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Abstract
In the light of unprecedented planetary changes in biodiversity, real-time and accurate ecosystem and biodiversity assess-
ments are becoming increasingly essential for informing policy and sustainable development. Biodiversity monitoring is a 
challenge, especially for large areas such as entire continents. Nowadays, spaceborne and airborne sensors provide informa-
tion that incorporate wavelengths that cannot be seen nor imagined with the human eye. This is also now accomplished at 
unprecedented spatial resolutions, defined by the pixel size of images, achieving less than a meter for some satellite images 
and just millimeters for airborne imagery. Thanks to different modeling techniques, it is now possible to study functional 
diversity changes over different spatial and temporal scales. At the heart of this unifying framework are the “spectral spe-
cies”—sets of pixels with a similar spectral signal—and their variability over space. The aim of this paper is to summarize the 
power of remote sensing for directly estimating plant species diversity, particularly focusing on the spectral species concept.

Keywords  Beta-diversity · Biodiversity · Earth observation · Ecological informatics · Grain · Plant optical types · Remote 
sensing · Satellite imagery

Introduction

Airborne and satellite remote sensing has afforded opportuni-
ties to look at planetary changes from a new perspective, which 
could potentially allow us to monitor ecological drivers of bio-
diversity changes in space and time, across different spatial 
scales (Asner et al., 2017; Marignani et al., 2008; Skidmore 

et al., 2015). All these new advances in remote sensing tech-
nologies provide a complementary perspective to field obser-
vations (Leclère et al., 2020; Pollock et al., 2020) and have led 
to the development of Earth Observation (see Box 1) interna-
tional networks grounded in both data types, like the Group 
on Earth Observation (GEO, https://​www.​earth​obser​vatio​ns.​
org). For instance, the essential biodiversity variables (EBVs, 
Pereira et al. (2013) concept has recently been extended to 
remotely sensed EBVs (RS-Enabled EBVs, Skidmore et al., 
2015, see also Jetz et al., 2019) which should be perceived as 

‘The race is now on between the technoscientific and scientific 
forces that are destroying the living environment and those that can 
be harnessed to save it.’ (E.O. Wilson, The Future of Life, 2002).
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first order descriptors (exploratory metrics) of the ecosystems 
in which species live—such as ecosystem structure, ecosystem 
distribution, fragmentation and heterogeneity, land cover (see 
Ibrahim et al., 2015)—and not a replacement of taxonomic 
approaches based on in situ data collection practices (Foody 
et al., 2016; Skidmore et al., 2021).

Integrating field surveys, macroecology, ecological mod-
eling, ecoinformatics, remote sensing and high-throughput 
computing can help to assess spatiotemporal patterns of the 
different facets of biodiversity, from broad ecosystem struc-
ture and composition to species-specific functional traits 
(e.g., leaf mass per area or concentration of particular pig-
ments, Hoskins et al., 2020; Lechner et al., 2020). Current 
Earth Observation sensors acquire highly-resolved informa-
tion over a wide range of wavelengths within the electromag-
netic spectrum, inside and beyond the visible domain. This is 
increasingly achieved at very fine spatiotemporal resolutions 
and for a broad spectrum of ecosystems and vegetation struc-
tures. In some cases, it even involves multiple daily revis-
its. In this view, remote sensing, especially from imaging 
spectrometers—where each pixel value is associated with 
a complete reflectance spectrum over (usually) many wave-
lengths and beyond the visible spectral domain (between ca. 
380 and 750 nanometers)—has proven to be useful in dis-
criminating and mapping different plant clades and/or taxa 
(phylogenetic and taxonomic diversity, De Simone et al., 
2021; Rocchini et al., 2018), as well as different functional 
components (functional diversity) of plant species (plant 
functional types, Cawse-Nicholson et al., 2021; Fassnacht 
et al., 2022; Frye et al., 2021; Ustin & Middleton, 2021; 
Yang et al., 2015). This is particularly interesting, since plant 
species traits often translate into processes driving the func-
tioning of ecosystems (Asner et al., 2017, but see also van 
der Plas et al., 2020 for a critique on this point). There is an 
increasing body of literature demonstrating that functional 
diversity tends to correlate with ecosystem functions such 
as productivity (Loreau, 2000), resilience to perturbations 
(Mori et al., 2013) or regulation of biogeochemical fluxes 
(Isbell et al., 2015; Legendre & Rivkin, 2005).

Review papers exist about the use of remote sensing in 
ecosystem based studies, i.e., focusing on the indirect rela-
tionship between ecosystem heterogeneity and species or 
community diversity (Rocchini et al., 2018) or on functional 
properties at the ecosystem level (Schweiger et al., 2018). 
On the contrary, the aim of this paper is to summarize, from 
both a biological and an algorithmic point of view, the power 
and the limits of remote sensing for a direct estimate of plant 
species diversity, based on the strict relationship between 
biological and spectral species—namely sets of pixels with 
a similar spectral signal corresponding to plant individuals 
in the field (Féret & Asner, 2014, see Box 1)—disentangled 
in the next section.

Biological vs. spectral species

The information gathered by airborne and spaceborne opti-
cal sensors operating in the visible to shortwave infrared 
regions of the electromagnetic spectrum largely corresponds 
to the reflectance of the Earth’s surface, partly or totally cov-
ered by vegetation, and can include reflectances from a few 
discrete spectral bands (multispectral imaging) to hundreds 
of continuous spectral bands (imaging spectroscopy). Imag-
ing spectroscopy could enable modeling and predicting plant 
functional types at the species, community and ecosystem 
levels with higher detail, accuracy and consistency than the 
currently used plant life/growth forms (Schmidtlein et al., 
2007), based on the ability of measuring plant functions 
using the reflectance at different wavelengths, defined in the 
remote sensing community as spectral signatures (Asner & 
Martin, 2008).

A spectral signature emerges because plant traits such as 
leaf morphology, species’ spatial arrangement and density, 
chlorophyll and other pigments, protein and water contents, 
all interact with light at different wavelengths, absorbing and 
reflecting a light fraction which produces a characteristic 
signal that can be measured with spectroscopic instruments 
(Ustin & Gamon, 2010). The depiction of the absorptive and 
reflective characteristics of plants is dependent on many fac-
tors, including ecosystem characteristics, seasonality, health 
status and sensor characteristics such as the magnitude of 
the signal across wavelengths, the signal-to-noise ratio, the 
spatial and spectral resolution (Ustin & Gamon, 2010).

Among the different methods proposed to estimate bio-
diversity metrics from imaging spectroscopy, one approach 
intends to automatically identify optically distinguishable 
functional types, defined as “optical types” by Ustin and 
Gamon (2010) (Box 1). These can then be inventoried for 
a given spatial unit in order to compute various diversity 
indices, including alpha-(local diversity) or beta-(species 
turnover) diversity metrics (see also Jurasinski et al., (2009) 
for an alternative definition based on species inventory and 
differentiation). Once optical types are directly related to 
in situ diversity, one can rely on “spectral species”, i.e., 
pixels with a similar spectral signal coming out from plant 
individuals in the field (Féret & Asner, 2014). This can hap-
pen at those spatial resolutions allowing distinction between 
individuals and further species discrimination based on 
spectral information (Fig. 1). Fe and Asner (2014) aimed to 
map taxonomic diversity of tropical forests based upon high 
spatial resolution imaging spectroscopy. They defined the 
plant optical types that are automatically discriminated with 
a clustering algorithm as “spectral species” (Fig. 1). They 
then calculated a diversity metric by mapping the variabil-
ity of these spectral species over space. This methodology 
can possibly be transposed to other scales of analysis, under 
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the assumption that these plant optical types (spectral spe-
cies) correspond to an actual biological segmentation of the 
taxonomic or functional space of the ecosystem under study 
(see Kissling et al., 2018). The spectral space can be viewed 
as a combination of different subspaces, reflecting the “sig-
nature” of one or several species. Such spectral subspaces 
are the expression of a more general “spectral species” con-
cept. From the resultant “spectral community”, composed 
by several “spectral species”, it would be possible to derive 
the diversity across a given area, by calculating alpha- or 
beta-diversity metrics. The output of this algorithm is not 
a list of the actual plant species occurring within or across 
the area, but rather a map of the distribution of the spec-
tral types of the area from which it is possible to calculate 

several diversity indices (Fig. 2, see also Féret and de Bois-
sieu, 2020).

The term “species” might be seen as only partially appro-
priate when applied to spectral data. However, the very con-
cept of biological species—mainly conceived as a group of 
organisms producing fertile offspring—is not devoid of 
ambiguity. Species are an essential and widely used (i.e., 
operational) biological/organizational level of ecosystems 
and biodiversity. However, there is no general concept that 
can be applied to classify species across all life forms. Lim-
its to the morphological, biological, genetic, evolutionary, 
phylogenetic and other species concepts are evident: (i) 
similarity in the shape of reproductive organs can be mis-
leading (as documented in the case of the former family of 
Scrophulariaceae); (ii) reproductive success can only be seen 

(A) (B)

(C)(D)

(E) (F)

Fig. 1   Workflow of the spectral species concept in action. Starting 
from a multi- or hyper-spectral image data cube (A), a data reduc-
tion is performed by, e.g., a Principal Component Analysis (B). The 
reduced set is segmented in the spectral space recognizing clusters 
of pixels related to plant individuals with the same spectral signa-
tures, also called “spectral species” (C). For each pixel in the image, 
a probability of membership to a certain spectral species is assigned 
based on its spectral distance from each cluster and spectral species 
maps are built (D). A threshold can be applied to finally attain a sin-
gle spectral species map as in Fig. 2. Based on this map alpha-diver-
sity (E) and beta-diversity (F) can be calculated relying on Shannon’s 
H and Bray-Curtis indices, respectively, with a direct analogy with 
the indices used with biological species

(A) (B)

(C) (D)

(E)

Fig. 2   Spectral species derived from airborne multispectral images 
(spatial resolution 0.1  m) over the forested area of Monticolo/Mon-
tigl (Province of Bolzano/Bozen-Italy) (A and B show the true and 
false colors images of the area). Starting from original bands, spectral 
species are derived by unsupervised classification of the spectral sig-
nal (C). Once such species have been detected, commonly used met-
rics of diversity can be applied such as Shannon’s H alpha-diversity 
(D, ranging from blue to green to yellow) and Bray-Curtis distance 
beta-diversity (E). In the latter case, colors do not represent a gradient 
scale from lower to higher values but rather the difference among dif-
ferent parts of the original image
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if two different genders exist (not the case for microorgan-
isms); and (iii) genetic similarity is of limited information 
without knowing about transcription, metabolomics and 
the proteome. The ambiguity in classifying species from a 
biological perspective thus percolates into higher organiza-
tional levels, such as communities and ecosystems. Note, for 
example, how metrics aimed at quantifying an ecological 
community are dependent on knowing richness and species 
relative abundance in a given area, although such a depend-
ence might be softened by using, e.g., null models (Gotelli 
& McGill, 2006). As a consequence, classifying biotic units 
to species is to some extent a question of criteria.

Obviously, the feasibility of resolving individual species 
from current satellite remote sensing is generally still quite 
limited to large-scale stands and represents an open technical 
and biological issue. In other words, remote sensing can-
not be viewed as a replacement of field surveys. However, 
the connection of in situ and remote sensing data on plant 
individuals and their relative diversity would be beneficial 
in case of need for a straightforward estimate of biodiversity 
over large spatial extents.

As previously stated, imaging spectroscopy systems 
allow seeing plant optical properties in a large number of 
dimensions of the electromagnetic spectrum from visible 
to infrared domains, measuring reflected solar radiation, 
with repeatable and systematic sampling across space. In a 
hyperspectral space, i.e., a spectral space composed of many 
continuous bands, spectral features corresponding to pixels 
provide an original representation driven by multiple interac-
tions between light and vegetation, through the atmosphere 
as viewed by an optical sensor. When properly analyzed and/
or transformed, this multidimensional space can be seen 
as a remote sensing analog to Hutchinson’s hypervolume 
(Hutchinson, 1959) related to many ecological scales—from 
individuals to species to communities and ecological driv-
ers—including environmental variables, resources, func-
tional traits and morphometric axes (Blonder, 2018). Such 
space-based representations of landscape patterns can then 
be analyzed in different ways, in order to explore distances, 
clusters and trajectories. Therefore, the Hutchinson’s hyper-
volume (Hutchinson, 1959) basically orders geometrically 
the variables shaping species’ ecological niches. Hence, it 
directly reflects niche differentiation (Blonder, 2018) which 
in turns mirrors (i) the spatial distribution of species (Feoli 
et al., 1988) and (ii) their spectral behavior, through a strict 
relationship with their spectral signature, namely the vari-
ability over different wavelengths or patterns of reflectance 
(Rocchini et al., 2018). Strictly speaking, we understand the 
hypervolume of spectral traits as a hint from spectral diver-
sity on biotic diversity.

Getting information from single pixels (data), i.e., their 
connection in hyperspectral spaces, requires extraction 
techniques like convolutional neural networks. The main 

advantage of such deep learning techniques with respect 
to machine learning approaches, such as support vector 
machines and random forests, is that they rely on both spec-
tral and spatial components instead of just the spectral one. 
A theoretical framework for partitioning the spectral diver-
sity of a region is provided by Laliberté et al. (2020), while 
empirical examples are provided by Ma et al. (2021), who 
mapped boreal tree species distributions in Finland thanks 
to the combination of hyperspectral airborne imagery and 
Light Detection And Ranging (hereafter, LiDAR) data and 
by Asner et al. (2008) remotely detecting invasive species 
in Hawaiian rainforests.

Based on the segmentation of the spectral space, pixels 
with sufficient proximity can be assumed to correspond to 
similar plant optical types and can be grouped into discrete 
entities (defined as “spectral species” by Féret & Asner, 
2014), or used to define functional metrics such as functional 
richness, evenness and divergence (Schneider et al., 2017). 
Proper exploration and analysis of this hyperdimensional 
spectral space has been demonstrated to significantly add to 
common analytical techniques. Fe and Asner (2014) applied 
this type of analysis to map both alpha- and beta-diversity in 
a unique framework. It is rooted in the convergence between 
the plant optical types proposed by Ustin and Gamon (2010) 
and the spectral variation hypothesis (SVH) (Palmer et al., 
2002; Rocchini et al., 2010). The SVH states that the greater 
the heterogeneity of an ecosystem, the greater its spectral 
variability will be in an optical/spectral space. In most cases, 
a higher spectral variability is related to higher biodiversity 
due to the higher amount of available niches for species to 
survive.

A plant functional type, or functional group, is directly 
related to the strategies that plants employ to survive (Grime, 
2001), as a continuum of traits, leading to specific ecosystem 
properties like productivity, carbon stock, water budgets and 
biogeochemical cycling (Ustin & Gamon, 2010). While sev-
eral functional types contribute to the overall biodiversity of 
an ecosystem, only some of them constitute the fundamental 
properties of ecosystems such as biomass/productivity. In 
this case, e.g., in temperate and boreal forests, dominant 
plant species are expected to exert a crucial role in guaran-
teeing that such ecosystem properties (functions) are main-
tained, as in the mass ratio hypothesis (Grime, 1998). From 
a remote sensing perspective, this is an important point since 
most (optical) remote sensors are only capable of detecting 
upper canopy vegetation.

Furthermore, it is not always the case that one can look 
at understory (or ground) vegetation with remote sens-
ing data. It strictly depends on the density/sparsity of the 
overstory crowns, the sensor pixel size (relative to the gap 
sizes between these crowns) and the information available 
to understand the structure of the covering crowns (e.g., 
LiDAR/radar data, see Simonson et al., 2012; Torresani 
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et al., 2020). From this point of view, LiDAR or radar data 
can help to resolve some ambiguity in species and habitat 
identification (height, gap structure, height of crown above 
ground and volume of crown), using structural—instead of 
only spectral—properties (Fig. 3). More generally, once the 
optical properties of plants, grounded in radiative transfer 
theory and principles of spectroscopy, are associated with 
specific plant traits, the use of remote sensing for detect-
ing peculiar plant optical types is expected to be relatively 
straightforward (Asner et al., 2017; Torresani et al., 2021).

From this point of view, spectral species could represent 
a convergence between plant functional traits and optical 
properties. For instance, imagine a set of resources support-
ing the spatial distribution of living organisms, composed 
of temperature, soil moisture, light and water availability 

and defined by n-multivariate axes (Ustin & Gamon, 2010). 
When attempting to link optical properties (spectral space) 
to such a resource or environmental space, the founding 
principle is to orient the optical bands (axes) with the afore-
mentioned multivariate resource axes. Once this is done, 
a match of optical properties between vegetation and the 
functional properties of ecosystems can be attained.

Clusters of pixels identified in a multispectral or hyper-
spectral space identify the most probable groups of spec-
trally similar pixels (spectral species), which can be used 
as a basis for spectra inventories and for further calculating 
diversity metrics, including alpha-diversity metrics (e.g., 
Shannon’s H, Simpson’s D, Rényi’s H 

�
 ) and dissimilarity 

metrics relevant for the estimation of beta-diversity met-
rics, such as the Bray-Curtis dissimilarity or the Rao’s 

Fig. 3   Light Detection and Ranging (LiDAR) data play a significant 
role in estimating structural diversity in different ecosystems. The 
image shows the point cloud derived from an Unmanned Vehicle 
(UV) LiDAR flight (UV: DJI Matrice 600 Pro, LiDAR sensor: Yel-
lowscan Surveyor) that highlights the structural complexity of a for-

est ecosystem along the Fountain Creek stream in Colorado (USA). 
The data (part of the ‘USGS_CO_FountainCreek’ project) have been 
downloaded from the Earth Explorer platform of the United States 
Geological Survey (link: https://​earth​explo​rer.​usgs.​gov/)

Box 1   Definitions

Biological species: Groups of organisms producing fertile offspring by sexual reproduction; additional definitions can be based on genetics or 
morphology

Earth Observation: Observation of the planet based on both in situ and remote sensing data to allow an effective and efficient monitoring of 
the variation of its conditions in space and time

Optical types: Optically distinguishable functional types; in operational terms, pixels with the same spectral characteristics which are not 
necessarily matching individuals in the field but just similar functional components

Spectral species: Pixels with a similar spectral signal corresponding to plant individuals in the field

https://earthexplorer.usgs.gov/
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quadratic entropy (e.g., Thouverai et al., 2021). The defi-
nition of the spectral space from which diversity metrics 
are computed may include the full spectral information 
(Bongalov et al., 2019), or a selection of the most relevant 
features (through Principal Component Analysis, spec-
tral indices or other dimensionality reduction techniques) 
in order to reduce the influence of noise and unwanted 
artifacts induced by the sensor used or the conditions of 
acquisition.

Gambling points

Conceptual issues

A very interesting and general aspect of diversity is that it 
connects various levels of the ecological hierarchy: from 
genes to species to communities, until entire biomes (Car-
mona et al., 2016; Feoli, 2018; Ibanez et al., 2016). In other 
words, one calculates the diversity of a given community 
by counting the number (and the relative abundance) of 
individuals of each species. One of the main complexities 
is whether this also holds true for the concept of spectral 
species. In our opinion, the notion of a species can be trans-
lated to spectral species once pixels or groups of pixels are 
considered as individuals, becoming a certain (spectral) spe-
cies in a given community, spatially viewed as a portion of 
the original image. Hence, from this perspective, spectral 
species are the spectral equivalent of a biological species.

A critical reflection relates to how the spectral spe-
cies concept relates to the real world. In fact, a key point 
is the intrinsic difficulty to directly relate, in most cases 
(Schmidtlein & Fassnacht, 2017), biological and remotely 
sensed diversity (Rocchini et al., 2021) since one is a bio-
logical construct and the other a construct of Information 
Theory. This arises because the aforementioned SVH is 
mainly relating species and spectral diversity based on an 
indirect relationship grounded in spatial (and its accompa-
nying spectral) heterogeneity. However, in some, or maybe 
most, cases the biological diversity is not directly related to 
mere spatial heterogeneity (Rocchini et al., 2014). Examples 
include: (i) the opening of tropical forests; (ii) fire spread; 
and (iii) urban development, among others. That said, when 
the spatial resolution of imagery matches the dimension of 
plant individuals (Féret & Asner, 2014; Ustin & Gamon, 
2010; Woodcock & Strahler, 1987), remotely sensed spectral 
species could provide a first-order exploratory tool to detect 
areas that are suspected to host a high number of species. 
From this point of view, a replacement of in-situ with spec-
tral data is neither feasible nor wanted.

That said, as previously stated, the classification of 
biological organisms into species strictly depends on 
the adopted criteria, based on, e.g., sexual reproduction, 

genetics and morphology (Jurasinski et al.,2009, see Box 1). 
In other words, ‘what is or is not a cow is for the public to 
decide’ (Wittgenstein, 1921). The same holds for remotely 
sensed images in which the intrinsic dimensions of an image, 
i.e., its spatial and spectral resolutions, are even vaguely 
defined. Hence, the spectral species concept must be defined 
within the dimensionality of the investigated space and spec-
trum (see also Abbott, 1884 about theory and storytelling on 
mathematical hyperdimensions).

The overlap between biological and spectral species is 
guaranteed once (i) the spatial resolution of imagery matches 
that of individuals in the field (Ricotta et al., 1999; Rocchini 
& Vannini, 2010; Woodcock & Strahler, 1987) and (ii) the 
spectral resolution of images—in terms of number of dif-
ferent bands available—is sufficient to build proper spectral 
signatures of individuals and detect peaks of reflectance dif-
ferentiating them, e.g., in hyperspectral imagery (Féret & 
Asner, 2014). This is true conceptually, but practical issues 
should be considered and they are faced in the next section.

Practical issues

From a practical point of view, spectral species are defined 
by segmenting the spectral space, namely the space defined 
by the spectral bands of an optical image (Féret & de Bois-
sieu, 2020). This is somewhat similar to the use of support 
vector machines or most unsupervised algorithms, which, in 
general, determine the boundaries among different classes 
based on statistical learning theory (Vapnik, 1995). They 
have been widely used in remote sensing (Pal & Mather, 
2004, 2005). However, one of the main shortcomings of 
such methods—i.e., partitioning (choroplething) the spectral 
space to detect different spectral species—is that in many 
cases the defined boundaries are not reliable in nature, due 
to environmental factors and/or genetic factors that result in 
intra-species variability, e.g., across an environmental gradi-
ent, or an unequal distribution of environmental conditions 
such as soil moisture or nutrients, changes in soil texture 
or changes in microclimatic conditions due to different 
topographic aspects or slopes. This is also true for biologi-
cal species, due to the fact that the phenological plasticity, 
functional and morphological characters of different species 
might partially overlap (Carmona et al., 2016). Furthermore, 
the phenological development throughout the seasons might 
severely alter the spectral signal of plants. In such cases, 
spectral species that are extracted from a mono-temporal 
image data set are not robust in time and space. In other 
words, two pixels/plants that belong to the same spectral 
cluster in spring can easily end up in different clusters in 
summer due to their individual phenology. Obviously, this 
affects the outcome of any biodiversity assessment and 
needs to be considered. From this point of view, multitem-
poral hyperspectral data can identify plant signatures that 
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are clearly senescent or changing within the seasonal period 
(Ustin & Gamon, 2010). This would be more difficult in her-
baceous communities where there is a succession of species 
as the season progresses.

Moreover, the seminal paper by Fe and Asner (2014) 
analyzed forest ecosystems, where each tree was covered 
by at least one pixel. Scale-wise, a single pixel in this case 
closely relates to a single plant on the ground, even though 
mixed pixels may still be present, but techniques like spec-
tral unmixing could solve the problem (Shi & Wang, 2014). 
From another point of view, the spectral species concept can 
be applied in the context of the SVH. Many SVH studies 
deal with grassland ecosystems where the plants are much 
smaller and a pixel relates more to a mixed plant assemblage 
than to a single plant (see Imran et al., 2020 and references 
therein). Hence, the scale issues reported in Rocchini et al. 
(2021) should be considered by also keeping in mind that it 
is not always possible to determine diversity by counting the 
number of individual spectral species. On the contrary, the 
use of approaches like spectral unmixing could help relating 
pixels’ subspaces to in situ entities/organisms (see Rocchini 
et al. 2013 for a review). From a different perspective, even 
using hyperspatial images (e.g., with sub-meter resolutions, 
like in drone hyperspectral images) could increase the num-
ber of noisy and non-informative pixels that could artifi-
cially increase the number of spectral species (Woodcock 
& Strahler, 1987).

Concerning some of the points raised in Sect. 3, entitled 
“Gambling points”, from a practical point of view and a 
biological perspective, a species trait is a measurement of 
an individual of a species (Kissling et al., 2018). For the 
regional and global species trait databases such as TRY 
(https://​www.​try-​db.​org/), a species trait is a field measure-
ment of an individual, or sometimes the average a series 
of individual measurements, across multiple individuals 
belonging to the same species. Of course, from a remote 
sensing perspective, the definition of a species could include 
a monospecific group of individuals of the same species 
(e.g., monospecific Fagus sylvatica or Eucalyptus camaldu-
lensis forests). From this point of view, many examples exist 
making use of airborne data with high spatial resolution, to 
map individuals or groups of plants of the same species, 
sometimes even combining airborne image spectroscopy 
with airborne LiDAR data (Graves et al., 2016; Müllerová, 
et al., 2017; Schmidt et al., 2004; Schneider et al., 2017).

Conclusion

While remote sensing is an effective tool for the explora-
tion of spatio-ecological patterns and their generating pro-
cesses, one should be careful not to overestimate its power 
and that of the spectral species concept in directly estimating 

diversity from space (Skidmore et al., 2021). In this manu-
script, we explored several aspects related to the use of spec-
tral species (see Sect. 3 entitled “Gambling points”), both as 
a term and as a mechanistic approach to grouping pixels with 
similar spectral reflectance. Yet, just like for actual plant 
species, the spectral species concept is dynamic as it changes 
through time following phenological events, such as mass 
flowering or senescent states. This is one of the main limits 
to what can be seen in a spectral signal at a given moment 
in time that is highly dependent on plant species’ phenology 
(Poyry et al., 2018), which could be overwhelmed by the 
use of a stack of spectral images collected over the whole 
phenological season.

On the other hand, as Hutchinson (1957) pointed out, “it 
is not necessary in any empirical science to keep an elabo-
rate logicomathematical system always apparent, any more 
than it is necessary to keep a vacuum cleaner conspicuously 
in the middle of a room at all times. When a lot of irrelevant 
litter has accumulated, the machine must be brought out, 
used, and then put away.”

Plant diversity research involves the qualitative and quan-
titative of plant functional traits. Plant species traits trans-
late into processes and functioning of ecosystems, consider-
ing that: (i) the spectral signal of a plant surface at a given 
time is a trait; (ii) diversity in spectral signals at a given 
time is a measure for biodiversity for this time slot; and 
(iii) changes in space and time in this diversity of spectral 
signals is a measure for turnover. Finally, the differences in 
spectral signals at a given spatial resolution (e.g., 1 m × 1m 
or 10 m × 10 m) between neighboring clusters of pixels at 
a coarser resolution (e.g., 100 m × 100 m) are a measure of 
beta-diversity (spatial turnover of traits and information). 
Remote sensing captures traits, not DNA, and this should 
never be hidden from view (Skidmore et al., 2021). Differ-
ences in traits sometimes stand for different species, but do 
not have to do so. Pointing at the demand for a spectral spe-
cies concept and its benefits—for instance, when monitoring 
traits at the large extents—would make sense only if viewed 
as a grouping unit, being effectively related to biological 
species in the field in case of a match between pixel size 
and individuals, e.g., with the availability of hyperspatial 
and hyperspectral data. Still, as usual, the devil is in the 
details (Nagendra & Rocchini, 2008), and this is also true 
for remote sensing data.

Plant diversity is built up by individuals of different spe-
cies; “spectral species” represent the measurable effect of 
such combinations in the reflectance space. Hence, beside 
all the mentioned difficulties and criticism, we think that 
“spectral species” have to be used as operational units in 
the analysis of remote sensing data to detect plant diversity 
in analogy with the operational taxonomic units in numeri-
cal taxonomy (Sneath & Sokal, 1973). As the species con-
cept, with all its limitations, is considered the basic unit in 
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community vegetation analysis (Feoli, 1984), the “spectral 
species” concept should be considered as the basic unit for 
the analysis of biodiversity by remote sensing data.
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