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A B S T R A C T

In this work, we present a detailed study of the dynamics and stability of fundamental spatiotemporal solitons
emerging in multimode waveguides with a parabolic transverse profile of the linear refractive index. Pulsed
beam propagation in these structures can be described by using a Gross–Pitaevskii equation with a two-
dimensional parabolic spatial potential. Our investigations compare variational approaches, based on the
Ritz optimization method, with extensive numerical simulations. We found that, with a Kerr self-focusing
nonlinearity, spatiotemporal solitons are stable for low pulse energies, where our analytical results find a
perfect agreement with the numerical simulations. However, with progressively increasing energies, solitons
eventually undergo wave collapse: this occurs below the theoretical limit, which is predicted within the
variational approach. In a self-defocusing scenario, a similar trend is found, where the good agreement persists
for low energies. For large soliton energies, however, complex spatiotemporal dynamics emerge.
. Introduction

Solitons or solitary waves are localized nonlinear wave packets which
ropagate without suffering any shape modification. They arise from
he interplay between linear and nonlinear processes, which separately
ould cause the wave to decay. These localized waves were described,

or the first time, in 1834 by John Scott Russell, who observed the
ropagation of a solitary wave with these characteristics in the union
anal in Scotland. Russell named it a wave of translation [1]. However,
he word soliton was coined much later, in 1965, by Zabuski and
ruskal while studying pulse interactions in collisionless plasmas [2].
ince then, solitons have been discovered and studied in a large variety
f physical contexts, including hydrodynamics, plasmas, condensed
atter physics, biology, and nonlinear optics, to cite a few [1,3,4].

In the realm of optics, these particle-like objects may emerge in
onlinear media owing to a balance between dispersive or diffrac-
ive effects and light confinement in either time or space, leading
o temporal or spatial solitons, respectively [5]. Light confinement
ay be related to the intensity-dependent contribution to the refrac-

ive index of the material (optical Kerr effect), which yields spatial
elf-(de)focusing or temporal self-phase modulation in each of the pre-
ious two scenarios. In nonlinear dispersive media, such as singlemode
ptical fibers, temporal broadening of a light wavepacket (induced
y chromatic dispersion) can be counteracted by self-phase modula-
ion, leading to the formation of temporal solitons, which propagate
nchanged in the longitudinal direction. In contrast to these states,

∗ Corresponding author.
E-mail addresses: pedro.parra-rivas@uniroma1.it (P. Parra-Rivas), yifan.sun@uniroma1.it (Y. Sun).

spatial solitons form transversally to the direction of beam propaga-
tion, whenever the natural diffraction-induced spreading of a light
beam is compensated by the spatial (nonlinear) self-focusing effect.
Thus, in each case, a balance between a spatial coupling mechanism
(i.e., diffraction or dispersion) and nonlinearity is a necessary condition
for soliton formation [5].

More complex is the situation where the previous temporal and spa-
tial effects couple simultaneously. In this case, dispersion and diffrac-
tion may counteract nonlinearity at once, leading to light confinement
in space–time, and therefore to the formation of a large variety of co-
herent three-dimensional spatiotemporal states, including fundamental
solitons and vortex states [3].

Fundamental spatiotemporal solitons (STS), named also light bul-
lets according to Silberberg’s terminology [6], do not carry vorticity
(i.e., they are spinning-less), and are generally affected by various
propagation instabilities such as spatiotemporal wave collapse [6–8]:
as a result, their observation is challenging. Wave collapse occurs
whenever a strong contraction, or compression, of a nonlinear wave
leads to a catastrophic blowup of its amplitude after a finite time or
propagation distance [7,8]. The contraction suffered by the wave needs
two or more dimensions, in order to be strong enough to generate
the collapse; therefore, wave collapse is absent in 1D geometries. This
fundamental phenomenon arises not only in nonlinear optics [9], but it
also appears in different nonlinear wave contexts, ranging from Bose–
Einstein condensates (BECs) to astrophysics [10–12]. Hence, a central
challenge in the scientific community is to find robust mechanisms,
which may be able to arrest these destructive wave phenomena [3,13].
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In this work, we study one of such mechanisms, leading to the
tabilization of STSs in single-pass optical waveguides: it is associated
ith the presence of a radially symmetric, parabolic refractive index
rofile in the transverse plane, perpendicular to the light propagation
irection [14,15]. This material inhomogeneity appears naturally in
raded-index (GRIN) waveguides such as multimode (MM) fibers [16].
ere, the parabolic spatial profile of the linear refractive index acts as

patial guiding potential, and it is able to arrest spatiotemporal wave
ollapse, as experimentally demonstrated in Ref. [17]. However, in
ost cases, the formation of 3D solitons is elusive: they have been only

bserved as a transient phenomenon [18,19].
Based on Lagrangian and Hamiltonian variational approaches, and

dvanced numerical simulations, we perform a detailed characteriza-
ion of the dynamics and stability of the fundamental STSs which
merge in this system, under different regimes of operation. Our in-
estigations go beyond those presented in [14,15,20], and demonstrate
he degree of agreement between analytical approximations and direct
umerical solutions over a wide range of STSs energies, which was
ot previously explored. Specifically, we find that there is a perfect
greement between the variational approach and numerical simulations
or low STS energies. However, such agreement worsens when the STS
nergy increases. Indeed, for large enough STS energies, the bullets
ay undergo spatiotemporal wave collapse and exhibit other complex
ynamics, which remained so far unexplored.

The paper is organized as follows. In Section 2 we introduce our
odel, and its associated variational formulations in terms of La-

rangian and Hamiltonian densities, respectively. Section 3 contains
general introduction to the Ritz optimization method in terms of

he Lagrangian and Hamiltonian formalism. In Section 4 we apply this
ethod to the case of shape-preserving (i.e., steady-state) fundamen-

al STSs. In Sections Section 5, by using the Lagrangian formalism,
e extend the Ritz method in order to capture the 𝑧-dependence
f STSs propagation. By doing so, we are able to reduce the initial
nfinite-dimensional model to a finite-dimensional (effective) dynami-
al system. A similar system is then obtained in Section 6 by using, this
ime, a Hamiltonian approach. Later, in Section 7 we analyze the STS
tability by using different stability criteria, including the Vakhitov–
olokolov and Lyapunov criteria. After this, in Section 8 we test our
nalytical results by performing full 3D numerical simulations of the
riginal model. Finally, in Section 9 we present a short discussion, draw
ur conclusions and comment on future research directions.

. Variational formulation of the Gross–Pitaevskii equation with
2D parabolic potential

The scalar electric field of an optical wave propagating in a MM
aveguide can be described in terms of the dimensionless 3D + 1
ross–Pitaevskii equation (GPE) as follows [16]

𝑧𝑢 = 𝑖
2
∇2
⟂𝑢 + 𝑖 𝛿

2
𝜕2𝑡 𝑢 + 𝑖

𝜌
2
(𝑥2 + 𝑦2)𝑢 + 𝑖𝜈|𝑢|2𝑢. (1)

Here 𝑢 = 𝑢(𝑥, 𝑦, 𝑡, 𝑧) is the normalized electric field component of the
wave propagating along the 𝑧-direction, ∇2

⟂ ≡ 𝜕2𝑥+𝜕2𝑦 represents diffrac-
tion, 𝜕2𝑡 represents chromatic or group velocity dispersion (GVD), with
the coefficient 𝛿 = ±1 for the anomalous/normal dispersion regime,
respectively, 𝜈 = ±1 for self-focusing/self-defocusing Kerr nonlinearity,
and (𝑥2 + 𝑦2) is the 2D parabolic potential describing the transverse
spatial profile of the linear refractive index of the material [16]. Here,
𝜌 = −1 (𝜌 = 1) is chosen for guiding (antiguiding) materials.

This same equation can be used, if we exchange the 𝑧 coordinate
with 𝑡, in the context of BECs for describing nearly 1D condensates,
with a cigar-shaped trapping potential (𝜌 < 0) [13,21]. In this case,
𝜈 = 1 models a self-attractive nonlinearity [4].

Eq. (1) possesses the Lagrangian density

 = − 1
2
(

|𝑢𝑥|
2 + |𝑢𝑦|

2) − 𝛿
2
|𝑢𝑡|

2 +
𝜌
2
(𝑥2 + 𝑦2)|𝑢|2

+ 𝜈
|𝑢|4 + 𝑖 (𝑢∗𝑢 − 𝑢𝑢∗

)

,
(2)
2 2 𝑧 𝑧

2

here we have rewritten the derivatives as 𝑢𝜉 ≡ 𝜕𝜉𝑢, with 𝜉 being
ny variable 𝑥, 𝑦, 𝑧 and 𝑡. This Lagrangian density contains all relevant
nformation about the system dynamics, including its conservation
aws [22]. Indeed, from the Lagrangian density one recovers Eq. (1)
rom the Euler–Lagrange equations [22,23]

𝜕
𝜕𝑧

(

𝜕
𝜕𝑢∗𝑧

)

+ 𝜕
𝜕𝑡

(

𝜕
𝜕𝑢∗𝑡

)

+ 𝜕
𝜕𝑥

(

𝜕
𝜕𝑢∗𝑥

)

+ 𝜕
𝜕𝑦

(

𝜕
𝜕𝑢∗𝑦

)

− 𝜕
𝜕𝑢∗

= 0. (3)

By defining the generalized field momenta  ≡ 𝜕𝑢∗𝑧 = −𝑖𝑢∕2 and ∗ ≡
𝑢𝑧 = 𝑖𝑢∗∕2, our system can be described by using the Hamiltonian
ensity, which is obtained from the Legendre transform [22,23]

= 𝑢∗𝑧 + ∗𝑢𝑧 − . (4)

This transformation leads to

 = 1
2
(

|𝑢𝑥|
2 + |𝑢𝑦|

2) + 𝛿
2
|𝑢𝑡|

2 − 𝜈
2
|𝑢|4 −

𝜌
2
(

𝑥2 + 𝑦2
)

|𝑢|2. (5)

Eq. (1) can also be derived from the Hamiltonian function through the
Hamiltonian field equations [22].

Shape-preserving (i.e., steady) spatiotemporal states can be written
in the form 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡)𝑒𝑖𝜇𝑧, where 𝜇 is the propagation
constant (or chemical potential in the context of BECs), and 𝑣(𝑥, 𝑦, 𝑡) is
a real-valued function, describing the steady-state field. When applied
to Eq. (1), this transformation leads to the 𝑧-independent (real) partial
differential equation
1
2
∇2
⟂𝑣 +

𝛿
2
𝑣𝑡 +

𝜌
2
(𝑥2 + 𝑦2)𝑣 + 𝜈𝑣3 − 𝜇𝑣 = 0. (6)

imilarly to the previous case, the 𝑧-independent Eq. (6) can be ob-
ained from the Euler–Lagrange equations

𝜕
𝜕𝑡

(

𝜕𝑠
𝜕𝑣𝑡

)

+ 𝜕
𝜕𝑥

(

𝜕𝑠
𝜕𝑣𝑥

)

+ 𝜕
𝜕𝑦

(

𝜕𝑠
𝜕𝑣𝑦

)

−
𝜕𝑠
𝜕𝑣

= 0, (7)

where the stationary Lagrangian density is now defined as follows

𝑠 ≡ − 𝛿
4
𝑣2𝑡 −

1
4

(

𝑣2𝑥 + 𝑣2𝑦
)

+
𝜌
4
(𝑥2 + 𝑦2)𝑣2 + 𝜈

4
𝑣4 −

𝜇
2
𝑣2. (8)

ote that this new Lagrangian depends explicitly on 𝜇, which is dif-
erent from the Lagrangian density that we have previously defined in
q. (2).

. The Ritz optimization method

In this section, we introduce a variational method that is widely
sed in order to compute soliton solutions, such as fundamental STSs
r multidimensional solitons, in non-integrable conservative systems:
he Ritz optimization method [24–27]. This method allows us to com-
ute approximate analytical solutions of a given nonlinear partial
ifferential equation by applying the principle of least action to a
arameter-dependent solution ansatz, based on either the Lagrangian
r the Hamiltonian formalism. There are other methods, such as the
oment approach [28–30], that could be used to compute approximate

nalytical solutions for this type of equations, leading to similar results.
owever, these methods will not be considered in the present work.

In our context, this Ritz variational approach was used before,
n order to predict the existence of 3D STSs in inhomogeneous Kerr
onlinear media [14,15]. In what follows, we describe the main steps
n either the Lagrangian or the Hamiltonian formalism.

.1. The Ritz method in the Lagrangian formalism

The method consists of the following four main steps:

(1) First of all, we need to define an approximate ansatz solution, or
trial function, that captures the main features and shape of the
state that we want to compute. This ansatz is a function of the
form 𝑢 = 𝑢[𝑥, 𝑦, 𝑡; 𝑞(𝑧)], which depends on 𝑧, through a number of
parameters

𝑞(𝑧) = {𝑞1(𝑧),… , 𝑞𝑛(𝑧)},

which are the generalized coordinates of the system.
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(2) Next, we calculate the effective Lagrangian function of the system,
which is defined as

𝐿[𝑞(𝑧)] ≡ ∫R3

(

𝑢, 𝑢2𝑡 ,∇
2
⟂; 𝑢[𝑥, 𝑦, 𝑡, 𝑞(𝑧)]

)

𝑑𝑥𝑑𝑦𝑑𝑡. (9)

(3) After that, we obtain the dynamical system for the generalized
coordinates by computing the Euler–Lagrange equations

𝑑
𝑑𝑧

(

𝜕𝐿
𝜕(𝑑𝑧𝑞𝑚)

)

− 𝜕𝐿
𝜕𝑞𝑚

= 0, (10)

for each parameter 𝑞𝑚 with 𝑚 = 1,… , 𝑛, where we have defined
𝑑𝑧𝑞𝑚 ≡ 𝑑𝑞𝑚∕𝑑𝑧.

(4) Finally, in the last step, we study the dynamics of the reduced
system (10), and rebuild the dynamics of the STS by using the
initial ansatz.

3.2. The Ritz method in the Hamiltonian formalism

Equivalently, one may consider the Hamiltonian formalism for ob-
taining an effective reduced system. The process is equivalent to that
followed in the Lagrangian case, but now we use the Hamiltonian

𝐻[𝑞(𝑧), 𝑝(𝑧)] ≡ ∫R3


(

𝑢, 𝑢2𝑡 ,∇
2
⟂; 𝑢[𝑥, 𝑦, 𝑡, 𝑞(𝑧)]

)

𝑑𝑥𝑑𝑦𝑑𝑡, (11)

where 𝑝(𝑧) = {𝑝1(𝑧),… , 𝑝𝑛(𝑧)} are the generalized momenta defined as

𝑝𝑚 = 𝜕𝐿
𝜕(𝑑𝑧𝑞𝑚)

.

Then, the effective dynamics of the system are captured by the
amiltonian equation of motion

𝑑𝑞𝑚
𝑑𝑧

= 𝜕𝐻
𝜕𝑝𝑚

,
𝑑𝑝𝑚
𝑑𝑧

= − 𝜕𝐻
𝜕𝑞𝑚

, (12)

for each 𝑚 = 1,… , 𝑛. After studying this reduced system, we rebuild
the bullet behavior by using the ansatz solution (13).

4. Shape-preserving spatiotemporal solitons

In this section, we will compute an approximate solution for shape-
preserving (i.e., steady state) STSs, by applying the Ritz optimization
method to the stationary Lagrangian density (8). Although this ap-
proach does not give us any information about the transient behavior
or propagation dynamics, it allows us to compute the propagation
constant 𝜇 and, therefore, to estimate the stability of STSs through
the Vakhitov–Kolokolov criterium [31], as it has been demonstrated in
previous papers [32–35]. We will come back to this stability analysis
in Section 7.2.

At this stage, it is essential to define a proper trial function or
olution ansatz for analytically describing the STSs. The selection of
his ansatz is not entirely arbitrary, but it is justified by different
reliminary observations, mostly related to the symmetries of the sys-
em. For example, in the absence of a 2D parabolic potential, or with
adially symmetric potentials, Eq. (1) may have radially symmetric 3D
olitons, whose shape can be captured by just considering the radius
2 = 𝑡2 + 𝑥2 + 𝑦2 as the only variable [8,34,36–38]. In our specific case,
owever, the potential is 2D, and the 𝑟-dependent ansatz is not valid.
herefore, we choose the steady-state STS ansatz

(𝑥, 𝑦, 𝑡; 𝜂, 𝑎, 𝐴) = 𝐴sech(𝜂𝑡)Exp
(

−
𝑥2 + 𝑦2

2𝑎2

)

, (13)

where 𝑎 > 0 is the width of the spatial Gaussian profile, 𝜂 > 0 is the
inverse of the temporal width, and 𝐴 > 0 is the amplitude of the pulse.
The justification for this choice is based on two main observations: (a)
in the absence of dispersion and nonlinearity, Eq. (1) has Laguerre-
Gaussian mode solutions, and the fundamental mode is a Gaussian; (b)
in the absence of diffraction and spatial potential, Eq. (1) possesses a
sech-shape bright soliton solution in the anomalous GVD regime [5].
 s

3

Note that this problem can also be analyzed by just considering a
Gaussian ansatz, which makes the calculations simpler. This approach
was followed in [20].

By using the definition of the pulse energy

𝐸 ≡ ∫R3
|𝑢(𝑥, 𝑦, 𝑡)|2𝑑𝑥𝑑𝑦𝑑𝑡 = ∫R3

𝑣(𝑥, 𝑦, 𝑡)2𝑑𝑥𝑑𝑦𝑑𝑡,

we obtain that

𝐴 =
√

𝜂𝐸
2𝜋𝑎2

,

nd we can make our ansatz [i.e., Eq. (13)] energy-dependent. In this
ay, the pulse energy becomes the most important control parameter

or the STS solutions. Thus, we have that 𝑞 = {𝑞1, 𝑞2, 𝑞3} = {𝜂, 𝑎, 𝐸}.
With this ansatz, the static Lagrangian

𝑠(𝑞) = ∫R3
𝑠[𝑢, 𝑢2𝑡 ,∇

2
⟂; 𝑢(𝑞)]𝑑𝑥𝑑𝑦𝑑𝑡 (14)

educes to

𝑠 =
𝐸
12

(

1
𝑎2

(

𝐸𝜂𝜈
2𝜋

− 3
)

− 𝛿𝜂2 − 6𝜇 + 3𝜌𝑎2
)

. (15)

s a result, the effective Euler–Lagrange equations (10) become
𝜕𝐿𝑠
𝜕𝜂

= 0,
𝜕𝐿𝑠
𝜕𝑎

= 0,
𝜕𝐿𝑠
𝜕𝐸

= 0, (16)

which respectively lead to the set of equations
𝐸𝜈
𝑎2

− 4𝜋𝛿𝜂 = 0, (17)

𝜂𝜈 − 6𝜋(1 + 𝜌𝑎4) = 0, (18)

= − 1
2𝑎2

(

1 −
𝐸𝜂𝜈
3𝜋

)

−
𝛿𝜂2

6
+

𝜌
2
𝑎2, (19)

providing that 𝑎 > 0. By combining these expressions, one finally
obtains that the steady-state soliton parameters satisfy

𝐸 = 2𝜋𝑎
√

6𝛿(1 + 𝜌𝑎4) (20)

𝜂 = 𝐸𝜈
4𝜋𝛿𝑎2

= 𝜈
2𝛿𝑎

√

6𝛿(1 + 𝜌𝑎4), (21)

hereas the propagation constant reads as

= 1
4

(

5𝜌𝑎2 + 1
𝑎2

)

(22)

Note that all of the previous quantities are parameterized by the spatial
width coefficient 𝑎.

Moreover, the soliton parameters allow us to compute the peak
soliton intensity (i.e., the intensity at the center of the bullet) as

𝐼𝑝𝑒𝑎𝑘 = |𝐴|2 =
𝐸𝜂
2𝜋𝑎2

= 3
𝜈𝑎2

(1 + 𝜌𝑎4). (23)

At this stage, we can already obtain some general insights about
our system. From Eqs. (20) and (21) we find that, in order to obtain
real solutions, it is required that 𝛿(1 + 𝜌𝑎4) > 0. When 1 + 𝜌𝑎4 = 0
(i.e., if 𝑎4 = −1∕𝜌), 𝐸 and 𝜂 become zero. This means that, with 𝐸 → 0,
the temporal width of the state 𝜂−1 → ∞, and the STS becomes the
continuous-wave (CW) state of the system, which is homogeneous in
time. Furthermore, from Eq. (21) we see that 𝛿 and 𝜈 must have the
same sign, in order for 𝜂 to be positive.

Eq. (20) can also be written in the form

𝜌𝑎6 + 𝑎2 − 1
6𝛿

( 𝐸
2𝜋

)2
= 0, (24)

nd it may have either one or two positive real roots, depending on
he signs of 𝜈, 𝛿, and 𝜌. Unfortunately, this equation does not possess
xact analytical solutions, and we need to solve it either by using
pproximate analytical methods, or numerically. In what follows, we
ill consider guiding media, and therefore we shall take 𝜌 < 0.

Depending on the signs of 𝜈 and 𝛿, we may consider the two main
cenarios:
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• 𝜈 = 𝛿 = 1: Self-focusing material with anomalous GVD,
• 𝜈 = 𝛿 = −1: Self-defocusing material with normal GVD.

In what follows, we will analyze the features of these two scenarios
separately.

4.1. Guiding, self-focusing material with anomalous GVD

In the case of a guiding, self-focusing nonlinear material (𝜈 = 1)
with anomalous GVD (𝛿 = 1), Eqs. (20), (21), and (23) become

𝐸 = 2𝜋𝑎
√

6(1 + 𝜌𝑎4), (25)

𝜂 = 1
2𝑎

√

6(1 + 𝜌𝑎4), (26)

𝑝𝑒𝑎𝑘 = 3
𝑎2

(1 + 𝜌𝑎4). (27)

Fig. 1(a)–(c) show the modification of these quantities as a function
of 𝐸 for 𝜌 = −1. In this regime, Eq. (24) has, for a fixed value
of 𝐸, two real solutions, which correspond to the solution branches
𝑎 (solid red line) and 𝑏 (dashed red line), respectively. These two
solution branches coexist between 𝐸 = 𝐸0 ≡ 0 and the fold, or turning
point, which takes place at 𝐸 = 𝐸𝑓 (see the blue dot in Fig. 1). The
fold position can be calculated analytically, by solving the equation
𝑑𝐸∕𝑑𝑎 = 0, which leads to 1 + 3𝜌𝑎4 = 0, providing that 1 + 𝜌𝑎4 > 0.
The solution of this equation yields the fold parameters

𝑎𝑓 = (−3𝜌)−1∕4, 𝜂𝑓 = (−3𝜌)1∕4, (28)

𝐸𝑓 = 4𝜋𝑎𝑓 , 𝐼𝑓 = 2
𝑎2𝑓

. (29)

his scenario was initially analyzed by Yu et al. in Ref. [14]. Fig. 2
hows the modification of the STSs all along 𝑎 [see labels (i)–(iii)]
nd 𝑏 [see labels (iv)–(vi)], respectively. Fig. 2(i).1–(iii).1 show the
econstruction of the 𝑎-related STSs by using the solution ansatz (13)
or 𝐸 = 4, 6 and 8, where the values of 𝑎, 𝜂 and 𝐼𝑝𝑒𝑎𝑘, obtained
rom Eqs. (24)–(27), are shown in Table 1. To represent the STS we
lot isosurfaces for different intensity values (see caption in Fig. 2).
ig. 2(i).2–(iii).2 represent the wave-function intensity cross-sections
t the plane 𝑡 = 0, i.e. 𝐼𝜎 ≡ 𝐼(𝑥, 𝑦, 𝑡 = 0). Increasing 𝐸, from 𝐸0
o 𝐸𝑓 , the STSs on 𝑎 decrease their spatial width 𝑎 and temporal
idth 𝜂−1 [see how 𝜂 increases in Fig. 1(b)], while increasing their
mplitude, i.e., their peak intensity. After crossing 𝐸𝑓 , the 𝑏-STSs

just continue to decrease in 𝑎 and 𝜂−1, while increasing drastically in
𝑝𝑒𝑎𝑘 [see Fig. 2(iv)–(vi)]. As a result, the 𝑏-related STS compresses in
ll three dimensions, becoming a singularity with decreasing 𝐸. This
rocess can be appreciated in Fig. 2(iv).2–(vi).2.

.2. Guiding, self-defocusing material with normal GVD

In the case of a guiding, self-defocusing nonlinear material (𝜈 = −1)
ith normal GVD (𝛿 = −1), Eqs. (20), (21), and (23) become

= 2𝜋𝑎
√

−6(1 + 𝜌𝑎4), (30)

𝜂 = 1
2𝑎

√

−6(1 + 𝜌𝑎4), (31)

𝐼𝑝𝑒𝑎𝑘 = − 3
𝑎2

(1 + 𝜌𝑎4). (32)

Fig. 1(d)–(f) show the modification of these quantities as a function
of 𝐸 for 𝜌 = −1. In this regime, Eq. (24) has a single real solution,
and the ansatz parameters are single-valued in 𝐸. Thus, here there
exists just a single STS for any fixed value of 𝐸. This scenario was
partially analyzed by Raghavan and Agrawal in [15]. In contrast with
the anomalous GVD/self-focusing case, we can see that for the same
energy interval, the STS is spatially wider than the CW state, as shown
in Fig. 1(d). Furthermore, when compared with its anomalous GVD
analog, this STS is wider in space, thinner in time, and possesses a lower
peak intensity.
 (

4

Table 1
Fixed points associated with the STSs shown in Figs. 2 and 1(a), corresponding to the
anomalous GVD/self-focusing nonlinearity.
 Label 𝐸 𝑎 𝜂 𝐼𝑝𝑒𝑎𝑘
𝑎 (i) 4 0.982009 0.33008 0.217906
𝑎 (ii) 6 0.9555 0.522974 0.547004
𝑎 (iii) 8 0.904689 0.777824 1.21002
𝑏 (iv) 8 0.544214 2.14952 9.24086
𝑏 (v) 6 0.394665 3.06537 18.793
𝑏 (vi) 4 0.260499 4.69069 44.0051

5. Effective dynamics of spatiotemporal in the Lagrangian formu-
lation

So far, we have just described the properties of steady-state STSs,
but we do not know anything yet about their dynamics while propagat-
ing in 𝑧, nor their stability. In order to do that, we need to include the
𝑧-dependence in the STS description. Here we derive a four-dimensional
(4D) effective dynamical system in the independent evolution variable
𝑧, by considering the Lagrangian formalism. To do so, first, we have
to generalize the solution ansatz to include the contribution of 𝑧. This
eneralization is also known as the Kantarovitch method [39].

Our new ansatz is a product of the static one [see Eq. (13)] and a
pacetime-dependent phase contribution, namely

(𝑧, 𝑥, 𝑦, 𝑡) ≡ 𝑣[𝑥, 𝑦, 𝑡; 𝑞𝐴(𝑧)]Exp
(

𝑖𝐶[𝑥, 𝑦, 𝑡; 𝑞𝐵(𝑧)]
)

, (33)

ith 𝑞𝐴(𝑧) = {𝜂(𝑧), 𝑎(𝑧)}, 𝑞𝐵(𝑧) = {𝜃(𝑧), 𝛼(𝑧), 𝜙(𝑧)}, and

[𝑥, 𝑦, 𝑡; 𝑞𝐵(𝑧)] ≡ 𝑡2𝜃(𝑧) +
(

𝑥2 + 𝑦2
)

𝛼(𝑧) + 𝜙(𝑧),

here 𝛼 represents the spatial chirp, 𝜃 the temporal chirp, and 𝜙 the
hase.

This ansatz leads to the effective 𝑧-dependent Lagrangian

𝐿(𝑧)𝐸−1 =𝑑𝑧𝜙 +
𝜋2𝑑𝑧𝜃
12𝜂2

+ 𝑎2𝑑𝑧𝛼 + 𝛿
6
𝜂2 + 𝜋2𝛿𝜃2

6𝜂2

+(4𝛼2 − 𝜌)𝑎
2

2
+ 1

2𝑎2

(

1 −
𝜈𝐸𝜂
6𝜋

)

,
(34)

here 𝑞(𝑧) = {𝑞𝐴(𝑧), 𝑞𝐵(𝑧)} = {𝜂(𝑧), 𝑎(𝑧), 𝜃(𝑧), 𝛼(𝑧), 𝜙(𝑧)}. The Euler–
agrange equations associated with 𝜃, 𝛼, 𝜂, and 𝑎 lead to the 4D effective
ynamical system
𝑑𝜂
𝑑𝑧

= 𝑓1 ≡ −2𝛿𝜂𝜃,

𝑑𝑎
𝑑𝑧

= 𝑓2 ≡ 2𝑎𝛼,

𝑑𝜃
𝑑𝑧

= 𝑓3 ≡ 2𝛿
(

𝜂4

𝜋2
− 𝜃2

)

−
𝐸𝜈𝜂3

2𝜋3𝑎2
,

𝑑𝛼
𝑑𝑧

= 𝑓4 ≡
1
2𝑎4

(

1 −
𝜈𝜂𝐸
6𝜋

)

+
𝜌
2
− 2𝛼2,

(35)

hich can also be written, in a more compact fashion, as
𝑑𝑞
𝑑𝑧

= 𝑓 (𝑧;𝐸), (36)

where 𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4) is the nonlinear vector field defined in (35).
Note that Eq. (34) depends on 𝜙 only through 𝑑𝑧𝜙: therefore, all terms
n the associated Euler–Lagrange equation are vanishing.

With this approach, we have been able to reduce the infinite-
imensional Eq. (1) down to a 4D dynamical system, which describes
he evolution of the four STS parameters along the propagation distance
. The Euler–Lagrange equation associated with 𝜙 does not give any
seful information, since each of its components is null. Therefore, the
ontribution of the phase remains irrelevant.

Here the fixed points, or equilibria of the system, 𝑞 = 𝑞𝑒 ≡
𝜂 , 𝑎 , 𝛼 , 𝜃 ) satisfy 𝑑𝑞 ∕𝑑𝑧 = 0. This condition yields two types of
𝑒 𝑒 𝑒 𝑒 𝑒
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Fig. 1. Bifurcation diagrams for STS states as a function of 𝐸. Left column: Self-focusing/anomalous GVD. (a) Panel shows the width of the STS as a function of 𝐸; (b) Panel
shows the inverse of the temporal width 𝜂, or (c) the STS peak intensity 𝐼𝑝𝑒𝑎𝑘. The branch of solutions 𝑎 is plotted in solid, while 𝑏 uses a dashed line. Labels (i)–(vi) correspond
to the STSs depicted in Fig. 2. Right column: Self-defocusing and normal GVD regime. From (d)–(f) we plot 𝑎, 𝜂, 𝐼𝑝𝑒𝑎𝑘 and 𝜇 as a function of 𝐸.

Fig. 2. STS states in the self-focusing/anomalous GVD regime. Panels (i).1–(iii).1 show the 𝑎-STSs reconstruction corresponding to labels (i)–(iii) in Fig. 1(a) for 𝐸 = 4, 6, and
8, respectively. Here we have plotted five isosurfaces at different peak intensities, namely 𝐼 = 0.08, 0.12, 0.3, 0.5, 1.0. Panels (i).2–(iii).2 illustrate the 𝑡 = 0 cross-section intensity
𝐼𝜎 ≡ 𝐼(𝑥, 𝑦, 𝑡 = 0) for the STSs shown above. Panels (iv)–(vi) show analogous information than (i)–(iii), but for 𝑏-related states.

5
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equilibria, which are both chirp-free (i.e., 𝜃𝑒 = 𝛼𝑒 = 0). The simplest
one corresponds to the CW beam, which is homogeneous in time. This
equilibrium reads 𝑞ℎ𝑒 = (𝜂ℎ𝑒 , 𝑎

ℎ
𝑒 , 𝛼

ℎ
𝑒 , 𝜃

ℎ
𝑒 ) ≡ (0, 1, 0, 0). The CW solution is

plotted, for both regimes, in Fig. 1 by using a solid blue line. The other
equilibrium solution is localized in space-time, and it corresponds to
STSs 𝑞 = 𝑞𝑠𝑒 = (𝜂𝑠𝑒 , 𝑎

𝑠
𝑒, 𝛼

𝑠
𝑒 , 𝜃

𝑠
𝑒), where (𝛼𝑠𝑒 , 𝜃

𝑠
𝑒) = (0, 0), and 𝑎𝑠𝑒 and 𝜂𝑠𝑒 satisfy

Eqs. (20) and (21), respectively.
In Section 7.3 we will perform a linear stability analysis of Eq. (35)

around its equilibria, and study how the linear dynamics of the system
change as a function of 𝐸. These findings will be later confirmed by
numerically solving Eq. (35).

6. Effective dynamics of spatiotemporal solitons in the Hamilto-
nian formulation

Most of the time, when seeking STS solutions of nonlinear partial
differential equations, the variational Ritz optimization method has
focused on a Lagrangian description [14,15]. In this section, we show
that the effective 4D dynamical system (35) and their equilibria can
also be obtained in the framework of the Hamiltonian formalism.

For a start, we need to introduce the generalized momenta 𝑝 =
(𝑝𝜂 , 𝑝𝑎, 𝑝𝜃 , 𝑝𝛼 , 𝑝𝜙), which are canonically conjugate of 𝑞 = (𝜂, 𝑎, 𝜃, 𝛼, 𝜙).
These momenta are defined as

𝑝𝜂 =
𝜕𝐿

𝜕(𝑑𝑧𝜂)
, 𝑝𝑎 =

𝜕𝐿
𝜕(𝑑𝑧𝑎)

, 𝑝𝜃 = 𝜕𝐿
𝜕(𝑑𝑧𝜃)

,

𝑝𝛼 = 𝜕𝐿
𝜕(𝑑𝑧𝛼)

, 𝑝𝜙 = 𝜕𝐿
𝜕(𝑑𝑧𝜙)

.

By utilizing the Lagrangian function defined by Eq. (34), the momenta
become 𝑝𝜂 = 0, 𝑝𝑎 = 0 and

𝑝𝜃 = −𝐸𝜋2

12𝜂2
, 𝑝𝛼 = −𝐸𝑎2, 𝑝𝜙 = −𝐸. (37)

At this point, the Hamiltonian can be computed by means of two
ifferent approaches. One of them uses Eq. (11) with the Hamiltonian
ensity (5) and the chirp-dependent ansatz (33). The other option
onsists of applying the Legendre transform to Eq. (34) by using the
eneralized momenta in Eq. (37). In any case, we obtain the effective
amiltonian

= 𝐸
[

𝛿𝜂2

6
+ 𝜋2𝛿𝜃2

6𝜂2
+ 𝑎2

2
(4𝛼2 − 𝜌) + 1

2𝑎2

(

1 −
𝐸𝜈𝜂
6𝜋

)]

,

hich, when written in terms of generalized momenta, reads as

𝐻(𝜃, 𝛼, 𝑝𝜃 , 𝑝𝛼)𝐸−1 = 𝛿𝐸𝜋2

72𝑝𝜃
+

2𝛿𝜃2𝑝𝜃
𝐸

+
𝑝𝛼
2𝐸

(4𝛼2 − 𝜌)

+ 𝐸
2𝑝𝛼

(

1 − 𝐸𝜈
6

√

− 𝐸
12𝑝𝜃

)

In this case, the Hamiltonian equations of motion describing the
dynamics of the system read as
𝑑𝑝𝜃
𝑑𝑧

= − 𝜕𝐻
𝜕𝜃

= 4𝛿𝜃𝑝𝜃 ,

𝑑𝑝𝛼
𝑑𝑧

= − 𝜕𝐻
𝜕𝛼

= 4𝛼𝑝𝛼 ,

𝑑𝜃
𝑑𝑧

= 𝜕𝐻
𝜕𝑝𝜃

= −2𝛿𝜃2 + 𝐸2

72𝑝2𝜃

(

𝛿𝜋2 + 𝐸2𝜈
4𝑝𝛼

√

−
12𝑝𝜃
𝐸

)

,

𝑑𝛼
𝑑𝑧

= 𝜕𝐻
𝜕𝑝𝛼

= 1
2
(𝜌 − 4𝛼2) + 𝐸2

2𝑝2𝛼

(

1 − 𝐸𝜈
6

√

− 𝐸
12𝑝𝜃

)

,

(38)

This dynamical system, defined in the phase space (𝑝𝜃 , 𝑝𝛼 , 𝜃, 𝛼), pos-
sesses the same information as Eq. (35), which describes the dynamics
of the system in the (𝜂, 𝑎, 𝜃, 𝛼) space. Moreover, the equation 𝑑𝑝𝜙

𝑑𝑧 =
− 𝜕𝐻

𝜕𝜙 = 0, implies that 𝑝𝜙 = −𝐸 remains constant during propagation,

which means that 𝐸 is conserved in the course of the 𝑧-evolution.
6

In this formulation, the equilibria of the system are obtained from
the nullity of the gradient of 𝐻 , evaluated at (𝑞, 𝑝) = (𝑞𝑒, 𝑝𝑒) [22],
namely

𝐻|𝑞𝑒 ≡ (𝜕𝜃𝐻, 𝜕𝛼𝐻, 𝜕𝑝𝜃𝐻, 𝜕𝑝𝛼𝐻)(𝑞𝑒 ,𝑝𝑒) = 0. (39)

he first two conditions yield 𝜃𝑒 = 𝛼𝑒 = 0. These, once combined with
he steady-state versions of the third and fourth equations in (38), lead
o

𝜋2 + 𝐸2𝜈
4𝑝𝑒𝛼

√

−
12𝑝𝑒𝜃
𝐸

= 0, (40)

𝜌
2
+ 𝐸2

2(𝑝𝑒𝛼)2

(

1 − 𝐸𝜈
6

√

− 𝐸
12𝑝𝑒𝜃

)

= 0, (41)

espectively. By inserting the expressions for 𝑝𝛼 and 𝑝𝜃 in the previous
equations, one recovers the STS solution conditions (17) and (18). In
Section 7.2 we will use this formulation to estimate the stability of
STSs by using the Lyapunov stability criterion. This approach was also
considered in [20], but using a simpler Gaussian ansatz.

7. Spatiotemporal solitons stability

So far, we have studied the shape, features, and existence regions
of STSs, without mentioning their stability properties: now, the time
for tackling this issue has arrived. Different complementary approaches
exist in order to determine STS stability, although most authors decide
to use just one of them and neglect the information which could be
gained from other methods. In this section, we determine the stability
of STSs by using three different methods, which are of common use.
They are the Vakhitov–Kolokolov stability criterion [31], the Lyapunov
stability criterion [40], and the spectral stability criterion [23].

7.1. Vakhitov-Kolokolov stability criterion

The dependence of the propagation constant 𝜇 on energy 𝐸 allows
s to determine the linear stability of STSs, in terms of the Vakhitov–
olokolov stability (VKS) criterion [5,31]. Such a dependence was
omputed in Section 4, and it is graphically illustrated in Fig. 3(a)
or the anomalous dispersion propagation regime. The VKS criterion
stablishes that an STS state is linearly stable (i.e., with respect to small
erturbations), if the derivative of the energy with respect to 𝜇 is a
ositive quantity (i.e., 𝑑𝐸∕𝑑𝜇 > 0), and unstable otherwise. The main
dea behind this criterion is based on the analysis of the properties of
he linear operator associated with Eq. (1), evaluated on the soliton
olution: we recommend the interested reader to consult at Secs. 2.3
n [5] for details.

The red curve in Fig. 3(a) corresponds to 𝜌 = −1, the same case that
e have studied in previous sections [see Fig. 1(a)–(c)]. This criterion

hows that 𝑎 is stable (see solid line), while 𝑏 is unstable (see dashed
ine). The instability threshold 𝜇𝑐 occurs whenever 𝑑𝐸∕𝑑𝜇|𝜇𝑐 = 0,

which leads to

𝜇𝑐 =
1
4

(

5𝜌
√

−3𝜌
+
√

−3𝜌

)

, 𝐸𝑐 =
4𝜋

(−3𝜌)1∕4
. (42)

This point corresponds to the fold occurring at 𝐸𝑓 : in the following,
we shall write (𝜇𝑐 , 𝐸𝑐 ) = (𝜇𝑓 , 𝐸𝑓 ): the point is marked by means of a
ed bullet in Fig. 3(a).

So far, we have studied the formation of STSs whenever 𝜌 = −1.
owever, it remains to be studied how the stability and the region of
xistence of STSs are modified for different values of 𝜌. To unveil these
hanges, we show, in Fig. 3(a), the modification of the 𝜇 curve for other
wo characteristic values of 𝜌: specifically, 𝜌 = −0.1 (in blue) and 𝜌 = 0

(in black). By increasing 𝜌, the region of existence of STSs broadens,
as the critical point (𝐸, 𝜇) = (𝐸𝑐 , 𝜇𝑐 ) moves towards higher values of
𝐸. The dependence of 𝐸𝑐 upon 𝜌 is shown in Fig. 3(b). Here, the green
shadowed area corresponds to the region of existence of STSs. For 𝜌 = 0,
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only the branch 𝑏 survives, and the STSs are always unstable. These
results show that the presence of a non-vanishing parabolic potential is
essential for the stabilization of STSs [20]. A similar analysis may show
that, in the normal GVD regime [see Fig. 1(d)–(f)], the single branch
of STS solutions remains always stable.

7.2. Lyapunov stability criterion

The Hamiltonian provides information about the stability of the
fixed points in terms of the Lyapunov stability criterion [40,41]. When-
ever it is evaluated at the STS equilibria, the Hamiltonian reads as

𝐻𝑒 ≡ 𝐻(𝜃𝑒, 𝛼𝑒, 𝑝𝑒𝜃 , 𝑝
𝑒
𝛼) =

−𝐸

[

𝛿𝐸𝜋2

72𝑝𝑒𝜃
−

𝑝𝑒𝛼
2𝐸

𝜌 + 𝐸
2𝑝𝑒𝛼

(

1 − 𝐸𝜈
6

√

− 𝐸
12𝑝𝑒𝜃

)]

,

or, in terms of the generalized coordinates, as

𝐻𝑒 ≡ 𝐻(𝑞𝑒) = 𝐸

[

𝛿𝜂2𝑒
6

−
𝑎2𝑒
2
𝜌 + 1

2𝑎2

(

1 −
𝐸𝜈𝜂𝑒
6𝜋

)

]

. (43)

Next, the Lyapunov stability criterion establishes that, if an equilibrium
𝑞𝑒 minimizes (maximizes) 𝐻 , such a state is stable (unstable). The
way of determining if 𝑞𝑒 maximizes or minimizes 𝐻 , is by studying
the determinant of the Hessian matrix associated with 𝐻 , once it is
evaluated at such a point. Defined in terms of its components, the
Hessian matrix of 𝐻 evaluated at 𝑞𝑒, reads as

2𝐻(𝑞𝑒)(𝑖,𝑗) ≡
(

𝜕2𝐻
𝜕𝑞𝑖𝜕𝑞𝑗

)

(𝑞𝑒), (44)

where the subindex 𝑖, 𝑗 = 1,… , 4, scan the four STS parameters
(𝑞1, 𝑞2, 𝑞3, 𝑞4) = (𝜂, 𝑎, 𝜃, 𝛼). The determinant of this matrix, known as the
Hessian of 𝐻 , reduces to

Hess(𝐻)𝑒 ≡ det
(

2𝐻(𝑞𝑒)
)

=

−
𝛿𝐸4 (12𝜋2𝑎6𝑒𝛿𝜌 + 6𝜋𝑎2𝑒𝛿(𝜂𝑒𝜈𝐸 − 6𝜋) + 𝐸2)

27𝑎4𝑒𝜂2𝑒
.

he main thing that we need to know now is that, if Hess(𝐻)𝑒 > 0, 𝐻𝑒 =
𝐻(𝑞𝑒) is a minimum of 𝐻 , and 𝑞 = 𝑞𝑒 is a stable equilibrium. However,
when Hess(𝐻)𝑒 < 0, 𝐻 has a maximum at 𝑞 = 𝑞𝑒, which corresponds
to an unstable STS. The transition between these two situations occurs
when Hess(𝐻)𝑒 = 0, a condition which defines the instability threshold.

Fig. 4(a) shows Hess(𝐻)𝑒 as a function of 𝐸, for the case of anoma-
lous GVD/self-focusing regime and 𝜌 = −1 (see red curve). The solid
portion of this curve [i.e., Hess(𝐻)𝑒 > 0] corresponds to the stable STS
branch 𝑎, which extends from 𝑎 = 𝑎ℎ𝑒 up to 𝑎 = 𝑎𝑓 [see Fig. 1(a)].
Whereas the dashed section [Hess(𝐻)𝑒 < 0] corresponds to 𝑏. In this
case, the condition Hess(𝐻)𝑒 = 0 corresponds to the turning point or
fold of the STS solutions, which occurs at 𝐸 = 𝐸𝑐 = 𝐸𝑓 . Thus, the
prediction of the Lyapunov stability criterion agrees with the previously
described VKS criterion (see Section 7.1). For a comparison, in Fig. 4(a)
we also trace Hess(𝐻)𝑒 for other values of 𝜌.

Fig. 4(b) illustrates how 𝐻𝑒 changes with 𝐸, for several values of
𝜌. For a given value of 𝐸, the minimum attained by 𝐻𝑒 corresponds
to a stable solution on 𝑎. Whereas the maximum 𝐻𝑒 corresponds to
an unstable state on 𝑏, as predicted by the Hessian of 𝐻 . The cusp
of this graph corresponds to the position of the fold point, which is
shown in Fig. 1(a)–(d). These graphs are known as 𝐻 vs. 𝐸 diagrams,
and provide a fast method for determining stability [42].

In the normal regime, Hess(𝐻)𝑒 > 0 for every value of 𝐸: thus, STSs
are always stable.

7.3. Spectral linear stability and types of equilibria

The spectral linear stability analysis is based on the computation of
the set of eigenvalues (i.e., the spectrum) associated with the lineariza-

tion of Eq. (35) around the fixed point 𝑞𝑒. This analysis allows us to

7

Fig. 3. (a) Dependence of energy 𝐸 on 𝜇 for different values of 𝜌 in the anomalous
GVD regime. Stable (unstable) branches are plotted by using solid (dashed) lines. (b)
Region of existence of STSs as a function of 𝜌 (see green shadowed area). The line
limiting that area is 𝐸 = 𝐸𝑐 . Vertical dashed lines correspond to the three cases plotted
in (a).

Fig. 4. Lyapunov stability of STSs. Panel (a) shows the dependence of the Hessian of
𝐻 upon 𝐸, for the self-focusing/anomalous GVD regime, and three values of 𝜌. Panel
(b) shows the 𝐻𝑒 versus 𝐸 diagram.

etermine how the equilibria of the system react against perturbations
f the form 𝑞 = 𝑞𝑒 + 𝜖𝑞, where 𝜖 ≪ 1 and 𝑞 ≡ (𝜂̃, 𝑎̃, 𝜃, 𝛼̃). Moreover, one
ay classify them according to their behavior.

Very close to a fixed point 𝑞𝑒, the dynamics of the system (35) are
aptured by the linear dynamical system

𝑑𝑞
=  [𝑞 ]𝑞. (45)
𝑑𝑧 𝑒
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Here  [𝑞𝑒] is the Jacobian matrix of the vector field 𝑓 [see Eq. (35)],
which is defined by its components as follows

 [𝑞𝑒](𝑖,𝑗) ≡ 𝑓(𝑖,𝑗)(𝑞𝑒) =
(

𝜕𝑓𝑖
𝜕𝑞𝑖

)

(𝑞𝑒). (46)

In our case, the Jacobian matrix becomes

 [𝑞𝑒] ≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2𝛿𝜃𝑒 0 −2𝛿𝜂𝑒 0

0 2𝛼𝑒 0 2𝑎𝑒

31
𝐸𝜈𝜂3𝑒
𝜋3𝑎3𝑒

−4𝛿𝜃𝑒 0

− 𝜈𝐸
12𝜋𝑎4𝑒

42 0 −4𝛼𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (47)

ith

31 ≡

(

8𝛿𝜂𝑒 −
3
2
𝐸𝜈
𝜋𝑎2𝑒

)

𝜂2𝑒
𝜋2

, 42 ≡ − 2
𝑎5𝑒

(

1 −
𝜈𝐸𝜂𝑒
6𝜋

)

.

Then, the stability of the fixed points can be evaluated by solving
he linear eigenvalue problem

𝑤 = 𝜆𝑤, (48)

here 𝜆 and 𝑤 are the eigenvalue and eigenvector associated with the
acobian (47), respectively. The eigenvalues satisfy the bi-quadratic
haracteristic polynomial
4 + 𝑐2𝜆

2 + 𝑐0 = 0, (49)

ith the coefficients

2 ≡ 2(𝛿𝑒𝜂𝑒31 − 𝑎𝑒42),

0 ≡ −𝛿

(

4𝑎𝑒𝜂𝑒3142 +
𝐸2𝜂4

3𝜋4𝑎6𝑒

)

,

which can be easily solved to obtain

𝜆 = ±

√

√

√

√
−𝑐2 ±

√

𝑐22 − 4𝑐0
2

. (50)

n the following, we will study the linear stability of the equilibria, for
he two regimes under study.

For the anomalous/self-focusing regime, the distribution of eigen-
alues on the solution branches 𝑎 and 𝑏 is depicted in the 𝐸 versus
diagram plotted in Fig. 5(a). Fig. 5(i) and (ii) show the eigenspectrum

ssociated with stable STSs on 𝑎 for 𝐸 = 4 and 𝐸 = 6, respectively [see
Figs. 5(a) and 2(i)–(ii)]. The spectrum consists of four pure imaginary
eigenvalues 𝜎 = {±𝑖𝜆𝐴,±𝑖𝜆𝐵}, with 𝜆𝐴 > 𝜆𝐵 > 0. A fixed point with
these eigenvalues is known as center [23]. Center points are neutrally
stable, in the sense that nearby trajectories (i.e., soliton parameter
perturbations) are neither repelled nor attracted to it, but they undergo
permanent oscillations.

In contrast, eigenspectra for STSs on 𝑏 are shown in Fig. 5(iii) and
(iv): they correspond to the STS which are plotted in Fig. 2(v) and (vi)
for 𝐸 = 4 and 𝐸 = 6, respectively [see also Fig. 5(a)]. These spectra are
formed by two pure imaginary and two pure real eigenvalues, namely,
with 𝜎 = {±𝜆𝐶 ,±𝑖𝜆𝐷}. In this case, the associated equilibria are known
as saddle–centers, and are unstable [23]. Let us check these results by
performing numerical simulations of the evolution of the dynamical
system (35). The outcome of these simulations is shown in Fig. 6.

Fig. 6(a)–(d) show, by using a black line, the constant 𝑧-evolution
of a center unperturbed state on 𝑎 for 𝐸 = 6. The 𝑧-evolution of a
constant perturbation 𝑞 on the STS (i.e., 𝑞 = 𝑞𝑒+𝜖𝑞) is shown in the same
figure for 𝜖 = 0.01, 0.1 by using a red and a blue line, respectively. For
any of these perturbations, the center metastable equilibrium evolves
towards periodic oscillations with two different frequencies, where 𝜂
and 𝜃 oscillate with a lower frequency [see Fig. 6(a), (c)], whereas
𝑎 and 𝛼 oscillate with a higher frequency [see Fig. 6(b), (d)], as
predicted by the linear theory. By increasing 𝜖, so does the amplitude
8

Fig. 5. Eigenvalues associated with the dynamical system (35) for the anomalous GVD
regime. Panel (a) shows the eigenvalues distribution in the 𝐸 vs. 𝜇 diagram. Panels (i)
and (ii) show the spectrum associated with the center equilibria in 𝑎 for 𝐸 = 4 and
𝐸 = 6 in Fig. 1(a), respectively. Panels (iii) and (iv) show the eigenvalues associated
with the saddle–center points on 𝑏 for the same energy values.

of the oscillations in all of the 𝑞𝑒 components, while the oscillation fre-
quency decreases. Note that with increasing 𝜖, the variable 𝜃 develops
relaxation oscillations [see Fig. 6(c)].

In the phase space, these oscillations correspond to the closed orbit
which is illustrated through a 3D projection on the subspace spanned
by {(𝜂, 𝑎, 𝜃)} in Fig. 6(e). In contrast to the limit cycles (which are
typical for dissipative systems), these orbits are not isolated, but form
a continuous family around the center equilibrium [15]. In this sense,
different perturbations lead to different oscillatory STSs, which coexist
for the same value of energy. By increasing 𝐸, we find that the STS
center and the periodic oscillations modify in shape, amplitude, and
periodicity.

Fig. 6(f)–(i) show the evolution of the system (35), when taking as
the initial condition an unstable saddle–center STS fixed point with
𝐸 = 6. Here the parameters describing the temporal part of the STS
(i.e., 𝜂 and 𝜃) evolve rapidly to (𝜂, 𝜃) = (0, 0) as they follow the
eigenvectors associated with ±𝜆𝐶 , while 𝑎 and 𝛼 undergo periodic
oscillations, following the dynamics dictated by the pure imaginary
eigenvalues ±𝑖𝜆𝐷. The 3D projection of this dynamics on the subspace
{(𝜂, 𝑎, 𝜃)} yields the trajectory shown in Fig. 6(j), where the black dot
is the initial condition, corresponding to the unstable saddle–center
point. This representation clearly shows that the system evolves to an
oscillatory state in the plane 𝜂 = 0, which corresponds to the CW state.
Thus, we may interpret this behavior as beam self-imaging [43].

In the normal GVD/self-defocusing scenario, the eigenspectrum is
of the form 𝜎 = {±𝑖𝜆𝐴,±𝑖𝜆𝐵}, as it occurs for the 𝑎 solution branch,
and the dynamics around such equilibria is similar to what we have
depicted in Fig. 6(a)–(e).
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Fig. 6. Panels (a)–(d) illustrate the system dynamics, when considering as the initial condition a metastable equilibrium on the 𝑎-STS branch for 𝐸 = 6, slightly perturbed by a
constant term in all the parameter directions. The red curve corresponds to 𝜖 = 0.001, and the blue curve to 𝜖 = 0.01. The black horizontal line shows the analytically predicted
equilibrium 𝑞𝑒 = (𝜂𝑒 , 𝑎𝑒 , 𝜃𝑒 , 𝛼𝑒). In panel (e) we project these dynamics on the 3D subspace {(𝜂, 𝑎, 𝛼)}. Panels (f)–(i) shows the 𝑧-evolution of an unstable equilibrium on 𝑏 for
𝐸 = 6. Panel (j) shows its 3D projection.
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8. Full three-dimensional numerical simulations

The aim of this section is to compare the previously discussed
theoretical results with direct numerical solutions of the original GPE
[see Eq. (1)]. To solve this initial value problem, we take as the initial
condition the approximate variational solution defined by Eq. (33) with
the parameters corresponding to equilibria of the effective dynamical
theory. To do so, we utilize a pseudo-spectral split-step algorithm [44],
where the differential part of Eq. (1) is evaluated via a fast Fourier
transform and the linear potential and the nonlinear term are computed
exactly as a phase shift. Moreover, we confirm the validity of our re-
sults by implementing Runge–Kutta and predictor/corrector simulation
schemes [45]. In what follows, we analyze each scenario separately.

8.1. Anomalous/self-focusing scenario

The 𝑧-evolution of the initial stable chirp-free STS solution is shown
in Fig. 7(a)–(c) and (d)–(f) for 𝐸 = 6 and 𝐸 = 8, respectively. In
both cases, the top and middle panels compare the 𝑧-evolution of the
STS intensity at its center (blue curve), with the analytically predicted
intensity value from Section 5 (dashed gray line).

For 𝐸 = 6, the evolution of the STS intensity is not constant, but it
fluctuates around a value that is slightly larger than what is predicted
by the analytical theory. We may understand this, if we remember
that in the description of the effective dynamics the STS is a center
equilibrium, and therefore, neutrally stable, which means that even
numerical noise may perturb such equilibrium. In any case, simulations
reveal the presence of fast, small amplitude intensity fluctuations as
 s

9

shown in Fig. 7(a), (b). This behavior agrees with that obtained when
studying the effective reduced system (35) (see Section 7.3). These
intensity fluctuations are depicted in more detail in Fig. 7(b) for the
reduced interval 𝑧 ∈ (950, 1000). It is worth noting that the weak
fast fluctuations mainly result from the self-imaging effect due to the
beating of transverse symmetric Laguerre-Gaussian modes [46]. They
have a fixed period around 𝜋∕2 which is slightly modified due to the
phase accumulation from the second-order dispersion and the Kerr
term. The shape evolution of the STS in such an interval is illustrated
in Fig. 7(c) by considering two isosurfaces at intensities 𝐼1 = 0.5 and
2 = 0.1, respectively. Fig. 7(d)–(f) show that a similar evolution occurs
or 𝐸 = 8. However, in this case, the amplitude of the STS intensity
scillations is larger than the one for 𝐸 = 6.

The discrepancy between the analytically-obtained stable STS, and
umerical results becomes larger when we increase STS energy. The
enter intensity of STS obtained from either the analytical method
r from numerical simulations in the interval 𝑧 ∈ (0, 1000) is com-
ared in Fig. 8, by using a red line and blue circles, respectively.
or numerical solutions, the blue circles and the error bars represent
he time-averaged intensity values and the corresponding standard
eviation for stable states. For low values of 𝐸, the agreement is quite
ood, but it worsens with increasing 𝐸. Eventually, for energy values
bove 𝐸 ≈ 8.5, the system undergoes full wave collapse. This region is
llustrated by using a blue-shadowed area. This collapse occurs much
arlier than the analytical existence limit predicted by the theory at 𝐸 =
𝑓 (see red dot). An example of such destructive dynamics is illustrated

n Fig. 9(a), (b) for 𝐸 = 9. The theoretically stable STS maintains its
tability for a very short propagation length, but eventually, at 𝑧 ≈ 3.5,
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Fig. 7. Evolution with distance 𝑧 of a stable STS for 𝐸 = 6 [see (a), (b), (c)] or 𝐸 = 8 [see (d), (e), (f)]. Panel (a) shows the variation of the peak STS intensity vs. the propagation
istance. Panel (b) shows a close-up view of (a) for the interval 𝑧 ∈ [950, 1000]. Panel (c) shows the evolution of the STS along the interval shown in (b), obtained by plotting two
sosurfaces at 𝐼1 = 0.5 (red), and 𝐼2 = 0.1 (blue). The dashed gray straight line in (a) and (b) represents the theoretical value of the STS intensity. Panels (d), (e), (f) show the
ame information as (a), (b), (c), but for 𝐸 = 8.
Fig. 8. Evolution of peak intensity of stable STS with energy 𝐸 in the anomalous
GVD/self-focusing regime (i.e., 𝛿 = 𝜈 = 1). The red line shows the analytical value,

hile the blue circles and the error bars represent the average intensity value and
he standard deviation for stable states, respectively, which are obtained from full 3D
umerical simulations.

Fig. 9. Wave collapse started from an STS for 𝐸 = 9. Panel (a) shows the evolution of
he 𝐼𝑝𝑒𝑎𝑘, while panel (b) shows the modification of the STS with the propagation.

t undergoes wave collapse. This is characterized by a very fast growth
ate of the peak intensity [see Fig. 9(a)]. Such a concentration of the
ield intensity at the center of the state can also be observed in the STS
hell evolution which is shown in Fig. 9(b).

So, although it is not predicted by the reduced effective dynamics
escription, the 𝑧-evolution of high energy STSs in the GPE suffers from
ave collapse, owing to the self-focusing Kerr effect. The disagreement
10
Fig. 10. (a) 𝑧-evolution of unstable STS solutions for 𝐸 = 6 showing wave collapse.
(b) Shows similar dynamics for 𝐸 = 8.

between theory and numerical results, which to our knowledge was not
disclosed in earlier works, might be mitigated by including higher-order
self-defocusing nonlinearities (e.g., quintic-order nonlinear terms), or
high-order dispersive effects. However, these investigations will be
presented elsewhere.

We have performed similar simulations involving the analytically
predicted unstable STSs for different values of 𝐸 [see Fig. 10(a) for
𝐸 = 6 and Fig. 10(b) for 𝐸 = 8]. According to the numerical
simulation carried out on the reduced system (35), the unstable fixed
point corresponding to this STS evolves into an oscillating continuous-
wave state [see the evolution of 𝑎 and 𝛼 in the right column of Fig. 6],
that we have identified with self-imaging [43]. However, here, 3D
simulations initialized from the unstable STS variational solution do not
converge to the self-imaging state, but rather undergo wave collapse
almost immediately. This can be easily appreciated from the initial fast
growth of 𝐼𝑝𝑒𝑎𝑘, which is depicted in Fig. 10.

8.2. Normal/self-defocusing scenario

Similarly to the simulations performed in Section 8.1, here we test
the deviation, with respect to the exact numerical solutions which
are obtained by directly solving Eq. (1), of the analytically computed
variational STS solutions in the normal GVD/self-defocusing scenario.
The comparison between the numerical and the approximate solutions
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is reported in Fig. 11. As it was described in Section 8.1, the stability of
STSs is only confirmed for low values of 𝐸: the agreement is excellent
for low values of 𝐸, but it becomes progressively worse when increasing
the STS energy. However, despite these differences, in this regime, STS
does not suffer wave collapse, but they undergo complex oscillatory
dynamics, which may arise from secondary instabilities suffered by
the STS. A more in-depth study of this scenario will require further
investigations, which are beyond the scope of this work.

9. Discussions and conclusions

In this work, we have presented a complete and systematic analysis
of 3D soliton solutions of the 3D + 1 Gross–Pitaevskii equation (GPE)
with a 2D parabolic potential. This equation can be used for describing
light propagation in graded-index nonlinear media [14,15,20], and for
understanding the dynamics of nearly 1D condensates with a cigar-
shape potential [21]. In the nonlinear optics framework, our solutions
are known as spatiotemporal solitons (STSs). The GPE with the 2D
potential has a Lagrangian structure, which we have introduced in
Section 2 for the 𝑧-dependent and independent dynamics. Analytical
approximations for soliton solutions can be computed through the
Ritz optimization approach, by using an adequate parameter-dependent
solution ansatz (see Section 3). This approach, based on the variational
method, allows for reducing the GPE to a finite-dimensional dynamical
system, associated with the evolution of the soliton parameters.

In Section 4, by using the 𝑧-independent Lagrangian, we computed
the evolution of the parameters of a shape-preserving (i.e., steady
state) STS, including its propagation constant 𝜇. This allowed us to
understand the dependence of the STS solution upon its energy 𝐸,
which we use as the main control parameter. In the anomalous GVD
(self-focusing) regime, the STS existence region has an upper limit,
corresponding to a fold point at 𝐸𝑓 in [see Fig. 1(a)–(c)]. Below this
oint, two families of STSs 𝑎 and 𝑏 coexist. In the normal GVD
self-defocusing) regime, only one family of STS solutions exists, which
ersists for any value of 𝐸.

The previously described calculations can be generalized for 𝑧-
ependent states. This can be done by considering the Ritz optimization
ethod in either a Lagrangian or a Hamiltonian framework, as shown

n Sections 5 and 6. In this case, the essential information on the
ffective dynamics of the STS solution is provided by the reduced 4D
ynamical system (35).

In Section 7 we have used all of this characterization to deter-
ine the STSs stability by using three different approaches: the VKS

riterion, which uses the 𝜇 vs. 𝐸 dependence (see Section 7.1); the
yapunov stability criterion, which considers the 𝐻 vs. 𝐸 dependence
Section 7.2), and the spectral stability criterion (see Section 7.3),
here stability is studied in terms of the linearization of Eq. (35)
round its equilibria (i.e., steady-state STS solutions). We find a per-
ect agreement between these three different criteria. Furthermore, by
umerically solving Eq. (35), we have studied the STSs permanent
ynamics (Section 7.3).

Finally, in Section 8 we have tested our analytical predictions by
erforming extensive numerical simulations of the initial value problem
ssociated with the full 3D + 1 GPE (1). By doing so, we demonstrated
hat, for low 𝐸, the agreement between variational approaches and

numerical simulations is excellent, as depicted in Figs. 8 and 11. When
increasing 𝐸, however, a disagreement appears in both the anomalous
and the normal GVD regime. In the first case, the STSs suffer wave col-
lapse much below the theoretically predicted STS upper energy limit.
Whereas in the second case, STSs undergo complex spatiotemporal
dynamics, that will be analyzed in detail elsewhere. The limitations of
the variational approach were discussed originally in Ref. [7], although
they were not investigated in previous related works that studied our
system [14,15,20].

In future works, we will explore different mechanisms which could
e capable of stabilizing the observed STS instabilities. One of the pos-
ible paths to follow is to consider higher-order nonlinearities, which
11
Fig. 11. Evolution of peak intensity of stable STS with energy 𝐸 in the normal
GVD/self-defocusing regime (i.e., 𝛿 = 𝜈 = −1). The red line shows the analytical value
which is obtained from the variational approach, while the blue dots represent the
average intensity value obtained from full 3D numerical simulations.

may come into play for very high values of 𝐸 [47,48]. In particular, we
will consider self-defocusing (self-focusing) quintic nonlinearities for
the self-focusing (self-defocusing) Kerr nonlinear regimes that we have
studied here. Note that quintic nonlinear effects have been considered
in Ref. [37], but in the absence of the parabolic potential. It would also
be interesting to analyze how higher-order dispersion effects, such as
fourth-order dispersion, may affect STS instabilities.

Additional research could focus on other types of spatiotemporal po-
tentials, such as Gaussian, tapered, or helicoidal [49], and on studying
the emergence of 3D spatiotemporal vortex solitons (which were exten-
sively studied in BECs and other optical devices [3,13,50–52]). It would
also be interesting to explore the connection between conservative
STSs and the recently discovered dissipative STS in externally-driven
multimode cavities [53].

It is also worth mentioning that fundamental STSs with other mor-
phologies, such as the dipole STS state shown in Ref. [20], might be also
computed by using a different solution ansatz, which takes into account
higher-order mode profiles, instead of the fundamental Gaussian mode
of the waveguide.
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