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A B S T R A C T

In this work, we have presented the deep insight of Goos–Hänchen shift depending upon the
temperature when a plane incident electromagnetic beam of light enters from a rare to a
denser medium, keeping conditions of total internal reflection intact. A simple well known
Drude’s model has been used for the purpose of thermal analysis of this shift. Through this
model, the temperature-dependent permittivity of absorbing or complex medium has been found
through the temperature-dependent plasma and damping wavelengths. Both transverse electric
and magnetic incident electromagnetic fields have been considered in this regard. On an air–
metal interface, firstly, Goos–Hänchen shift has been found when a temperature-independent
dielectric function of a complex medium has been considered, and secondly, by analyzing the
temperature-dependent dielectric function in the simplest way by using the stationary-phase
method. This study is useful to understand the behavior of Goos–Hänchen shift around the
temperature-dependency of the medium and how the angle of incidence impacts in this scenario.

. Introduction

Generally, when a light beam incident on an interface which possesses different refractive indices, the beam bounces back at
he same point as by the prediction of geometrical optics, but in 1947, it was observed that when the light beams that travel from
edia with different refractive indices deviate from the path of geometrical optics and travel a short distance along the interface.
his optical phenomenon is referred to as lateral displacement or Goos–Hänchen shift (GH), and can be seen in Fig. 1(a,b) [1–4].

Mostly, this shift is mentioned under the situation of total internal reflection, when beams of light travel from optically sparse to a
enser medium [5]. Artmann’s work on the GH shift by using the stationary-phase method serves as a backbone for the theoretical
nterpretation [6]. Now it is more evident that deviating behavior of reflected rays exists and has been proved by considering a
imple air-glass interface, shone by the Gaussian beam [7]. As Goos–Hänchen shift is a non-specular phenomenon and shows very
nteresting behavior for different media. The amplitude of this shift can be tuned as well, and many research groups are working
n the electrically tunable GH-shift [8]. Temperature-dependent Goos–Hänchen shift is one step forward in this regard and has
pened a new door in advanced optoelectronics, temperature-monitoring sensors and surface-plasmon resonance sensors [9,10].
ecently, plenty of literature has been developed, which leads to remarkable results ending with applications in optical switching
nd in sensing technology, including plasmon resonance sensors, oscillating wave-sensor and temperature-dependent sensors [9–11],
asers [12], and acoustic [13]. GH-shift also shows positive as well as negative behavior lean upon the media or refractive index
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Fig. 1. Structural diagram for a planar interface. (a) Geometrical optics prediction for an incident beam at an interface; (b) observation of GH shift for an
incident beam at a planar interface.

of media. Negative GH-shift has received considerable attention and has many applications in electromagnetic regime [14–16]. In
recent studies, composite GH-shift has been explored, which is a combination of two shifts, when a Gaussian beam impinges on the
interface and explains how the GH-shift changes its behavior for both s and p-polarization. Large positive and negative GH-shift
has been observed when an incident beam hits on metal grating when the condition of surface plasmon resonance (SPR) has been
satisfied. In these studies, it has been proved theoretically and experimentally as well that the incident beam width and grating depth
influence the GH-shift [7,17–19]. In the recent past, a number of research groups have investigated the Goos–Hänchen shift in the
context of temperature dependency while considering different media, including complex media [20,21], absorbing media [22,23],
and metamaterials [24]. Goos–Hänchen shift has been explored by using different kinds of incident beams on different typologies of
media. In the literature have been derived the new mathematical expression giving a valuable interpretation of the behavior of the
shift in this regard. For example, Airy beams and vortexes when incident on the Dirac metamaterial and graphene-based substrate
surfaces are reported [25–28].
Here we have presented the explicit studies for Goos–Hänchen shift while considering both temperature-dependent and temperature-
independent absorbing media. Moreover, Drude’s model is taken into account in order to dig deep into the temperature-
dependent wavelengths, i.e., plasma and damping wavelengths [29]. Moreover, for a better understanding of temperature-dependent
reflectivity, contour plots have been reported, Fig. 4.

2. Mathematical model

For the sake of better understanding, we have divided our analysis into two cases, temperature-dependent and temperature-
independent GH-shift, and considered both 𝑠-polarization and 𝑝-polarization in this regard. For the first case, experimental values
of the refractive index of metals like silver (𝑛Ag = 0.14 + 𝑖5.50), gold (𝑛Au = 0.18 + 𝑖5.39), and copper (𝑛Cu = 0.260 + 𝑖5.26) have
been considered [30]. And for the second case, temperature-dependent refractive index or permittivity has been taken into account
for investigating the temperature-dependent Goos–Hänchen shift (𝐺𝐻𝑇 ). For this purpose, a famous Drude–Lorentz formulation is
used, and we only take gold metal as a second medium due to its chemical stability and extensive usage in modern electronic
technology [11].
In this study, a plane incident electromagnetic beam of light (wavelength 𝜆 = 826 nm and its intensity is one volt per meter (1 V/m))
travel from the medium one with refractive index 𝑛1, air in this scenario, to the second medium with complex refractive index 𝑛2.
Both temperature-dependent and temperature-independent cases have been investigated on the same geometry: difference depends
upon the second medium’s dependency on temperature. Starting from the Fresnel equations, it is possible to find GH-shift through
the formulation given by Artmann’s stationary phase method [6]. A basic equation for finding the GH-shift is [5,31],

𝐷 = − 1
𝜅
𝑑𝛿
𝑑𝜃

(1)

𝜅 = 2𝜋
𝜆 , represents the wave number of the medium, 𝛿 and 𝜃 show the phase of medium and the angle of incidence, respectively.

Reflection coefficients for both 𝑠-polarization and 𝑝-polarizations are given by [32],

𝑅𝑝 =
𝑛2 cos 𝜃𝑖 − 𝑛1 cos 𝜃𝑡
𝑛2 cos 𝜃𝑖 + 𝑛1 cos 𝜃𝑡

(2)

𝑅𝑠 =
𝑛1 cos 𝜃𝑖 − 𝑛2 cos 𝜃𝑡
𝑛1 cos 𝜃𝑖 + 𝑛2 cos 𝜃𝑡

(3)

respectively. 𝜃𝑖 is the angle of incidence, while 𝜃𝑡 represents the transmission angle. Studying the optical properties of metals in
deep details is not easy: therefore, we assumed Drude’s model as a good approximation in this regard [33]. Further, the metal
is a complex medium or absorbing medium: therefore, it exhibits the complex permittivity, and Drude’s model gives the simple
2
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Fig. 2. Behavior of reflectivity 𝑅2
𝑠,𝑝 and Goos–Hänchen shift 𝐺𝐻𝑠,𝑝 for the angle of incidence. (a) Behavior of Reflectivity for 𝑠-polarized incident beam, (b)

Behavior of Reflectivity for a 𝑝-polarized incident beam; (c) GH-shift for a 𝑠-polarized incident beam; (d) GH-shift for a 𝑝-polarized incident beam.

relation for handling the complex permittivity, especially when it depends upon wavelength and temperature [9]. Therefore,
Temperature-dependent permittivity as a function of temperature can be given by Drude’s model [9],

𝜖2(𝑇 ) = 1 −
𝜆2𝜆𝑐 (𝑇 )

𝜆2𝑝(𝑇 )(𝜆𝑐 (𝑇 ) + 𝑖𝜆)
(4)

n the above relation, 𝜆𝑝 is the plasma frequency, 𝜆𝑐 represents collision, and incident wavelength is denoted by 𝜆. Temperature-
dependent plasma wavelength 𝜆𝑝 directly related to the density and effective mass of the electrons, which also depends upon
emperature, given by [34],

1
𝜆𝑝(𝑇 )

= 1
𝜆𝑝(𝑇𝑜)

[1 + 3𝛾𝑚(𝑇 − 𝑇0)](−1∕2) (5)

ere 𝜆𝑝(𝑇𝑜) = 168.26 nm represents the plasma wavelength of gold at the room temperature of 𝑇𝑜 = 300 K. Thermal expansion
oefficient of bulk metal is given by 𝛾𝑚 = 1.42 × 10−5 K−1. For finding collision wavelength 𝜆𝑐 (𝑇 ), the scattering from both phonon
nd electron parts must be considered [9].

1
𝜆𝑐 (𝑇 )

=
[

2𝜋𝑐𝜀𝑜
𝜆2𝜎(0)

]

1
10 + ( 𝑇

𝑇𝐷
)
5
∫ 𝑇𝐷∕𝑇
0

𝑧4𝑑𝑧
(𝑒𝑧−1)

∫ 𝑇𝐷∕𝑇
0

𝑧5𝑑𝑧
(𝑒𝑧−1)(1−𝑒−𝑧)

+ 𝜋2𝛤𝛥
24𝑐ℏ𝐸𝐹

[

(𝐾𝐵𝑇 )2 +
(ℏ𝑐
𝜆

)2]

(6)

In Eq. (6), the first term indicates the contribution from phonon–electron scattering and the second term indicates the electron–
electron scattering. Further, 𝜎(0) = 7.576 × 107 Ω−1 m−1 represents the DC conductivity of gold at Debye temperature of 𝑇𝐷 = 170 K,
and 𝐸𝐹 = 5.53 eV is the Fermi energy, 𝛤 = 0.55 represents the average amount of the Fermi surface of the scattering, and 𝛥 = 0.77
represents the umklapp scattering, ℏ = 1.05457 × 10−34 J s is the Plank’s constant and 𝑘𝐵 = 1.38062 × 10−23 J K−1 is the Boltzmann’s
3

constant [9,34].
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Fig. 3. Behavior of reflectivity 𝑅2
𝑠,𝑝 and Goos–Hänchen shift 𝐺𝐻𝑠,𝑝. (a) Behavior of Reflectivity for a 𝑠-polarized light, (b) Behavior of Reflectivity for a 𝑝-polarized

incident beam, (c) GH-shift for a 𝑠-polarized incident beam, (d) GH-shift for a 𝑝-polarized incident beam, (e) Sub-figure (zoom view of Fig. 3(c)) of GH-shift for
a 𝑠-polarized incident beam.

The Phase of reflection coefficient for both 𝑠-polarization and 𝑝-polarization is given by [35]

𝛿𝑝 = 𝐼𝑚

[

ln

[

𝑛2
2𝑐𝑜𝑠𝜃 − 𝑛1(𝑛2

2 − 𝑛12 sin
2 𝜃)1∕2

𝑛2
2𝑐𝑜𝑠𝜃 + 𝑛1(𝑛2

2 − 𝑛12 sin
2 𝜃)1∕2

]]

(7)

𝛿𝑠 = 𝐼𝑚

[

ln

[

𝑛1𝑐𝑜𝑠𝜃 − (𝑛2
2 − 𝑛12 sin

2 𝜃)1∕2
2 2 2 1∕2

]]

(8)
4

𝑛1𝑐𝑜𝑠𝜃 + (𝑛2 − 𝑛1 sin 𝜃)
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Fig. 4. Contour plots of reflectivity as a function of temperature, incident angle (vertical axes), temperature (horizontal axes), and color bar indicates the
reflectivity from 0.2 (blue) to 0.9 (red), (a) Reflectivity when the incident field is 𝑠-polarized, (b) Reflectivity when the incident field is 𝑝-polarized. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

As the dielectric constant or refractive indices are complex in our case for the second medium and can be inter-convertible by using
the following relation [36],

�̂� = 𝑛 + 𝑖𝜅

𝜖 = 𝜖𝑟 + 𝜖𝑖 = �̂�2

�̂�(𝑇 ) =
√

𝜖(𝑇 )

3. Results and discussion

The basic idea behind this study is to explore the Goos–Hänchen shift when it depends upon temperature-dependent complex
dielectric constant and to explore the factors which contribute to makeing temperature-dependent Goos–Hänchen shift different
from simple temperature-independent shift. For the temperature-independent GH-shift values of dielectric constant are fixed and do
not depend upon temperature, results for reflectivity and Goos–Hänchen shift are shown in Fig. 2. For the temperature-dependent
GH-shift we have used temperature-dependent permittivity or complex dielectric constant as a function of temperature for a gold
only, results for reflectivity and GH-shift can be seen in Fig. 3.
In Figs. 2(a) and 3(a), it can be seen that the reflectivity 𝑅2

𝑠 increases with the increase in the angle of incidence for 𝑠-polarization
in both cases of temperature-independent and temperature-dependent permittivity, respectively. And maximum reflection has been
occurred at 90◦ for all the values of temperature. For 𝑝-polarization, in Figs. 2(b) and 3(b), decreasing behavior of reflectivity 𝑅2

𝑝 can
be seen with respect to the angle of incidence; however, this trend starts to increase after a specific value of the angle of incidence
has been reached. In Fig. 3(b), due to temperature dependency, reflectivity is decreases with the temperature (250 K to 650 K)
while the angle of incidence shifts towards bigger values due to temperature-dependent parameter.
Figs. 2(c) and 3(c, e) represent the positive GH-shift for 𝑠-polarization, in both scenarios (temperature-independent case and
temperature-dependent case) of Goos–Hänchen. Fig. 3(e) shows a more detailed view of Fig. 3(c). For 𝑝-polarization, negative Goos–
Hänchen shifts are observed in Figs. 3(d) and 4(d). In Fig. 3(d), GH-shift shows the same trend for all three metals and its value is
decreasing and has a minimum value at 90◦, while in Fig. 4(d), it can be seen that for temperature-dependent Goos–Hänchen shift
at lower temperatures (250 K and 350 K) it shows almost similar behavior just like in temperature-independent case, but as the
temperature rises after 350 K, shift displays its deviating behavior at the specific values of angle of incidence, i.e., drops at certain
angles and then starts to rise again. In addition, the maximum rise of this shift can be seen for the maximum temperature (650 K).
Finally, in Fig. 4(a,b), contour plots of reflectivity (for both 𝑠 and 𝑝-polarization) as a function of temperature have been shown for
the better understanding of the concept of the temperature dependency on reflectivity and the angle of incidence. In this Figure,
vertical axes display incident angle and horizontal axes show the rise in the temperature and color-bar indicates the reflectivity
from blue to red area.

4. Conclusion

In this work, we have seen how temperature-dependent refractive index or permittivity and angle of incidence impact the
reflectivity and Goos–Hänchen shift. For both polarization (𝑠 and 𝑝), reflectivity is inversely related to the temperature, i.e., an
increase in reflectivity gives a decrease in the values of temperature. Moreover, GH-shifts are positive and negative for 𝑠 and 𝑝
polarization. This study may be helpful to develop a temperature-sensitive devices based on this shift. This shift parameter can be
effectively used to control the temperature according to the requirements.
5
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