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We derive the Green’s functions (concentrated force and couple in an infinite space) for the isotropic planar
relaxed micromorphic model. Since the relaxed micromorphic model particularizes into the micro-stretch,
Cosserat (micropolar), couple-stress, and linear elasticity model for certain choices of material parameters,
we recover the fundamental solutions in all these cases.

1. Introduction

The relaxed micromorphic is a new generalized continuum model
that allows to describe size-effects and band-gaps appearing in meta-
materials (Rizzi et al., 2021a; Voss et al., 2023; Rizzi et al., 2022a,c;
Ramirez et al., 2023; Demore et al., 2022; Rizzi et al., 2022d; Madeo
et al., 2015) (in its dynamic setting). The relaxed micromorphic model
belongs to the family of micromorphic models (Mindlin, 1964; Eringen,
1999) where the kinematics are given by the classical displacement
u : 2 - R? and the non-symmetric micro-distortion P : Q — R¥3,
The solution is then determined from the variational two-field problem

I(u, P) = / % ( (C, sym(Du — P),sym(Du — P))
Q
+ (C_ skew(Du — P), skew(Du — P)) (€))
+ {Criero SYM P, Sym P) + pyro L2(L Curl P, Curl P) ) dx

— min(u, P).

* Corresponding author.

Here C,, C ;0. L are positive-definite fourth-order tensors, and L, is a
characteristic length and .., = #y iS the macroscopic shear modulus.
Furthermore, C, is a positive semi-definite fourth order tensor and we
note the homogenization relations (Neff et al., 2014, 2020)

-1

-1
C. = Coieo (Cmic,(,—cm@ Cruee & cmm=<cmic..‘,<<cmim,+<ce) c.,

(2)

-1
Coiero = Co (ce - «:) Conero

connecting the macroscopic stiffness C,,,.., uniquely known from clas-
sical homogenization for a periodic metamaterial to the stiffness tensors
Chicro and C, of the relaxed micromorphic model. This new model
leverages some of the main shortcomings of the classical Eringen—
Mindlin micromorphic model (unbounded stiffness, multitude of pa-
rameters). This is achieved by reducing the complexity of the strain
energy function in two ways: first (i) by excluding some generalities in
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unbounded stiffness for other generalized continua
v (Eringen-Mindlin, Cosserat, second gradient)

linear elasticity with Cpicro

linear elasticity with Cpacro

many RVEs
>

(0.9]

+— characteristic length L. —

0

Fig. 1. The stiffness of the relaxed micromorphic model (RMM) is bounded from above and below. Other generalized continua exhibit unbounded stiffness for small sizes. For
large values of the characteristic length L, linear elasticity with a micro elasticity tensor is recovered (one RVE) while linear elasticity with a macro elasticity tensor is obtained

for small values of the characteristic length (many RVEs).

the local part of the energy, and second and foremost (ii) by reducing
the dependency of the curvature energy acting on a full gradient of
the micro-distortion in the classical Mindlin-Eringen model to only
a dependency on its Curl. The consequences of this choice are re-
markable: the additional balance equation remains of the second order
(Curl is a second order tensor) and the model still includes the better
known micro-stretch and Cosserat (micropolar) models (which can be
alternatively written in dislocation format with a Curl in the curvature
part (Ghiba et al., 2023)). Compared to the classical Eringen-Mindlin
micromorphic model, note the absence of mixed coupling terms be-
tween the elastic strain sym (Du — P) and the microstrain sym P, i.e,
terms like (@ sym(Du— P), sym(Du— P)). This is the reason for which the
crucial homogenization formula (2) for L, — 0 can be obtained. Unlike
for the linear Cosserat (micropolar) model, the relaxed micromorphic
model remains operative and well posed (Neff et al., 2014; d’Agostino
et al., 2022; Ghiba et al., 2015) also for zero Cosserat couple modulus
He 0 (C, = 0), in which case the force stress tensor remains
symmetric. The well-posedness is established using novel generalized
Korn’s inequalities for incompatible tensor fields (Lewintan and Neff,
2022, 2021b; Lewintan et al., 2021; Lewintan and Neff, 2021a,a; Neff
et al., 2015b, 2012), whereby sharp criteria for the validity of such
coercivity estimates were given in the recent works (Gmeineder and
Spector, 2021; Gmeineder et al., 2023b,a). In addition, the relaxed
micromorphic model now operates as a true two-scale model between
two clearly defined scales: the macroscopic scale with stiffness tensor
Cracro appearing for the characteristic length L, — 0 (arbitrary large
sample) and the microscopic scale with stiffness tensor C,;,, appearing
for L, — oo. Again, see Fig. 1, the limit L, — oo diverges as such in the
classical micromorphic, second gradient, Cosserat model, along with
others.

The above mentioned advantages have led to a multitude of inves-
tigations in short-time from the numerical side (Sky et al., 2024, 2021,
2022b,a; Schroder et al., 2022; Sarhil et al., 2023), from the modelling
side (Rizzi et al., 2021a; Voss et al., 2023; Rizzi et al., 2022a,c; Ramirez
et al., 2023; Demore et al., 2022; Rizzi et al., 2022d; Madeo et al.,
2015), analytical solutions (Rizzi et al., 2022b, 2021d,b,c), regularity
of solutions (Knees et al., 2023b,a), and many others.

In this paper we continue our investigations from the theoretical
side by determining the Green’s functions for the case of a concentrated
force and a concentrated couple in an infinite relaxed micromorphic
medium. Closed form solutions are derived using a Fourier transform
analysis and results from generalized functions. It is shown that sev-
eral well known generalized continuum fundamental solutions can

be obtained as singular limiting cases of the relaxed micromorphic
solution. In particular, from the relaxed micromorphic solutions we
can readily derive the couple-stress, Cosserat-micropolar, micro-stretch,
and classical elasticity fundamental solutions (Mindlin and Tiersten,
1962; Huilgol, 1967; Sandru, 1966; Hattori et al., 2023; Khan et al.,
1972; Weitsman, 1967; Mindlin, 1965; Dyszlewicz, 2004; Mindlin,
1963; Cowin, 1969; Lakes, 2016; Liang and Huang, 1996; Iesan and
Nappa, 2001; Timoshenko and Goodier, 1970), showing thus how
versatile the relaxed micromorphic theory is. On the other hand, the
full Eringen-Mindlin micromorphic model is at present too complicated
for analytical or even numerical solutions to be sought. Here we take
again advantage of the relaxed micromorphic model which drastically
simplifies the situation in the isotropic planar case (only one curvature
parameter remains operative). In the appendix we exhibit the two-scale
elasticity nature relaxed micromorphic model. Moreover, we show how
other generalized continua (micro-stretch, Cosserat-micropolar, couple
stress) appear as limits of the relaxed micromorphic model.

1.1. Notation

For vectors a,b € R", we define the scalar product (a,b)
> b; € R, the (squared) euclidean norm [|a||> := (a,a) and the
dyadic product a ® b := (q; b ,),.j € R™", In the same way, for tensors
P,0 € R™" we define the scalar product (P,Q) := Z:.’Fl P;0,; €R
and the (squared) Frobenius-norm || P||? := (P, P). Moreover, PT de-
notes the transposition of the matrix P, which decomposes orthogonally
into the skew-symmetric part skew P := %(P — PT) and the symmetric

! a
i=1%i

part sym P := %(P + PT). The identity matrix is denoted by 1, so that
the trace of a matrix P is given by trP := (P, 1), while the deviatoric
component of a matrix is given by devP = P — @ 1. Given this,
the orthogonal decomposition possible for a matrix is P = devsym P +
skew P+2P) 1 The Lie-Algebra of skew-symmetric matrices is denoted
by §0(3) := {A € R™3 | AT = —A}. The derivative Du and the curl of a
vector field u are defined as

U Wp W3 U3p —lp3
Du=| uy; o w3 |, curlu=VxXu=| u;—us, 3
Uz Uzp Uz3 Uy —Upp

We also introduce the Curl and the Div operators for P € R**3 as
(curl (Pyy, Py, Pp))T

(curl (Py;, Py, Py))T |

(curl (Py;, Py, Py3))"

Curl P =
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. T
div (Pyy, Py, Pp3)
Div P =[ div(Py, Py, Pys)" |- “
. T
div (Py;, Py, Py3)
With these definitions, we have consistently CurlDu = 0. The cross

product between a second order tensor and a vector is also needed and

is defined row-wise as follows

(bX (myy,myp,myz)’
mxb=| (bX(my,my,mp)" |=m-e-b=mye by, 5)
(b X (m3y, m3y, m33)"

where m € R*3, b € R3, and ¢ is the Levi-Civita tensor.
2. The isotropic relaxed micromorphic model

The isotropic relaxed micromorphic model has the kinematics of
the classical Eringen-Mindlin micromorphic isotropic model (Mindlin,
1964; Eringen, 1999), i.e. the displacement u € R> and the non-
symmetric micro-distortion P € R*3 as independent fields. The strain
energy density reads

W (Du, P, Curl P)
A
= u, |Isym(Du — P)||? + u, ||skew(Du — P)||> + ?etrz(Du -P)
Amicr
+ Hmicro ||Syl'l’1P||2 + %Ua (P) (6)

2
Hmacro Lc

2
+ (13—3 tr? (Curl P)) ,

(al ||dev sym Curl PI? + a, ||skew Curl P||?

while the two equilibrium equations are

Dive = f, 0 — Opicro — Cutlm= M, )

with
o :=2u, sym(Du — P) + 2, skew(Du — P) + A tr(Du — P)1,

Omicro += 2l’lmicru sym P+ Amicrutr (P) 1, (8)

m = Hmacro L¢

L2 (“1 dev sym Curl P + a, skew Curl P + % tr (Curl P) ]l) ,

where ¢ is the non-symmetric elastic force stress tensor, m is the non-
symmetric moment tensor, f is the standard body force vector and M
is the body volume couple tensor. The homogeneous Neumann and the
Dirichlet boundary conditions are

Neumann: t:=0cn=0, and n:=mxn=0, 9

Dirichlet: u=u, and 6 =Pxn, 10)

where the higher-order Dirichlet boundary conditions in (10) can be
particularized to

Pxn=0=Duxn, (11)

formally called “consistent coupling boundary conditions” (d’Agostino
et al., 2022). The following additional (but not independent) equilib-
rium equation can be derived combining the two equilibrium equa-
tions (7) based on the fundamental property of differential operators
DivCurl () =0

Div o, =f-DivM. 12)

micro

A similar additional equilibrium equation for o, does not exist in the
classical Eringen-Mindlin micromorphic model or the Cosserat model.

3. The isotropic relaxed micromorphic model in plane-strain

Under the plane-strain hypothesis only the in-plane components of
the kinematic fields are different from zero and they only depend on
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(x1,x,). The structure of the kinematic fields (&, P) are (Iesan and
Nappa, 2001)

uy P, P, O
~ u ~
i=| u |, uti:(u > P=| P P, 0],
0 2 0 0 o0
~ P, P
Pﬁ — ( 11 12 > , (13)
Py Py

while the structures of the gradient of the displacement Dz, of the Curl
of the micro distortion tensor Curl P, and of the double Curl of the
micro distortion tensor Curl Curl P are

upg w0
Di=| uy; uy, 0|,
0 0 0

Dt = ( g U )
U1 Up
[0 0| Pipy— Py
Curl P = Py — Py,

0

0 0
0 0]

Curlyp, P

- P, - P
P (705 ) e
b Py — Py

N Poip—Puzxn Pup—Pon |0
CurlCurlP=| Py =Py Pypn—Pp |0
0 0 |0

5|0

Curl Curl,, P 0

0 o o

P11,12 - P12,11 > .

Curl Curlypy PF := ( P = Pun
Py 12— Py

Py = P
The operator Curlyy, is a rotated divergence and

Curl,, P* = Div(P*RT), R= [0 1] ,

CurlCurl,p, P¥ = (DCurl,, P*)R" = (DDiv[P*RTHR . @5)

Because of the nature of the Curl operator, it is noted that Curl P just
has out of plane components that depend on the in-plane components
of P, while Curl Curl P fully preserves the in-plane structure. Moreover,
since

tr(Curl P) = 0, (16)
”dev syrnCurlIT’H2 = ”symCurl IN’Hz = HskewCurl }N’Hz

1 ~12 1 ~112
=5 ”Curl PH =3 HCurIZD Pn” ,

the plane strain isotropic relaxed micromorphic model will just depend
on one cumulative dimensionless parameter @ := %, and the strain
energy density in (6) reduces to

W (Dii, P, Curl P)

sym(Du — 1'3)”2 + p, ||skew(Du — }?’)H2 + %trz(Dﬁ— P)

= He

s sy P+ 22y 0 7 ount ]

= u, ||sym@at — 1?“)“2 + 1, ||skew(Di# - 1’5t‘)||2 + %trz(mﬁ -y an
~n2 A oy L? 2

+ Hy ||SYmM P”H + ftrz(Pn) + M2 < a ”CurlZD Pn”

=y, ||dev, sym(Dit — 1’5“)”2 o “skew(DB’“ - 13“)“2 + %trz(mﬁ - P

+ p,, ||dev, sym }3’1”2 + '%mnl(f)ﬁ) + ”Msz a ||Cur12D };’1”2 s

where dev, X = X — %tr(X )- 1,. Also, for better readability we employ
the following abbreviated forms: yy = Hiacros Hm = Hmicro> 4m = Amicro
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and Ay = Apacro- Moreover, under plane-strain conditions, the bulk
micro-moduli «, and k, = ko are related with the respective Lamé
type micro-moduli through the 2D relations

Ke i= Ae + Ue, K = Ap + My, - (18)

Accordingly, the relations between the macro moduli (py, Ay, k) and
the micro-moduli in plane strain become (see Appendix A.2)

Y "SR N B
”e+/"m Hm He Hm
Ko K,

KM::& = L:L.'.L’ (19)
Ke + Ky, KM Ke Ky

(He + A)(Hm + An)  He P
(He + A) + (i + A) Mo + My
where Ky = Kjaero With xyp = gy + 4y The 3D relations for the macro
and micro moduli are given in Appendix. From here and onwards,
unless otherwise stated, the macro and micro moduli will refer to the
case of plane strain and will be defined through Egs. (18) and (19).

W dx under

m T

Taking the first variation of the strain energy I =

the plane strain hypothesis with respect to (i, P*) leadsgto

SI% = /!2 ( 241, (sym(Ditt — P, D& + 2u, (skew(Di — P*), D67t
+ A (tr(D — PH1,, D) ) dx,

sI% = /Q( ~2p1, (sym(Di — P, 6 P*y — 21, (skew(Dii — P), 5P%)

— A (tr(DiF — P*)1,,5P%) (20)
+ 2, (sym PP 5 P%y + A (tr(P*)1,, 6 P%)
+ g L2 @ (Curlyy, P¥, Curlyy 5PF) ) dx.

The equilibrium equation are now obtained by requiring

sI™ = (F.6ify, Vit and s17 = (M, sP%y, V&P,
21
We define the following quantities
& 1= 2u, sym(Dii¥ — P*) + 24, skew(DiF* — P*) + 4, tr(D# — PH1,,
G 1= 2 sym PP 4 4 tr(PH1, € RP2, (22)

il := puy L2 @ Curlyp P* € R?,

where we used the tilde 5 and 6, = 6y, to emphasize that here we
are only considering the in-plane components. We can rewrite the first
variation 61" as

sI7 = / (5, D6y dx = / div(s™ 5i) — (Div 5, 5if) dx
Q Q
_ / & st nty ds — /(Diva(su%dx 23)
02 Q

=/<3nﬁ,aaﬁ>d3_/<mva5uﬁ>dx,
Q2 Q

which, because of Eq. (21), and highlighting that @ is orthogonal with
respect to the out-of-plane displacement, implies that

Divé=f in @, n' =0 on 0Q. (24)
where the out-of-plane components of Divs and ¢ » must not be con-
sidered, and n! is the vector of the in-plane component of the normal
to the boundary. We recall that the tangent vector in two dimensions is
unique and can be obtained as r* = R n! where the following product

rule holds:

div[(6 P*RT)T v] = (Div(6 P*RT), v) + (5 P*RT, Dv)
= (Curlyp 5 P*, vy + (6 P*, (Du)R) (25)
= (Curl,p5P*, vy — (5P, (Dv)RTY,
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which implies
(Curl,p6P%, vy = (5P*, (Du)RT) + div(R(EPH v), (26)
for some smooth vector field v € R?. Thus, there holds the Green-type
identity
/!2 (Curlyp, P*, Curlyp s Py dx

= /Q ((DCurlyp, PHYRT, 5 P¥y dx + /Q div[R(6 P*)T Curlyp P*] dx

= /Q (CurlCurl,p, P, 5 P*) dx + L Q(R(&Fﬁ)TCuﬂZDFﬁ,nﬁ) ds @7

= /Q(CurlCurlZDﬁ,é};‘i)dx + /m(CurIZDIS”,(Sﬁ”RTnn)ds

= / (CurlCurl,, P*, 5 P*y dx + / (Curl,, P*, s P*¥y ds
Q 02

where we simply substituted v for Curl P¥ in the above product rule and
applied the divergence theorem. Using the latter, we can now rewrite
the first variation 61" as

517 = /-(3,51% + (G, 6P) + (uy L2G Curlyp, PF, Curlyy 6PF) dx
Q
= /(—&' + Gy 6P + (uy L@ Curlyy, PP, Curlyp 6PA) dx
Q

= Q<_5 + Gy 6P + (uy L@ Curl Curlyp, P, 5P7)

+ div[R(6P*)T (uy L@ Curlyp, PP dx (28)

= /Q<—a + & + py L2@ Curl Curlyy, P?, 5P%) dx
+ /{)_Q(R((S}W)TMMLza(:urIZD P nfyds

= /Q(—E + Gy + sy L@ Curl Curlyy P 5P%) dx
+ /‘a Q(yMLgaNCurIZD P* 5Py ds,

which, because of (21), implies

G—0m— uML?aNCurl Curl,, P =M in Q,
ppg L2 Curlyp PP =0 on 0Q. (29)
where the out-of-plane components of (29), and (29), must not be con-

sidered. We can now collect all the homogeneous equilibrium equations
obtained and the homogeneous Neumann boundary conditions

Dive = f
} in Q,

& — Gy — uy L2 Curl Curly, P¥ = M

snf=0
_ - on 0Q. (30)
iy L2@ Curlyyy Pt=0

Since Div (uy L?ECurl Curlyp Pty =0, combining the two equations in

(30), gives rise to another equilibrium equation that depends only on
sym P

Divs = f

G — Gy — py L2@ Curl Curlyy, Pt=M

{Div5,, = f + Div M}

snf=0
~ - on 0Q. (31
iy L2d Curlyy Pt=0

in Q,

It should be noted however that the additional equation Divs,, =
f+Div M is not independent with respect to the other two, and any so-
lution of (30); will automatically satisfy it. The governing equilibrium
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equations (30); in components become then

(e +2u) (uy 1y = Pryy) + Ac (00 — Py )
e (U0 =ty 10 = Prop + Papy) + e (10 + 1510 = Proy = Poyp) = fy

(e +2u) (20 = Pryp) + A (112 = Py 2)
e (g1 =ty 12 = Py + Proy) + the (g + 10— Py — Proy) = f

Hwm Li Z(Pn,zz - Plz,]z)
=Py (A + Ay +2(pe + ) — (e + Ay) Py + (A + 2p)uy ) + Ay, = My,

2~
—uq L a (P11,12 - Plz,n)
—(He + He + )Py + (e = He = 1) Poy + (e + pduy o + (e — puy ) = My,

Hm Lz E(sz - P22‘12)
+(Mc —He — ”m)PIZ - (”c + 4+ Mm)PZI + (”e - Mc)ul.z + (”c + ”e)ull = M21 ’

—Hwm Lz E(quz - Pzz,]l)
=Py (A + Ay +2(fe + pp)) — (e + A Py + (Ao + 2uupp + Aty | = My, .
(32)

which, according to (8) or (22), are accompanied by the following
constitutive plane strain equations

011 = (e + 2u)uy | + Aty — (Ae + 20 ) Py — APy s
020 = (Ao +2p)unp + Actty ) — (A + 2u) Py — A Py,

o1 = (e + U1 + (e — Uy — (e + U Py — (e — H) Poy

091 = (He + pupy + (e — Py o — (He + H)Poy — (e — 1) Pro s )
myz = —puy L2@(P1 5 = Ppyy).

myy ==ty L3 @(Pyr = P

Note that according to Eqs (8), the out-of-plane stress o33 is given
as oy ﬁ("l | + 0y), and the out-of-plane moment stresses
e e
my, and msy, are given as: my; = EZ‘;ZZ;mH and my, = Ezllzzing.
2) . 1ka)
These components however do not affect the plane strain equlhf)rlum

equations (32).

4. Fundamental solutions for the relaxed micromorphic contin-
uum under plane strain conditions

4.1. Concentrated force: The Kelvin problem

The Kelvin problem (Thompson , Lord Kelvin) provides the so-
lution of a point force acting in the interior of an infinite elastic
medium (Timoshenko and Goodier, 1970). The solution is of funda-
mental importance since it provides the plane strain Green’s function
for the relaxed micromorphic theory. Lord Kelvin (William Thompson,
1824-1907) solved the problem for classical isotropic linear elasticity
that was later named after him in 1848.

We consider a body occupying the full plane (o0 < x| < 00, —00 <
X, < oo) under plane-strain conditions. The body is acted upon by a
concentrated line force situated at the origin of the coordinate system.
There is no loss of generality if we assume that the direction of the
line force coincides with the x,-axis of the coordinate system due to
isotropy. In this case, we have that

0 0 0
f=< o )6(x1>«s<x2), M=< o o ) 34)

with §(x) being the Dirac delta function.

For the solution of the problem the 2D Fourier transform will be
employed. The direct (FT) and inverse (FT~1) double Fourier transforms
are defined, respectively, as

5(&) = FT(y(x)} = / Y0 €59 dx,

x€R

¥x) = FT7 (58] = @ / @ de (35)
e
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where ¢ = (£,,&,) is the 2D Fourier vector with [|&]| = & = /& + &
and i is the imaginary unit (Debnath and Bhatta, 2014). Applying the
Fourier transform on the equilibrium equations (32) and noting that
FT{6(x)é(x,)} = 1, yields

(G + 26087 + (e + 1)) By = (Ao + Mo = ) E1& Ty +i(he + 2006 Py,
+ido& Py + i (e + He) &P, -i (e = 1e) &Py =0,

= (A + #e = 1) E160) = ((e + 2408 + (e + HIE) By + i2.6P,,

He + 2108 Py + il = )& Py + (me+ 1e) &Py =-1,

=ile + 2u)E1 = iAol = (Ao + Qe + A+ 2t + Gy L3E]) Py
~e + An) Py + Gy L2\, Py = 0,

—iRo&\ By — (A + 21)E 8y — (Ae + 2He + Ay + 2uyy + Ty L7E]) P,
~Oe + An) Pry + Gy L2618, Py = 0,

=i (He + ) &ty — &) (Mo = He) Ty + iy Lg'fl'f2i;ll
~ (e + He + o) + Tupg L2E2) By — (e + iy — 1) By =0,

=i (He = o) &ty — i (e + e) &1 + Ghyy szlfzﬁzz
= (o + e + ) + Gy L2E2) By — (e + iy — )Py = 0,

(36)

where we recall that @ := (a; + a,)/2 > 0. The algebraic system can be
written in the following form

A®u=0, 37)

where & = {@},@, Py, Py, Py, Pyy)T, © = {0,-1,0,0,0,0}7, and the
symmetric Fourier matrix A is given in Box I. The determinant of the
Fourier matrix A(¢) becomes

P L2 i Gt + 1) Ao + 21y + 20) (T2 + ED(ET2 + EDEY,

He >0,
det A(¢) =
L2 iy 1o+ 2p8) Ay + 2, )(ET2 + EDES,

He =0,

39

where 7, and ¢, are two characteristic lengths related with the internal
length L, as

PR LV
! N Alm + )’

We recall also that the macroscopic moduli (Ay, sy, k) are related
to microscopic-moduli of the relaxed micromorphic medium through
Egs. (18) and (19). Further, the dimensionless parameter f is defined
as

B

a@ iy (pe + )

(40)
Auc e

= (Ko + He) (K + i) 1)
(ke + k) (He + Hiy)

It is interesting to note that det A(¢) is an 8"-order polynomial of £ with
corresponding terms {£8,£6,&*}, whereas in classical isotropic linear
elasticity the Fourier determinant assumes the form

det Ajig etast (8) = pipg(Ag + 2ppE*. (42)

The positive definiteness conditions read simply

k., >0,

~r2
A aLC>O,

43

M > 0, U 20, He > 0, Ky >0,

which according to (19), imply that p, > uy > 0 and x, > k > 0.
From (39), the plane(-strain) ellipticity conditions can be readily
obtained as (cf. Neff et al. (2017))

>0, oy, >0, pe+pu. >0, p. 20, 2p,+ 4, >0,

2 + Ay >0, TL2>0. 44
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Ag) = (38)
=& (e +He) = (& (A +21e)) = (&1& (—pe+ A+ 12.)) i&) (A +24u,) i& (Mo + pe) —i& (ue — 1) i&) e

~(6& (~He+ Aot n)) = (& (e + 1)) =& (20 +20,) i iy (me = #e) &y (e + ) i& (A +20)
i&) (A +24u,) i€ 2 png L2E3 + 2o +2 (He + ) + Ay —auy L281& 0 Ao+ A
i& (e + ) i (e — pe) —apy L8 Gpng L2EL + e + He + —He + Ho ¥ Hy 0
—i& (pe = pe) i) (e + pe) 0 e HoF My Ay L2E H p i, + iy, —apy L2816

i§) 4, i& (A, +2u,) Ao+ Ay 0 —Gpiy ngléz Gpiyg szlz‘*‘/lg‘*'z(ﬂe + ) + Ay
Box I.

From the solution of the above non-homogeneous system (37) we
derive the solutions for the transformed field variables. These can
be written in the following form which is amenable for analytical
treatment:

~ KM 5152 aMM Lz ¢ 2
"o MM(KM + ) & 4 <KM + i > §16 9109
apyy L2
+ Wflfz 29,
~ 1 _ KM i_EMMLZ< C )22
R MM(KM + ) & 4 K + fing 5610
S L,
~ Km && itg) (eauy L2E + 2k, + )
Pu = o $1(®).
'um(KM + ) E A(rcpg + i) (K + Hi)
~ KM 5152 iCeauy L2 & &
P
2 o ) & o+ )+ ﬂm>"’1(5) * 2 4’2@
. ((en + i) €7 + 1u&5)
. Hm (KM+/4M)§4
iCeamy L2 && ; 51
4(ep + i) (K + Hin) #®- ¢2@
5 Km 5252 i&
Py = - -
ﬂm(KM + pp) & (Km + Mm) iZ

léf gap ngz + 2(Km - ”m)
_ e (e L Lpo,
Ay + ) (K + piy)

(45)

where the transformed functions ¢;(§) (j = 1,2) and dimensionless
parameters (¢, ) are defined as

2
1 J MM Kum Km
$@)=5-—1—, (=M_M e=—"—
jg éz 1+f12-§2 Hm Km KM+/'¢M
(46)

We employ now some useful classical results (see e.g. Gradshteyn and
Ryzhik (2014), Nowacki (1974)):

L=FT{(2+&)") = —%(b+ Inr),

L=FI"{(&+&)7) = ir2(b+1nr), 47
I =FT'{(¢72 +§2+§2 [ ]
and

oy 0 I; = (=i&)"(=i&)"1;,

X1 xp 7 d

(m,n=0,1,2,...), (j=1,2,3) (48)
where r =

\/x + x , K,[-]is the nth order second kind modified Bessel
functions and b = O 57...

is Euler’s constant (Gradshteyn and Ryzhik,

2014). It should be noted that the first two integrals in (47) are defined
as the finite part integrals.!

Using the above results, the definitions of the characteristic lengths
¢, ¢, and ignoring rigid body motions in the displacement field, we
obtain after some rather extensive algebra the following expressions
for the displacement and micro-distortion fields

v = Ky XX + $2xix,
L=
Az g (g + i) 12 278 (rpp + i) 72
HcX1X)
- - 7 N L,*2
27 p, (He + ) r?
2
KmX; (ko + 2pn)
uy = - Inr

drpng (kpg + ppg) 2 A7 (g + o)

% i -x) [ r ]
— b, + K. | =
4np (kn + tnp) < r2 1+ %o 2

(] = x3)
+ He —— o, —KO[ ]
drpe (me+ue) \ 7 2

P KMXo (x% - x%) {x,y _ {ex, (x% - x%)
i A7 iy (g + i)t A (kg + ) 7 27 (ki + M) Br
Cex xy
272 5 @,
27 (K + i) Br2 !
P KmX| (xf —x%) x; Cexy (xf - x%)
- i (kg + ipg) 7 AT e 27 (K + Hey ) Br*
Cex xy
2 5 @,
27 (K + i) Br2 2 !
P = KmX1 (x% —x%) X Cexy (x% —x%)
E A7y (kg + pipg) 1 AT Her 27 (K + ) Br*
fexixp
— 0, D
27 (K + i) 2 2 !
X1
27 puyr?
o Xy Knxs (2 = x2)
2 27 (ki + H)1? A pg (kg + i) 1
_ C(Km - ﬂm)XZ
4r (KM + l‘M) (K + )T
ex, (x2 = x2
¢ 2( 1 2) o, - Cex xy 0. @,

27 (K + My ) Br 27 (K + Hipn ) Br? i

(49)

! The concept of a finite-part integral has been first introduced by
Hadamard (Hadamard, 1923) in 1923. These integrals have stronger singu-
larities than Cauchy principal value integrals and they exist in the finite part
sense (Kutt, 1975; Monegato, 2009).
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where the functions @ : and ¥; (j=1,2) are defined as

203 ,
D, =D(r) = - K, [7,] ,

Y =¥ = % <1 - %Kl [%]) . (50)

Some useful relations and limits for the second kind modified Bessel
functions that have been used for the derivation of our equations can
be found in Appendix A.5.

Egs. (49) are the basic results of this paper and constitute the
Green’s functions for the general relaxed isotropic micromorphic con-
tinuum under plane strain conditions for the case of a concentrated
force acting in the x,-direction. The Green’s functions for the case
where the concentrated force acts in the x-direction can be readily
derived from the above solution by interchanging the indices 1 « 2.

The micro-rotation for the relaxed micromorphic medium in the
case of plane strain is defined as the skew-symmetric part of P (see
(125))

1932%(1’21—1)12):— al (1 - Lok [r]) G

a2 \uy Mty |4

Finally, it is noted that the stresses and higher order stresses can be
derived from the constitutive relations (33).

Using now the asymptotic properties of the second kind modified
Bessel functions as z — 0 (Gradshteyn and Ryzhik, 2014)

—lng—b, for n=0,

n
M(g) for n>0,
2 z

K,[z] ~ (52)

we may readily deduce that as r — 0 the displacement field becomes
logarithmically unbounded as in the classical linear elastic theory and
the micro-distortion field P exhibits an r~! singularity consistent with
the additive coupling Du — P. This in turn implies that, according to
(8),, the components of the stress tensor ¢ behave also as O(r~!) as
r — 0. The same singular asymptotic behaviour is exhibited by the
micro-rotation 9;. In particular, the second term in (51) is bounded
as r — 0 but the first term behaves as r~!. It is worth noting that
the micro-rotation becomes bounded if u;,, — o which is the case of
micro-stretch, micropolar and couple stress elasticity as we shall see
next. Interestingly, it turns out that the components of CurlP have at
most a logarithmic singularity which implies, according to (8);, that
the moment stresses m exhibit also a O(log r) behaviour as r — 0.

The above results corroborate uniqueness for our solutions. Indeed,
for a unique solution of the concentrated load problem the conventional
and higher order stress singularities must behave at most as O(-~")
when r — 0, where r is the distance from the point of application of the
concentrated loads (see Hartranft and Sih (1968) and Sternberg (1968)
for the case of couple stress elasticity and Sternberg and Eubanks
(1955) for the classical elasticity case). This is due to the fact that the
tractions on a circle surrounding and separating the concentrated load
point from the rest of the medium must be statically equivalent to the
concentrated force at that point. This is a general requirement and is
independent of the elasticity theory that is employed.

4.1.1. The relaxed micromorphic continuum with zero micro and macro
Poisson’s ratio

A simpler case arises for zero micro and macro Poisson’s ratio so
that 4, = A, = 0 which implies 4; = 0 and ¢ = 0. In this case, we
derive
L (i - L(p >
T8 \py pelpe+p) 2)

x2 (x2=x2)
= —2 3 oy a L Yo, -k, | =],
278 28 2 S
Ty r? 8Ty 4z e (e + pe) r b

(53)

iy
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2_ 2 2_ 2
O (x1=x3) po= M (x1=x)) 1y
nET e 2T T *t3 25
T f T T fe T Yt
P __xz (x%+3x§) P __x1 (3x%+5x§) X
2 8z puprt 2 87 pr* 47y r 2

It is evident that u, retains the logarithmic singularity but the detailed
field is different, in particular

(BHctte + ot + 342 + 3peptry)
87 Ho (M + He)

uy =— Inr, as r—0. (54)

4.1.2. The pure relaxed micromorphic continuum with symmetric force
stress tensor

Another special case of interest is the pure relaxed micromorphic
continuum with symmetric force stress tensor o. In this case we have
that the Cosserat modulus ., = 0 (which implies that £, - ) and
accordingly (see Appendix A.5)

lim ¥, =0,

. r
lim u. Koy |—1 =0,
He=0 He=0 He 0 [ ]

li D, =0,
,,:Toﬂc 2 fZ

and we derive

+ xpx
Az g (g + o) 12 2708 (sepg + i) 72
KM"% (kpg + 200)
Uy = - Inr
47y (KM + ”M) 2 Ar g (ky + s

% (] = x) [ r ]
- ] Ky |— s
4dzp (,(M + ”M) < r2 1+ Ky ¢

_Ku% (x}-x3) {x,
47 g (g + i)t A (kg + i) 7
fexix;
2r (Km + Mm) pr?
revx; (2 = x3)
- A7 oy (Keng + i) 1
fex1x;
2r (Km + ﬂm) pr?
KmXq (x% - x%) Cexy (x% - x%)

A7 piy (kg + i) 1 27 (s + i) Br
£x(X x
+ _ fexixy 0. ®, — B
27 (ko + p) B2 2 27 py 12
B X5 KnmXo (X% - x%)
27 (K + oy )12
(K = Hm)Xy
4dr (KM + MM) (Km + ”m)r
2_x2)

Cexy (x1 - X3

2 (Km + um) pr4

Km X1 X2
i

1>

Cexy (x% - xg)

oy (K + t) pr*

x|¢l ’

Cexy (x% - x%)

27 (ko + Hin ) Br

xzd)I ’

Py =

47 oy (Reng + i) 7

B fex1Xy

2r (Km + ym) pr2

1 d)l'

(56)

4.1.3. Limiting cases

It is shown here that the fundamental solutions of several well-
known generalized continua can be obtained as singular limiting cases
of the general relaxed micromorphic fundamental solution for a con-
centrated force.

4.1.3.1. Micro-stretch elasticity. In order to pass from the general re-
laxed micromorphic continua to the micro-stretch continua we let y,, —
oo which, according to (19), implies that: y, — uy, and

KM — Ke

lim ¢= -4 "¢

Hm =0 Ko

lim = (ke — Ky (K + ﬂM).

i rc0 K2

(57)
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In this case, the kinematical fields read
_ Km X1 X " Ke — Km X1 X2

4 py (i + i) 12 27 (Ke + ) (o + i) 72
He X1%3

27 pyg (e + 1) 7
KMX% (km + 2up)

Az (rep + pp) 12 A7 (v + pvp)

e =) ; 9
+ 2@, - Ky | —
47 g (e + o) r 3
— x?=x2)
_ Ko — Ky i 2¢1+K0[L] ,
Ar(xe + uv)(Kp + Hyp) r? Z

(Ko — KXo X
_48—5”1’ Pyp=-Py=———o
ke (kK + Uy

i 1

D, ,

L)

Py =Py =
and the micro-rotation is given as

X1 r r
——1 (1-LZkK =), 59
4”#Mr2< 2 l[fzb 9

where the characteristic lengths are now defined as

1
93 = E(le - Pp)=

/=1 @ pup(Ke + pyp)
PN 4y + i) (o + k)

We note again that £, — oo as y, — 0.

a (g + pe)

£y =L, "
C

(60)

4.1.3.2. Cosserat (micropolar) elasticity. As (u,, k) — o we have that:
He = Hns Ke = Kns A = Ay, and also ¢ — 0, f — 0 which implies
further that #; — 0. Furthermore, by recalling that xy; = Ay + ppys
and identifying (using Nowacki’s notation (Nowacki, 1972)) u, = a,
ajpuy L2 = 2y, ayuy L2 = 2, the relaxed micromorphic solution
degenerates to the known micropolar solution (Liang and Huang, 1996;
Dyszlewicz, 2004)2

= (Am + y) XXy a X%y <£—K [L])
U 4y (Am+2up) 7 2@pmlu @) 2 2 2lel)
2
w = (Am + ) X (Am + 3pnm)
: drpng (A +2my) 72 47 Ay + 200)
a r
-l
47 g (o + pin) ¢
a (x%_xg) (ZKZ [r])
+ ok lL]).
Az py (@ + py) 72 r? ¢
Py =Py =0, Ap =P =-Py =—4y
= (=257
=—1 (1-Lk, |1
Az ppg r? ¢ty
(61)
with the micro-rotation 9; given as
; e (=25 2])
95 ==(Py - Pp)=——1—(1-Lk, L 62
3= 5Py = P) P K7 (62)
where
+ + a(py + He
f=t,= (r +&)uy + @) -1, a(uy Mc)’ ©3)
4o uy 4u,

is the known characteristic length of the Cosserat (micropolar) theory.

4.1.3.3. Couple stress elasticity. As (pi,, ky» 4o) = o we have that: y, —
Has Ae = Ans and also ¢ — 0, f — 0 which implies further that #; — 0.

2 It should be noted that in Dyszlewicz (2004) there is a misprint in the
plane strain fundamental solution (3.78). In particular, the term (1 —v) should
be replaced with (1 — v)~!. Also, the solution in Dyszlewicz (2004) is for a
horizontal force which can be transformed to the solution for a vertical force
solution as in the present case by interchanging the indices 1 < 2.

International Journal of Solids and Structures 292 (2024) 112700

In this case, we pass to Mindlin’s (Mindlin and Tiersten, 1962) and
Koiter’s (Koiter, 1964) theory of couple stress elasticity (see also Ghiba
et al. (2017), Madeo et al. (2016), Zisis et al. (2014), Miinch et al.
(2017), Gourgiotis et al. (2019)). It is well-known that the spherical
part of the couple stress tensor remains indeterminate within the frame
of this theory, as Neff et al. (2016) pointed out this is not inconsistent,
indeed, like the pressure in an incompressible body, it is indeterminate
in the local constitutive law but can be found a posteriori from the
solution of the boundary value problem. For a different take on the
couple stress model which allows to determine locally the spherical part
see Soldatos (2023).

Now, identifying a uy L2 = aypy L2 = 4n, we derive the fundamen-
tal solution in couple stress theory (Hattori et al., 2023) which assumes
the following form

= (AM+/4M) X% 1 XX <£—K [£]>
! 4z ppg (Am +2my) 72 2w 12 r? *lel)

(Am + pn) x% (Am +3pm) 1 r
uy = —= Inr K [ ]

Tdnpy (y +2mg) P2 AT anOn 200 ATy
2 2
1 G =x3) (op2 r
P LM (a2 e
drpuy P2 r? ¢

= (58 [7]).

Py =Py =0, P =—Py

(64)

where the characteristic length of the couple stress elasticity model is
defined as

fzfzz‘/ﬁch\/g. 65)

As expected, the continuum-rotation 9; coincides with the skew sym-
metric part of P (i.e. the micro-rotation 9;). Indeed,

- 1 auz 0u1 1 X r r
= (22 _Llp,—py=-—t _(1-Lk [—] . (66
3 2<ax1 0x, 7 (Pu= ) 4,,,,M,z( e f) (66)

Fundamental solutions for anisotropic couple stress materials under
static and dynamic conditions can be found in Gourgiotis and Bigoni
(2016a,b), Bigoni and Gourgiotis (2016), Gourgiotis and Bigoni (2017).

4.1.3.4. Classical linear elasticity (L, — 0) - lower bound macroscopic
stiffness. As L. — 0 we have also that # ;=0 (G =12)if y, >0,
and in this case we obtain that (see Appendix A.5)

. . . . 1

lle tDj =0, };Toax‘,@j =0, (=12, flleoTj = P
. r
lim Ky [—| =0. 67
f}?o O[fj] 67)

Moreover, by using xy; = Ay + uy, we finally derive

. (Av+mm)  xix,
= —— 12
4 puy (XM +2/4M) r?
2
(Ap + 1) X3 (Am +3um)

U, = — - Inr, (68)
27 by (g +2my) 7 47 uCiyg + 21y

which is the standard classical linear elasticity fundamental solution
for the displacements (Timoshenko and Goodier, 1970). Moreover, the
continuum rotation is given as

_ X1

93 = (69)

_47ryMr2'



P. Gourgiotis et al.

In addition,

P, = {x, G+ Hw)xy (x] - x3)
4z (Apg + 2pyp) 12 Az p (A + 2pp)r?
p, = G+ iypx (x7 = x3) ’
4z pr? 4y, ()*M + Z”M) 4 70)
py=—— 1 _ X O + )X, (37 = x3) 7
Az porr 2@ pyr? 47 py, (}‘M + ZI‘M) 4

(Am + Hn)xo (xf - x%)
47 iy (A + 20y 7+

(A +2 (A + 200m))x,
4r ()»m + Zﬂm) (lM + ZMM) r?

22—

4.1.3.5. Classical linear elasticity (L, — o) - upper bound microscopic
stiffness. As L, — o we have also that 7 =0 (=12, and in this
case we obtain that (see Appendix A.5)

v = (Am + Hm) Xy, (ke — He) XX,
U4t iy (et 2u) P A7 (et ) (ke ) 7
U+ Hn) %5 (g +3pay)

Uy = —_ — Inr
P dmpy (A + 20y) P2 AT Chy + 2Hy)

2

_ X,
(Ko — He) _22 71)
dn (/4(: + /46) (Ke + .Me) r
He ¥ Ke T 2 Inr.

4 (p + ) (ke + o)

The first two terms in the displacements (71) are the classical linear
elasticity terms (see (68)) but with the micro Lamé moduli (4, ki)
instead of the macro ones. The other two terms depend also upon the
rest of the parameters.

Furthermore, we obtain the components of the micro-distortion
tensor P depending only on the microscopic moduli (y,,, k) as

Kmxz(xg — x%) P Kmxl(xg - x%)

P ——— | ——Y
Az poy (K + ) )F* A7 py (K + pp)r*

po_ xl(x] (K + 2;4m) +x; (3K + Zym)) 72)
- A7 p (kg + )P ’
Xy (x? (Km - 2;4m) - x% (Km + Zym))

drpg, (K + ) 14

Py =

Py =

It should be noted that the displacement solution does not depend not
only upon the micro-moduli since the body force is not zero in this case
which corroborates with the findings in Appendix A.2.2.

4.2. Concentrated couple

We consider again a body occupying the full plane under plane-
strain conditions. The body is now acted upon by a concentrated line
unit couple situated at the origin of the coordinate system. In this case,
we have

f=< ’ ) M=< _f/z e )6(x1>6(x2), 73)
such that M|, — M,; = 1-5(x,)5(x,). Note that the couple is defined
in the relaxed micromorphic as the skew symmetric part of M. The
diagonal components M do not contribute to the couple as they are
self equilibrated double forces (see also Mindlin (1964), Section 4).

Applying the Fourier transform on the equilibrium equations (32)
and solving the non-homogeneous algebraic system yields the following
solutions for the transformed field variables

~ i& i& ~ i& i

ul = — + . = —_ .
A PR e (D)
74)
2
5 S1) 5 5 1
Py =Py =- 12 =

28 auy L2 (62 +8)
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2
& N 1
2un€?  Guy L2 (fz_z +£2)
Note that the solution does not depend upon the parameters 4, and
Am> Which is to be expected due to the dominant shear character of

the loading. Inverting the transformed fields we obtain the following
solution for the kinematical fields

X2 MM or
u =- 1—— K,
e (AR 2]

Py =

)
27 dnpyr? we £ 6])”
XX
Py==Pp=> —2_, (75)
Ty
2_ .2
"
12 Az prt 27ra/4ML2 oz,
2_ 2
» _ 5T [
21 Az por* 27ra;4ML2 0 0
The micro-rotation is given as
1 1 r
9= ~(Py — Pp) = ———— K, | —|. 76
B3 = 2 (Pn = P2) 2wy L2 O[fz] 70

The stresses and higher order stresses can be derived from the consti-
tutive relations (33).

Regarding the asymptotic behaviour of the kinematical fields, we
remark that as r — 0 the displacements behave as r~!, the micro-
distortions P behave as r~2, and the micro-rotation exhibits a logarith-
mic singularity due to the K,,-Bessel function. In particular, the modulus
of the displacement vector depends (in all theories) only upon the radial
distance r and there is no angular dependence (see Figs. 2 and 3).
Interestingly, according to Egs. (33), the stress components (¢,;, 65,) are
bounded at the point of application of the concentrated couple whereas
the shear stresses (c},,0,,) exhibit a logarithmic singularity as r — 0.
Finally, the higher order moment stresses (m,3,m,;) behave as O(r~!)
at the origin. All quantities converge to the classical linear elasticity
solution (c.f. Section 4.2.2.3) as we move away from the concentrated
load.

Finally, we note that there is an alternative indirect way to induce
the concentrated couple in the relaxed micromorphic medium by super-
imposing four unit forces (double dipole) in a rotational manner with
infinitesimal lever arms. This is the way to induce the concentrated
couple in classical elasticity (see e.g. Timoshenko (Timoshenko and
Goodier, 1970), p. 131). Here however we chose the natural way to
induce the couple through the skew symmetric part of M.

4.2.1. The pure relaxed micromorphic continuum with symmetric force
stress tensor

The special case of a pure relaxed micromorphic continuum with
symmetric force stress tensor is derived by setting u. =0 (¢, - ). In
this case, we have according to (40) that (see Appendix A.5)

r

>

4
lim L = lim |/—Hete  _ lim K, [L]— !
#e=0 %y ue=0 \ G L2(ue + p.) He—=0 &5 2

77)

since lim,_,z K;(z) = 1 (cf. (161)) and employing (75) together with

(19), we finally derive

X X
y=—-——2=*_ u=—"1_ tDw=divu=0, (78)
47rl4mr2 471';4mr2
2_ 2

Py =—Py = ke 1’12=xz_x1 = (Inr+b),

27 pr* Az prt 27 d g L2

2_ 2

275 1

= Inr+ b),
Az prt 27 apy L2( )
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where the last two expressions for P, and P,, were derived by taking
the limit y, — 0 directly in the transformed expressions of the pertinent
field variables: Indeed, in the case of a concentrated couple (73), the
Fourier system (36) has a solution of the form:

4 i& .0
1= 2=
24 € 242
N A &é " 2ty + g ALZE
Py ==Py=- > Po=-————== (79)
2/4mz.> ZMmMMaLcé
1/)\ _ Z”m + Um 5L2§%
2 puaL2e

Using the results in (47) we can readily invert the above expressions
and obtain the results in (78).

Finally, the micro-rotation is given as
9 =

(Inr + b). (80)

27 @ g L2
According to (80), the constant term related to the Euler’s constant b
corresponds to a constant (rigid) micro-rotation and does not affect the
stresses or higher order stresses in (33), therefore it can be ignored. It
is interesting to note that the displacement field in the pure relaxed
micromorphic case (78) does not converge to the classical macroscopic
elasticity one (see (83)) far away from the concentrated couple. Indeed,
the former has in the denominator ., and the latter y, which means
that limits are different as r - oo. This is not the case however with the
complete relaxed micromorphic model (with p, > 0) where, as r — oo
the Bessel functions in (78), and (78), tend to zero and the classical
linear elasticity solution is restored.

It is intriguing to see that setting x4, = 0 in the concentrated couple
problem acts like a zoom into the microstructure and activates the
microscale shear modulus g, in the displacement solution, which is
not the case in the concentrated force problem.

4.2.2. Limiting cases

From the general relaxed micromorphic solution we can derive
the fundamental solutions in other generalized continua as singular
limiting cases.

4.2.2.1. Micro-stretch, micropolar and couple stress elasticity. As p,, — o
we have that: y, — uy and

Xo r r
=——22 (1-Lk |L]),
4”,“Mr2< 2 l[ﬁ])

i
X r r
Uuy=———\1-—K;|—1],
: 4ﬂ/4Mr2< 4y 1['1”2]) D)
He + M r
Py =Py =0, P12=—P2|=—m 0[72]
cHe” 9

This is the micro-stretch solution. Further, if we identify u, = « the solu-
tion transforms to the micropolar solution with the characteristic length
given by (63) (Nowacki, 1972; Dyszlewicz, 2004). Next, taking y, — o
we derive the couple stress solution (Weitsman, 1968; Hattori et al.,
2023) which is identical in form with the micro-stretch/micropolar
solution but with the characteristic length given by (65). It is worth
noting that in the micro-stretch, micropolar, and couple stress theories
the displacement field remains bounded and in particular becomes zero
at the point of application of the concentrated couple (i.e. r — 0)
which is in marked contrast with the respective relaxed micromor-
phic behaviour. As #, — oo all the fields become null. Finally, the
micro-rotation is given by (76) in all cases and exhibits a logarithmic
singularity at the origin. As we move away from the load all solutions
converge to the classical elasticity solution (Section 4.2.2.2).

4.2.2.2. Classical linear elasticity (L, — 0) — lower bound macroscopic
stiffness. As L, — 0 at y, > 0 we have that #, — 0, and also (see

10
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Fig. 2. Inhomogeneous displacement solution for the concentrated couple. Circles are
rotated and expanded by the deformation around zero.

3=

Fig. 3. |lu|| behaves like % in the relaxed micromorphic theory for the case of a

concentrated couple.

Appendix A.5)

. - .1 r
lim 222K, | 2| = lim —K, |—=| =o0. 2
le sz 0[ 2] 0, le Y 7, 1[ 2] 0 (82)

Accordingly, from (75), we obtain the standard classical elasticity result
for the displacements?®

X2 X1
oy = ——2 uy = —L (83)
! A7 ppg r? 2T dzpy 2
see Fig. 2. In addition,
2_ .2
X1 X TN
P,=-P,= —2_, P,=P = ——. (84)
1 T 12 = =

4.2.2.3. Classical linear elasticity (L, - o) — upper bound microscopic
stiffness. As L, — oo (£, — o) we have that

4]

Accordingly, from (75), we obtain the classical elasticity solution for
the displacements but now with y,, instead of yuy

lim LKl

ty—c0 €y @)

lim 2K, |—| =0,
i % | Z]

fr—oo

X X
u1=_4_22, u2=_12, (86)
TR A7 p, v
In addition, we derive again
2_ .2
X1 Xy XX
P =—-Pyp=—=_, P,=Py=—, (87)
11 n=o- P 2= 1= P

3 Timoshenko and Goodier (Timoshenko and Goodier, 1970, p. 131);
Love (Love, 1927, p. 214).
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also only depending on the microscopic modulus y,,. Note that since the
body force is zero in this problem, the solution when L, — o depends
only on the micromoduli as is expected (see Appendix A.2.2).

5. Fundamental solution for an isotropic gauge-invariant incom-
patible elasticity model in plane strain

We consider the gauge-invariant incompatible linear elasticity model
(Knees et al., 2023a; Neff et al., 2015a; Lazar and Anastassiadis, 2008)

C.syme+C,skew e+ puy L? Curl (L, Curle) = M, exnl|yo=0. (88)

where ¢ := Du—- P : @ € R? —» R is the incompatible elastic
distortion, and C,, C_, L are fourth order tensors as in (1), while M is
similar as in (7). Due to Div Curl = 0, smooth solutions of (88) satisfy
the additional balance equation

Div(C, syme + C, skewe) = Div M =: f. (89)
—_——

Formally, (88) and (89) appear as Euler-Lagrange equations of (1) with

Chicro = 0. Substituting a compatible elastic distortion, e = Du, we
retrieve from (88) linear Cauchy elasticity with stiffness tensor C,

DivC,symDu = f, DuXnlyo=0. (90)

Observe that the boundary value problem (88) is still well-posed in
terms of the elastic distortion e, due to the generalized incompatible
Korn’s inequality (Gmeineder et al., 2023a). In the isotropic case (88)
reduces to

2p, devsyme +2pu, skew e + k, tr(e) 15 (C20)]

+ 2uy LCurl <al dev sym Curl e + a, skew Curl e + 2—3 tr(Curle) ]1) =M,

and this is the second balance equation from (7), for u, — 0, k,, = 0
and therefore o, = 0.

Fundamental solutions to (91) in the three-dimensional case have
been obtained by Lazar (Lazar and Anastassiadis, 2009) under the
constitutive assumption of a strictly positive Cosserat couple modulus,
u. > 0. The latter condition entails that

6 =2u.devsyme + 2y, skewe + i, tr(e) 15 (92)

can be algebraically inverted, i.e. we can express e = G(o) if u, p, k. >
0, see (Neff et al., 2015a). Here, we will consider the fundamental
solution to (91) in plane strain, but we allow for y, > 0. The plane
strain version of (91) is obtained by considering the following energy,
connected to (91), namely

/!2 U ||devsym€]|2 + %tr2 @) 93)

2
M Lt

(01 ||dev sym CurlE”2 + a, ||skew Curl E]|2
a
+ § tr? (Curl@) - (M,E)) dx — min&.
As can be seen, letting L, — oo while assuming a;,a,,a; > 0 implies
Curl ¢ = 0 and therefore ¢ = Du on contractible domains. We will
consider (93) in an unbounded domain with given M = § x M.
Similarly, as in Section 3, the plane strain energy becomes

/.ue
Q

2k
dev, symE”” + ftr2 (@) + py L @||Curlyy, &2 — (M, &%) dx — min .

94
and we obtain the plane strain equations in components
.
—up L2T (€100 — e10.12) + (Ae + 2uc)ey) + Ageyy = My,
-
e L2 (e1110 — et ) + (e + He)ern + (e — Hodey) = My, ©5)

2~
—mn LA (e2100 = €p.12) + (fe = Ho)ery + (pe + pe)eyy = My,
2~
un L2 (e91.10 — ex011) + Aceyy + (Ae + 2pc)eny = My, .
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We consider again the case of a concentrated line unit couple
situated at the origin of the coordinate system. In this case, the compo-
nents of the body volume moment M are given by (73). Following an
analogous Fourier transform analysis as in the previous cases we derive
the fundamental solution for a concentrated couple in gauge-invariant
incompatible elasticity. The incompatible elastic distortions read then

€] = —€xpn =

XX [ r ]
—— 1 gL,
4r(p, +lle)f§ r2 23

U r x% B x% r
(5
SRR VY U = S I
87 pelpe + )5 L2 8a(u+uesr? L4
u 2 _ 2
R r 1 2 r
R V= )
8n Mc(ﬂc + ”e)fg fz 8”(MC + ”e)fg r” f2

where ¢, is given by (40). It is interesting to note that the solution
does not depend upon the elastic bulk modulus «, and that the elastic
distortion tensor for the case of a concentrated couple is traceless
(ie. tr(@) = e + ey = 0).

6. Numerical results and discussion

We will now present some results regarding the behaviour of the re-
laxed micromorphic solution near the application of the applied loads.
A comparison of the results with other well known generalized continua
obtained as limiting cases of the general relaxed micromorphic model
will also be performed.

The relaxed micromorphic continua under plane strain conditions
can be fully described by four dimensionless parameters. In order
to have a unified treatment for all the above cases, the following
dimensionless quantities g; (i = 1,2,3,4) are introduced:

He = &1 M He = & M Ke = 83 UM KM = 84 MM- 97)

In view of (43), we have that: g, > 1, g, >0, and g3 > g, > 0. We also
recall that 4; = k; — y; with i € {e,m, M} and using (97) that
= g—SK

g -1 g—g
Further, for comparison purposes all distances from the origin are
normalized with respect to the characteristic length ¢, of the relaxed
micromorphic model. Results for the cases of a concentrated force and
concentrated couple will be shown separately.

Hm» Ky = (98)

m

6.1. Concentrated force

Fig. 4 shows contours of the normalized displacements and micro-
rotation due to a concentrated line force acting at the origin for a
relaxed micromorphic material characterized by (g, = 1.2, g, =3, g3 =
5, g4 = 3). This implies, according to (98), that u, = 64y and k,,
2.5ky. A comparison of the relaxed micromorphic continua with other
generalized continua that can be obtained as limiting cases is shown in
Fig. 5. In particular, in Fig. 5, the normalized displacement "Z:M and

the normalized micro-rotation 23#M%2 (F = 1) are plotted along the
positive x,-axis (i.e. for x, = 0) . The u, displacement has a logarithmic
singularity at the origin in all theories. However, the singularity is
eliminated in strain gradient elasticity (Gourgiotis et al., 2018). It is
observed that deviations from the classical elasticity solution (dashed
line) are more noticeable within a range of |x,| < 2#, from the point of
application of the concentrated force. All solutions converge quickly to
the classical elasticity solution as we move away from the origin. It is
also shown that the classical elasticity and the couple stress elasticity
serve as the upper and lower bounds for the solutions. In fact, couple
stress elasticity predicts more pronounced size effects as compared to
the other generalized continuum theories. The micropolar solution is
in-between the classical and the couple stress solution. Also, we note
that the relaxed micromorphic and the pure relaxed micromorphic are
closer to the classical elasticity one.
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Sapmts along the positive x,-axis due to a concentrated unit line force (F = 1) in various

generalized continuum theories. The relaxed micromorphic material is characterized by g, = 1.2, g, =3, g3 =5 and g, = 3.

Regarding the behaviour of the micro-rotation we remark that the
classical elasticity and the relaxed micromorphic elasticity predict un-
bounded micro-rotation at the origin which is in marked contrast with
couple stress, micropolar, and micro-stretch theories that predict zero
micro-rotation at the origin. In all theories the micro-rotation decays as
O(xl’l) when x; — co. However, as it can be seen from Fig. 5b, in the
pure relaxed micromorphic model and in the classical elasticity model
with L, — oo (upper bound microscopic stiffness) the solution does not
converge in the standard classical elasticity solution (L, — 0) as all
other theories do.

6.2. Concentrated couple

Fig. 6 shows contours of the normalized displacements and micro-
rotation for the case of a concentrated couple. In this case, only the
parameters g; and g, need to be specified. A comparison of the relaxed
micromorphic continua with other generalized continua obtained as
limiting cases is also shown in Fig. 7. In particular, in Fig. 7, the nor-
malized modulus of the displacement vector ||u|| is plotted against the
radial distance r. The material parameters for the relaxed micromorphic
material are: g, = 3 and g, = 2 (which implies u, = 1.54y). All
distances are normalized with respect to characteristic length of the
relaxed micromorphic theory #,.

It is noted that ||| has a Cauchy type singularity O(+~!) in the
relaxed micromorphic theory, in the pure relaxed micromorphic, and
in the classical elasticity theory (L, — 0 and L. — oo0) but the strengths
of the singularities are different. In marked contrast, |lu|| is bounded
and becomes zero at the origin in micro-stretch, micropolar and couple
stress theory. As it was shown analytically (see sections 4.2.1 and
4.2.2.3), only the pure relaxed micromorphic solution and the classical
elasticity solution with L, - oo (green and dashed-grey lines in Fig. 7)
do not converge to the standard classical elasticity (L, — 0) as r — oo.
This is to be expected since the latter solutions depend only upon the
micro shear modulus .
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Finally, a comparison of the incompatible elastic distortions e,,
u5 — P, and ey; = uy | — Py, in the relaxed micromorphic theory and
the gauge invariant dislocation model is shown in Fig. 8. It is observed
that as g, increases as compared to g, (i.e. y, > uy and p, > u.),
the solutions for the gauge invariant dislocation model and the relaxed
micromorphic model converge.

7. Conclusions

In the present work, the infinite plane 2D Green’s functions for a
concentrated force and a concentrated couple have been derived in the
context of the isotropic relaxed micromorphic theory. Our main con-
cern here was to determine possible deviations from the predictions of
classical theory of elasticity but also from other generalized continuum
theories that are extensively used nowadays for the prediction of scale
effects. Closed form solutions were derived using a Fourier transform
analysis and results from generalized functions.

It is shown that the relaxed micromorphic solution is general
enough to encompass several well known generalized continuum mod-
els which can be recovered as singular limiting cases. In particular,
from the relaxed micromorphic solutions we may readily derive the
couple-stress, Cosserat-micropolar, micro-stretch, and classical elas-
ticity fundamental solutions showing thus how versatile the relaxed
micromorphic theory is. Yet, the model retains a crucial level of sim-
plicity so that analytical solutions can be found. It has been shown that
the relaxed micromorphic solutions are closer to the classical elasticity
solutions showing thus milder size effects as compared to the predic-
tions of other models such as the couple-stress, Cosserat-micropolar,
and micro-stretch. Fig. 9 shows a tree of the various generalized con-
tinua that can be derived as singular limits of the relaxed micromorphic
continua and the paths that these can be obtained.

Finally, we note that the present solutions may be used for the solu-
tion of more general boundary problems and as fundamental solutions
for the Boundary Element Method.
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Appendix

In this appendix, for the convenience of the reader, we exhibit the
two-scale nature of the relaxed micromorphic model in three and two
dimensions together with the form of equations and constitutive tensors
in plane-strain.

A.1. A true two-scale model: the relaxed micromorphic limit for L, — 0
and L, — o in three dimensions

The relaxed micromorphic model reduces to a classical Cauchy
elasticity model for both L, — 0 and L, — o but with two different
well-defined stiffnesses, C, .o and C.,i.ro, respectively. The expressions
of these stiffnesses in the isotropic case are presented in the next two
sections for the convenience of the reader.

A.1.1. Limit for L. — 0: lower bound macroscopic stiffness C,,cro
For the limit L, — 0, the equilibrium equations (7) reduce to

Div [2;4e sym(Du — P) + 2, skew(Du — P) + A tr(Du — P)]l] =f, 99)
2u, sym(Du — P) + A tr(Du — P)1 + 2, skew(Du — P)
- 2:"imicm SyIIlP - }‘microtr P)1=M. (100)

Eq. (100) is now algebraic in P. Due to the orthogonality of the
“sym/skew” decomposition, Eq. (100) requires that
2u, skew(Du — P) = skew M ,
(101)
2u, sym(Du — P) + A tr(Du — P)1 — 2 ;.o SYM P — A tr (P)1 =sym M .

Since the “sym” operator is not orthogonal to the “tr” operator, we
further decompose “sym” into “dev sym” and “tr sym” so that
2u, skew(Du — P) = skew M,
2u, dev sym(Du — P) + %ue tr(Du — P)1 + A tr(Du — P)1 (102)
= 2Uimicro dev sym P — %Mmiaro tr (P)1 = Apierott (P) 1
=devsymM + %tr(M)]l,

note that “tr sym” is the same as “tr”’. We also recall here the definition
of the volumetric part, the deviatoric part, and the skew-symmetric
parts in the 3D case

3D volumetric part := %tr(P)]l,

T
3D deviatoric symmetric part := P +2P — %tr(P)Il R (103)
_ pT
3D skew symmetric part := L 2P .
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With further manipulations and thanks to the orthogonality of the

o«

operator “skew”, “dev sym”, and “tr”, the system (102) requires that

2u, skew(Du — P) = skew M,
2u, dev sym(Du — P) — 2., dev sym P = dev sym M,
104

2 2 |
(5,4e + /le) tr(Du — P)1 — (gymicm + Amicm) tr(P)1 = Str(M)1.

From Eq. (104) we can evaluate the expressions for skew P, dev sym P,
and tr(P) individually as

skew Du — stkew M =skew P,

He
Ldev symDu— ——————sym M =dev sym P, (105)
He + Hmicro Z(He + ”micro)
re trDu- 1 tr(M) = tr(P)
Ke + Kmicro 3(Ke + Kmicro) '
where «, = @ and Ko = w are the 3D-elastic and

micro bulk modulus, respectively. The contribution of the body volume
moment M can be incorporated in the classical body volume force f*,
but f* is now dependent on the elastic coefficients. Substituting back
the relations (105) in Eq. (99) while also applying the “dev sym”, and
“tr” decomposition, allows us to write

Div [ 24, dev sym (Du - <ﬁDu>)
(5 micro

Frtr (Du— <LDM)> 1]=s*
¢ Ke + Kmicro

= Div[2m dev symDu + LeFmicro 41y 1] = r*,
He T Hmicro Ke * Kmicro
(106)
= Div[2ptmaero dev symDu + ke tr (Du) 1] = £
where f* is defined as
ff=f- Div[m dev sym M + skew M + 1 Fmacro tr(M)1]. (107)

‘micro Kmicro
It is noted that f* depends on skew M without any multiplicative elas-
tic coefficient. This limit with a concentrated double body force may be
instrumental in order to identify the micro parameters. The Eq. (106); is
the equilibrium equation for a classical isotropic linear elastic Cauchy
continuum with stiffness y,,.ro @nd Kpaero- The relations for the macro-
scopic Lamé parameters (4mqcro> Amacro) alld the macroscopic bulk mod-

ulus (kpacr0) are then
U . He Hmicro © . Ke Kmicro
macro * T 4 macro * T k4
3 He F Hmicro ¢ Ke + Kmicro (108)
=1 3 2 3 di
}“macro = g ( Kmacro — ”macro) (3D me lum) ’
where k.., iS the macroscopic bulk modulus. Relations are the

specialization of relation (2) to the isotropic case (Barbagallo et al.,
2017). In order to have A ..o = Amicro = 0, the only possible condition
iS Amicoe = 4. = 0. Note that the macroscopic stiffness C,,,.., (here
Hmacro> Kmacro) 1S Uniquely identified from classical homogenization tech-
niques (Sarhil et al., 2023).

A.1.2. Limit for L, — oo: upper bound microscopic stiffness C,icro

The minimization of an energy functional that incorporates
L2 (|CurlP|1%, for the limit L, — oo, requires CurlP = 0, and this
implies that the micro-distortion tensor P has to reduce to a gradient
field P — Do on a simply connected domain such that

CurlDv=0 Vove[C®R), (109)

thus asserting finite energies of the relaxed micromorphic model for
arbitrarily large characteristic length values L, The corresponding
strain energy density in terms of the reduced kinematics {u,v} : Q —
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R3 now reads
W (Du, Do) = p, ||sym(Du — Dv)|| + u, ||skew(Du — Dv)||?
A Ai
+ Ectrz(Du — D) + Hpiero lIsym Do||* + %trZ(Dv).
(110)

The first variation of the strain energy I = [ W dx with respect to the

two independent vector fields « and v leads '(tgo
SI" = / ( 24, (sym(Du — Dv), Déu) + 2, (skew(Du — Dv), Déu)
Q
+ A (tr(Du — Dv)1, Déu) + (£, 6u) ) dx,

81V = / ( —24, (sym(Du — Do), Dév) — 24, (skew(Du — Dv), Dév)
Q

— A {tr(Du — Dv)1, Dév) (111)
+ 2Utpicro(SYm P, D0) + Amicro(tr(Dv) 1, Dév) ) dx.
The equilibrium equations are now obtained by requiring
81" = (f,6uy, Vou and 81V = (M,Dév), Vév.
(112)

where the contributions on the right sides are the virtual work of the
external forces f (classical body force) and M (non-symmetric second
order double body force tensor), and the equilibrium equations read

Div|2u, sym(Du — Dv) + 24, skew(Du — Dv) + 4, tr(Du — Dv)1] = f,
(113)
— Div[2u, sym(Du — Dv) + 2, skew(Du — Dv) + 4, tr(Du — Dv)1]

+ DIV [2fticro SYM DU + Apyiero tr(Dv)1] = Div M, 114

where the constraint M n = 0 is required on the boundary, with »n the
normal to the boundary. The term on the left-hand side of Egs. (114)
can be substituted with the right-hand side of (113) and, while keep-
ing Eq. (113), we can re-write the system of Egs. (113)-(114) as

Div|2, sym(Du — Dv) + 24, skew(Du — Dv) + 4, tr(Du — Dv)1] = f,
(115)

Div |2 icro SYM DO + Apicrotr Dv)1] = f + Div M,

The only case in which v = u is an admissible solution is if the classical

body forces f are zero. In this case Egs. (115) reduces to

DiV 6yyicro = DiV[24tmicro SYM DUt + Apicro tr(Du)1] = Div M, (116)

‘micro
which is an equilibrium equation of the classical elasticity type with a

microscopic stiffness given by i, and A, and a body force vector
equal to Div M.

A.1.3. Limit for C, > +oo with ., = 0: lower bound macroscopic stiffness
C

macro
Due to the relations we have formally C, ., = Cpacro @S Co = +o0.

The strain energy density (6) is again reported here
W (Du, P, Curl P)
= te lIsym®Du — P)||* + p |Iskew(Du — P)|?
+ %trz(Du — P)+ uy, |lsym P||? + %“‘tr2 (P)

iy L2
M e (al l[dev sym Curl P|® + a, [|skew Curl P|/*

+ ‘;i tr? (Curl P)) - min(, P). 117)

As y,, A, = o0, in order to remain with a bounded strain energy density,
it is required that sym P = symDu. This, and p, = 0, reduces the
variational problem to

A
/ Hyy |lsym Du||? + Tmtr2(sym Du) (118)
Q
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Hm L?

+ < (al |ldev sym Curl P|| + a, ||skew Curl P||?

+ %tr2 (Curl P))dx — min(, P).

v L2

The curvature part 3

(al l|dev sym Curl P|® + a, [|skew Curl P||* +

Z tr*(Curl P)) can be annihilated by choosing Curl P = 0 which
implies
P=Dy (119)

on a simply connected domain. Moreover, the remaining minimization
in (118), using the consistent coupling condition delivers the unique
solution u. Gathering, we have (Neff and Miinch, 2008)

sym Du = sym Dy

sym(Du—-n)=0 <<= Du-n =AK),
= 0= Curl D(u — 5) = CurlA(x)

= A€eso)

= AX) =A “rigidity” (120)
Du(x)-Dn(x)=A€503) => P=Dp=Du—-A and CurlP =0.
This leads to

I(u,P) = /Q sy [[sym (D —Z)H2 + %Mtr2 (Du —Z) +0dx (121)

A
= / iy llsym Du||2 + TMtr2 (Du) dx — minu.
Q

Therefore C, — +oo gives size-independent linear elasticity with stiff-
ness C .0, as expected. Note that, in contrast, the same limit of C, —
+o0o would lead to a gradient elasticity formulation for the classical
Eringen-Mindlin micromorphic model (d’Agostino et al., 2022) .

A.2. A true two-scale model: the relaxed micromorphic model limit for
L. - 0and L, -  in plane strain

The relaxed micromorphic model reduces to a classical Cauchy
model for both L, — 0 and L, — o but with two different stiffnesses,
Cracro and C ..o, respectively. The expressions of such stiffnesses are
presented in the next two sections for the plane strain problem.

A.2.1. Limit for L. — 0: lower bound macroscopic stiffness C.,,cro
For the limit L, — 0, the equilibrium equations (30) reduce to

Div|2u, sym(D# — P%) + 2y, skew(Dii* — P*) + 2.tr(DW — PH1,| = f,
(122)
2u, sym(Di* — P%) + 2y, skew(Dii# — P*) + A tr(D# — PH1,
— 2py, sym P — A tr(PH)1, = M.
Eq. (122), is now algebraic in P'. Due to the orthogonality of the
“sym/skew” decomposition, Eq. (122), requires that
2y, skew (D — Ph= sym]\? R
(123)
24, sym(D — P*y + A tr(D — Fn)llz — 2u,, Sym Pt — }»mtr(I?n)]l2 = skew M .

Since the “sym” operator is not orthogonal to the “tr” operator, we
further decompose “sym” into “dev sym” and “tr sym” so that

2u, skew(D#* — ﬁ“) = skew]\7,
(124)
2y, dev, sym P* — y tr (P11, — A, tr(PH)1, = sym M .

2u, dev, sym(Dii¥ — P*) + p, tr(DiFf — PH)1, + A tr(DiF — P)1,

note that “tr sym” is the same as “tr”’. We also recall here the definition
of the volumetric part, the deviatoric part, and the skew-symmetric
parts in plane strain case

~ 1
2D volumetric part := %tr(Pn)]l2 , 1,= <0 (l))’
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. . . . F) f F 1 1 S >
2D deviatoric symmetric part := — - Etr(P )1, = dev, sym P*,
. Pt P
2D skew symmetric part := — (125)

With further manipulations and due to the orthogonality of the operator
“skew”, “dev sym”, and “tr”, the system (124) requires that

24, skew(Di‘tii - Fﬁ) =skew M,
1 dev, sym(Di — P%) -y dev, sym P¥ = dev sym M , (126)
(e + 4¢) tr(DiF — P, — (i + Ap) tr(PH1, = %tr(ﬁ)ﬂz .
From Eq. (126) we can evaluate the expressions for skew P¥, dev sym P*,

and tr( F”) as

skew Dt — stkew M = skew P* )

He
He dev, sym Dt — ———dev, sym1\7 = dev, sym ﬁﬁ’ 127)
He + Hm 2(pe + Hm)
e wD# - — M= tr(P).
Ke + Ky 2(ke + k)

where k., = y, + 4, and k, = p,, + 4, are the plane strain bulk moduli.
Substituting back the relations (127) in Eq. (122), while also apply-
ing the “dev sym”, and “tr” decomposition, we have

(5%))
Me+ﬂm

+Eetr<Dﬁﬁ— (~ T DW)) L |= f*.
Ke + Ky

Div [ 24, dev sym <Dﬁ"t -

AL

PN Div[Zﬂ dev, sym D + —= KZ‘ tr (Dﬁﬁ) 1] = 7,
He + Uy Ke + Ky
(128)
= Div[2uy dev, sym D + Ry tr(Da*)1,] = f*.
where f* is defined as
ff=f- Div[”—M dev, sym M + skew M + 1km tr(M)1,].  (129)
Hm 2 K m

It is noted that f* depends on skew M without any multiplicative
elastic coefficient because of the choice of an isotropic constitutive
law (an isotropic second order skew-symmetric tensor depends on one
coefficient). This limit with a concentrated double body force may be
instrumental in order to identify the micro parameters. Eq. (128); is
the equilibrium equation for a classical linear elastic isotropic Cauchy
continuum with stiffness y,.., and «,,..o- The relations for the macro
Lamé parameters (yy, 4y) and the macroscopic bulk modulus for plane
strain are given in (19). Note that in order to have A = =0,
the only possible condition is again A, = 4. = 0.

macro ‘micro

A.2.2. Limit for L, — oo: upper bound microscopic stiffness C,,icro

The minimization of an energy functional that incorporate
ppg L2 [|Curl P#|1%, for the limit L, — oo, requires CurlP* = 0, and this
implies that the micro-distortion tensor P has to reduce to a gradient
field P! — D&* on a simply connected domain and

curlDi¥F =0 V& e [C®@Q)P, (130)

thus asserting finite energies of the relaxed micromorphic model for
arbitrarily large characteristic length values L, The corresponding
strain energy density in terms of the reduced kinematics {, 7%} : 2 —
R? now reads

w (Dﬁ, DE“) = e |[sym(Di - DE“)”Z + 1, ||skew(DiF — DE‘“)”2

!
+ ftrz(mﬂ - Dt (131)

+ ”symDB’iH2 + /%mtrz (Dﬁﬁ) .
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The first variation of the strain energy I = [ W dx with respect to the

two independent vector fields #* and o lead% to
SIF = /Q ( 2, (sym(D#* — Do), D6i*) + 24, (skew(Di¥ — D*), D5T)
+ A (tr(Di — DI*)1,, D67) ) dx, (132)
sI7 = /Q (—2,45 (sym(D#* — Do), D6T*) — 24 (skew(Dii* — Do¥), D63F)
— A (tr(DiF — DI¥)1,, D5T*) (133)
+ 2u,,(sym DBF, D&%) + A, (tr(DH 1, Daaﬂ)>dx.

The equilibrium equations are now obtained by requiring

s1% = (M,Dstty, Voot
(134)

SI% = (F. iy, Vit and

where the contributions on the right sides are the virtual work of the
external forces f (classical body force) and M (non-symmetric second
order double body force tensor), and the equilibrium equations read
Div|2u, sym(Di* — Do) + 241, skew(Di# — Di*) + A, tr(DF — D) 1,] = 7,
(135)
— Div[2u, sym(Dii* — Di%) + 2u, skew(Di* — D&*) + 4, tr(Di — D)1,
+ Div|[2p,, symD%* + 4, tr(DF)1,] = Div M,
where the constraint M n = 0 is required on the boundary, with » the
normal to the boundary. The term on the left-hand side of Eq. (135),
can be substituted with the right-hand side of (135), and, while keep-
ing Eq. (135),, we can re-write the system of Egs. (135) as
Div[2u, sym(DiF* — Do) + 2, skew(D# — D) + A, tr(Dii* — Do) 1,] = f,
(136)
Div|2u,, sym D& + A, tr (DF*)1,] = / +Div M .
The only case in which o* = @ is an admissible solution is if the classical

body forces f are zero. In this case (136) reduces to

Div o,, = Div[2u,, sym D& + 4, tr(Di)1,] = Div M, (137)

which is an equilibrium equation of the classical elasticity type with a
micro stiffness given by u,, and 4, and a body force vector equal to
Div M.

A.3. Some particular cases of the relaxed micromorphic model
A.3.1. The pure relaxed micromorphic equations

If we set y. = 0, the force stress tensor ¢ becomes symmetric and
the model reduces to

o=
Div[2u, sym(D## — P*) + 2,trDi — PH1,] = £,
0 = 24ty sym P* — A tr(P*)1, — pyy L2 @ Curl Curlyy PF = M, (138)
[ My My, O _ [ A
M= My My 0|, f=| N
0 0 0 0
In components we have
(Ae +2ug) (111 = Pipy) + e (w212 = Proy)
+ He (_PI2,2 =Py tu;n+ ’42,12) =/
(Ae +24) (U220 = Prp) + 2 (41,12 = Piy2)
+pe (=Pioy = Poyg +urn+uny1) = f2,
ping LI (Piy o = Pioia) = PriGe + A + 20 + Hy)
= U + A)Pay + Ule + 20 )1y + Aty = M, (139)

2~
— i L@ (Pyy o = Progy) = (e + i) Pra — (e + i) Py
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e (w0 +uyy) =M,

pn L2G (Pay gy — Pop1p) — (Mo + i) Pra — (e + i) Py
+tte (w0 +uyy) = My,

— i L2@ (Pay 1o = Py 1y) = Pro(Ae + Ay + 2(He + i) = (e + A Py
+ (Ae + 2u)upn + Aoty | = My, .

A.3.2. The relaxed micromorphic model with zero micro and macro Pois-
son’s ratio

If we set A, = A, = 0, which implies iy, = 0, the equilibrium
equations (30) reduce to

Div|2u, sym(D## — P*) + 2y, skew(Dif* — PH)]| = f, (140)
24, sym(DEﬁ - PhH+ 24, skew(Di# — P*) — 24, Sym pt
— Um Lz @Curl Curlyp, PP = M .
Componentwise, we have
He (120 =g 12 + Py1o = Pry3)
+ e (20 +2uy 1 +up 1 = 2Py = P = Payp) = fy s
He (Piog = Pory =ty 10+ y)
+ e (U 12+ 200 + Uy = Ppyy = Py =2Py3) = [,
pyg L2 (Prion = Pion) + 24 (1) — Pry) = 2p Py = My (141)
apyg LY (Pioyi — Piin) + pe (w10 =t — Py + Pyy)
+pe (2 + 1y 1 = Py = Pyy) = pt(Py + Poy) = My,
apyg L2 (Py1 o — Py o) + He (U =ty 5 + Piy = Pyy)
+pe (1 + 1y 1 = Py = Pyy) = pt(Ppy + Poy) = My,
Gy L2 (Pyyiy = Poppa) + 28, (Uag — Py) = 2 Poy = My, .

The conditions for existence and uniqueness for the model in (140)
are

e >0, Hy >0, wy L23> 0, Ue>0.  (142)

For u, =0, in order to guarantee existence and uniqueness, one needs
tangential boundary conditions for P, while for 4, > 0, one does not
need boundary conditions for P in order to guarantee existence and
uniqueness.

A.3.3. The relaxed micromorphic model with one curvature parameter, a
zero Cosserat couple modulus, and a zero micro and macro Poisson’s ratio

If in addition to the simplifications of Appendix A.3.2 we also set
He = 0, the equilibrium equations (140) further reduce to
Div|2u, sym(D# — P = £,
24, SYym(D# — P*) — 2p, sym PF — iy L? & Curl Curly, Pi=M.
(143)
This represents the most simple set of equations for the plane strain
relaxed micromorphic model. In components we have
He (=2Py1y — Piop — Poyp+uyoo +2uy 1y +uyp0) = £y
He (=Piog — Payy —2Pyp +up o+ 20 +uy 1) = [
i L2 (P gy = Pioa) = 2(e + pn) Py + 2001 = M,
— Uy Lg‘?(Pn,lz = Piy1y) — (e + i) Py — (g + i) Py
e (w0 +uyy) =M,
Hm LzaN(Pszz = Py 1y) — (e + ) Py — (He + p) Py
+ e (g0 +uy ) = My,
— i L3 (Pyy1p = Poo1) = 2(ke + i) Py + 2ty = My .

(144
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A.4. Subclasses of the relaxed micromorphic model as singular limits

A.4.1. The isotropic micro-stretch model in dislocation form as a particular
case of the relaxed micromorphic model

The micro-stretch model in dislocation format (Neff et al., 2014;
Scalia, 2000; De Cicco and Nappa, 1997; Neff et al., 2009; Kirchner
and Steinmann, 2007) can be obtained from the relaxed micromorphic
model by letting formally p;,, — oo, while k;;, < oo. For bounded
energy, the micro-distortion tensor P must be devoid from the devia-
toric component devsymP = 0 & P = A+ wl, A € 503), w € R.
The expression of the strain energy for this model in dislocation format
can then be written as (Neff et al., 2014) (using Curl as the curvature
measure)

W (Du, A, w, Curl (A + w1))
= py; ||dev sym Dul|? + %tr2 (Du — wl)
+ 1, |Iskew (Du — )| + g K @ (145)

L2
v Ze (‘11 ldev sym Curl A||> + a, ||skew Curl (A + w1)]|?

a3 . 2
+ 3 tr (CurlA)) s

since Curl (w1l) € 50(3). The equilibrium equations, in the absence of
body forces, are obtained by variation of (u, A, w) respectively and read

C:i=

Div 2y dev sym Du + kotr (Du — w1) 1 + 24, skew Du — A)] = f,
2u, skew (Du — A) — uy Lz skew Curl (a1 devsym Curl A

+ a, skew Curl (4 + wl) + 513_3 tr(Curl A) 1 ) =skew M , (146)

tr | kett Du — 1) 1 — Kpigrotr (1) 1 — iy Lg a, Curl skew Curl (w1 + A)

=tr(M).

Under the plane-strain hypothesis only the in-plane components of
the kinematic fields are different from zero and they only depend on
(x1,x,). The structure of the kinematic fields (, A, w) are

u 1 0|0
=\ u, |, , oly=w| 0 1|0 |,
0 0 010
0 0 Ap-w,
CutlA+wly)= 0 0 Apr,+w; |, (147)
0 0 0
A —0n 5= Ap 0

Curl Curl(A + 0ly) = | Ay +wy, —App—wq |0

0 0 K

Under the plane-strain assumption, the equilibrium equations in com-
ponents read now
= 2ucAppg + (Ke + Huy 11 + Kelty 13 = 2K.0 1 + (He + MUty 5p = Helly 1o = f1»

2UAgy g+ (K = HUy 1o+ (Ko + Hellly 3y = 2Ke@ 5 + (o + M)ty 1 = [, (148)

1 ~ My - M,

7 M L2a (A + Apyy) + e (24 +up —uyy) = -5

1 ~ M, + My
EﬂM Lza (a’.zz +a)'11) = 2(ke + K)o + K, (“1.1 + “2.2) = —

A.4.2. The isotropic Cosserat model in dislocation form as a particular case
of the relaxed micromorphic model

If we take the limit for A0, #micro = © (Cricro = ©0), the isotropic
relaxed micromorphic model is particularized to the linear Cosserat
model (Neff et al., 2014; Ghiba et al., 2023). The expression of the
strain energy for the isotropic Cosserat continuum can be equivalently
written in dislocation format as (using Curl as the curvature measure)

W (Du, A, Curl A)
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!
= py lsymDull® + p, |Iskew (Du — A)||* + TMtrz (Du) (149)

Hm Lf
2

+ <al lldev sym Curl A||> + a, |Iskew Curl A|® + %trz (CurlA)) .

The Cosserat model features the classical displacement field u € R?
and the infinitesimal micro-rotation tensor A € §0(3), i.e. A is a skew-
symmetric second order tensor. The system of equilibrium equations
reads

0=

~

Div|2p, symDu + 2y, skew (Du — A) + 4, trDuw)l| = £,
2u, skew (Du — A) — skew Curl

(ﬂM L2 (a] dev sym Curl A + a, skew Curl A + % tr (Curl 4) ]l))

m:=

=skew M . (150)

Here, y. > 0 is called the Cosserat couple modulus. The skew-operator
in Eq. (150), appears because of the reduced kinematics and skew M
is the skew-symmetric part of the body volume moment tensor. Note
that there is no equation like Div o, = Divskew M here and taking
U, > 0 is mandatory for coupling both equations in (150).

Under the plane-strain hypothesis only the in-plane components are
different from zero and they only depend on (x,, x,). The structure of
the kinematic fields are reported below in (151)

T upp oy 0
u= [u, , Uy, O] , Du=| up; wuy 0],
0 0 0
0 A, O
A=| -4, o o |, (151)
0 0 0
0 0 Ap,
CurlA=| 0 0 Ay, |, skewCurl
0 0 0
~ 0 —(Apn+Apn) 0
CurlA=| A +Apn 0 0
0 0 0
Moreover, since
~ ~2 ~2
tr(Curl A) =0, and “dev sym Curl AH = ”sym Curl AH
~2 1 ~2
= HskewCurlA” =3 ”CurlA“ ) (152)

under the plane-strain hypothesis, the model will just depend on one
cumulative parameter @ := @) and the equilibrium equations (150)
reduce to (see the #-notation in (13))

0:.=

Div |24, sym Dt + 24, skew (Dﬁn - Zﬂ) + 2 tr(DEH1] = T,

24, skew (Da11 - Zﬂ) — skew Curl (uy; L23 Curlyp, A%) = skew M . (153)
—_——
m:.=

Note the additional appearance of the skew-operator due to the reduced
kinematics of the Cosserat model. Moreover, the Cosserat model is only
operative for positive Cosserat couple modulus y, > 0, in contrast to
the relaxed micromorphic model. Finally, the equilibrium equations in
component form read

_ZMCAIZTZ + ()'e — Mt Me)u2,12 + (’15 + zﬂe)ul,ll + (Mc + ”e)ul.ZZ = fl’

Q’MCAIZ,I + ()'e — Hc + Me)ul,IZ + (’15 + zﬂe)uZTZZ + (Mc + ”e)uZ.ll = f2’
1 2~ _ M, - M,

5 Hm Lia(App + A ) + H(=241 +uyp — 1y ) = - 5

(154)
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A.4.3. Classical isotropic linear elasticity in plane strain
The plane-strain system of standard classical linear elasticity (L, —
0) reads

0=
Div |24ty Sym D + Ay tr(Di)1] = £, (155)
and the component form is
(A + g 1 + (A + 2pnpug 11 + vt 2 = f1s
(Am + s 1o + (A + 2pyDug 0 + ity 11 = [,
The Fourier system in this case assumes the well-known form
— (O + 2#M)§12 + /4M§§) i) — (A + )& &ty = fl, (156)
—(hyg + &1 & — (O + 2008 + uél) By = o,
and the Fourier determinant becomes
det Ajin etast (8) = pig(Ang + 2ppE*. (157)

A.5. Properties of the second kind modified Bessel functions

Here we show some well known relations regarding the second kind
modified Bessel functions K,[z] that have been used in the derivation
of the Green’s functions in (49) and (75) of the relaxed micromor-
phic medium. Also we derive some useful limits that were employed
for passing from the general relaxed micromorphic model to other
generalized continua.

The modified Bessel functions K,[r] are solutions of the ODE

220" (z) + zi (2) = (2% + nP)u(z) = 0. (158)

Some useful recurrence relations for the second kind modified Bessel
functions K,,[r] are (Gradshteyn and Ryzhik, 2014):

K, 2] = K,_,[2] + Z?nK,,[z], K,[z]=K_,[z], n>0 (159)

If z = (xf + x%)l/2 > 0, we derive the first and second derivatives of
K, [z] w.r.t x; as

0, K,lz] = -;f—; (Kpp1l2) + K,_112])
5y

472 n>0.

0xi0xj K,[z] = (K,42[z] + 2K, [z] + K, _»[z])

) (Kpalz1+ K,y [21)

(160)

1 XiX;j

5 (0 -

where §;; is the Kronecker delta. These equations have been employed

for the derivation of the Green’s functions of the relaxed micromorphic

plane strain theory.

For small argument z — 0 we have the asymptotic relation (Grad-

shteyn and Ryzhik, 2014):

—lng—b, for n=0,

n
M(z) for n>0,
2 z

K,[z] ~ (161)

where b is the Euler constant and I'[-] is the Gamma function.
For large argument z — oo we have the asymptotic relation (Grad-
shteyn and Ryzhik, 2014):

K,[z] ~ ,/ie—z for n>0,

which show that all K, functions become quickly zero at infinity with
exponential rate.
We now prove some limits that appear in the main text.

. 2 1 . 1
lho(; ‘Kz[z]> =3 lm(Z-Kilz1) =0,

lim zK[az] = a”",
z—0

(162)

lim z?Ky[z] =0, lim Kq[z] = —Inz. (163)
z—0 z—0
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Now the first three limits are easily derived by expanding K,[z] and
K,[z] in series as z — 0. We have: K,[z] = 2/z% — 1/2 + O(z%) and
K, [z] = 1/z + O(z). The last limit is a direct consequence of (161) and
the fact that lim,_y z"Inz = 0, n > 0. The above results cover the limit
cases (55), (77), (85) where ¢, — o or u, =0.

Accordingly, we have

lim z? Ky[z] = 0, lim z K,[z] = 0, lim <3 - Kz[z]> =0,
zZ—00 zZ—00 z—00 \ z2

(164)

which are direct consequence of (162). The above results cover the limit
cases (67), (82) where ¢; = 0.
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