
Computational Approaches to Predict Protein−Protein Interactions
in Crowded Cellular Environments
Published as part of Chemical Reviews virtual special issue “Molecular Crowding”.

Greta Grassmann, Mattia Miotto, Fausta Desantis, Lorenzo Di Rienzo, Gian Gaetano Tartaglia,
Annalisa Pastore, Giancarlo Ruocco, Michele Monti,○ and Edoardo Milanetti*,○

Cite This: Chem. Rev. 2024, 124, 3932−3977 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Investigating protein−protein interactions is crucial for understanding
cellular biological processes because proteins often function within molecular complexes
rather than in isolation. While experimental and computational methods have provided
valuable insights into these interactions, they often overlook a critical factor: the crowded
cellular environment. This environment significantly impacts protein behavior, including
structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss
theoretical and computational approaches that allow the modeling of biological systems to
guide and complement experiments and can thus significantly advance the investigation, and
possibly the predictions, of protein−protein interactions in the crowded environment of cell cytoplasm. We explore topics such as
statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and
several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational
biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein−protein
interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
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1. INTRODUCTION
The cell is a complex world with many layers of biological
organization that regulate the interactions and the existence of
organelles, proteins, peptides, sugars, DNA, RNA, etc. Its
interior is characterized by a high concentration of macro-
molecules and other cellular components referred to as
crowding.1,2 Up to ∼40% of the cytoplasmic volume is
occupied by a concentration of biomolecules between 100 and
450 g/L,3−5 and membranes are crowded as well,6 having 20−
50% of their area occupied by membrane proteins that leave
only a few “private” nanometers for individual proteins.7

Crowding is ubiquitous in living cells and has important
implications for cellular processes, including protein folding
and binding, enzyme kinetics, and gene expression, as
discussed in more detail in other chapters of this issue.

The cellular environment has long been recognized as
crowded, but the interest in this phenomenon has only recently
increased, fostered by the development of experimental probes
to address crowding directly in the cellular interior8,9 and
thanks to the boost of computer power that finally allows
molecular simulations of the cytoplasm even at atomic
resolution.10 In the past decade, many reviews on crowding-
related computational studies have been proposed, which
started from the summary by Zhou et al.11 of all the
observations made through simulations between 2004 and
2008. Five years later, Zhou12 underlined the convergence of
experimental and simulation studies, mostly considering
artificial crowders. A focus on all-atom simulations of the
cytoplasm was proposed by Guin et al.,13 while Guigas et al.14

reviewed simulations of crowded membranes. Shahid et al.15

summarized the studies on the size-dependent influence of
crowders on proteins’ properties, whereas a more general
overview of the models of crowding agents used in computer
modeling investigations of proteins and peptides has been
provided by Ostrowska et al.16

We will focus on protein−protein interactions and provide a
critical review of both the works that have investigated, by
computational means, the effect of molecular crowding on
proteins and of those studies that despite being born outside
the crowding field could be employed to strengthen this
investigation. This review aims to suggest a stronger
connection between the crowding field and the computational
methods proposed to study isolated molecules, which in recent
years have shown incredible breakthroughs. Given their
performance and their rapid advancements (reviewed in
Section 3), it is worth asking if these new techniques could
foster advancement in the investigation of the crowded cellular
environment for which many questions are still to be solved (as
discussed in Sections 2 and 4).

While crowding is ubiquitous in all cell components, we
opted to focus on the effect of crowding on the interaction
between proteins in the cytoplasmic environment. Wider
consequences (in terms of molecules distributions in the cell)
of the variations of these interactions17−19 and the effect of
crowding in membranes will not be discussed here. For an in-
depth overview of these topics, the reader can look at previous
reviews. Heo et al.,20 for example, focused on protein assembly,
phase separation, and molecular crowding effects, distinguish-
ing them depending on contact specificity and time-of-life, and
highlighted the most recent advances from computer
simulation studies. An overview of membrane-associated
processes and the computational tools developed to study

them can be found in the reviews by Marrink et al.21 and Löwe
et al.22

Understanding and predicting the interaction mechanisms
between proteins are of particular importance because over
80% of proteins operate in molecular complexes:23 the
knowledge of protein complexes formation, considered in
their crowded environment, can provide crucial information on
the physiological and pathological nature of cellular life. These
studies can also have important clinical implications, for
example, to investigate the mechanisms of action of
pharmaceuticals.24

The subject of protein−protein interactions has been widely
discussed, and many efforts have been made toward the
compilation of this essential part of the so-called interactome,
defined as the map of the molecular interactions occurring
within the cell. Experimentally, this can be built through a wide
set of methodologies, including proteomics techniques when
specifically referring to the recovery of the protein−protein
interactions network. Mapping the interactome of an organism
is fundamental for understanding cellular functions, both under
physiological and pathological conditions.25 Often, in the
context of proteins, these studies have focused on functional
interactions, which are defined as the physical contacts of high
specificity established between two or more protein molecules
that are related to a known function. However, many
interactions in the cell do not correspond to these criteria. It
is by now well understood that in the crowded cellular
environment, proteins interact with much more than their
functionally related proteins (or other macromolecules) in the
immediate vicinity.26 For example, nonfunctional proteins can
interact after encountering as they diffuse in the cell searching
for their specific functional partner/partners. This remark has
brought attention to the importance of nonfunctional protein−
protein interactions.17,27−29 Nonfunctional interactions can
lead to the formation of a transient complex between two
functionally unrelated proteins but also indirectly influence
functional interactions by modifying protein dynamics and
association pathways and consequently their folding or
binding.

Therefore, taking into account the cellular environment and
studying the effects of crowding is particularly crucial for
researchers to better understand protein−protein functional
interactions and unravel the actual interactome.

The effects of crowding on the behavior of the proteins and
other biomolecules immersed in the cellular environment have
been under investigation for many years;30 nevertheless, most
of the experimental and computational studies concerning
protein−protein interactions conducted up to now have
considered diluted solutions. The crowding and dynamism
characterizing the cell interiors are not easy to replicate both in
in vitro experiments and in silico simulations. The presence of
molecules in such high concentration also results in a higher
viscosity of the cell interior:31 the conditions in which protein
interactions are usually measured in vitro can differ significantly
from those found in the cellular environment where they take
place. A consensus on the crowding theory, based on
experimental data, is hampered by the intrinsic limitations of
studying highly dynamic and interconnected systems in which
the single molecule information is lost within the exper-
imentally detected structural ensemble. Even if variations in
the structure can be observed over time, the atomic detail is
often missing, and its evolution in time�together with the
related energy variations�can never be observed. Only the
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total variation in interaction energies can be measured, but to
understand the general effect of crowding, it is necessary to
untangle each component. Moreover, experimental techniques
are usually expensive and time-consuming, especially when
applied to such complex systems that include thousands of
molecules.

In this respect, accurate modeling of protein−crowder
interactions and efficient computations can complement
experiments by untangling the various effects of crowding.
Computational studies�including but not restricted to MD
simulations�can, indeed, give direct access to information on
single molecules in carefully controlled environments. Low-
cost computational methods that screen the interactions both
on a large number of crowders and on a high number of
conformational states (obtained, for example, from MD
simulations) can analyze the interaction of single proteins or
complexes with the environment (including the crowders).
Even if multimillion atom systems have long since been
available, as discussed nearly a decade ago,32,33 most molecular
dynamics (MD) studies have focused on single molecules/
complexes without considering the crowded environment.
However, the computational investigation of the crowding
effect has mostly relied on simplified models. There are two
reasons for this: the computational cost of all-atom simulations
of crowded environments and the lack of experimental data to
compare. However, the flux of data from high-throughput
experiments that can probe the composition of a cell34 and the
macromolecule structure and dynamics inside of it35,36 has
been growing. This increase has encouraged computational
studies of realistic models of crowded biological environments
that can fill the gaps left by experimental data. The present
Review aims to highlight the need for these methods and the
importance of bringing together both sides (computational and
experimental) of the crowding-focused research world. In
particular, it this Review was inspired by the meeting “New
Frontiers in Molecular Crowding” organized in July 2022 at
the European Synchrotron Radiation Facility (ESRF) of

Grenoble to bring together experimentalists and computational
researchers to share and discuss their results.37

After a due introduction to the concept of cellular crowding
and protein interactions in Section 2, Section 3 will discuss
computational studies that, even if not directly connected to
the idea of crowding (in some of them, there is no reference to
crowding at all), developed methods that, in our opinion,
should be more in contact with this field. Section 4 will then
review the computational effort done up to now to characterize
the influence of crowding on all the processes leading to the
interaction between two proteins; starting from the single
monomers that still have to navigate the crowded environment
to find each other, we will discuss their conformational
variation and diffusion in Sections 4.1 and 4.2, respectively. In
Section 4.3, we will focus on the dynamics of complex
formation once the proteins are in mutual proximity. We will
end with the evaluation of the stability and dynamics of the
formed dimer in Section 4.4. Various systems will be
presented: crowding acts differently on each of them, for
example, because of the presence of a different protein
diffusivity. To allow the investigation of these systems
characterized by a high number of components, a miscellanea
of theoretical models and atomistic simulations have been
performed. The obtained computational findings, here
reviewed, testify to the importance of considering the crowding
effects on structural and conformational dynamics of proteins
to better understand the relationship between interactions and
biological function.

2. BIOLOGICAL BACKGROUND
The cell is a dynamic and autoregulated system characterized
by a network of both inter- and intracellular signaling
modulating its main functions. These functions take place in
an incredibly complex environment where several nonspecific
forces work against or together with specific interactions
between the cellular constituents, which include a wide range
of different molecules ranging from small ligands to sugars to

Figure 1. Schematic diagram of crowding inside a cell and of its effect across protein binding. (a) Scientific illustration of the macromolecules
inside a cell of Escherichia coli, inspired by the figure presented by Goodsell39 with the cytoplasm in blue and purple and the cell membrane in
yellow. The magnified portion is a magnification of the cytoplasm constituents. (b) Outline of the effects of crowding on protein folding, diffusion,
and binding (from top to bottom) inside the cell. Crowding effects can be divided into volume exclusion and soft interactions. The former has a
repulsive nature, which tends to enhance the stability of folding and binding and decrease the translational diffusion, as summarized in the first
column. Soft interactions can instead be classified as attractive or repulsive (second and third column, respectively). Attractive soft interactions tend
to counteract volume exclusion, which has a destabilizing effect on both folding and binding. Conversely, repulsive soft interactions have a
stabilizing effect. Both interactions hinder rotational and translational diffusion.
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large assemblies of RNA and proteins. Among all these
biomolecules, proteins are central to most biological functions:
almost all biological processes rely on molecular machines
formed by proteins that bind to each other. Even if each
protein has a molar concentration ranging from nM to μM,
under crowded conditions, the distance between neighboring
proteins is comparable with the size of the proteins.38 The
interactions between these neighboring proteins and how they
influence and are influenced by their crowded surroundings
will be the focus of this section.
2.1. Representative Interactions of Cellular Crowding

The current picture of the inside of cells is that of a crowded
environment, as the one shown in Figure 1a, where
biochemical reactions have to take place in a highly
concentrated solution with various species of finite sizes,
which includes both low molecular weight (molecular
crowding) and high molecular weight (macromolecular
crowding). Note that the term “crowding agents” is commonly
used for molecules similar in size to the considered protein.
The influence of water molecules, which are much smaller, is
considered as solvation,40 while for much bigger molecules
(such as macromolecules that can be considered immobile
obstacles), the effect is referred to as confinement.41 This can
be understood by picturing the cell as a room full of people:
while the motion of a person is influenced by bystanders,
smaller entities (like ants or dust) do not change it. The
presence of voluminous furniture would delimit the room but
not be part of the flow. Historically the effects of crowding
agents have been divided into soft chemical/physical
interactions and volume exclusion (or hard-core repul-
sion).42−45

The term “excluded volume” was used by Minton, who
coined the expression “macromolecular crowding” in 1981,2 to
indicate the effect that volume exclusion has on the energetics
and transport properties of molecules in a highly volume-
occupied medium.46 Volume exclusion is a steric effect arising
from the impenetrable nature of atoms that can not overlap
because of the hard-core or van der Waals repulsion and only
involves molecules rearrangement and, thus, affects the
entropic component of protein stability. In this setting, the
activity of a molecule, for example, a protein in equilibrium
between the unfolded state and native folded state, is raised
when crowding molecules are added because its excluded
volume is inaccessible to the centers of the other crowding
molecules.46,47 This favors its folded state because it
corresponds to a smaller excluded volume. For the same
reason, the oligomerization of the protein is promoted, and the
association (dissociation) constant for ligand binding is
increased (decreased). In general, according to this view,
crowding facilitates processes leading to a reduction in
excluded volume, like protein folding, oligomerization,
complexation, aggregation, and condensation.48

To characterize the effects of crowding given by this
definition, the past decades have seen an explosion of
experiments using large artificial polymers, such as Ficoll,
PEG, and dextran to recreate a volume exclusion effect and
allow the generalization of effects that may depend on the
specific protein crowder. Even if Ficoll and PEG are still often
considered as noninteracting with proteins,49,50 many studies
have argued that Ficoll and PEG show weak chemical
interactions with the test protein.51−55 In a recent computa-
tional study on the behavior of PEG and Ficoll as crowders,

Ostrowska et al.53 investigated how they influence a specific
enzyme called NS3/4A. By employing atomistic simulations,
they found that while the enzyme’s affinity for its substrate
remains similar with or without the crowding agents, the speed
at which it performs its catalytic function decreases with PEG
and increases with Ficoll. This suggests that these crowding
agents may affect the enzyme’s function through specific
interactions rather than the more generic volume exclusion
effect. The study also showed that both crowding agents made
contact with the enzyme and slowed down its movement.
Additionally, they found that the crowding agents influenced
the structure of a protein component called NS4A, which
caused it to adopt helical structures. Overall, PEG had a
slightly stronger interaction with NS3/4A, while Ficoll formed
more hydrogen bonds with the enzyme. This result was in line
with previous experimental measures.55

Although for more than 30 years crowding theories have
emphasized steric repulsion, in the last decades, the number of
studies probing the competition between the excluded volume
effects and soft interactions has been continuously ris-
ing.43,56−62 Soft chemical/physical interactions change the
enthalpy of proteins and include water−protein and solute−
protein interactions. In this context, some of the key weak
interactions are (i) van der Waals interactions, (ii) hydrogen
bonds, (iii) ionic interactions, (iv) dipole−dipole interactions,
and (v) weak noncovalent hydrophobic interactions. Most soft
interactions are attractive and are expected to favor expanded
conformations (e.g., the unfolded state of a protein will expose
sites for attractive interactions, such as hydrogen bonding and
hydrophobic contacts), thereby leading to destabilization.45

Thus, they are typically believed to oppose and reverse the
hard-core repulsion effect of crowding. However, among soft
interactions, there is a strong repulsive one arising from the
opposition of charges with the same sign. This repulsion has a
stabilizing impact similar to that of the hard-core effect:63 in
recent years, it has been experimentally and theoretically
shown that chemical interactions can be both stabilizing or
destabilizing.64−66 The acknowledgment of soft interactions in
theories of crowding has brought the conclusion that inert
polymers�used in most experiments or simulations aimed at
assessing hard-core repulsion effects�are not good mimics of
the in-cell environment.67,68 To distinguish between these inert
polymers and the biomolecules that can, indeed, be found in
the cell, we will use the terms “inert crowders” and “crowders,”
respectively. To investigate the crowding effects in cell-like
conditions, different types of “crowders” with their chemical−
physical characteristics have to be considered. The importance
of considering more complex systems to obtain a realistic
representation of the cellular environment and investigating
both the entropic and enthalpic effects that take place in vivo
has been recently reviewed by Pastore et al.69

2.2. Protein Interactions in the Crowded Cellular
Environment

Protein−protein interactions are essential for protein function
and cellular pathways formation. Since these interactions are
also involved in the development of diseases, they are
important targets for drug design and the artificial design of
protein complexes. Most studies usually distinguish between
non functional and functional partners to focus on the latter.
“Functional partners” can be defined as proteins that have been
evolutionarily selected to have functional interactions with a
few partners70 and avoid interactions with thousands of other
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types of macromolecules in the cell. However, crowding makes
“nonfunctional partners” interact despite this evolutionary
selection, which leads to a competition between functional and
nonfunctional binders.26,38,70−72 This competition implies that
to predict functional interactions, weak and potentially
nonfunctional ones have to be characterized, as well.26,73

In addition to this, in the context of the cellular interior,
complexity of the classification, itself, has been chal-
lenged.42,74−76 For example, sequential metabolic enzymes
seem to have evolved to associate weakly,77 and similarly,
weakly bound functional protein complexes are observed in
metabolic, regulatory, and signaling pathways. Sukenik et al.78

hypothesized that such complexes create an additional fuzzy
network of weak interactions in the cell, which gives the cell
the ability to detect, signal, and/or directly initiate regulatory
processes quickly and effectively in response to external
stresses or internal signals (such as rapid volume variation).
According to them, the cell environment is finely tuned to
optimize weak interactions networks among its protein
machinery. In a case like this, it is difficult to see the involved
proteins as functional partners or crowders that are weakly
interacting with each other; in a crowded environment, all
interactions have to be considered.

The interaction between two molecules is defined as a
correlation between their positions, orientations, and mo-
tions.79 This can happen even when the two partners are
distant because of the presence of electrostatic or solvent-
mediated interactions. These long-range interactions can be
nonspecific or specific.79 Nonspecific interactions do not lead
to the formation of a specific complex and are, thus, more
likely to be independent of the partners’ orientation. Specific
interactions are strong and lead the diffusional search of
binding partners for one another followed by colocalization
and recognition of the compatible binding sites. This
determines the formation of a complex with a defined structure
and interface. Because of the specific structure that has to be
achieved, interactions are expected to depend on the mutual
orientations of the partners. In both cases, the importance of a
match between different physicochemical properties at a global
level and not only between the interacting sites (if any) has
been shown: for the partners approach, their total charge,
isoelectric point, hydration free energy, and total electrostatic
energy have to match.80−82 Significant commonalities for the
pH of maximal stability83 were found, as well. Simplified model
potential of mean forces, including these general features of the

overall intermolecular interaction, have been shown to obtain
semiquantitative agreement with experimental measurements
of the osmotic second virial coefficient84 and of concentration-
dependent light scattering and osmotic pressure.79

These results underline the importance of taking into
account the crowded cellular environment in which the
investigated proteins live to understand how their binding
can be influenced by these nonspecific interactions.
2.3. Effect of Crowding on Protein−Protein Interactions

Both the interactions among permanent and transient partners
are influenced by crowding. This statement would seem pretty
obvious, since, for example, a protein has to navigate among
many other crowding macromolecules to find its binding
partner(s) and fulfill its function. Moreover, crowding
influences protein folding and stability, as well, which in turn
determines how that protein will interact with the others.
Figure 1b schematizes how crowding is today thought to
influence protein structure, diffusion, and binding. Nonethe-
less, the exact effect of crowding on these steps is still being
investigated.

Different lines of research have focused, both experimentally
and computationally, on determining the predominant effect
on protein stability between soft interactions and hard-core
repulsion. The latter has a stabilizing effect, by reducing the
available volume and enhancing thermal stability through the
reduction of water activity, when water molecules are
sequestered and immobilized by the macromolecules. Soft
interactions can both increase (when repulsive) or decrease
(when attractive) stability.63,66 Repulsive interactions, such as
steric hindrance and electrostatic repulsion from other
macromolecules, can stabilize the folded structure of the
molecule63,66,85 and decrease its susceptibility to denaturation
as well. Conversely, weak, nonspecific attractive interactions
can decrease the stability.66

Several studies have shown that crowding can also alter the
dynamics and transport of molecules, thereby leading to
changes in binding affinity.86−88 When macromolecules are
packed tightly in the intracellular space, they can create
tortuous pathways that hinder the diffusion of smaller
molecules. The decrease in rotational diffusion, in particular,
has been linked to the formation of transient protein clusters
due to nonspecific contacts generally lasting less than 1 μs.89

In this context, weak attractive interactions�van der Waals
interactions�can facilitate the movement of small molecules

Figure 2. Coexistence and cooperation between experimental and numerical studies. (a) Number of papers whose abstract or title include the
terms “crowding” and “simulation” (“experiment”) as a function of time since 1981 (the year in which Minton defined the concept of cellular
crowding1), colored in orange (yellow). The papers were extracted from the Dimensions database.90 (b) On top, EIN (orange) and HPr (blue) in
complex (PDB ID: 3EZA). In the gray box, the HPr residues interacting with EIN are highlighted in orange. The same residues were
experimentally shown by Dong et al.74 to interact with BSA crowders. On the bottom is a cartoon representation of the complex formed by HPr
(blue) and BSA (green). The structure was obtained by docking the isolated structure of HPr (PDB ID: 1POH) and BSA (PDB ID: 4F5S) with
HADDOCK.91 (c) The same search as in (b) was performed, but in this case, in addition to “crowding,” the words “molecular dynamics” (MD),
“Brownian dynamics” (BD), “Monte Carlo” (MC), and “scaled particle theory” (SPT) were looked for. The number of published papers is shown
in light blue, blue, dark blue, and violet, respectively.
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by reducing the effective size of the macromolecules and
creating temporary voids in the crowded environment.

Other groups have investigated the effect of crowding
directly on binding affinity, even in some cases showing that
crowding can both increase or decrease it. Dong et al.74

showed with nuclear magnetic resonance (NMR) that, in the
presence of bovine serum albumin (BSA) crowders, the
binding affinity of the EIN-HPr complex is decreased.
Interestingly, this was explained by the fact that BSA has a
specific interaction with HPr on a binding interface over-
lapping with that of EIN, which leads to competition. In the
same paper, computational techniques were used to rationalize
the experimental data and provide quantitative insights into the
energetics of protein−crowder interactions. Figure 2a shows a
representative reconstruction of the protein−crowder complex,
as suggested by Dong et al.

This study shows the importance of considering soft
interactions when investigating the effects of crowders. It
also attests to the fruitfulness of a collaboration between
experimental and numerical observations: Figure 2b illustrates
how, starting from when the field was born (1981, thanks to
Milton2), in vitro and in silico studies have grown hand-to-
hand. Even if in this review we will focus on MD simulation, it
is worth noticing that there are many other computational
applications to the study of crowding, as suggested by Figure
2c.

Another experimental study on the effect of crowding on
binding affinity was performed by Sudhaharan et al.92 They
showed that in the cellular environment, the dissociation
constant between RhoGTPase CDC42 and three of its effector
proteins is decreased approximately by a factor of 2 compared
with in vitro data. However, the Wohland lab93 found that the
dissociation constant of a protein complex was five times larger
in the cell compared with in vitro. Looking at these results, it
would seem safe to assume that the overall effect of crowding
varies depending on the specific case.

Chemical interactions have often been found to be more
important than hard-core repulsion in physiological con-
ditions,43,45,61,62,85,94 but many studies agree that the result of
this competition depends on various factors, including
temperature,95,96 the strength of the affected interaction,97

the structure of the affected proteins,98 and concentration and
type of the crowder.99 Many have investigated the difference
between molecular and macromolecular crowding in terms of
entropy variation, although the differences concerning the
enthalpic effect have not been deeply investigated yet. Hard-
spheres fluid mixtures theories have predicted that larger
molecules are less effective at crowding100 and that molecules

of medium size (∼5 Å) have the same effect as much larger
ones.101 Both experimental102,103 and numerical104,105 inves-
tigations have confirmed that macromolecular crowding has a
weaker entropic stabilizing effect compared with molecular
crowding. This inverse dependence between crowders effects
and size is to be expected since smaller crowders occupying a
given volume will result in a more compact arrangement than
when the same volume is filled with bigger molecules. Thus, it
will be easier to accommodate a protein in the latter case: since
this scenario is more discriminating between the open and
closed conformations of a protein, it will produce a stronger
effect on the open-to-closed population ratio. Despite this
observation and the fact that the cellular cytoplasm is
concentrated in smaller molecular weight solutes, up to now
the more commonly used polymer crowders have had large
molecular weights (e.g., MW > 1000 amu).103

3. COMPUTATIONAL METHODS TO PREDICT
PROTEIN−PROTEIN INTERACTIONS IN ISOLATION

Interactions between proteins are fundamental to every cellular
process from DNA replication to protein degradation and the
development of diseases. Therefore, to understand the
structure and function of biological pathways and to predict
protein function, the compilation of a protein−protein
interactions network is fundamental. For what concerns the
understanding of single protein−protein associations, many
research lines have been working on capturing protein
interactions and the resulting complex stability.106−108 The
opportunities provided by experimental techniques, like NMR,
X-ray, and cryo-EM, have brought a big advance in this
context. Large-scale networks of some organisms have been
compiled thanks to these experimental methods.

Many techniques do not rely on capturing structural
information on protein interactions, like yeast two-hybrid
(Y2H) screening and affinity purification coupled with mass
spectrometry. These methods have been employed, for
example, in one of the major objectives in the field of biology,
the Human Interactome Project. To obtain a complete
reference map of the human protein−protein interactome
network, high-quality binary protein−protein interactions have
been mapped using a primary Y2H assay followed by
orthogonal validation through alternative binary assays.109−111

To date, 64006 interactions involving 9094 proteins have been
identified.111

Despite the significant advances in this project, experimental
techniques are typically time-consuming, labor-intensive, and
expensive and are not easy to perform on new target organisms
or to generalize to different classes of proteins. Moreover,

Figure 3. Sketch of the four main questions of protein−protein interaction predictions. Methods can be developed to assess (i) whether and/or (ii)
where two proteins functionally interact. Other techniques can assess (iii) the dynamics and outcome of the binding process and (iv) the binding
stability of the resulting protein−protein complex. An overview of the methods that have been developed to address these different tasks is provided
in Table 1.
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many of these methods can not easily identify weak
interactions,112 which leaves out many transient interactions:
this results in a big disadvantage in the context of crowding,
where most interactions are transient.

Hence, the role of fast and inexpensive computational
approaches, which can complement experimental methods and
have already demonstrated the ability to provide new
proteomics-scale protein complex predictions, is crucial.112,113

Protein complex prediction methods can be divided into
several classes, including sequence-based, protein−protein
interaction network topology-based, function-based, and
structure-based. All these methods can answer one or more
of the four questions we are interested in when studying
protein−protein interactions in isolation, which are schema-
tized in Figure 3: (1) Do the proteins interact? (2) Where are
the interacting regions? (3) How will they bind? (4) How
strong is the binding? Each of the following sections will
summarize the studies centered on one of these investigations.
The available servers and software developed by these studies
are listed in Table 1, while Figure 4 shows some of the most
commonly used techniques for the prediction of protein
binding interfaces and poses in isolation.

Although the main interest of this Review is the study of
molecular crowding, we will take some time to summarize
these methods here because they can improve our
comprehension of the mechanisms underlying molecules’
interactions and binding. For example, they can overtake the

distinction between functional and nonfunctional interactions,
which is particularly ambiguous in the context of crowding.
This premise seemed necessary to us because the compre-
hension of what determines molecular interactions, even when
considering the most simple and idealized condition of two
isolated partners, is still far from being achieved. Moreover,
even if some of these methods have been developed to study
proteins in isolation or aqueous solutions, recent advancement
in computational modeling have allowed their application to
crowded environments, as shown in Table 1. For example,
Vakser et al.114 merged MD simulations and Fast Fourier
Transform (FFT) docking to perform long dynamics at atomic
resolution of systems with many proteins. In general, the
current speed of calculations and recently developed
techniques have allowed simulations to reach longer time
scales and bigger system sizes. The implementation of these
methodologies in the context of crowding will be discussed
more in-depth in Section 4.
3.1. Predicting if Two Proteins Interact

Many existing techniques for predicting protein−protein
interactions and their networks have been developed using
only sequence information117−119,151,157−167 since they can be
applied to proteins for which structural information is
unknown or that are intrinsically disordered. Most sequence-
based approaches start from the hypothesis that pairs of
proteins that are similar to pairs of interacting proteins have a

Table 1. Some of the Available Servers and Software for Studying the Different Aspects of Protein−Protein Interactions in
Isolated Conditionsa

if?

ADVICE115 2004 coevolution
PIPE2116 2008 sequence-based
LDA-RF117 2010 sequence-based
SPRINT113 2017 sequence-based
PPI-Detect118 2019 sequence-based ML
DeepFE-PPI119 2019 sequence-based ML

where?

binding sites prediction
BSpred120 2011 sequence/structure-based

ML
PAIRpred121 2014 sequence/structure-based

ML
Protein Interface Prediction using

GCNs122
2017 structure-based ML

BIPSPI123 2019 sequence/structure-based
ML

DeepPPISP124 2020 sequence-based ML
Zepyros125 2021 geometry-based docking
DELPHI126 2021 sequence-based ML
Attention-based-CNNs-for-PPIs-

prediction127
2021 sequence-based ML

MaSIF128 2020 structure-based ML
PeSTo129 2023 structure-based ML

binding sites and pose prediction
PatchDock130 2005 geometry-based docking
SymmDock130 2005 geometry-based docking
PIPER131 2006 FFT docking
SwarmDock132 2013 particle swarm

optimization
ZDOCK133 2014 FFT docking
PRISM134 2014 structural similarity
HADDOCK291 2016 simulated annealing

docking

where?

binding sites and pose prediction
HDOCK135 2017 homology + FFT docking
ClusPro136 2017 FFT docking
MEGADOCK137 2018 FFT docking
SWISS-MODEL138 2018 homology modeling
AlphaFold2139 2022 sequence-based ML

how?

GROMACS140 2005 MD simulations
AMBER141 2005 MD simulations
CHARMM142 2009 MD simulations
PyEMMA 2143 2015 MSM construction
OpenMM144 2017 MD simulations
GENESIS145 2017 MD simulations
MSMBuilder146 2017 MSM construction
CANVAS147 2023 multiresolution modeling

how much?

DFIRE148 2005 knowledge-based energy function
PRODIGY149 2016 empirical function
ATTRACT150 2017 MM force field
PIPR151 2019 sequence-based ML
ISLAND152 2020 sequence-based ML
mmCSM-PPI153 2021 structure-based ML
AffPred154 2021 knowledge-based energy function
PerSpect-EL155 2022 structure-based ML
PPI-Affinity156 2022 structure-based ML

aEach section groups the server/software addressing one of the four
main questions of interaction prediction (if, where, how, and how
much), as represented in Figure 3. For each server/software, the table
reports the name, the year in which it was made available and its core
technique. Methods already applied in crowding contests are marked
in bold.
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higher chance to interact. Different algorithms have been
implemented to identify similar regions.

For instance, Shen et al.168 developed a learning algorithm
based on a support vector machine, along with a kernel
function and a conjoint triad feature for amino acid
description, and trained the model using over 16 000 diverse
pairs. In this respect, the effectiveness of current sequence-
based methods in constructing interaction networks and
understanding disease mechanisms is highly dependent on
the availability and reliability of training data (as reviewed by
Murakami et al.169), which means that predictive methods,

especially those based on parameter training (i.e., supervised
machine learning methods), need a large amount of data to
improve their predictive ability.

The importance of the data set construction has been
addressed by Li et al.,113 who proposed another sequence-
based prediction method called Scoring PRotein INTeractions
(SPRINT). This algorithm identifies possible binding partners
regions that are similar to sites on known complexes with a
multiple spaced-seed approach and then eliminates elements
that occur too often to be involved in interactions. SPRINT
was shown to be several orders of magnitude faster than other

Figure 4. Diagram of the most common techniques used to predict binding interfaces and poses by the methods reported in Table 1. The available
servers and codes for binding interfaces and pose prediction are often based on the evaluation of shape complementarity, the minimization of an
energy score, sequence and/or structure-based ML, and/or homology modeling. Shape complementarity (top left box) can be searched for with
geometric hashing or orthogonal polynomials decomposition. The former defines geometric patches (concave, flat, convex) with discrete points of
the protein surface and uses those points to match the partner’s patches stored in a hash table. Partners’ surfaces can also be compared by
expanding the surface patches in terms of orthogonal polynomials (e.g., Zernike polynomials) and computing the distance between the
corresponding vectors. Both 2D and 3D expansion have been used. Many methods aim at minimizing an energy expression (including, for example,
van der Waals energy, electrostatic interaction energy, and a statistical pairwise potential representing other solvation effects136). This minimization
can be achieved by testing different orientations and spatial positions of the binding partners and computing the energy term for each step. Such
exploration is often performed in real space or through a FFT correlation approach. With this technique, the interaction matrix is approximated by
its dominant eigenvectors so that the energy expression is written as the sum of a few correlation functions, and the minimization is solved by
repeated FFT calculations. A quick solution to the minimization problem can be achieved with particle swarm optimization (PSO). If homologous
structures are available, possible binding interfaces can be obtained by either sequence or structural similarity between the studied proteins surfaces
and known binding sites of homologous complexes. Finally, the binding sites scoring problem is often faced with ML methods. ML techniques can
be divided into sequence-based, structure-based, and combined. All categories are based on representing the protein features with a vector that is
then passed to a network. Many networks and learning algorithms have been used.
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state-of-the-art sequence-based programs, including PIPE2116

and two machine learning (ML)-based methods proposed by
Ding et al.170 and Martin et al.171

Another key step for prediction methods based on ML is the
representation of the input data. Romero-Molina et al.118

developed a procedure that transforms pairs of amino acid
sequences into a ML-friendly vector whose elements represent
numerical descriptors of residues in proteins. This numerical
encoding method was then implemented by the same group to
develop a support vector machine model, PPI-Detect.118

In the same year, Yao et al.119 proposed a new residue
representation method named Res2vec and combined it with
deep learning techniques to predict interactions starting only
from sequence information (DeepFE-PPI).

Other methods based on sequence information for
predicting residues involved in intermolecular binding were
developed using coevolution.115 The idea is that many proteins
have evolved to form specific molecular complexes, and the
specificity of their interactions plays a crucial role in their
proper functioning. Therefore, these interactions impose
constraints on the protein sequences because the network of
inter-residue contacts must be maintained. It is plausible to
assume that any sequence change accumulated during the
evolution of one interacting protein is counterbalanced by
changes in the other protein.

Pazos et al. developed a method for detecting correlated
changes in multiple sequence alignments, which is useful to a
collection of interacting protein domains.172 The results
revealed that positions exhibiting correlated changes in both
interacting molecules tend to be near the protein−protein
interfaces. This observation opened up the possibility of
applying statistical inference techniques based on the
maximum entropy principle173−178 to predict pairs of residues
that come into contact solely based on their sequence
information179−181 and, more specifically, in their evolutionary
process.

Many methods for interaction prediction focus on protein−
protein interaction networks since genome-scale data for
different species have been rapidly increasing. By starting from
the network of an organism and evaluating the network
topology features of proteins, these methods can predict new
interactions.182 In the past, protein−protein interaction
networks were thought of as static, defined by interactions
constant in any cell location and condition.183 The current
picture is that interactions are dynamic and that their
occurrence depends on a set of conditions, such as spatial or
temporal variations.184 In other words, these networks are now
modeled as dynamic systems. Computational approaches can
come in aid of experiments in the prediction of the variation
and dynamics of these networks in the context of crowding.26

In silico methods tend to detect protein complexes by
associating them with meaningful clusters in the protein−
protein interactions network. They can be classified into three
categories:185 cluster-quality-based,186,187 node-affinity-
based,188,189 and ensemble clustering methods.190 The first
one uses clusters as measuring units, while node-affinity-based
methods measure the affinity between nodes inside clusters.
Finally, ensemble clustering methods combine the clusters
selected by different methods to mine final complexes.

However, all these methods rely on experimentally
determined protein complexes data sets, which are afflicted
by three main problems: (i) they are incomplete,191 (ii) they
contain many false positives caused by experimental con-

ditions,192 and (iii) they have been measured in conditions
that do not replicate the cellular environment.

Other techniques look at the functional similarity between
proteins using Gene Ontology (GO) terms.193 GO terms give
information about a protein’s localization within the cells,
participation in biological processes, and associated molecular
functions.193 Interacting proteins belong to the same pathway
and, thus, tend to participate in similar processes and/or have
similar functions and/or live in similar cellular compart-
ments.194−196 Therefore, these methods can classify inter-
actions with a similarity score of GO terms.196−198

3.2. Predicting Binding Interfaces and Poses

Binding takes place on portions of the protein interfaces (or
binding sites); for natural dimeric interfaces, they range from a
change in solvent-accessible surface area of 850−10 000 Å2 (up
to 7000 Å2 for heterodimers).199 These protein regions have
been vastly characterized, for example, for what concerns their
amino acid composition.200,201

Studies of protein−protein interactions can be divided into
two categories: (i) those identifying only the interfaces and (ii)
those also predicting the complexes 3D structures.

Many methods in the former category only require the
sequence of the investigated proteins because structural studies
have shown that binding regions are characterized by a
combination of geometrical and chemical complementar-
ities200,202−204 that can be predicted from the proteins’
amino acid sequences.205,206 In this context, homology
modeling is very effective, as well. An example is BSpred,120

which is based on neural networks. The algorithm underwent
extensive training using sequence-based features, such as
protein sequence profile, secondary structure prediction, and
hydrophobicity scales of amino acids. Other recent sequence-
based methods for predicting binding sites include simplified
long short-term memory (LSTM) network,207 the DeepPPISP
method that uses a combination of local and global sequence
features,124 and the DELPHI method, which combines CNN
and recurrent neural network (RNN) in an ensemble
structure.126

Other protocols take as input the proteins’ structures and
focus on features that are known to characterize interacting
molecular surfaces: the preferentially hydrophobic composition
of the binding interfaces or the role of van der Waals
interactions.107,200,208,209 Milanetti et al.210,211 proposed the
use of 2D Zernike polynomials to rapidly compare protein
molecular iso-electron density surfaces and assess their shape
complementarity. The protocol called Zepyros (ZErnike
Polynomials analYsis of pROtein Shapes) has been developed
and distributed freely as a web application by Miotto et al.125

and applied to characterize different biological systems212−214

and to optimize biomolecule interfaces.215−218 The work by
Grassmann et al.219 extended the procedure to account for
electrostatic similarity.

Gainza et al.128 proposed that proteins involved in similar
interactions might possess shared fingerprints, regardless of
their evolutionary origins. They introduced MaSIF (molecular
surface interaction fingerprinting), a conceptual framework
utilizing geometric deep-learning techniques to capture crucial
fingerprints relevant to specific biomolecular interactions,
including protein pocket−ligand interactions and protein−
protein interaction. Two years later, the same framework was
used to design novel protein interactions.220
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Several other methods for predicting protein binding sites
and residue−residue contacts involve a mixed approach
between sequence information and structural information
and are based on ML approaches. PAIRpred, a Support Vector
Machine approach developed by Asfar Minhas et al.,121

employs a specific pairwise kernel and a combination of
structural and sequence-based features, such as position-
specific score matrices (PSSMs), position-specific frequency
matrices (PSFMs), and solvent accessibility predictions. The
same features used in PAIRpred are used in a graph
convolutional neural network (GCNN) proposed by Fout et
al.122

Sequence-based and structural features are used also in
BIPSPI (xgBoost Interface Prediction of Specific-Partner
Interactions), which was developed by Sanchez-Garcia et
al.123 More recently, Krapp et al.129 introduced PeSTO, which
acts directly on protein atoms without the need for
parametrization of the system’s physics and is provided as a
web server.

Techniques based on the structure of the investigated
proteins have become powerful tools for predicting protein−
protein association because of the success of structure
modeling methods; when protein structures are not available
from experiments, it is now possible to predict them with a
certain degree of reliability starting from the sequence
information. The recent advancements in the fields of protein
structure and complex predictions have been recently reviewed
by Wodak et al.221 The state of the art in structure modeling is
assessed by the Critical Assessment of Structure Prediction
(CASP).222 The top-ranked methods in the latest competitions
of CASP have reached excellent results. Some software for
structure prediction are Rosetta223 and D-I-TASSER.224

Rosetta developers introduced an all-atom force field that
focuses on short-range interactions (e.g., van der Waals,
hydrogen bonds, and desolvation effects) and discards long-
range electrostatics. Predicted structures are refined via a
Metropolis Monte Carlo-based refinement protocol. This
method reaches a Cα root-mean-square deviation (RMSD) =
∼1.5 Å.223 A more recent method is D-I-TASSER, which can
predict protein structure and function and was extended from
the I-TASSER method developed by the Zhang lab,225 which
integrates threading and deep learning. Its pipeline was ranked
in the first place in the CASP15 experiment in all categories of
protein structure prediction.226

Still, the most popular and effective tool for protein structure
prediction is AlphaFold, the top-ranked method in the 13th
CASP edition in 2018.227 Two years later, in CASP14,
AlphaFold2 was presented228 and again outclassed the other
methods. AlphaFold2 was able to predict the structure of a
protein only from its amino acid sequence (we shall remind the
reader that the human genome has been mapped since
2001229) with a median global distance test (GDT) score of
92.4 across all targets.230 The efficiency of this tool in
predicting the coordinates of the heavy atoms of the structure
relies on the integration of novel neural network architectures
and training procedures based on the evolutionary, physical,
and geometric constraints of protein structures. In terms of
RMSD95 (i.e., the Cα root-mean-square-deviation at 95%
residue coverage), it allowed a median backbone prediction
accuracy of 0.96 Å against the 2.8 Å achieved by the next best-
ranked prediction method. As for all-atom predictions, its
accuracy was 1.5 Å RMSD95 compared with the 3.5 Å RMSD95
of the next best-performing approach.228

Prediction of the interfaces is not always sufficient; to
understand the physical mechanisms involving protein
complexes, determination of their 3D structures is a critical
step. AlphaFold2 has given impressive results even in this
context: when applied as a method for complex pose
prediction, it exceeded docking approaches for heterodimers
prediction,139,231 even if the modeling of antibody−antigen
complexes was unsuccessful (11% success231). Other limi-
tations were still not resolved: AlphaFold2 can not predict
intrinsically disordered proteins or regions.232 Moreover, it is
based on a multiple sequence alignment and, thus, fails in the
prediction of novel structures. In October 2021, Alphafold2
was extended to multiple chains and took the name of
AlphaFold-Multimer.233 AlphaFold-Multimer was able to
predict homodimers even better than heterodimers, despite
still failing in the prediction of antigen−antibodies binding.
AlphaFold-Multimer can predict heteromeric interfaces with
DockQ234 higher than 0.23 and 0.8 in 70% and 26% of the
cases, respectively.233 Compared with the performance of
AlphaFold, the improvement was +27 and +14 percentage
points in each case.233 Homomeric interfaces were predicted in
72% of the cases with a high accuracy 36% of the time (+8 and
+7 percentage points, respectively).233 This year, Liu et al.235

proposed a further enhancement of AlphaFold2-Multimer
based on a novel quaternary structure prediction system,
MULTICOM.236 MULTICOM improves AlphaFold-Multi-
mer predictions by generating diverse multiple sequence
alignments and structural templates using both sequence and
structure alignments and combining the AlphaFold-Multimer
confidence score with the complementary pairwise model
similarity score to rank models. It then classifies them through
multiple complementary metrics and refines the models via a
Foldseek237 structure-alignment-based refinement.

Many improvements were implemented on AlphaFold-
Multimers, which resulted in a better performance compared
with existing approaches, but its accuracy in complex
prediction was still lower than AlphaFold2’s accuracy for
tertiary structure prediction.235

Despite the limitation given by the need to have
experimentally resolved homologous structures, methods like
AlphaFold that predict protein−protein interactions using
sequence homology are among the most promising ap-
proaches.238 Given the importance of the structural character-
ization of protein complexes, it is not surprising that the
number of large complexes deposited each year in the Protein
Data Bank (PDB) is growing rapidly.239 A significant
contribution to this trend comes from the advancement of
experimental technologies, such as the developments of
methods based on electron microscopy (EM), as reviewed
by Saibil et al.,240 which are particularly suitable for systems of
macromolecular assemblies. Consequently, new computational
approaches based on homology information have been
developed.241−245

Baspinar et al. proposed PRISM,134 which combines
structural similarity and accounts for evolutionary conservation
in the template interfaces. One of the most used homology-
based methods is SWISS-MODEL, which is a pioneered,
automated protein homology modeling server that has
undergone consistent enhancements over the past 20
years.138,246−249 Recently, its modeling capabilities have been
expanded to incorporate the modeling of both homo- and
heteromeric complexes by utilizing the amino acid sequences
of the interacting partners as the initial reference.138 Never-
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theless, these template-based approaches can offer a
satisfactory prediction only when homolog complexes are
available.

If the structures of the investigated molecules are available,
useful computational tools are docking algorithms, that can
take in input two (or more) component proteins and assemble
them into putative models of the protein complex. As
thoroughly reviewed by Pagadala et al.,250 in the last two
decades, more than 60 docking tools have been proposed. In
the following, we will provide a quick overview of the most
efficient ones. The performances of docking algorithms are
usually tested in competitions like CAPRI.251

The docking methods participating in CAPRI can be
classified into two approaches: the first one uses a matching
technique that describes the partner as complementary
surfaces,133 and the second one simulates the actual docking
process and computes the pairwise interaction energies.252−254

The former predicts the static structure of protein complexes,
while the latter is based on simulations that also explore the
kinetics leading to the binding and will thus be discussed in
Section 3.3.

In complementarity-based docking, efficient search strategies
are fundamental for global docking software to achieve good
performance because of the high cost of the search stage. Many
available global docking software rely on FFT correlation
search algorithms that enable full systematic searches through
translational and rotational degrees of freedom. The FFT
approach was originally introduced to evaluate only the shape
complementarity255 but has been later expanded to electro-
static interactions (e.g., FTDock202) or to both electrostatic
and solvent terms, for example, in ZDOCK.256 ZDOCK, which
also considers atomic contact energy to estimate electrostatic
corrections and further improve its results, is one of the best-
performing FFT-based docking programs.133 However, simpler
scoring functions can reduce the computational costs:
MEGADOCK137 is a FFT-based rigid-body docking tool
similar to ZDOCK256 but ∼7.5 times faster thanks to the
evaluation of only shape complementarity and electrostatic for
the scoring.257 Better results have also been obtained with
PIPER,131 the first FFT-based approach to use pairwise
structure-based potentials (extracted from structures of
protein−protein complexes) called Decoys As the Reference
State (DARS).258 Its protocol starts with the generation of a
large decoy set of docked conformations that are used as a
reference state. Using DARS, the contact frequency between
two specific atom types in the native state and in the decoys
are compared. By rewarding the occurrence in the interface of
the atom pairs that frequently interact in the native complexes,
PIPER produced at least 50% more hits in 19 of the 33 tests
for enzyme−inhibitor complexes compared with ZDOCK.131

While still obtaining more hits than ZDOCK in 12 of the 16
test problems, PIPER was less accurate for antigen−anti-
body.131 This limitation was addressed six years after its
development with the introduction of a new nonsymmetric
potential extracted from antibody−protein complexes.259

All the presented docking methods only accept structures as
input. Yan et al. proposed HDOCK,135 which can accept both
sequence and structure inputs. HDOCK is a hybrid docking
strategy that combines a FFT-based global docking with
template-based modeling. By looking at the available
homologous complexes in the protein data bank, it can
incorporate binding interface information -if any- into
traditional global docking.

Among rigid body docking algorithms, there are also a few
global programs that employ alternative search strategies, such
as randomized search or local shape matching, across the entire
protein structure, like PatchDock130 and SymmDock.130 The
former uses geometric hashing algorithms to perform a global
protein−protein docking using local shape descriptors (i.e.,
surface patches) to predict protein−protein and protein−small
molecule complexes. The latter can only predict the structure
of a homomultimer with cyclic symmetry given the structure of
the monomeric unit.

A common problem of all these docking algorithms is that
they can overlook plausible complex structures because of how
the poses are ranked: after the search, for a pair of input
proteins, the typical docking program generates tens of
thousands of different binding poses, including both near-
native (i.e., almost correct) and incorrect ones. Good scoring
functions are fundamental for identifying the best poses among
the proposed set. Even if many types of scoring functions have
been developed, they often simplify the interactions on the
basis of the shape complementarity and treat solvation effects
implicitly.260 Even more advanced programs, like PatchDock,
which utilizes geometric hashing for rapid surface patch
matching, and ZDOCK, which also employs an advanced
pairwise method to efficiently incorporate shape complemen-
tarity, do not consider many physical components, including
entropy contributions from solvent molecules and proteins. In
addition to this, Wass et al.261 showed that for interacting
proteins even the incorrect poses have relatively favorable
scores, although they are lower than the correct ones.

Kozakov et al.136 developed the ClusPro docking server,
which improves the docking prediction by taking into account
entropic effects.262 The protocol starts by implementing
PIPER as a rigid body docking step and then performs a
RMSD clustering of the 1000 lowest energy structures
generated. To choose the most likely near-native clusters,
their size is evaluated instead of their energy values: the centers
of the largest clusters are selected rather than the lowest energy
structures. The selected structures are then refined using
energy minimization. A similar procedure is followed by
MEGADOCK,137 which is based on a FFT-based rigid-
docking scheme. MEGADOCK classifies protein pairs as
interacting if among the docking-generated poses there are
clusters of similar poses with significantly favorable docking
scores compared with the others.

All the presented methods allow for only partial protein
flexibility. Methods that perform side-chain optimization are
able to reach higher-accuracy solutions compared with more
rigid methods.262 Desta et al.262 recently tested some of the
most used docking servers on the same data set. They showed
that ZDOCK and pyDock263 (another rigid body server similar
to ClusPro) obtained the worst results compared with
SwarmDock,264 a flexible docking algorithm that was able to
produce slightly more models in the top 1 prediction
(predicting good models for 23.5% of the 51 targets). This
method models flexibility using a linear combination of elastic
network normal modes and combines a local search with a
variation of the particle swarm optimization (PSO) algo-
rithm.265 In this algorithm, each particle represents a potential
solution and moves in a D-dimensional space (including
Cartesian space, orientational space as quaternions, and
coefficient space for a linear combination of anisotropic elastic
network normal modes). During the search, each particle
adjusts its position according to its own experience and the
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swarm’s experience. PSO can simultaneously optimize trans-
lational, orientational, and conformational degrees of freedom.
It is worth mentioning that SwarmDock was implemented in
2010 in a study on macromolecular crowding87 that will be
discussed in the next sections. However, the SwarmDock
server132 has the limitation of handling only files with less than
10 000 atoms.

Another flexible docking protocol, HADDOCK2, was
proposed by Van Zundert et al.91 and has now become one
of the most exploited data-driven approaches. Data-driven
methods use biochemical and/or biophysical interaction data
(e.g., chemical shift perturbation data resulting from NMR
titration experiments266) to guide the docking process. In
HADDOCK2, experimental data are used to define the
simulated annealing in torsion angle space to introduce partial
flexibility. Thanks to this flexibility, HADDOCK2 has been
shown to yield more accurate models than ClusPro.262

However, considering only side-chain flexibility has been
argued to be insufficient: in the CAPRI experiment, the
majority of failures were attributed to the inaccurate prediction
of conformational changes in proteins during protein−protein
interactions.267

3.3. Predicting the Structural Determinants of Binding

Different theories to describe the kinetics leading to the
binding pose have been proposed. The prevailing view has
evolved from the early “lock-and-key” hypothesis to the
“induced-fit” and “conformational selection” models.268 In the
former, partners undergo very small changes of backbone and
side-chain atoms upon binding (root-mean-square deviations
of 0.6 and 1.7 Å, respectively269). However, it is known that
proteins are dynamic: both “induced-fit and “conformational
selection” hypotheses take this aspect into account. According
to the former, the interactions between two approaching
structures induce conformational changes. Conversely, the
latter states that the protein’s bound state can be explored even
in the absence of the molecular partner.

Potential transition states have been deeply investigated by
experimental studies, like double mutant cycles and para-
magnetic relaxation enhancement.270−272 However, the result-
ing data are often indirect or limited to specific cases (like
metalloproteins or proteins with attached paramagnetic spin
labels). Computational methods can instead provide atomic-
level observations of the association pathways and explored
conformation for a diverse set of protein complexes.

The most employed methods to accomplish this purpose are
all-atom (AA) molecular dynamics (MD) simulations, which
provide both structural and dynamical insight into protein−
protein binding. Some of the most widely used simulation
software packages include CHARMM,142 AMBER,141 GRO-
MOS,273 and GROMACS.140

This approach allows us to witness the evolution of the
system made of the involved protein partners in terms of
association/dissociation events along the simulated trajectory.
In this way, it is possible to sample a large number of binding
poses while gaining information about intermediate states
characterizing the association pathway. Thus, MD simulations
are often at the core of simulation-based docking techni-
ques.274,275

In this context, two intermolecular interaction potentials
describing Coulombic and van der Waals interactions are
present between atoms of the two molecular partners to
modulate their interaction. In particular, given two atoms al

and am holding partial charges ql and qm, the Coulombic
interaction between them can be computed as
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where rlm is the distance between the two atoms, and ϵ0 is the
vacuum permittivity. van der Waals interactions can instead be
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where ϵl and ϵm are the depths of the potential wells of al and
am, respectively, and Rmin

l and Rmin
m are the distances at which

the potentials reach their minima.
Commonly available computational power for MD simu-

lation typically allows them to sample only a few binding poses
in the short microsecond simulation frame given the long time
scale of the interconversion between poses.

Longer time scales (as well as larger systems) can be
achieved with coarse-grained (CG) models276 in which several
atoms are lumped together in effective interaction sites
(beads). Compared with AA representations, CG models
have fewer interactions, smoother free energy profiles, and
fewer degrees of freedom. Even if CG representations usually
need additional terms to preserve the native structure that
limits their conformational sampling, alternative structural
restraints have been proposed.277

To find a compromise between the benefits and limitations
of AA and CG models, many multiple-resolution modeling
strategies have been developed. Some of them treat at
atomistic resolution the biomolecule’s functionally relevant
portion,278 while the rest of the system is described with a CG
model, which results in a lower computational cost compared
with AA model.279 One of the most used force fields is
MARTINI.280,281 As a downsize, these methods often require
lengthy reference all-atom simulations and/or the usage of off-
shelf coarse-grained force fields to parametrize the CG-
modeled part.

The treatment of the interactions between different levels of
resolutions has to be determined, as well.147 To overcome
these limitations, Fiorentini et al.147 proposed a novel
multiresolution modeling scheme for proteins, dubbed
coarse-grained anisotropic network model for variable
resolution simulations (CANVAS). CANVAS, which can be
implemented on the most commonly used MD platforms,
allows for a user-defined modulation of the resolution level
throughout the system structure and a fast parametrization of
the potential without reference simulations.

In combination with CG and AA models, structure-based
models (SBMs), also called Go̅-type models, can be
used.282,283 While CG methods model the coarse-grained
resolution of the system, SBMs measure the coarse-grained
resolution of its force field.

They usually take an experimentally solved native con-
formation of the protein to determine the native contacts and
use them to define the interaction potential for the simulation
by introducing bias toward the native state. This reduces the
force field complexity without loss of essential information
according to energy landscape theory and the principle of
minimal frustration,284 which states that a protein energy
landscape has a funnel-like shape biased toward the native
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state. This ensures the dominance of native over non-native
interactions, thereby enabling an efficient folding. The
prevalence of native interactions in the folding event has
been confirmed by atomistic simulations.285 Thanks to this
simplified interaction potential and the consequent reduced
computational costs, structure-based models are often used to
simulate many cycles of folding and unfolding.

Another popular approach�that can use both atomic and
coarse-grained representations�to shed light on molecular
processes at time scales that are not accessible with single
unbiased MD simulations is the combination of MD
simulation with Markov-state modeling (MSM). Popular
software packages are pyEMMA143 or MSMBuilder.146

Another approach is speeding up the sampling of rare events
by enhancing the conformational sampling performed during
the simulation, usually by scaling the temperature or using
collective variables (CVs). CVs are identified by dimension-
ality reduction methods that can determine which properties
are of interest for the description of the high-dimensional
conformational ensembles.286 In addition to facilitating the
interpretation of the huge amount of data produced during a
simulation, CVs can direct the conformational sampling to
efficiently cover the free energy landscape.287

Some of the algorithms using CVs to enhance the sampling
include steered MD,288 umbrella sampling,289 Hamiltonian
replica exchange MD (REMD),290 and metadynamics.291

Alternatively, the methods using temperature to enhance the
sampling include simulated annealing,292 simulated temper-
ing,293 temperature replica exchange MD (T-REMD),294 and
replica exchange with solute tempering (REST295 and
REST2296).

In all these cases, a central role is given to the force field,
whose quality determines whether the sampled conformations
are realistic. Because of this, force fields are constantly being
improved.

The most popular atomic-level protein force fields family
include AMBER,297 CHARMM,298 OPLS,299 and GRO-
MOS.300 They explicitly model each atom or, in the case of
GROMOS, all heavy and nonaliphatic hydrogen atoms, and
describe the interactions between bonded and nonbonded
atoms with mathematical functions whose parameters are fitted
to structural or thermodynamic quantum mechanical or
experimental data.

Among the AMBER force fields, ff99SB301 has been often
recommended for proteins. It has been shown to improve
amino-acid-dependent properties and reproduce the differ-
ences in amino-acid-specific Ramachandram Map using amino-
acid-specific CMAPS.302 Used with the OPC (optimal point
charges) water model,303 it was also found to improve the
accuracy of atomistic simulations of disordered proteins.304

However, with time, ff99SB showed weaknesses in some amino
acid side chain dihedral parameters;305 in 2019, an updated
model with improved backbone profiles for all 20 amino acids,
named ff19SB,306 was proposed.

Similar backbone CMAP potentials were used two years
prior for CHARMMM36m,298 an updated version of
CHARMM22,307 which had been for a long time the first
choice among CHARMM force fields for proteins simulations.
This improvement increased the accuracy of generating
ensembles for disordered proteins.

The evaluation of force fields treatment of disordered
proteins is commonly done by comparing them308,309 because
the intrinsic complexity and “roughness” of the disordered

proteins energy landscape can reveal force field deficiencies
and strengths. For instance, a comparison between
CHARMM36m and ff19SB concerning their ability to describe
disordered proteins while retaining proper description of the
folded ones has been recently performed by Abriata et al.310

Both CHARMM36m and ff19SB were applied with the
recommended water model, respectively modified by
TIP3P298 and OPC.306 CHARMM36m was found to favor
more compact states than ff19SB-OPC, which leads to the
overstabilization of aggregates and secondary structures. ff19SB
better predicted weak dimerization of a soluble protein while
still being able to reproduce the expected aggregation of
another system. Conversely, CHARMM36m predicted resi-
due-wise alpha helical propensities better than ff19SB.

In the last decades of protein simulations, other popular
force fields have been OPLS/AA311 and its modification
OPLS-AA/L.312 In 2015, Robertson et al.313 developed OPLS-
AA/M, which proposes a new parametrization of the backbone
and side chain dihedral. With a similar strategy, Harder et al.299

presented OPLS3 a year later. The former has an improved
ability to simulate disordered proteins, while the latter well
simulates protein−ligand binding.

A similar reparameterization against experimental data was
proposed for the GROMOS force field.300 Even if it resulted in
an improved prediction of secondary structure propensities
and structural parameters, investigations on how these new
parameters could perform for intrinsically disordered proteins
are still ongoing.
3.4. Predicting the Strength of the Interaction
Investigation of protein interaction strengths is crucial because
they are associated with the protein complex functionality.166

Their evaluation has many applications, such as predicting and
explaining experimental protein−protein dissociation constants
and the effect of different mutations on equilibrium constants
or ranking the binding poses generated by protein−protein
docking algorithms.

The strength related to the binding interaction is commonly
quantified by the binding affinity. Usually, the binding affinity
is described with the experimental measure of the dissociation
constants (Kd)

314,315 related to the change of Gibbs free energy
after binding (ΔG):316

G RT Kln d= (3)

where R is the gas constant (8.3144 K
Jmol

), and T is the absolute

temperature.
ΔG can also be expressed as ΔG = ΔH − TΔS, where ΔH

and ΔS are the variations in enthalpy and entropy of the
system after binding. Enthalpy measures the total energy of the
system, given by the sum of the solute and solvent internal
energies and the amount of energy required to establish the
system’s physical dimensions. Its variation upon binding is
determined by (i) the formation of noncovalent interactions
(van der Waals contacts, hydrogen bonds, ion pairs, and any
other polar and apolar interactions) at the interface, (ii) the
loss of hydrogen bonds and van der Waals interactions
between proteins and solvent, and (iii) the reorganization of
the solvent close to the complex. The enthalpic contribution to
binding has been well characterized thanks to detailed atomic-
resolution structural models, while the factors determining the
total binding entropy are still being characterized. Entropy can
be interpreted as a measure of the disorder of a system’s
components (atoms and molecules) or as the number of
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configurations that a system can take. Its total variation after
binding ΔS can be decomposed in four terms:

S S S S Sconf sol r t other= + + + (4)

where ΔSconf, ΔSsol, and ΔSr−t are the variations in conforma-
tional, solvation, and rotational−translational entropy, respec-
tively. ΔSother is related to other processes, such as proton
binding or release.317 ΔSsol is the most discussed contribution,
which is typically framed in terms of hydrophobic effects318

and related to the variation of the solvent-accessible surface
area (SASA).319 Historically, the other components have been
neglected because they are not associated with simple
experimental measurements. Conformational entropy is
particularly challenging because of the potentially high number
of local minima, anharmonicity, and high-order coupling
among degrees of freedom. However, NMR spectroscopy has
emerged as a powerful tool to measure protein internal
motions, as reviewed by Wand et al.,320 and the observation of
NMR-derived methyl order parameters has suggested that
ΔSconf can be of comparable magnitude to ΔSsol.

321 Using a
dynamical proxy provided by NMR relaxation methods, it was
shown that for a data set of 28 complexes ΔSconf was an
essential contributor in ∼25% of the cases to the high-affinity
binding.322 However, these experimental techniques do not
directly measure correlated dynamics (i.e., intramolecular
couplings), protein main chain motions, or angular dynamics,
but rather reconstruct them from empirical, linear fits across
sets of reference molecules. Even if the existence of a strong
linear relationship between ΔSconf and the average change in
NMR-observed order parameters has been observed, these
indirect observations seem to yield only qualitative estimates of
ΔSconf.

323

This limitation can be solved through computational
methods that allow a direct investigation of what the
contributions of entropy to protein binding affinity might be.
In silico approaches for binding affinity prediction can be

divided into scoring functions and free energy calculation
methods. The former are generally faster but often only
measure the strength of noncovalent interactions and adopt
several simplifications.148,149,154,324 The latter need intensive
computations but are more precise since they implicitly include
both enthalpic (in the form of potential and solvation energy)
and entropic components (dynamics and flexibility of the
binders and solvent effects).325−328

Scoring functions are often based on empirical, knowledge-
based/statistical, or force-field-based energy functions. Empiri-
cal methods use regression analysis with known binding affinity
data of experimentally determined structures to parametrize
different interactions as favorable or unfavorable energy terms.
For example, PRODIGY149 combines the number of contacts
at the interface with properties of the noninteracting surface.
By doing so, it reaches a Pearson’s correlation coefficient of
0.73 between the predicted and measured binding affinity.
Empirical methods are fast, but their efficacy depends on the
training set. Moreover, they do not consider the intramolecular
energy changes occurring after binding, allosteric regulation,
and solvent and cofactor effects. Explicit solvent molecules are
often excluded, and solvation contributions are estimated using
an implicit solvent model. Since they comprise many energy
terms, double-counting (overfitting) can be a problem, as well.

Another fast tool that is not hindered as much by the
training set quality or overfitting errors are knowledge-based
(also called statistical) methods. These techniques assume that

atomic interprotein interactions more frequent than those
expected by a random distribution are likely to be energetically
favorable and, thus, improve binding affinity.324 Statistical
methods analyze interacting atom pairs from complexes with
known structures and convert these data into a pseudopoten-
tial (or mean force potential) that describes the preferred
geometries of the interacting atoms. For example, the
relationship between the protein−protein binding affinity and
the buried solvent-accessible (BSA) surface area upon complex
formation329 has been vastly investigated. The BSA, which is
defined by subtracting the SASA of the complex from the
SASA of the two single proteins considered alone in solution,
correlates quite well with the experimentally measured binding
affinity when only structures that undergo small changes after
binding are considered.330,331 Thus, the fraction of accessible
surface in the protein interface has been considered by a
variety of knowledge-based statistical potentials.154,259,332

Despite the importance of residues belonging to the
interface in predicting binding affinity, residues outside of
the two binding sites can have a key contribution to binding
characterization, as well.107,333 Wang et al.154 recently
proposed a knowledge-based potential that considers both
the residues at the binding interface and the noninterfacial
ones. It assumes that both contributions depend on their local
structural environments, such as secondary structural types and
SASA; after refinement of the weights for all corresponding
components against a large-scale data set, there was a strong
improvement (from 0.046 to 0.66) in the correlation between
the absolute values of the experimental and calculated binding
affinities. Moreover, the method was able to predict the relative
changes of binding affinities from mutations.

A correlation coefficient of ∼0.73 between experimentally
measured and predicted protein−protein (peptide) binding
affinities was also obtained by DFIRE, a knowledge-based
statistical energy function proposed by Zhang et al.148

Alternative approaches are force-field-based techniques that
consider the energy terms from a molecular mechanics (MM)-
type force field description of the binding partners.150,334 To
reduce the complexity, the classical force field often takes into
account only the enthalpic contribution of the complex
intermolecular noncovalent interactions, which neglects the
variation after the binding in intramolecular interactions,
interactions involved in the solvent, and entropic effects. Many
terms within the force field are weighted appropriately to
provide an optimal correlation with experimental data on a
training set of complexes.335,336

Usually, these methods are applied to complexes whose
geometry is represented by only one structure. To improve the
statistics, free energy calculation-based methods employ MD
simulations. By assessing the stability of the system during the
observation time, MD simulation-based methods also allow the
evaluation of entropic contributions in the calculation of the
binding affinity. Even if explicitly considering the effect of
interfacial waters has been argued to be fundamental for
correctly determining the entropic contribution,337 a common
approach is to use explicit solvent MD simulations first and
then replace the surrounding environment with a simpler
implicit solvent model for further evaluation. This protocol is
often followed by MM Poisson−Boltzmann/surface area
(MM-PBSA) or MM/GBSA, which uses the generalized
Born method to evaluate the free energy of an ensemble of
protein−protein complex conformations taken from simulation
trajectories. In MM-PBSA, which was developed by Kollman et
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al. in the late 90s,338 the free energy of a state is estimated from
the following sum:339

G E E E G G TSbnd el vdW pol np= + + + + (5)

where the first three terms are standard energy bonded terms
(bond, angle, and dihedral), electrostatic, and van der Waals
interactions. Gpol and Gnp are the polar and nonpolar
contributions to the solvation free energies, respectively. The
last term is obtained by the product between the absolute
temperature, T, and the entropy, S, that, when considered, is
usually estimated by a normal-mode analysis of the vibrational
frequencies325 that only considers its conformational compo-
nent, but even this term is often neglected to reduce the
computational costs. ΔGbind is estimated from the free energies
of the reactants and product, as follows:

G G G GC P Pbind 1 2
= + + (6)

where C, P1, and P2 represent the three possible states: (i) the
complex given by the structural interaction between the two
interacting proteins and (ii) the first and (iii) the second
protein partner. Strictly, the averages indicated in eq 6 should
be estimated from three separate simulations340 by considering
separately both the simulation of the complex and the
simulations of the two interacting proteins alone in solution.
However, the most common approach is to simulate the
complex and create the ensemble average of the free P1 and P2
interacting proteins by simply removing the appropriate atoms.
To reduce the computational cost, MM-PBSA calculation can
overlook entropic contributions. The performance of the MM-
PBSA and MM-GBSA methods for binding affinity prediction
when not considering entropy were tested by Chen et al.341 on
a set of 46 protein−protein complexes. To further reduce the
computational times, they tested their application on single
minimized structures and with implicit water minimization.
Using MM-GBSA, in combination with a low interior dielectric
constant of 1 and the AMBER ff02 force field, they observed a
correlation of −0.647 between the predicted binding affinities
and the experimental data. A worse correlation of −0.523 was
obtained with MM-PBSA. These results were compared with
what could be obtained from a set of MD calculations. The
predictions were slightly better than those based on the
minimized structures. However, explicit water models did not
improve the prediction compared with implicit ones, in
contrast with other studies.337,342,343

Others have focused on including the conformational
entropy evaluation while preserving reasonable computational
costs. The interaction entropy approach326 tackles this
challenge by extracting it directly from MD simulations. It
calculates relative entropy changes (for example, following the
binding) by looking at the interaction energy fluctuations.
Compared with the normal mode analysis, this approach is
more efficient and does not use an approximation for the
entropy calculation. As suggested by the authors, the calculated
interaction entropy can be combined with the solvation free
energy obtained through the standard MM-PBSA method to
calculate the binding affinities in protein−protein com-
plexes.344−346 Since the interaction entropy is mainly
determined by the highest spikes of interaction energy, it has
been argued that for longer simulations there could be
convergence problems347 that make the approach less robust
than normal modes or quasiharmonic approximations.
Quasiharmonic approximations are one of the most popular

methods for extracting conformational entropy from MD.348

This method diagonalizes the covariance matrix of the atomic
coordinates and approximates their distribution as a Gaussian
probability distribution of conformations with variances equal
to those provided by the MD. However, when Cartesian
coordinates are used, the MD frames have to be rotationally
and translationally superimposed to obtain a reasonable
covariance matrix, and the results depend on how the
superposition was done.349 Another drawback is overestimat-
ing the entropy for systems with multiple energy minima.349

Good results for molecular systems having multiple energy
wells were obtained by Killian et al.327 with a more direct
estimation of probability densities over the conformational
space from MD simulations frames. They computed the
conformational entropy with a mutual information expansion
by taking into account correlated motions among the various
internal degrees of freedom (DOF) of a molecule. The mutual
information expansion approximation computes the entropies
over joint distribution for groups of small numbers of DOF
(the so-called marginal entropies). All higher-order terms of
couplings are truncated. By assuming that the higher-order
terms can be neglected, it avoids the convergence problems
that afflict direct estimations over all DOF for increasing
system size due to the exponential scaling of sampling
requirements. A similar framework was proposed by King et
al.328 that applied the maximum information spanning trees350

to molecular simulations frames. Compared with the mutual
information expansion, which includes all couplings of a
particular order in the approximation, this approach selects a
subset of the same couplings to guarantee a lower bound on
the entropic contribution, thereby guaranteeing better results
for larger systems and a faster convergence.

All these MD-based methods present some drawbacks
related to their computational cost. For instance, kinetic traps
may occur, thereby resulting in intermediate non-native bound
states featuring lifetimes even longer than the simulation time.
The presence of such bottlenecks could strongly affect the
sampling of other more kinetically favorable states that may
correspond to the more likely structure in physiological
conditions.274

Pan et al.274 presented an enhanced sampling method that
allowed for the first time the observation of these phenomena
during a single simulation trajectory. They proposed a
tempered binding simulation in which a simulated Hamil-
tonian tempering scheme scales at regular time intervals the
strength of the interactions between atoms belonging to the
same protein and between protein and solvent. This strategy
facilitated the observation of complex dissociation. By
performing long time scale full-atom simulations of five
protein−protein complexes, they found that when protein−
protein contacts occur far from the native interface the
monomers are more likely to dissociate. Eventually, the
complex would associate near to the correct native interface
rather than explore all the possible binding regions while
maintaining the contact. The most stable complexes resulting
from the simulations corresponded to the structures
determined crystallographically within atomic resolution,
which proved the soundness of the method. Moreover, the
fast sampling allowed for the observation of some alternative
bound states that could have functional relevance, as well.

Another enhanced sampling technique was implemented by
Wang et al.315 where a complex is dissociated by performing a
standard metadynamics, and the degree of difficulty of pushing

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.3c00550
Chem. Rev. 2024, 124, 3932−3977

3946

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00550?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the system out of the bound state region is used to compute
the binding affinity.

Even lower computational costs can be achieved with ML
methods. These methods can be structure-107,153,156,351 or
sequence-based.152

For example, Vangone and Bonvin proposed a scoring
method based on contacts, which incorporated optimal
weights for different types of interface contacts (e.g., polar−
polar, polar−nonpolar, etc.), and noninteracting surface.107

The implemented linear regression model demonstrated a
correlation with experimental binding affinity data on a
benchmark set of 0.73.

A higher correlation (0.75) on a larger data set
(SKEMPI352) was obtained by mmCSM-PPI, proposed by
Rodrigues et al.153 MmCSM-PPI is a method to predict
binding affinity based on graph-based signatures, which
describe the distance patterns between atoms on the binding
interface.

On the same data set, more recently Wee et al.155 have
tested PerSpect-EL, which obtained a correlation of 0.853.

Another structure-based tool is PPI-Affinity, which relies on
a support vector machine (SVM) to predict the protein−
protein and protein−peptide binding affinity, as well as to
generate and rank mutants of a given structure.156 Tested again
on SKEMPI, it resulted in a correlation of 0.77.

Finally, among the most recent sequence-based methods
there are PIPR151 and ISLAND.152 The former, tested on

SKEMPI, reached a correlation of 0.87, while the latter
stopped at a Pearson correlation of 0.44.

4. EFFECT OF CROWDING ACROSS PROTEIN
BINDING

Experimental approaches can describe many features of the
structure and dynamics of biomolecules, albeit they are not
comprehensive enough in terms of space or time resolution.
Indeed, often when a good atomistic detail is achieved, a poor
time resolution is accomplished and in a setting far from in vivo
conditions, as in the case of crystallography and cryo-EM.
However, the best-performing single-molecule fluorescence
methods can track biomolecules’ dynamics in conditions close
to real-life cell interiors and on a time scale that could reach
milliseconds353,354 but at only tens of nanometers about spatial
resolution.355 Further, NMR spectroscopy can grasp the
dynamics at an atomistic level and in vivo,356 but the analysis
of NMR spectra is time-consuming.357 The development of
models that can complement experimental measurements in
the difficult task of studying the details of protein behavior has
become one of the major challenges that theorists have to face.
Many efforts have been devoted to quantitatively predict how
crowding influences the main steps determining protein
binding, which are summarized in Figure 5a. In this respect,
in the past decade, theoretical calculations and molecular
simulations have started to consider not only water and ions
but also other binding partners, metabolites, or crowders.

Figure 5. Crowding effects on the different stages of protein binding. (a) Proteins (orange and red) can be found inside the cell as single monomers
whose folding and conformational variation are influenced by surrounding crowders (gray). The monomers have to navigate this crowded
environment to find each other and bind. The dynamics leading to this binding are affected by the crowders, as well as by the stability and dynamics
of the formed dimer. (b) The evaluation of many features of the structure and dynamics of proteins (orange) surrounded by crowders (gray) can
be performed with computational methods. The results depend on the level of approximation by which the system has been described. In the most
simplified models, both proteins and crowders are described as rigid spheres. More detailed representations (at the cost of higher computational
costs) can be obtained with coarse-grained (CG) models. In the lowest-resolution CG systems, crowders are represented as hard spheres and
proteins by subsuming multiple atoms into beads or at an atomistic level. More detailed CG studies employ an atomistic description of proteins
with crowders as a collection of beads corresponding to multiple atoms. (c) Computer simulations and theoretical calculations have been
extensively implemented to study the dynamics of proteins and interacting partners in a crowded environment. The main factors influencing the
structure of single proteins characterized by these studies up to now are hard-core repulsion, dielectric response, and electrostatic and hydrophobic
interactions. Diffusion, instead, is mainly affected by collisions with the crowders, hydrodynamic interactions, cluster formation, and crowders
depletion. In a similar way as for single protein folding, protein binding has been found to depend on hard-core repulsion and nonspecific binding
between interacting proteins and crowders. For what concerns the stability of the resulting complex, currently, only the effect of hard-core repulsion
has been characterized.
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Along the line of the historical bipartition of the
classification of crowding effects, computational studies about
crowding can be divided into two big families: those that
consider only volume exclusion and those that add soft
interactions. From a methodological point of view, computa-
tional approaches can also be classified according to the detail
level of the molecular representation or complexity of the
interactions they simulate, as shown in Figure 5 panels b and c,
respectively.

Theoretical investigations that only consider the excluded
volume effect use simplified models that constrain the physical
volume available to a molecule by applying a spherical
potential or penalizing increased solvent-accessible surface
areas. The simplest models describe both proteins and
crowders as hard spheres. The typical radius of these crowders
is between 10 and 50 Å, with an average of 25 Å, to match the
size of a crowding agent of interest, like a folded protein or a
crowding inert polymer (e.g., Ficoll). The spherical represen-
tation of crowders can be sometimes substituted by other
shapes, like dumbbell crowders,50 where two spheres are linked
by a harmonic bond or spherocylinders. Despite being
computationally convenient, these models neglect intra-
molecular dynamics and conformational sampling.

More complex models simulate a single molecule
represented in a CG manner surrounded by spherical
crowders. CG models have emerged as powerful tools to
investigate protein interactions in crowded environments,
thereby offering a simplified representation that captures the
essential features of the system while reducing computational
complexity.86 By incorporating effective interactions between
proteins and crowding agents, such as excluded volume effects
and steric hindrance, coarse-grained models can mimic the
crowded cellular environment and investigate its impact on
protein−protein interactions.66 Coarse-grained models also
facilitate the investigation of the interplay between protein
flexibility and macromolecular crowding.66 In combination
with spherical crowders, coarse-graining of proteins has often
been the method of choice when dealing with simulations of
crowded environments, as reviewed by Ostrowska et al.16

Nevertheless, the reparametrization of the interactions is not
straightforward, and a loss in the discrimination of similar
molecules could occur.358

Recent works have managed to simulate AA models of
native proteins despite still using some reduced models of
crowders (spherical or CG359). CG and hybrid models can be
defined with281 or without86,359−361 an explicit solvent. The
former often involves stochastic dynamics simulations, like
Brownian ones,362−364 and are used to evaluate the effect of
crowding on diffusive properties. The latter are instead
employed to study how crowding modulates protein folding,
stability, or association equilibria96,100,359,360,362 and to
estimate binding free energies.86 Despite the ability of these
models to capture the main features of biomolecular structures
and dynamics of cellular environments, they typically fail to
capture other aspects, like flexibility.

This is an essential feature to be included in a model aimed
at retrieving information about properties such as conforma-
tional sampling, stability, and dynamics of biomolecules in the
cellular environment. Flexibility should be accounted for
through an interaction potential allowing not only to maintain
the native states in dilute conditions but also to sample non-
native states due to interactions with surrounding cellular
components.66,365,366 A well-performing model should be able

to provide an accurate physical description of the weak
interactions between biomolecules and permit making
predictions only relying on the dominating nonspecific
interactions. Finally, the model should consider the main
features of the solvent together with the effects of reduced
dynamics and hydrodynamics interactions that a crowding
environment produces, as reviewed by Feig et al.367

In the most recent developments, both proteins and
crowders are described at an atom-level resolution. Handling
such large numbers of particles is computationally expensive.
Nevertheless, enhanced sampling methods allow extensions of
several orders of magnitude of the accessible time scales,
something that could be achieved also by inferring kinetics
from Markov-state models built upon short simulations.146

In addition to direct simulations where crowders are
considered explicitly, postprocessing techniques have also
been designed in which the protein (be it in an AA or CG
representation) and the crowders are simulated separately. The
protein conformations explored in isolation are randomly
placed in the snapshots picturing the crowder’s trajectory and
weighted based on the fraction of successful insertions.368,369

All in all, the physical modeling of cellular environments at
an atomic level is becoming more and more affordable thanks
to the ever-growing progress of both computational methods
and computer hardware devices, which have been recently
reviewed by Feig et al.370

One of the major challenges remains the design of an
accurate interaction potential that can reproduce the balance
between molecular stability, weak interactions, and solvent
interactions in this complex scenario. Many investigations have
been conducted to check if the existing classical force fields for
single-biomolecule simulations are suitable for heterogeneous
systems with interactions between different classes of
molecules.366,371−374

An often-encountered drawback regards how protein−
protein and protein−water interactions are treated. They
appear to be imbalanced so that natively folded configurations
are favored, which results in poor modelization of IDRs
because of a loss of their typical conformational hetero-
geneity375 and aggregating processes.373,376 In this context,
GROMOS 54a7377 is one of the preferred force fields since it
has a lesser preference for aggregated states.24 Overstabilizia-
tion of nonspecific sticking between proteins has been
discussed, as well: Rickard et al.372 quantified it for three
force-fields, CHARMM 36m (C36m),298 CHARMM 22*
(C22*),378 and CHARMM 36m with CUFIX (C36mCU),379

by evaluating the nonspecific protein−protein contact size.
While experimental studies have indicated an average contact
area of ∼5.7 nm2,380 they found an area of 9.5, 8.1, and 8.5 nm2

for C22*, C36m, and C36mCU, respectively. After observing
the large contribution of hydrophobic residues to the largest
contacts, they suggested that corrections to the hydrophobic
interactions, for example, with new water models, may address
the issues. Other groups have instead proposed to increase the
Lennard-Jones protein−water interactions by about 10% from
the existing force fields.373,374

A set of works of a more methodological nature checked the
ability of available force fields to reproduce the crowding effect
on fundamental types of interactions, such as salt bridges and
hydrophobic interactions. Andrews et al.381 conducted all-atom
explicit solvent MD simulations to investigate the impact of
increasing solute concentration on the behavior of zwitterionic
amino acids in water. The amino acids studied included
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glycine, valine, phenylalanine, and asparagine with concen-
trations ranging from 50 to 300 mg/mL. The simulations
lasted 1 μs each to accumulate a total of 128 μs using eight
different force fields and water models (Amber ff99SB-
ILDN302 with the TIP3P,382 SPC/E,383 and TIP4P-Ew384

water models; GROMOS 53A6385 with the SPC386 water
model; CHARMM27387 with the TIP3P water model; OPLS-
AA/L312 with TIP3P, TIP4P, and TIP5P388 water models).
They compared simulation-derived density, viscosity, and
dielectric properties with experimental data. The results
revealed that while all force fields accurately reproduce density
changes, disparities are observed in viscosity and dielectric
properties, which leads to doubts about the accuracy of the
simulation force fields.

Another challenge is studying processes with significant
kinetic barriers. Biomolecular associations and crowding
processes usually require at least time scales on the order of
μs, but until recently, atomistic MD simulations were typically
not performed for more than 1−10 μs.372,389,390 These lengths
were often achieved thanks to the MD special supercomputer
Anton2391 and the latest graphics processing unit (GPU)

platforms and were able to provide good statistics on diffusive
internal and intermolecular motions. Much longer simulation
times have to be achieved to investigate processes that involve
folding or condensation.

Enhanced sampling methods, such as REST2 methods,296

that consider specific parts of a system can tackle such issues
with affordable computational cost, as recent studies on
internal conformations have shown.96,392

The application of these techniques for the description of
the crowding effects on protein binding will be the subject of
the following subsections. The first three parts will focus on the
three steps of the binding process: long-range recognition,
approach, and attachment. The section will end with some
considerations on the investigation of the stability of the
resulting complex. Figure 5c shows for each of these four steps
which crowding effects have been investigated through
computational means. A list of the most recent/cited studies
can be found in Table 2, while Figure 6 shows which software,
force field, crowders, and molecular representations have been
preferred. Given the complexity and dimension of the studied
systems, ∼70% of the studies in Table 2 employed techniques

Figure 6. Analysis of techniques used to simulate the crowded environment in the studies reported in Table 2. (a) Each row shows the timeline of
one of the most popular software or packages on which crowded systems have been simulated, including AMBER,141 GROMACS,140 NAMD,398

PROFASI,399 CHARMM,142 MUPHY,400 BioSimZ,87 BD-BOX,364 GENESIS,145 OpenMM,144 and ReaDDy.401 Each row starts from the year in
which the software or package was made available. The years in which a particularly cited or recent paper used that software are marked with some
letters indicating the level of representation chosen for the simulated system, as indicated in the legend. (b) Timeline of the force field implemented
in the most cited and recent papers to simulate crowded environments. On the left, each force field is reported in a different color at the year in
which it was developed. On the right, the same color is used to highlight the papers implementing that force field. Each paper is indicated with an
acronym referring to how the crowders and proteins were represented: all-atom (A) or coarse-grained (G). The year of publication of each paper is
reported, as well. (c) Each pie chart refers to the main studies discussed in this review. The top left (right) graph shows the software (force fields)
that has been implemented, together with the percentage of papers using each of them. The bottom left (right) plot shows which crowders
(representation) have been chosen by what percentage of works.
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to either enhance the sampling (metadynamics or REM
simulations), reduce the number of components of the system
(with CG and/or implicit solvent models), and/or simplify the
interactions, as summarized in Figure 7.

4.1. Effect of Crowding on the Single Protein Structure

Protein dynamics link protein structure and function: to meet
and interact with other proteins and perform their function,
proteins move and explore their conformational space.405−407

Figure 7. Diagram of the most common techniques used to facilitate the simulation of a crowded environment. On the left are some of the most
used sampling enhancement techniques: metadynamics (top) and REM simulations (bottom). In the former, a repulsive bias potential function,
shown in gray in the plot, is added to the free energy function V(x), where x is the collective variables (CVs) describing the system (the red dot).
This bias discourages the system from revisiting already sampled configurations, which accelerates the exploration of the full energy landscape. In
REM simulations, several independent trajectories (called replicas, Rep in the figure) are simultaneously generated. During the simulation,
neighboring replicas are exchanged according to specific acceptance criteria. In this way, the trajectory can explore different equilibrium conditions
and overcome slow relaxation. Another way to decrease the computational costs is by reducing the number of system components that have to be
simulated by either using an implicit solvent or GC model, which are represented in the middle of the figure on top and on bottom, respectively.
Implicit solvent models represent the water (blue line) surrounding the protein (orange) as a continuous medium instead of individual molecules.
In CG models, molecules are represented by pseudoatoms approximating groups of individual atoms. This results in a smoother energy landscape
with fewer local minima, which enables an easier exploration. Finally, faster simulations can be obtained by approximating the interactions: in the
context of crowding, many studies chose to only consider steric repulsion to investigate its entropic effect.

Figure 8. Schematic representation of six different computational studies of the protein Trp-cage structure and dynamics. On top, three articles
(from left to right: 359, 365, and 393) that show an example of how the computational investigation of the dynamic in crowded conditions of a case
study protein, in this case Trp-cage, has evolved over time. For each paper, the most relevant bibliographic data are reported together with a
representative illustration, and the year of publication is marked on the timeline. The same information is shown for the papers on the bottom. The
study on the left refers to the insertion of the Trp-cage structure in the PDB databank;402 the other two (from left to right: 403 and 404) show the
evolution of computational methods that investigated its dynamic without considering crowding.
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Thanks to in vitro408 and in silico409 experiments and
theoretical models,410 it has been known for decades that
protein folding free energy landscapes are shallow; free energy
differences between folded and denatured states and activation
free energies are relatively small (0−40 kJ/mol).366 This means
that the stability of a protein can be influenced by variations in
environmental conditions. Protein folding and stability have
been well studied under simplified conditions, mainly through
in vitro experiments, but it is yet unclear how these protein
properties can be modulated by the crowded interior of live
cells.411

The effects of crowding on conformational variation have
been often described as a shift in equilibrium between native
and unfolded states, but the observation of a non-native state
that was different from unfolding suggested a more
complicated scenario66,359,365,366,393,412 in which entropic and
enthalpic effects may (co)exist. Harada et al.85 hypothesized
that, in crowded conditions, entropic constraints should
explain the disfavoring of (thermally or chemically) unfolded
states, while enthalpic contributions could promote alternative
non-native states.66,359,365,366,393

The general take-home message of in silico studies that only
consider the entropic excluded volume effect is that it enhances
stabilization of the native state by increasing the free energy of
the unfolded configurations for both single- and multidomain
proteins.395 The stabilization of the more compact native states
by volume exclusion is consistent with many experi-
ments.49,396,413

Some have measured an enthalpy-driven stabilization, as
well; for example, Benton et al.414 affirmed that different-sized
crowders have the same effect on a protein. This stabilization
has been presumed to derive from specific interactions with
nearby crowder protein surfaces,365,366,415 such as edge-to-edge
β-sheet interactions,366,416 or altered solvent properties.417

More generically, enthalpic effects have been connected to a
destabilization of the folded forms given by protein−protein
nonspecific interactions. These interactions counteract the
stabilization of the folded forms, which results in a reversed
overall effect of the crowding,418,419 even if sometimes a
stabilizing total effect has been observed both in vitro415 and in
silico.63,365 The importance of soft interactions has been
discussed in many in silico studies that had to add them to the
volume exclusion to match experimental values.71,420 These
contrasting results could depend on the fact that the crowding
effect on protein folding has been shown to depend on a
variety of factors, including crowders’ occupancy, shape, and
size,50,98,394 as well as the considered protein.98,421

The inconsistency found in the literature is, of course, also
determined by the many different models of crowding that can
be chosen. A simple example is given by the evolution of the
description of crowding effects on the 20-residue-long Trp-
cage protein shown in Figure 8. Trp-cage, whose 3D structure
was obtained with NMR in 2002,402 is a valuable model system
for understanding protein folding dynamics: because of its
reduced length and fast folding,403 it has been often tested
both inside and outside the crowding field. Figure 8 shows on a
timeline some of the studies that have investigated Trp-cage
folding in the presence (on top) and in the absence (on
bottom) of crowders.422−424 One year after the insertion of its
3D structure in the PDB,425 Zhou403 explored the folding free
energy landscape of Trp-cage in explicit solvent but without
crowders. He observed a two-step folding mechanism with a
metastable intermediate state that justifies protein’s fast

folding. At 300 K, 70% of the population corresponded to
the folded state. One of the first investigations of the effect of
crowders on Trp-cage was performed in 2010 by Tsao et al.365

They introduced an implementation of replica-exchange
simulations with discrete MD (in which the simulations
proceed according to ballistic equations of motion) to study
the effect of spherical crowders on an atomistic description of
Trp-cage. They only investigated the volume exclusion effect
and found that the protein is pushed to adopt a compact state
regardless of whether it is the native conformation or not. Two
years later, Predeus et al.359 increased the realism of the
description by trying to achieve a balance between realistic
description and computational efficiency. They introduced a
three-component multiscale modeling scheme in which
proteins were modeled at an atomistic level, the crowder
proteins were modeled at a coarse-grained level (using the
PRIMO coarse-grained model426), and the surrounding
aqueous solvent was represented as an implicit solvent
(using a GB-type implicit solvent model). By combining this
model with temperature replica exchange sampling, the
simulations enabled the exploration of relatively long time
scales that reached into the microsecond range to investigate
the impact of protein G crowders on Trp-cage. This approach
allowed them to go from simple volume exclusion consid-
erations to including charges and LJ terms. While Tsao et al.,
by using spherical crowders, indicated a destabilization of
extended and unfolded conformations, the interactions
between crowders and Trp-cage led to significant populations
of partially folded structures that were not observed in
corresponding simulations without crowders. This suggests
that crowding determines not only a stability shift for Trp-cage
but also essential conformational changes. With a dielectric
constant of ϵ = 80, Predeus et al. observed two near-native
conformations in agreement with what was found by Tsao et
al.365 But while Tsao et al. found that the radius of gyration of
the second state was larger than that of the native state, for
Predeus et al., it was smaller.

A similar system was simulated in 2015 by Bille et al.:393

they chose a system size close to the one studied by Predeus et
al. by using the B1 domain of protein G (GB1) and bovine
pancreatic trypsin inhibitors (BPTI), which have similar size
(but different net charge) compared with protein G, as
crowders. Here, crowders were represented in atomistic details,
even if with the assumption of a restricted internal dynamic
limiting them to the folded state. In this study, they employed
Monte Carlo (MC) methods and an AA representation with an
implicit solvent force field. As in the previous study, they found
that crowders hinder the protein from adopting its global
native fold, but this time the interactions between Trp-cage
and the crowding agent were found to be specific and involving
a select few key residues, therefore denying the generality of
the nature of Trp-cage−crowder interactions.

The discrepancy between the findings of Predeus et al. and
Bille et al. may, indeed, be partially attributed to the different
net charges of BPTI (+6) and GB1 (−4). Since Trp-cage
carries a positive net charge (+1), there are more potential
attractive electrostatic residue pair interactions between Trp-
cage and GB1 than between Trp-cage and BPTI, which likely
contributes to the less specific Trp-cage−crowder interactions
in the GB1 case. Additionally, while two prolines in BPTI were
identified as key residues for interaction with Trp-cage, GB1
lacks any prolines. Therefore, there are at least two reasons to
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anticipate differences in the nature of Trp-cage−BPTI and
Trp-cage−GB1 interactions.

The comparison between these two crowding studies
highlights the importance of selecting appropriate crowders
to accurately represent the crowded cellular environment.

Trp-cage has also been used as a model system to test the
Replica exchange with hybrid tempering (REHT) method
proposed by Appadurai et al.404 REHT is a parallel tempering
technique to allow efficient and accurate conformational
sampling by accelerating water dynamics. Compared with the
standard REST2296 method, it guided Trp-cage to the
experimentally measured native structure in ∼100 ns instead
of 300 ns.

Even if in this study crowders were not considered, the
improvement of the mapping of the free energy landscapes is
an important requirement for simulating crowded conditions.
Indeed, when dealing with crowded environments, the
exploration of the proteins conformational landscape is slowed
by their significant size and by the conformational and
dynamical variation of both crowders and proteins. To tackle
this challenge, one can either apply this kind of technical
improvement to a crowded system or simulate a simplified
environment. The latter solution was chosen by the methods
presented in the next section.
4.1.1. At the Beginning of Time There Was a Sphere.

The complexity of the detailed protein−crowders interactions
is unanimously recognized, but many consider volume
exclusion to be the primary effect of crowding. In this context,
understanding the excluded volume effects is a necessary step
to interpret both experiments and all-atom simulations and to
develop more complex models. In general, when considering
the stability of single proteins or complexes, one may quantify
the effect of crowders by computing the difference in free
energy (G) of the process in the presence and absence of the
crowded environment, i.e., ΔΔG = ΔμF − ΔμI, where F and I
refer to a generic final and initial state (e.g., complex and
monomers, or folded and unfolded protein). We consider a
system in which the only varying thermodynamics quantity is
the number of molecules so that differences in G are linked to
differences in the chemical potential.

To make analytical progress in this framework, scaled
particle theory (SPT)427 is often implemented. Worked out by
Reiss, Frisch, and Lebowitz in 1959,428 SPT is an equilibrium
theory of hard-sphere fluids giving an approximate expression
for the equation of state of hard-sphere mixtures and their
thermodynamic properties.429 In SPT, the cellular environ-
ment is described as a solution filled with crowders and
proteins represented as hard spheres. Molecules are considered
to be interacting only when touching, and the interacting
energy has only a repulsive component that is strongly
dependent on distance. The theory provides an estimate of the
free energy cost of creating a rigid cavity in the solution on the
basis of the ratio (hence the term “scaled”) of the gyration
radius of the molecule of interest corresponding to the size of
the cavity and the radius of gyration of the crowding agents.430

An approximate analytical solution for Δμ is given by
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where a and V are the radius and volume of the protein, S and
Sc are the surface area of the protein and the crowders, and C
and ϕ are the number density and volume fraction of the
crowders.369 According to this model, macromolecular
crowding exerts big effects on the folding free energy, thereby
predicting a monotonic increase in stability as the crowder
packing increases.

Despite assuming sphericity for both protein and crowders,
this theory was often qualitatively consistent with results
coming from molecular simulations of more complex systems
composed of spherical crowders and CG proteins.50,431 Since
the conclusions of both SPT theory and simulations of inert
spherical crowders were often confirmed by experimental
measurements (with inert crowders),50 spherical crowders
have gained popularity as a swift and straightforward approach
and have found widespread application in various types of
simulations.63,86,100,365,394,395 Because of the limited number of
atoms in these systems, the simulations become comparatively
rapid, particularly when employing an implicit water model.

However, this approach does not consider chemical
interactions, approximates the treatment of solvation, and has
an extreme sensitivity to sphere size and density.
4.1.2. Increasing the Complexity. A precise measure-

ment of the entropy reduction is necessary to understand the
volume exclusion effect. With this aim, more detailed protein
representations have been employed to try to balance
computational costs and approximations. Taylor et al.360

directly measured the entropy reduction experienced by a
flexible chain molecule in a crowded environment and the
resulting impact on the chain-folding transition. To achieve
this, they employed a pearl-necklace-type model, which
provides a coarse-grained representation of a polymer, with
each bead in the chain representing multiple chemical repeat
units. This allowed the chain to remain completely flexible at
the bead level.432,433 Crowders were represented as hard
spheres of equal or larger size compared with the bead size of
the polymer chain, while the solvent was treated as a
continuous background. The investigation utilized the
Wang−Landau (WL) simulation method,434,435 which grants
direct access to the complete thermodynamics of the polymer
chain, including conformational entropy. As in previous
works,436−438 they found an entropic stabilization due to
geometric confinement. The study provided validation for the
Wang−Landau simulation approach in studying the chain
crowder system.

Another study on volume exclusion was proposed by Qin et
al.,369 who developed an approach referred to as postprocess-
ing, which paved the way for atomistic modeling of proteins in
crowded environments. According to this method, a test
protein is simulated at an atomistic level in the absence of
crowders. The conformations obtained from this simulation
are then used to compute the change in chemical potential
when inserted in a solution of spherical crowders. The
computed chemical potential variation confirmed the modest
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stabilization obtained with experimental measurements using
inert polymers as crowders.439,440 This stabilizing effect was
observed, using the same method as Qin et al., for seven
different proteins by Dong et al.98 They also found that
crowding reduces the open population to several extents and
affects the transition rates (as defined by the potentials of mean
force along the open−closed reaction coordinate), as well. The
magnitude of these effects was shown to be determined by the
extent of the conformational changes and the protein size: the
influence of crowding becomes stronger as the protein size and
the conformational variations increase.

Both studies found that at a given volume fraction, the
effects of crowding are larger for smaller crowders than for
larger crowders. This result was confirmed by other computa-
tional methods101,365,441 and experimental measure-
ments.103,441 The approach proposed by Qin et al. showed
its shortcomings when applied to the HIV-1 protein368 and
compared with the direct simulations of the protein in the
presence of spherical repulsive crowders performed by Minh et
al.362 In the direct simulations, even if close-packed
concentrations of repulsive crowding agents were still found
to significantly reduce the fraction of open conformations
compared with low concentrations, such fraction differed from
that found by Qin et al.368 The inconsistency between the two
conclusions, that Qin et al. attributed to the simulation box
dimension, is presumably coming from the repulsive potential
that was added by Minh et al.362 to the volume exclusion effect.

Even if the importance of adding enthalpic effects to volume
exclusion to grasp the real effect of crowding has been
suggested by this kind of observation made years ago, volume
exclusion has remained the focus of many recent investigations.
For example, in 2019, Gomez et al.100 studied the effect of the
geometry and size of crowders on protein stability by
simulating the protein HigA with a CG structure-based
model and modeling crowders as inert spheres or polymers.
In particular, they tested spherical crowders of the same size as
the Cα beads of the considered protein, larger spherical
crowders, and polymeric crowders consisting of chains of
beads, again, with the same radius as the Cα beads. As in the
studies by Mittal et al.,431 Qin et al.,369 and Minh et al.,362 they
confirmed that spherical crowders have a stabilizing effect that
decreases with an increase in their size. They also observed
that polymeric crowders have a stronger influence than
spherical ones; surprisingly, the longer the polymer, the
stronger the effect. Even if they employed a structure-based
model, whose important disadvantage is not being able to
easily capture perturbations of the energy landscape toward
unknown conformational variations that may be induced by
crowding, their results were consistent with experimental data:
the larger crowding effect produced by longer polymers on
intrinsically disordered proteins has been shown in vitro.442

These opposing size effects can be explained by thinking of the
interplay between decreasing excluded volume and demixing,
whose combination determines the change in the entropy of
the crowders during the folding process.100

To summarize, most studies focused on the volume
exclusion effect of crowding have agreed when saying that
crowding has a stabilizing effect on protein structure.

However, in the meantime, other studies have addressed the
additional interactions between a protein and the surrounding
crowders.74,359,393

Enthalpic effects, specifically changes in electrostatic
interactions due to crowding, were investigated by the already

mentioned work by Predeus et al.359 that investigated the effect
of protein G crowders (GC model) on Trp-cage (AA
representation). They compared the multiscale simulations
with those of the same peptides in different dielectric
environments by varying the dielectric constants from 5 to
80. The results showed that sampling in the presence of
crowders resembled sampling with reduced dielectric constants
between 10 and 40. On the basis of this work, it is estimated
that dielectric constants between 10 and 40 may be good
approximations of cellular environments, even if the effective
cell dielectric response was probably being overestimated; this
work used an implicit solvent, but water, itself, has been
hypothesized to have a reduced dielectric response in crowded
environments.

A second observation done in the Pedeus et al. study was
that the presence of explicit protein crowders led to significant
populations of partially unfolded structures for Trp-cage. The
slightly destabilizing effect of dense cellular environments was
consistent with experimental data taken from living cells.443,444

These findings highlight the importance of enthalpic
interactions: electrostatic interactions, both in terms of a
general reduction in environmental dielectric response and
direct interactions with protein crowders, play a crucial role in
fully understanding the effects of molecular crowding.

Still, this work had some limitations: the choice to consider
only one type of crowder protein raises questions regarding the
general validity of the results. Even if the authors justify a
generalization based on the fact that they found that the
peptide−crowders interactions were not dominated by specific
binding interactions, other studies have found that these
interactions can be highly specific.74,393 Moreover, not all the
enthalpic components in the cellular environment are taken
into account.
4.1.3. High Resolution for High Precision. Enhance-

ment of the resolution of the simulations allows for a better
reconstruction of what happens in the cell: full-atom models
enable a more complete study of soft interactions, in addition
to volume exclusion effects, and have, thus, led to interesting
observation.

Harada et al.85 performed a set of 300 ns long simulations
using the CHARMM22 all-atom force field of protein mixtures
at high total protein concentrations (villin with protein G as
crowders) to probe the effect of nonspecific crowder
interactions on protein conformational variation. In contrast
with what would have been predicted with only an excluded
volume effect, they found that native protein stabilities are
reduced by crowding. The villin structures become increasingly
destabilized upon increasing the concentrations of crowders.
Moreover, the authors observed non-native states that do not
match the unfolded ensemble, which led to the hypothesis that
crowding may significantly alter protein folding landscapes
from those observed under dilute conditions. To support the in
silico results, the authors performed NMR measurements on
the same system in both dilute and crowded conditions and
showed that the in vitro analyses agreed with the simulations.

The total destabilizing effect of crowding was confirmed
three years later with much longer atomistic simulations (∼3
μs) performed by Candotti and Orozco.54 They investigated
three proteins with different structural levels of disorder
surrounded by protein crowders. Prevention of structural
collapse was observed for all of them, which was in agreement
with the previous study. Moreover, they observed that the
impact on nonstructured proteins is more dramatic.
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In 2020, Rickard et al.366 achieved more complex and long
simulations. They performed an all-atom simulations of a
model of the E. coli cytoplasm (∼16 proteins, ∼262 small
solutes, ∼430 ions, and ∼50 000 water molecules) to study the
effect of crowding on the folding of the 33-residue GTT WW
domain. Their >200 μs simulations were set in the “protein
folding middle ground” between long-time Brownian dynamics
(BD) simulations and short-time full-atom simulations of
larger cytoplasmic models. Their results confirmed the
reduction of folding and diffusion caused by crowding, even
if the force fields they employed (C22*, C36m, and C36mCU)
are known to exacerbate protein sticking through the
hydrophobic interactions at protein−protein interfaces.

Current MD force fields have been often shown to distort
protein behavior in biologically relevant crowded environ-
ments.366,371−374 Petrov et al.371 used explicit solvent MD
simulations with GROMOS 45a3445 and 54a7377 for a total of
6.4 μs for studying wild-type (folded) and oxidatively damaged
(unfolded) forms of villin headpiece at 6 mM and 9.2 mM
protein concentration. They demonstrated that the process of
aggregation is accompanied by a significant decrease in the
overall potential energy, wherein both hydrophobic and polar
residues, as well as the protein backbone, made substantial
contributions. This phenomenon was directly observed with
two other prominent atomistic force fields (AMBER99SB-
ILDN302 and CHARMM22-CMAP446) and indirectly in-
dicated with two additional force fields (AMBER94447 and
OPLS-AAL312). This observation suggests a potential issue of
current molecular dynamics (MD) force fields wherein there is
a tendency to overestimate the potential energy of protein−
protein interactions at the expense of water−water and water−
protein interactions.

Water behaves differently when considered at the interface
with a protein or in the bulk volume.448 Therefore, it is
reasonable to expect that a crowded environment will cause
changes in the dynamical and structural solvation properties of
a protein. To capture the features of hydration in a crowded
environment, Harada et al.417 performed MD simulations of
protein G and protein G/villin solutions at different
concentrations. Both the crowders and the solvent were
represented in full-atom detail. The variations in the solvent
structure were quantified in terms of radial distribution
functions, 3D hydration sites, and retention of tetrahedral
coordination. Their study showed that macromolecular
crowding poorly affects hydration properties for low levels of
crowding (<30% occupied volume), but the structure and
dynamics of water change considerably for highly crowded
environments (>30% occupied volume). In the latter
condition, diffusion rates (including the solvent self-diffusion)
and the dielectric constant drop significantly because of the
reduced water mobility. The decrease in dielectric constant is a
particularly interesting result because it reveals some nontrivial
consequences of the presence of crowding agents on the
energetics of biomolecules in the cellular environment. On the
one hand, an increase in the strength of hydrogen bonds and
salt bridges may occur; on the other hand, a reduction of the
hydrophobic effect could take place. This would result in
competition between secondary structure stabilization and
tertiary structure disruption.

To evaluate the effect of crowding on the biophysical
properties of a given protein, variation in the thermal stability
should also be considered. Such variation can be measured in
terms of melting temperature and estimated with computa-

tional approaches starting from the three-dimensional
structure.204,449,450

Timr et al.392 used a fully atomistic model in explicit solvent
to examine the thermal stability of loop-truncated SOD1
conformations sampled in a crowded environment, which was
formed by a solution of bovine serum albumin (BSA). As a first
step, GC lattice Boltzmann molecular dynamics (LBMD)
simulations were employed to obtain states of local packing
(1:1 and 2:1) of BSA around SOD1. Starting from these
structures, a set of enhanced sampling simulations based on the
REST2 technique296,451 were performed (for a total of 24 ×
0.5 μs), and then these were compared with the dilute solution
case. With this approach, which was followed again by Timr et
al.,96 a slight destabilizing effect of crowding on the SOD1
stability was observed close to ambient temperature.
Experimental measures performed by the authors confirmed
this result.392 In particular, they observed the propensity of the
β4− β6 region to early unfolding and its frequent interactions
with the crowders. This could be a crucial factor in
comprehending the misfolding and aggregation of
SOD1452,453 in the densely populated cellular environment.
The identification of intermediate states during the thermal
unfolding, which might be relevant for pathological aggrega-
tion, testifies to the most important advantage of computer
simulation: the ability to analyze at the atomic level biophysical
process.
4.2. Kinetics of the Binding and Reaction Rates

Diffusion and kinetics of diffusion-controlled reactions are
fundamental transport mechanisms that play a crucial role in
describing a wide range of chemical and biological
processes.454 In crowded environments, the presence of
other molecules and structures can affect transport properties
and, consequently, the dynamics of chemical reactions in
different ways. Various techniques, such as “single-particle
tracking,”455 “fluorescence recovery after photobleaching
(FRAP),”456 and “fluorescence correlation spectroscopy,”457

have been used to measure the diffusion constants of
macromolecules in the cytoplasm, as well as in membranes.
All experiments show that the in vivo diffusion of proteins is
greatly reduced compared with dilute conditions. For in-depth
information about the findings of each of these experimental
methods, we refer the reader to other reviews by Prindle et
al.,458 Cai et al.,459 and Yu et al.,460 respectively. Many
computational studies have been performed to capture the
complex interplay between crowding, diffusion, and reaction
rates: it is by now well established that crowding can
significantly affect the diffusion coefficients of macromole-
cules,1,461,462 the diffusion-controlled reaction rates,463 and
cause shifts in chemical equilibria.63 At membrane interfaces, it
has been observed with computer simulations464 that diffusion
is enhanced because of protein depletion. However, diffusion
rates provided by simulations under crowded condi-
tions10,24,390 have shown that in the cytoplasm diffusion is
slowed down by up to a factor of 10. This evidence has also
been confirmed by experimental measurements.465,466 While
the most pronounced effects are observed for macromolecules,
crowding impacts the dynamics of small molecules, as well. A
widely accepted reason for this is the volume excluded by the
crowders that limits free diffusion. However, it has been
discussed how the excluded volume effects, alone, could not
account for the factor of ∼10 reduction.467,468
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A factor whose influence on diffusion has been extensively
discussed is hydrodynamic interactions (see, for instance, the
review by Zegarra et al.469), that is, the interactions between
molecules or particles mediated by the fluid in which they are
immersed. In crowded environments, the presence of other
molecules and structures can significantly modify these
interactions. CG simulations and hard-sphere models have
often addressed their effect in a regime of short-time diffusion
(on nanosecond time scales) where hydrodynamic interactions
dominate over negligible protein collisions.470 Even if some
studies have hypothesized that hydrodynamic interactions play
only a minor role373,374,389 in short-time diffusion,361 other
works have argued that they have a central role465 and that
they even slow down long-time diffusion rates.38,470,471 To
better investigate their effect, various methods have been
developed to incorporate hydrodynamic interactions into MD
simulations, for example, Stokesian dynamics. These methods
are computationally expensive but highly accurate and are able
to model the interactions between solute and solvent
molecules. Careful validation of the simulations through
comparison with experimental data and/or other numerical
methods24 remains important.

The crowding influence of diffusion on a longer time scale
has been investigated by recent works based on large-scale
atomistic simulations that were able to analyze protein−
protein interactions, and it was concluded that the determinant
cause for diffusion hindrance is random nonspecific diffusive
encounters.89,372,389,390 These interactions, called “sticking,”
are typically weak and short-lived but have an important effect
because of their sheer numbers.472 Both in-cell NMR472 and
computational models372 of the E. coli cytoplasm have explored
this topic. Sticking can result in the formation of multiprotein
complexes through nonspecific contacts lasting less than 1 μs.

The formation of protein clusters may be the cause for the
retarded rotational diffusion compared with translational
diffusion,373,374 something that could not otherwise be
explained using hard-sphere models. The influence of protein
sticking grows for longer time transport dynamics;372 by
achieving 5 μs of simulation, Rickard et al.372 measured a
smaller diffusion coefficient than other shorter all-atom
studies.373,389

4.2.1. Rolling in the Cell. When only considering the
volume exclusion effect of crowding, diffusion is expected to be
slowed down. Different experiments at different volume
occupation fractions φ were found to be described by the
phenomenological expression:

D D( ) ( 0)(1 )= = (8)

where κ is a free fitting parameter that was found in diffusion
experiments in the presence of crowders for the protein carbon
monoxide hemoglobin to be κ = 0.36.473 A similar expression
can be applied to the rate kdiff at which the reactants get into
close contact, which in turn determines the association rate
k−1. k−1 can, indeed, be expressed as k−1 = k + kdiff, where k is
the intrinsic association rate once the reactants are in contact.
The volume exclusion effect of crowding leads to an
association rate given by kdiff(φ) = kdiff(φ = 0)(1 − φ)κ.
kdiff(φ = 0) is the classical Smoluchowski equation describing
the association rate without crowders, kdiff(φ = 0) = 4πDa,
where a is the size of the target molecule.474 Thus, as the
system’s excluded volume increases, kdiff decreases since the
diffusion time the reactants need to first encounter becomes
large. That said, the overall volume exclusion effect on reaction
rates is more complex because once the proteins are in
proximity, binding equilibria toward the bound state enhances
the overall reaction rate.

Figure 9. Levels of representation employed to study diffusion and reaction rates in a crowded environment. (a) The GFRD algorithm defines a
sphere around proteins (orange and green), crowders (violet), and solvent (blue) and computes for each molecule the probability distribution of
the time and the position of leaving this volume. Each molecule is thus associated with a next event type and a next event time, which are put and
executed in chronological order. Following execution, the molecule is propagated, and a new sphere with new events is determined. (b) In the
simplest lattice model, space is discretized into voxels (gray graph), and proteins (orange and green) and crowders (violet) can only move to a
neighboring voxel. The solvent is either modeled implicitly or not considered. (c) A more realistic representation can be obtained when all the
system components are left free to move, and the solvent is explicitly modeled.
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One of the primary algorithms to simulate reaction and
diffusion in continuous space is the Green’s function reaction
dynamics (GFRD)475,476 represented in Figure 9a. This exact
algorithm models the behavior of a diffusive system by
cyclically solving the Green’s functions that propagate the
probability distribution. GFRD breaks down the many-body
reaction−diffusion problem into one- and two-body problems,
which can be analytically solved using Green’s functions.475,476

These Green’s functions are then utilized to create an event-
driven algorithm that allows for large jumps in time and space
when particles are far apart. When two particles undergo
reaction and diffusion within the same system, higher
complexity can be employed to describe their interactions.
From simple hard spheres, we can move to two spheres with
patches where an analytical solution of the Green’s function is
still feasible.477 Additionally, within the reaction volume where
the reactant molecules are present, it becomes possible to
locally describe protein binding as a more detailed process.
This enables the construction of a multiscale algorithm that
computes the spatial dynamics of proteins as hard spheres over
large distances while employing more complex methods to
describe binding when the proteins share a reaction volume.478

Another possible approach is lattice-based methods,
represented in Figure 9b, where each site can hold one
molecule, and crowders are represented as already occupied
lattice points. A lattice model was used by Meinecke479 to
simulate the diffusion dynamics of spherical particles
surrounded by inert and inactive crowders of any size and
shape. Meinecke found that shape and size considerably
determine how strongly diffusion is hampered: small crowders
hinder diffusion more than bigger ones. The effect is also
stronger for elongated crowders and larger diffusing molecules.

Despite their higher computational cost�GFRD can, for
example, be up to 6 orders of magnitude faster�480Brownian
dynamics (BD) are another commonly used method to study
how a crowded environment affects association rates. As
outlined in Długosz et al.,481 they can directly account for
crowded conditions, molecule sizes, and shapes, and compute
the rates at which molecules come together. Figure 9c shows a
general model in which both proteins and crowders (and
solvent molecules, if considered) are free to move.

A stochastic simulation was used by Ridgway et al.467 to
incorporate the physical dimensions of particles into the
diffusion and reaction rates. By combining this model with a
proteomic-scale evaluation of protein abundance, researchers
could approximate the population and diffusion characteristics
of the E. coli cytoplasm. This enabled the study of the
volumetric impact of macromolecular crowding on biomo-
lecular diffusion and diffusion-limited reactions. However, the
authors observed that this effect could not fully account for
retarded protein mobility in vivo, which suggested that other
biophysical factors have to be considered.

To further investigate the relation of diffusion with the
solvent, environment, hydrodynamic, and attractive interac-
tions have to be taken into account. Other methods based on
BD have been employed with this aim since these kinds of
simulations allow the consideration of interactions and other
features of the cellular environment, as well.481

The specific effect of volume exclusion and hydrodynamic
interactions were investigated by Grimaldo et al.470 by
simulating a spherical model of an Escherichia coli cytoplasm.
The model comprised 15 different macromolecule types at
physiological concentrations with each represented by a

different-sized sphere. In this way, they took into account
the polydispersity of a cellular environment and overcame
standard colloidal modeling. This polydispersity was shown to
slow down larger macromolecules more strongly than smaller
particles via hydrodynamic interactions already at nanosecond
time scales before protein collision. The results were confirmed
by experimental measurements in cell lysate. The authors also
suggested that the slowdown may also affect molecular
mobilities and escape rates of long-time processes.

The same E. coli model, studied with BD simulations and the
Rotne−Prager−Yamakawa (RPY) tensor, was used by Ando et
al.38 to investigate the effect of attractive interactions on
diffusion. At first, they only considered a soft repulsive
potential and hydrodynamic interactions: without adjustable
parameters, the in vivo experimental diffusion constant is
reproduced. Thus, they hypothesized that excluded volume
effects and hydrodynamic interactions are sufficient to explain
the large reduction in the diffusion of macromolecules
observed in vivo. Next, they added nonspecific attractive
interactions: reduction in diffusivity becomes very sensitive to
the macromolecular radius, with the motion of the largest
macromolecules being dramatically slowed down. Moreover,
long-lived clusters involving the largest macromolecules form if
attractions dominate, whereas hydrodynamic interactions give
rise to significant, size-independent intermolecular dynamic
correlations.

The importance of considering soft interactions was shown
by Blanco et al.,482 as well. They developed the chain
entanglement softened potential (CESP) to study streptavidin
diffusion among dextrans of different sizes and concentrations.
The CESP model is based on an interparticle interaction
potential that includes both hard-core and soft interactions and
takes into account the hydrodynamic interaction effects of
protein complexes. The experimental long time diffusion
coefficient predicted with this potential was shown to be in
better agreement with the experimental measured one than the
coefficient predicted when only considering hard-core
repulsion.

The fact that the experimentally observed slowdown of
diffusion can be achieved only when considering attractive
interactions in addition to volume exclusion and repulsion was
again confirmed by Skora et al.397 In 2020, they considered a
mixture of Ficoll70 and double-stranded DNAs (dsDNAs) to
investigate the effect of the crowder’s shape/type. Using BD
simulations, they observed a stronger slowdown of diffusion by
cylindrical double-stranded dsDNAs compared with spherical
Ficoll70, which was confirmed by in vitro measurements. For a
60% diffusion reduction, a volume fraction of 5% or 35% was
needed, respectively, for dsDNA and Ficoll70. The variation in
reduction between the two crowders was not only attributed to
the larger volume excluded by the former but also to the
differences in the attractive interactions.
4.2.2. Kinetics of Mixed Models. The spherical

representation of molecules allows the simulation of the
collective diffusion in crowded conditions, but to study single
proteins, a more detailed representation is needed. With this
aim, diffusing proteins can be represented at AA or CG level,
and the crowders can be represented as spheres or with CG
models.

Wieczorek et al.483 performed BD simulation of two reacting
proteins (monoclonal antibody HyHEL-5 and its antigen hen
egg lysozyme) at atomic resolution surrounded by spherical
crowders and observed an increase in their association rate.
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This is in line with the hypothesis that crowding reduces
translational diffusion through volume exclusion so that when
reactants are in proximity they have more time, compared with
dilute solution, to assume a proper mutual orientation. A direct
observation of protein mobility, protein−protein contacts,
clusters, and their lifetimes in crowded conditions was
achieved by Timr et al.361 They proposed a mixed particle
lattice approach to investigate the effect of solvent-mediated
hydrodynamic interactions on protein motions and structures
with reduced computational cost and longer time scales (∼1
μs). With this aim, they coupled the optimized potential for
efficient protein structure prediction (OPEP)484 to a lattice
Boltzmann description of solvent kinetics. OPEP is an implicit
solvent protein force field that is applied to combine a detailed
description of the protein backbone with a CG description of
amino acid side chains and perform rigid body simulations.
Since it was able to capture the experimentally observed
decrease in protein translational diffusion coefficients only for
short trajectories (<100 ns) while simulating an excessive
slowdown for longer times, the authors proposed a new
version, OPEPv7. They investigated the translational diffusion
of the folded globular protein chymotrypsin inhibitor 2 (CI2)
in crowded solutions of BSA and lysozyme and observed a
diffusion slowdown that was similar to the experimental results.
Self-clustering was indicated as an important factor. A
qualitative agreement with experimental observation was also
obtained for an intrinsically disordered protein (α-synuclein)
with BSA crowders: both in vitro and in silico, the protein
experiences a less drastic slowdown compared with the folded
one, even if in vitro the difference is less marked. This
suggested that this CG model produces a too-compact
structure for disordered proteins; to describe IDPs, further
modifications are required, such as the fine-tuning of some
hydrophobic interactions and the implementation of intra-
molecular terms for chain extension. OPEPv7 was also tested
against a heterogeneous crowded solution modeling the E. coli
cytoplasm, which counts 197 proteins. The translational
diffusion coefficients calculated for each protein showed a
good agreement with the model derived from experimental
data. These simulations confirmed that direct protein
interactions are an important factor determining the diffusion
slowdown in crowded protein solutions. Such interactions were
also shown to have an important effect in the short-time
regime, which was previously thought to be dominated by
hydrodynamic interactions.465

4.2.3. Looking Closer: All-Atoms Models. Studying
diffusion in a crowded environment simulated at atomistic
resolution poses a significant computational challenge.
Although the dynamics and underlying mathematics are
straightforward, the large number of elements can result in
an extremely high computational cost. Moreover, particles can
react and bind to membranes or microtubules, thereby
changing their effective diffusion constant dynamically over
time. Transient interactions between proteins can also result in
the formation of clusters, which have been proposed as the
dominant crowding effect for reduced rotation diffusion.373,374

This hypothesis focuses on direct protein−protein contacts,
but whether diffusion could be affected to a similar degree by
proteins that are nearby even if not in contact is less clear.

To evaluate how close proteins have to come before their
diffusion properties are impacted significantly, Nawrocki et
al.374 performed MD simulations for over 1 μs for a system of
19 chicken villin headpieces with explicit solvent. They showed

that the diffusion slowdown is primarily correlated with direct
protein−protein contacts (on a 1−100 ns time scale373,374)
because of the formation of clusters rather than indirect
interactions via shared hydration layers.374 Consistently, with
the Stokes−Einstein relations for translational (Dt) and
rotational (Dr) diffusion,

D
k T

r6t
B=

(9)

and

D
k T

r8r
B

3=
(10)

where kB is the Boltzmann constant, T is the temperature, r is
the particle radius, and η is the viscosity of the surrounding
medium, they found that rotational diffusion showed a stronger
slowdown.

In the same year, von Bülow et al.389 confirmed that
nonspecific protein binding (with a complex lifetime of 1−50
ns) and the formation of clusters account for the high viscosity
and slow diffusivity in crowded conditions. They performed
500 ns long atomistic MD simulations of ubiquitin (UBQ), the
third IgG-binding domain of protein G (GB3), lysozyme
(LYZ), and villin headpiece (VIL) and found that at 200 mg/
mL, translational and rotational diffusion decreased by a factor
of ∼4 and ∼6, respectively. They computed the effective
hydrodynamic radii using the Stokes−Einstein relations and
found that it was consistent with the diffusion variation,
thereby proving that this relation remains valid in concentrated
protein solutions. Finally, they showed that clustering
interactions contributed to ∼40% and ∼50% of the total
slowdown in translational and rotational diffusion, respectively.

The dominating effect of cluster formation on diffusion was
also found by Bashardanesh et al.,89 who simulated systems of
a few species of proteins at an increasing concentration (up to
70% of the mass) with AA MD lasting 1 μs. Even if they found
a stronger slowdown than von Bülow et al. (probably due to a
higher concentration of protein used in their simulations), they
agreed in observing that this effect was particularly noticeable
for rotational diffusion. The more noticeable hampering of
rotational diffusion was explained by the fact that direct
interactions from clustering hinder rotational motion and were
related to charge distribution on the surface or weak dispersion
interactions. Bashardanesh et al. also noticed that rotational
diffusion depends on the protein size, unlike translational
diffusion and viscosity: at high concentrations, small proteins
were slowed down more than big ones. However, the authors
did not propose an explanation.

All the mentioned studies explored time scales of ∼0.5−1 μs,
while a longer simulation of 5 μs, which reaches a time scale
relevant for sampling sticking processes, was performed by
Rickard et al.372 Their systems more closely replicated the
heterogeneity of the cellular environment, as well. They
mimicked a small volume of the E. coli cytoplasm with 2 × 105

atoms, which corresponds to proteins and RNA selected
among the most abundant cytoplasmic components. This was
the first simulation of a bacterial cytoplasm model that reached
atomic precision and a μs time scale. The formation of clusters
and the consequent diffusion slowdown were observed here as
well, even if the observed diffusion coefficients (∼1.4−2 nm2/
μs) are smaller than those observed in experiment485 and in
other atomistic simulations.373,389 The authors hypothesized
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that this could be explained by the much shorter time scales
explored by those studies, which highlights the potential
importance of protein sticking and cluster formation for long-
time transport dynamics. Rickard et al. showed that protein−
protein contacts are highly dynamic and can be broken and
reformed repeatedly with a time scale of contacts on the order
of ∼1 μs that indeed exceeds the simulation time of previous
works.89,389,464

4.3. Dynamics of Complex formation

After navigating the crowded cellular environment, two (or
more) functional partners can bind together. It has been
suggested that the binding interfaces of proteins have
coevolved with the cytoplasm to avoid nonspecific inter-
actions;72,372 thus, the influence of crowding would be
expected to be negligible at this stage of functional complex
formation.

That said, some studies that only considered volume
exclusion or repulsive interactions found a modest stabilizing
effect.86,281,369 In this approximation, crowding also seems to
favor specific over nonspecific complexes since the former are
more tightly bound and, thus, have smaller excluded
volumes.86 The fact that crowding increases the specificity of
protein binding in a crowded cellular environment means that
it can have functional effects apart from the relative stability of
bound and unbound complexes.

However, adding attractive interactions has resulted in
different observations.281 In vitro experiments486 have observed
that protein crowders can destabilize protein−peptide
complexes because of weak nonspecific interactions between
test proteins and crowders. The sticking determined by
transient weak interactions can both hinder, via nonfunctional
competitive binding,54 or promote complex formation.87 These
interactions can result in transient “quinary structures.” The
concept of quinary structures introduces an additional level of
protein organization beyond the primary, secondary, tertiary,
and quaternary levels. These structures are characterized by
functional interactions that exhibit weaker and more transient
properties compared with quaternary protein structures. They
involve the formation of transient encounter complexes, which
serve as the initial step in the assembly of low-affinity and
transient protein complexes. These complexes are involved in
various biological processes, such as electron transfer, the
formation of enzyme−substrate complexes, and the self-
association of proteins with weak affinities. The understanding
of quinary structures provides valuable insights into the
dynamic and diverse nature of protein interactions and their
functional implications.487

Crowding also has an indirect influence on the dynamics of
complex formation by shifting the population of local
conformations,390 as discussed in Section 4.1.
4.3.1. Interacting Proteins as Spheres. The models that

only take into account the volume exclusion effect between
spheres predict a shift of the binding equilibrium of proteins
toward the bound state: once the associated state has formed,
more volume is available for the crowders, and the total
entropy of the associated system increases, which makes the
bound state more stable.30,488 To provide a simple way of
depicting the effect of volume exclusion on binding equilibria,
a reaction of the type A + B ⇌ AB, where A and B are
reactants, can be considered. The latter reaction is fully
reversible and can be characterized by a dissociation constant
K k

kd,0
off

on
= , where koff is the unbinding rate, kon is the reaction

rate, and the subscript 0 indicates an absence of crowders in
the solution. More generally, the reaction dissociation constant
can be defined as Kd,φ, where φ is the volume occupation
fraction of the crowding agents. Thus, the effect on the
dissociation constant is purely thermodynamic and can be
characterized by the statistics of the states in which the
receptor is either free or occupied. Consider a three-
dimensional lattice with Ω lattice sites and a total volume V
= Ωl3, where l is the lattice spacing. Set a static target or
receptor R, and with L proteins and C crowders diffusing into
the lattice with a given diffusion constant, if one partner finds
the other, the complex RL is formed. At equilibrium, the
probability for the complex to be formed can be calculated as
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where kB is the Boltzmann constant, T is the temperature, Sb is
the number of states in which the complex is formed, Sub is the
number of states in which the protein is unbound, and Eb is the
binding energy. After obtaining Sb and Sub, Pb can be expressed
as
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One can then show that the change in the dissociation
constant as a function of φ is given by Kd,φ = Kd,0(1 − φ)r,
where r is a factor that depends on the crowder size.489 Thus,
volume exclusion shifts binding equilibria toward the bound
state. This shift is expected to result in protein aggregation.490

To more deeply investigate the thermodynamic effects of
crowding on macromolecular associations, hard-sphere theory
can be used in conjunction with Brownian dynamics
simulations. This has been done by Ando et al.,394 who were
the first to simulate a cell-like inhomogeneous system instead
of assuming a uniform crowder size, even if the dependence of
crowding effects on the composition of the crowders had
already been investigated in the past.441 They mimicked the
physiological concentrations of macromolecules in the
cytoplasm of Mycoplasma genitalium by using 41 different
types of macromolecules represented by spheres with different
radii. They found, both with theoretical calculation and
simulations, that the heterogeneity of sizes decreases the effect
of crowding when compared with the use of uniform crowders
with the same mean size at a fixed volume fraction of the
system. They also confirmed that smaller crowders show the
strongest effects. However, these kinds of simplified studies are
limited by the exclusion of shapes, chemical properties,
interactions, and flexibility of macromolecules. Ando et al.
recognized that the stabilization of the native or complex states
of macromolecules predicted by their model is in contrast with
what was observed by other experimental and computational
studies.43,85,414,418

The fact that considering only volume exclusion results in a
wrong prediction of complex stabilization has been recently
investigated by Pradhan et al.281 They simulated the
dimerization of model system GB1 in the presence of lysozyme
crowders at two different resolutions by assuming both protein
and crowders as spherical beads and then retaining residue-
specific structural details. With the former, they found
stabilization of the dimers in the presence of the lysozyme
crowder, in accordance with the SPT model. The latter
residue-specific model showed that soft interactions destabi-
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lized GB1 dimerization and were in agreement with the free
energy variation obtained from experimental observation. The
computed value of free energy variation, despite having the
same sign, was much larger than the experimental one. This
was hypothesized to be due to the overestimation of the
protein−protein interaction strength in the employed Martini
3.0 force field.491

4.3.2. Coarse-Grained Models for the Interaction of
Proteins. CG models can better mimic the crowded cellular
environment and investigate its impact on the dynamics of
complex formation:66 they can provide insights on protein
binding affinities, binding pathways, and the formation of
specific versus nonspecific complexes.86

Kim et al.86 presented a detailed examination of a residue-
level CG model developed to investigate the influence of
macromolecular crowding on protein complex formation. The
model is applied to two specific protein complexes, ubiquitin-
UIM1 (Ubq/UIM1) and cytochrome c-cytochrome c
peroxidase (Cc/CcP), in the presence of repulsive spherical
crowders of varying sizes. Their results reveal that repulsive
crowding agents modestly stabilize the formation of protein
complexes, which leads to a reduction in binding free energy of
up to 2 kBT as the crowder packing fraction approaches the
physiological range.

An increase in binding stability in the presence of repulsive
spherical crowders was observed, as well, by Qin et al.369

In both studies, the observed changes in binding free energy
could be accurately predicted using an SPT hard-sphere model.
Moreover, Kim et al. observed that crowding not only shifts
the overall equilibrium toward bound complexes but also
favors specific over nonspecific complexes within the coarse-
grained representation of proteins and crowders. This
preference arises because of the larger excluded volumes of
nonspecific intermediate complexes, which are loosely bound
compared with the specific complex. Such functional
implications hold significant importance for understanding
protein−protein interactions and their specificity in crowded
cellular environments. However, the changes in binding free
energy observed by Kim et al. are influenced by the coarse-
grained and implicit solvent nature of the model and the
assumption of rigid-body behavior. In reality, the flexibility of
proteins, crowding agents, and explicit solvents may play a
crucial role in determining the binding free energy during
protein complex formation. This study emphasized the need
for further investigations considering protein flexibility and
attractive interactions (depending on the hydrophobicity of
crowders and protein residue) to model solvent-mediated
interactions between crowders and proteins. When combined
with the findings related to repulsive crowders, these aspects
offer valuable insights into the diverse scenarios arising from
crowding effects on protein binding, as discussed in the
following section.
4.3.3. Atomistic Resolution View. More detailed

representations of proteins and crowders can give better
insights into the docking process.

Despite still not fully considering protein flexibility, in 2010,
Li et al.87 developed a Langevin dynamics-based tool, BioSimz,
to inspect protein (modeled as rigid-body) dynamics under
crowded conditions. The package allows the exploration of the
formation and behavior of the complexes and to quantify the
frequency and retention time of the interactions. The identified
sites of interest were then refined with the flexible docking
algorithm SwarmDock.132 They showed that when crowders at

near-physiological concentration are added to the simulations,
the time spent by binding partners around the true binding
regions�compared with the rest of the surface�is increased.
Thus, crowding would seem to steer binding partners toward
the correct pose. This could be achieved through multiple
mechanisms, but two were found to prevail: (i) the rolling
and/or sliding of a molecule on the surface of its binding
partner and (ii) the elimination of secondary or weak binding
spots. Moreover, specific interaction events were observed to
prolong even more than their nonspecific counterparts. Li et al.
concluded that the inclusion of crowders generates a favorable
environment that facilitates the sampling of diverse con-
formations by the target proteins. As a result, the traversal of
energy barriers becomes more efficient, which effectively
smooths the reaction coordinate toward the bound state,
thereby enhancing the propensity of proteins to form stable
complexes with their respective binding partners.

Later on, protein flexibility was taken into account by
Candotti et al.,54 who again observed the modulation exerted
by crowders on the protein conformational space. They
showed that this chaperoning effect is particularly noticeable
for intrinsically disordered proteins that are biased toward
bioactive conformations by the crowded surroundings. In
particular, they observed that the intrinsically disordered
activator for thyroid hormone and retinoid receptor (ACTR)
is stirred to more compact conformations with well-defined α-
helices in the regions interacting with the nuclear coactivator
binding domain of cyclic adenosine monophosphate (cAMP)
response element binding protein (CREB) (NCBD). How-
ever, the proposed mechanism differs from the one proposed
by Li et al.: Candotti et al. hypothesized that the viscous
environment slows down protein flexibility, which limits the
exploration of new intra- and interprotein contacts and, thus,
restricts the conformational landscape instead of facilitating its
exploration. However, they also observed that crowding
hinders the formation of functional contacts because of
nonspecific quinary contacts hindering specific partner
recognition.

The crowding-induced depletion of binding partners has
been observed for a different system (c-Src kinase and one of
its inhibitors in the presence of bovine serum albumin as
crowder) by Kasahara et al.390 By comparing full-atom MD
simulations in dilute and crowded solutions, they observed a
reduction of the inhibitor population with increasing crowder
concentration because target protein−crowder interactions
sterically block noncanonical binding sites. Ligands might be
trapped on the surfaces of crowder proteins. These
observations were validated with experimental measurements.
4.4. Complex Stability and Dynamics

What concerns the impact of molecular crowding on the
dynamic structural properties of protein dimers (or protein
complexes composed of multiple monomers) has not yet been
thoroughly addressed from a computational perspective. One
of the few computational studies on this topic has been
performed by Dong et al.74 They observed that BSA weakly
but preferentially interacts with the histidine carrier protein
(HPr) on the binding interface for HPr’s specific partner
protein, EIN, which leads to competition. Thus, crowding
would decrease the EIN-HPr binding affinity and accelerate
the dissociation of the native complex.

However, early experimental investigations utilizing inert
polymers have indicated that hard-core repulsions have limited
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impact:492 only a marginal increase in stability was observed
due to the slight reduction in volume when two monomers
form a dimer.

This is in agreement with SPT theory, which predicts that
the influence of hard-core repulsion on a protein dimer
depends on its shape; in particular, side-by-side dimers are
expected to be only mildly influenced by hard-core repulsion,
while more compact dimers should be more stabilized.493 This
hypothesis has been confirmed by in vitro experiments.64,88 For
example, Guseman et al.64 verified with NMR measurements
that among two variants of the B1 domain of protein G, which
differ by only three residues but with different shapes, the
domain-swapped ellipsoidal dimer was stabilized, whereas the
side-by-side dumbbell-shaped dimer showed little to no
stabilization.

A pioneering study conducted by Guseman et al.88

investigated the effects of small and large cosolutes on the
equilibrium stability of the simplest defined protein−protein
interactions and specifically focused on the side-by-side
homodimer formed by the A34F variant of the 56-residue
B1 domain of protein G. The researchers utilized 19F nuclear
magnetic resonance spectroscopy to quantify the influence of
urea, trimethylamine oxide, Ficoll, and more physiologically
relevant cosolutes on the dissociation constant of the dimer.
The findings revealed stabilizing and destabilizing effects from
soft interactions.

These experimental results observed crowding effects on
complex stability similar to those seen for single protein (i.e.,
stabilization by volume exclusion and either stabilization or
destabilization by soft interactions). However, the study of

Figure 10. Summary of the main effects of crowding on protein−protein interactions observed in silico. A recap of how crowding influences protein
structure, diffusion, complex formation, and stability is reported. In each box, the observations are divided into sub-boxes according to which
crowding effects have been considered.
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protein complexes in crowded conditions through computa-
tional methods will allow for a better characterization�in the
best case scenario, a prediction�of the crowding effects on the
stability of dimers. This could, in turn, have a big impact on the
field of protein design.

5. CONCLUSIONS
Both experiments and computational tools have been
extensively implemented to study how proteins interact.
Most of the computational studies investigating how these
interactions are influenced by crowding are centered on
simulations by exploiting the improvement of both the
computing power and new MD methods of the last decades.
Even if the simulation of increasingly complex systems has
been made possible, the effects of a variety of crowders and of
the many specific and nonspecific interactions that biological
molecules have to face when navigating inside the cell have yet
to be clarified.

Crowders influence what happens while the partners are
approaching in terms of conformational variation and diffusion,
but once they are adjacent, proteins bind as if they were
isolated. This suggests that even other computational methods
applied up to now to protein−protein interaction prediction in
diluted or isolated conditions could be applied to the
investigation of interactions in crowded environments. Indeed,
many of the force fields developed for diluted solutions have
been able to reproduce experimental measurements of
crowded solutions with simple parameter regulation. It is
then worth asking ourselves if the theoretical computational
methods developed up to now to describe the physicochemical
properties of proteins without considering the crowding effect
could be generalized to systems surrounded by crowded
environments to better characterize them.

For this reason, in Section 3, we reviewed the most relevant
computational methods developed to investigate protein−
protein interactions without taking into account the crowding
effect. In Section 4, we reported the most significant advances
among computational studies in exploring the influence of
molecular crowding on the steps leading to protein binding, as
well as the contradictions still existing in the field. Both are
summarized in Figure 10 starting from the effects on
conformational variations: most studies have found novel
configurations in crowded environments and a reduction of
dielectric constant, but both the increase or decrease of native-
state stability have been observed. Stabilizing, as well as
destabilizing effects, have been attributed to crowding even
when looking at complex formation. More unambiguous
observations have been made for what concerns protein
diffusion (that is slowed down by crowders) and the formed
complex stability (which is reduced by crowders).

The multilevel investigation of computational methods
proposed here allows us to conclude that to better understand
the crowding effects and the relationship between protein
interactions and their biological function it is highly
recommended to integrate structural and conformational
dynamics with the influence of cellular crowding, considering
the numerous interactions occurring at the cellular level under
realistic biological conditions. The hope is that with the growth
of the knowledge of protein behavior in crowded conditions
(through experiments and simulations), the methods devel-
oped in the absence of crowding (Section 3) could be
extended to this more realistic scenario in two ways: (i)
through training on this new data set or (ii) by applying them

to the conformations known to be sampled in crowded
conditions. The latter idea has already been partially applied by
first performing CG simulations of crowded conditions (that
allow for the investigation of protein dynamics and other
molecules with a higher level of approximation but extend
simulation times considerably) and then studying in more
detail with AA simulations the longest-living local config-
uration of the adjacent crowders binding to the investigated
protein.96,392 As the hardware capabilities of supercomputers
continue to advance, simulations with an atomistic crowded
environment representation are progressively becoming a
viable option for capturing molecular binding intricacies.10,372

Including the effects of crowding on protein binding could in
the future play a key role in improving interaction prediction,
as well as in achieving reliable prediction of the interactomes of
any organism for which the whole genome is known (and
consequently, thanks to advances in structural prediction
algorithms, the whole proteome is also predictable), including
the human interactome.
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AA all-atom
ACTR activator for thyroid hormone and retinoid

receptor
BD Brownian dynamics
BPTI bovine pancreatic trypsin inhibitor
BSA buried solvent accessible
BSA bovine serum albumin
C22* CHARMM 22*
C36m CHARMM 36m
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GDT global distance test
GB1 protein G B1 domain
GB3 third IgG-binding domain of protein G
GBMV generalized Born using molecular volume
GCN graph convolutional network
GO Gene Ontology
HI hydrodynamic interaction
HIV human immunodeficiency virus
HP-36 chicken villin headpiece subdomain
HS hard spheres
IF1 translation initiation factor 1
IRF-3 interferon regulatory transcription factor
LJ Lennard-Jones
LSTM long short-term memory
LYZ lysozyme
MaSIF molecular surface interaction fingerprinting
MC Monte Carlo
MC REX Monte Carlo replica exchange
MD molecular dynamics
ML machine learning
MM-PBSA molecular mechanics energies combined with the

Poisson−Boltzmann surface area
MM-GBSA molecular mechanics energies combined with the

generalized Born surface area
NCBD nuclear coactivator-binding domain of CREB
NMR nuclear magnetic resonance
NOX NADH oxidase
PDB Protein Data Bank
PDHA pyruvate dehydrogenase E1.a
PEG polyethylene glycol
PGK phosphoglycerate kinase
PP1 protein phosphatase 1
PPI protein−protein interaction
PSO particle swarm optimization
REM replica exchange method
REMC replica exchange Monte Carlo
REMD replica exchange molecular dynamics
REST replica exchange with solute tempering
REXDMD replica exchange discrete molecular dynamics
RMSD root-mean-square deviation
RNA ribonucleic acid
S spheres
SASA solvent-accessible surface area
SOD1 superoxide dismutase
SVM support vector machine
T-REMD temperature replica exchange molecular dynamics
TREX temperature replica exchange
UBQ ubiquitin
VIL villin headpiece
Y2H yeast two hybrid
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prediction of protein-protein interaction sites by simplified long short-
term memory network. Neurocomputing 2019, 357, 86−100.
(208) Grassmann, G.; Miotto, M.; Di Rienzo, L.; Gosti, G.; Ruocco,

G.; Milanetti, E. A novel computational strategy for defining the
minimal protein molecular surface representation. PLoS One 2022, 17,
No. e0266004.
(209) Di Rienzo, L.; Miotto, M.; Bo,̀ L.; Ruocco, G.; Raimondo, D.;

Milanetti, E. Characterizing hydropathy of amino acid side chain in a
protein environment by investigating the structural changes of water
molecules network. Front. Mol. Biosci. 2021, 8, 626837.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.3c00550
Chem. Rev. 2024, 124, 3932−3977

3970

https://doi.org/10.1073/pnas.0607879104
https://doi.org/10.1007/s12551-022-01038-1
https://doi.org/10.1007/s12551-022-01038-1
https://doi.org/10.1186/s12859-016-1253-9
https://doi.org/10.1186/s12859-016-1253-9
https://doi.org/10.1093/bioinformatics/bth483
https://doi.org/10.1093/bioinformatics/bth483
https://doi.org/10.1006/jmbi.1997.1198
https://doi.org/10.1006/jmbi.1997.1198
https://doi.org/10.1017/S0960129512000783
https://doi.org/10.1017/S0960129512000783
https://doi.org/10.1017/S0960129512000783
https://doi.org/10.1371/journal.pcbi.1004182
https://doi.org/10.1371/journal.pcbi.1004182
https://doi.org/10.1371/journal.pcbi.1004182
https://doi.org/10.1016/j.heliyon.2018.e00596
https://doi.org/10.1016/j.heliyon.2018.e00596
https://doi.org/10.1016/j.heliyon.2018.e00596
https://doi.org/10.1103/PhysRevE.98.042402
https://doi.org/10.1103/PhysRevE.98.042402
https://doi.org/10.3390/e23091138
https://doi.org/10.3390/e23091138
https://doi.org/10.3390/e23091138
https://doi.org/10.3389/fcell.2023.1134091
https://doi.org/10.3389/fcell.2023.1134091
https://doi.org/10.1103/PhysRevLett.100.078102
https://doi.org/10.1103/PhysRevLett.100.078102
https://doi.org/10.1073/pnas.0805923106
https://doi.org/10.1073/pnas.0805923106
https://doi.org/10.1007/978-1-4939-0366-5_5
https://doi.org/10.1007/978-1-4939-0366-5_5
https://doi.org/10.1038/s41467-019-09177-y
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1093/bib/bbt039
https://doi.org/10.1093/bib/bbt039
https://doi.org/10.1093/bib/bbt039
https://doi.org/10.1093/bib/bbz085
https://doi.org/10.1093/bib/bbz085
https://doi.org/10.1093/bib/bbz085
https://doi.org/10.1093/bioinformatics/btw488
https://doi.org/10.1093/bioinformatics/btw488
https://doi.org/10.1186/s12859-016-1191-6
https://doi.org/10.1186/s12859-016-1191-6
https://doi.org/10.1186/s12859-016-1191-6
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1093/bioinformatics/btl039
https://doi.org/10.1093/bioinformatics/btl039
https://doi.org/10.1109/TCBB.2016.2552176
https://doi.org/10.1109/TCBB.2016.2552176
https://doi.org/10.1109/TCBB.2016.2552176
https://doi.org/10.1038/nature22366
https://doi.org/10.1038/nature22366
https://doi.org/10.1126/science.1158684
https://doi.org/10.1126/science.1158684
https://doi.org/10.1093/genetics/iyad031
https://doi.org/10.1093/genetics/iyad031
https://doi.org/10.1073/pnas.96.8.4285
https://doi.org/10.1073/pnas.96.8.4285
https://doi.org/10.1038/msb4100129
https://doi.org/10.1038/msb4100129
https://doi.org/10.1093/bioinformatics/bty933
https://doi.org/10.1093/bioinformatics/bty933
https://doi.org/10.1093/bioinformatics/bty933
https://doi.org/10.1093/nar/gkl219
https://doi.org/10.1093/nar/gkl219
https://doi.org/10.1093/nar/gkl219
https://doi.org/10.1093/bioinformatics/bti1016
https://doi.org/10.1093/bioinformatics/bti1016
https://doi.org/10.6026/97320630001028
https://doi.org/10.6026/97320630001028
https://doi.org/10.1038/s41598-022-16338-5
https://doi.org/10.1038/s41598-022-16338-5
https://doi.org/10.1002/prot.21396
https://doi.org/10.1002/prot.21396
https://doi.org/10.1002/prot.21396
https://doi.org/10.1006/jmbi.1997.1203
https://doi.org/10.1006/jmbi.1997.1203
https://doi.org/10.1006/jmbi.1997.1203
https://doi.org/10.1007/s12033-007-0069-2
https://doi.org/10.1093/bioinformatics/bty1011
https://doi.org/10.1093/bioinformatics/bty1011
https://doi.org/10.1093/bioinformatics/bty1011
https://doi.org/10.1002/prot.22172
https://doi.org/10.1002/prot.22172
https://doi.org/10.1002/prot.22172
https://doi.org/10.1016/j.jmb.2020.02.017
https://doi.org/10.1016/j.neucom.2019.05.013
https://doi.org/10.1016/j.neucom.2019.05.013
https://doi.org/10.1016/j.neucom.2019.05.013
https://doi.org/10.1371/journal.pone.0266004
https://doi.org/10.1371/journal.pone.0266004
https://doi.org/10.3389/fmolb.2021.626837
https://doi.org/10.3389/fmolb.2021.626837
https://doi.org/10.3389/fmolb.2021.626837
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.3c00550?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(210) Milanetti, E.; Miotto, M.; Di Rienzo, L.; Monti, M.; Gosti, G.;
Ruocco, G. 2D Zernike polynomial expansion: Finding the protein-
protein binding regions. Comput. Struct. Biotechnol. J. 2021, 19, 29−
36.
(211) Milanetti, E.; Miotto, M.; Di Rienzo, L.; Nagaraj, M.; Monti,

M.; Golbek, T. W.; Gosti, G.; Roeters, S. J.; Weidner, T.; Otzen, D.
E.; Ruocco, G. In-Silico Evidence for a Two Receptor Based Strategy
of SARS-CoV-2. Frontiers in Molecular Biosciences 2021, 8, 690655.
(212) Miotto, M.; Di Rienzo, L.; Gosti, G.; Bo’, L.; Parisi, G.;

Piacentini, R.; Boffi, A.; Ruocco, G.; Milanetti, E. Inferring the
stabilization effects of SARS-CoV-2 variants on the binding with
ACE2 receptor. Communications Biology 2022, 5, 20221.
(213) Piacentini, R.; Centi, L.; Miotto, M.; Milanetti, E.; Di Rienzo,

L.; Pitea, M.; Piazza, P.; Ruocco, G.; Boffi, A.; Parisi, G. Lactoferrin
Inhibition of the Complex Formation between ACE2 Receptor and
SARS CoV-2 Recognition Binding Domain. International Journal of
Molecular Sciences 2022, 23, 5436.
(214) Monti, M.; et al. Two Receptor Binding Strategy of SARS-

CoV-2 Is Mediated by Both the N-Terminal and Receptor-Binding
Spike Domain. J. Phys. Chem. B 2024, 128, 451−464.
(215) Di Rienzo, L.; Monti, M.; Milanetti, E.; Miotto, M.; Boffi, A.;

Tartaglia, G. G.; Ruocco, G. Computational optimization of
angiotensin-converting enzyme 2 for SARS-CoV-2 Spike molecular
recognition. Computational and Structural Biotechnology Journal 2021,
19, 3006−3014.
(216) De Lauro, A.; Di Rienzo, L.; Miotto, M.; Olimpieri, P. P.;

Milanetti, E.; Ruocco, G. Shape Complementarity Optimization of
Antibody−Antigen Interfaces: The Application to SARS-CoV-2 Spike
Protein. Frontiers in Molecular Biosciences 2022, 9, 874296.
(217) Di Rienzo, L.; Miotto, M.; Milanetti, E.; Ruocco, G.

Computational structural-based GPCR optimization for user-defined
ligand: Implications for the development of biosensors. Computational
and Structural Biotechnology Journal 2023, 21, 3002−3009.
(218) Parisi, G.; Piacentini, R.; Incocciati, A.; Bonamore, A.;

Macone, A.; Rupert, J.; Zacco, E.; Miotto, M.; Milanetti, E.; Tartaglia,
G. G.; Ruocco, G.; Boffi, A.; Di Rienzo, L. Design of protein-binding
peptides with controlled binding affinity: the case of SARS-CoV-2
receptor binding domain and angiotensin-converting enzyme 2
derived peptides. Frontiers in Molecular Biosciences 2024, 10, 1332359.
(219) Grassmann, G.; Di Rienzo, L.; Gosti, G.; Leonetti, M.;

Ruocco, G.; Miotto, M.; Milanetti, E. Electrostatic complementarity at
the interface drives transient protein-protein interactions. Sci. Rep.
2023, 13, 10207.
(220) Gainza, P.; Wehrle, S.; Van Hall-Beauvais, A.; Marchand, A.;

Scheck, A.; Harteveld, Z.; Buckley, S.; Ni, D.; Tan, S.; Sverrisson, F.;
et al. De novo design of protein interactions with learned surface
fingerprints. Nature 2023, 617, 176−184.
(221) Wodak, S. J.; Vajda, S.; Lensink, M. F.; Kozakov, D.; Bates, P.

A. Critical Assessment of Methods for Predicting the 3D Structure of
Proteins and Protein Complexes. Annu. Rev. Biophys. 2023, 52, 183−
206.
(222) Kryshtafovych, A.; Schwede, T.; Topf, M.; Fidelis, K.; Moult,

J. Critical assessment of methods of protein structure prediction
(CASP)�Round XIV. Proteins: Struct., Funct., Bioinf. 2021, 89,
1607−1617.
(223) Bradley, P.; Misura, K. M.; Baker, D. Toward high-resolution

de novo structure prediction for small proteins. Science 2005, 309,
1868−1871.
(224) Zheng, W.; Li, Y.; Zhang, C.; Zhou, X.; Pearce, R.; Bell, E. W.;

Huang, X.; Zhang, Y. Protein structure prediction using deep learning
distance and hydrogen-bonding restraints in CASP14. Proteins: Struct.,
Funct., Bioinf. 2021, 89, 1734−1751.
(225) Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-

TASSER Suite: protein structure and function prediction. Nat.
Methods 2015, 12, 7−8.
(226) Elofsson, A. Progress at protein structure prediction, as seen in

CASP15. Curr. Opin. Struct. Biol. 2023, 80, 102594.
(227) AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 2019, 35,

4862−4865.

(228) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
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