athens city (Greece).
Ecological Modelling, 120 (1999), 157–165.

[216] Hechtlinger, Y. Interpretation of prediction models using the input gradient.
In 30th Conference on Neural Information Processing Systems, NIPS 2016,
Workshop on Interpretable Machine Learning in Complex Systems (2016).

[217] Ross, A. S., Hughes, M. C., and Doshi-Velez, F. Right for the right
reasons: training differentiable models by constraining their explanations. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, p. 2662–2670 (2017).

[218] Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribution for deep
networks. In International Conference on Machine Learning, p. 3319–3328.
PMLR (2017).

[219] Yosinski, J., Clune, J., Nguyen, A. M., Fuchs, T. J., and Lip-
son, H. Understanding neural networks through deep visualization. CoRR,
abs/1506.06579 (2015). arXiv:1506.06579.

[220] Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside convolutional
networks: visualising image classification models and saliency maps. In 2nd
International Conference on Learning Representations, ICLR 2014, Workshop
Track Proceedings (edited by Y. Bengio and Y. LeCun) (2014).

[221] Murdoch, W. J., Liu, P. J., and Yu, B. Beyond word importance:
contextual decomposition to extract interactions from lstms. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Conference Track
Proceedings (2018).

[222] Ribeiro, M. T., Singh, S., and Guestrin, C. "Why should I trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
p. 1135–1144 (2016).

[223] Tsang, M., Cheng, D., and Liu, Y. Detecting statistical interactions
from neural network weights. In 6th International Conference on Learning
Representations, ICLR 2018, Conference Track Proceedings (2018).

http://arxiv.org/abs/1506.06579


Bibliography 176

[224] Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., and
Tang, J. AutoInt: automatic feature interaction learning via self-attentive
neural networks. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, p. 1161–1170 (2019).

[225] Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J.
GNNExplainer: generating explanations for graph neural networks. Advances
in Neural Information Processing Systems, 32 (2019).

[226] Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., and Zhang,
X. Parameterized explainer for graph neural network. Advances in Neural
Information Processing Systems, 33 (2020).

[227] Gao, Y., Sun, T., Bhatt, R., Yu, D., Hong, S., and Zhao, L. GNES:
learning to explain graph neural networks. In 2021 IEEE International Con-
ference on Data Mining (ICDM), p. 131–140. IEEE (2021).

[228] Kasanishi, T., Wang, X., and Yamasaki, T. Edge-level explanations for
graph neural networks by extending explainability methods for convolutional
neural networks. In 2021 IEEE International Symposium on Multimedia (ISM),
p. 249–252. IEEE (2021).

[229] Xiong, Z., et al. Pushing the boundaries of molecular representation for
drug discovery with the graph attention mechanism. Journal of Medicinal
Chemistry, 63 (2019), 8749–8760.

[230] Tang, B., Kramer, S. T., Fang, M., Qiu, Y., Wu, Z., and Xu, D. A
self-attention based message passing neural network for predicting molecular
lipophilicity and aqueous solubility. Journal of Cheminformatics, 12 (2020),
15.

[231] Dai, E. and Wang, S. Towards self-explainable graph neural network. In
Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, p. 302–311 (2021).

[232] Huang, Q., Yamada, M., Tian, Y., Singh, D., and Chang, Y.
GraphLIME: local interpretable model explanations for graph neural net-
works. IEEE Transactions on Knowledge and Data Engineering, 35 (2022),
6968.

[233] Wang, T., Dai, X., and Liu, Y. Learning with Hilbert–Schmidt indepen-
dence criterion: a review and new perspectives. Knowledge-based Systems, 234
(2021), 107567.



Bibliography 177

[234] Vu, M. and Thai, M. T. PGM-Explainer: probabilistic graphical model
explanations for graph neural networks. Advances in Neural Information
Processing Systems, 33 (2020).

[235] Yuan, H., Tang, J., Hu, X., and Ji, S. XGNN: towards model-level
explanations of graph neural networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
p. 430–438 (2020).

[236] Štrumbelj, E. and Kononenko, I. Explaining prediction models and
individual predictions with feature contributions. Knowledge and Information
Systems, 41 (2014), 647–665.

[237] Young, H. P. Monotonic solutions of cooperative games. International
Journal of Game Theory, 14 (1985), 65–72.

[238] Lundberg, S. M., et al. From local explanations to global understanding
with explainable AI for trees. Nature Machine Intelligence, 2 (2020), 56–67.

[239] Rodríguez-Pérez, R. and Bajorath, J. Interpretation of compound
activity predictions from complex machine learning models using local ap-
proximations and Shapley values. Journal of Medicinal Chemistry, 63 (2019),
8761–8777.

[240] Duval, A. and Malliaros, F. D. GraphSVX: Shapley value explanations
for graph neural networks. In Machine Learning and Knowledge Discovery
in Databases. Research Track: European Conference, ECML PKDD 2021,
Proceedings, Part II 21, p. 302–318. Springer (2021).

[241] Yuan, H., Yu, H., Wang, J., Li, K., and Ji, S. On explainability of graph
neural networks via subgraph explorations. In International Conference on
Machine Learning, p. 12241–12252. PMLR (2021).

[242] Perotti, A., Bajardi, P., Bonchi, F., and Panisson, A. Explaining
identity-aware graph classifiers through the language of motifs. In 2023
International Joint Conference on Neural Networks (IJCNN), p. 1–8. IEEE
(2023).

[243] Gutiérrez-Gómez, L. and Delvenne, J.-C. Unsupervised network em-
beddings with node identity awareness. Applied Network Science, 4 (2019),
82.

[244] Opap, K. and Mulder, N. Recent advances in predicting gene–disease
associations. F1000Research, 6 (2017), 578.



Bibliography 178

[245] Piro, R. M. and Cunto, F. D. Computational approaches to disease-gene
prediction: rationale, classification and successes. FEBS Journal, 279 (2012),
678–696.

[246] Liu, B., Dai, Y., Li, X., Lee, W. S., and Yu, P. S. Building text classifiers
using positive and unlabeled examples. In Proceedings of the Third IEEE
International Conference on Data Mining, ICDM ’03, p. 179–186 (2003).

[247] Wang, L., Han, M., Li, X., Zhang, N., and Cheng, H. Review of classifi-
cation methods on unbalanced data sets. IEEE Access, 9 (2021), 64606–64628.

[248] Elkan, C. and Noto, K. Learning classifiers from only positive and unlabeled
data. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, p. 213–220 (2008).

[249] Claesen, M., De Smet, F., Suykens, J. A., and De Moor, B. A robust
ensemble approach to learn from positive and unlabeled data using SVM base
models. Neurocomputing, 160 (2015), 73–84.

[250] Ke, T., Lv, H., Sun, M., and Zhang, L. A biased least squares support
vector machine based on Mahalanobis distance for PU learning. Physica A:
Statistical Mechanics and its Applications, 509 (2018), 422–438.

[251] Yang, P., Li, X.-L., Mei, J.-P., Kwoh, C.-K., and Ng, S.-K. Positive-
unlabeled learning for disease gene identification. Bioinformatics, 28 (2012),
2640–2647.

[252] Yang, P., Li, X., Chua, H.-N., Kwoh, C.-K., and Ng, S.-K. Ensemble
positive unlabeled learning for disease gene identification. PLOS ONE, 9
(2014), e97079.
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