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Abstract: In this paper, the hydrodynamic and free surface elevation fields in breaking waves are
simulated by solving the integral and contravariant forms of the three-dimensional Navier–Stokes
equations that are expressed in a generalized time-dependent curvilinear coordinate system, in
which the vertical coordinate moves by following the free surface. A new k− l turbulence model
in contravariant form is proposed; in this model, the mixing length, l, is defined as a function of
the maximum water surface elevation variation. A new original numerical scheme is proposed.
The main element of originality of the numerical scheme consists of the proposal of a new fifth-
order reconstruction technique for the point values of the conserved variables on the cell face.
This technique, named in the paper as WTENO, allows the choice procedure of the reconstruction
polynomials for the point values to be modified in a dynamic way.

Keywords: wave breaking; turbulence model; turbulent kinetic energy; boundary layer;
boundary conditions

1. Introduction

Experimental simulations [1–3] and numerical simulations [4–12] of hydrodynamic
fields, turbulent phenomena and concentration of suspended sediment under breaking
waves allow for the analysis of the effects produced by wave motion and coastal structures
on the bottom and coastline modifications. In numerical simulations, the definition of the
turbulent closure relations under breaking waves is one of the most important issues to
adequately represent the three-dimensional velocity fields and the turbulent phenomena
that develop near the bottom boundary. It is necessary to simulate the turbulent phenomena
in the boundary layer both in the zone that is dominated by turbulent stresses (turbulent
core), and in the zone nearest to the bottom (buffer layer).

In the context of three-dimensional simulations of breaking waves [9–11], in the litera-
ture, the turbulent phenomena are represented by many authors using the Smagorinsky
turbulence model. In this model, the turbulent stress tensor is related to the strain rate
tensor through the Smagorinsky coefficient. The numerical simulations that use this turbu-
lence model are significantly influenced by this coefficient. It has been demonstrated by
Ma [9] that the above-mentioned turbulence model (even though collocated in the context
of shock-capturing numerical schemes) is not able to correctly evaluate the dissipation of
the energy of the averaged motion. When in the Smagorinsky model, high values of the
above-mentioned coefficient are used; this model overestimates the turbulent phenom-
ena (in the shoaling zone, in the region around the breaking point and in the surf zone
without distinction) and produces a significant reduction in the wave height. The existing
Smagorinsky models underestimate the turbulent phenomena, thus the task of dissipating
the energy of the averaged motion in the surf zone is given to the numerical scheme.

In the context of three-dimensional simulations of breaking waves, in order to re-
duce the spurious oscillations that are generated in the proximity of the shock, many
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authors [9–12] use low-order shock-capturing numerical schemes that adopt TVD (To-
tal Variation Diminishing) reconstruction techniques and approximate Riemann solvers.
In [9–11] the Poisson equation is written in terms of primitive variables (with ul as the
flow velocity components, and H as the water depth). According to [13], the use of the
primitive variable can produce incorrect velocity propagation of the shocks. In order to
reduce spurious oscillations in the proximity of the shocks and their propagations, the
low-order numerical scheme dissipates the largest part of the kinetic energy of the averaged
motion. Furthermore, the approximate Riemann solver does not consider the solution for
the rarefaction waves; this incomplete solution produces an excess of numerical dissipation
of kinetic energy of the averaged motion. These numerical schemes introduce too much
energy dissipation of the averaged motion in the numerical simulations, causing an un-
derestimation of the wave height in the shoaling zone, and an incorrect location of the
breaking point.

Many authors use a turbulence model in which the eddy viscosity is a function of the
turbulent kinetic energy, k, and the mixing length, l [4,12]. In the existing k− l turbulence
models, the production and dissipation of turbulent kinetic energy are represented in the
same way, both before and after the breaking point. In other words, in these models the
existing significant difference between the phenomena of production and dissipation of
turbulent kinetic energy in the different above-mentioned zones (shoaling zone, region
around the breaking point and surf zone) are not taken into account.

In the simulation of wave breaking, both in the Smagorinsky model and in the k− l
model present in the literature, the discretization of the calculation domain does not involve
the bottom boundary layer. The above-mentioned models place the first calculation grid
cell outside the boundary layer; hence, they do not adequately calculate the production
of turbulent kinetic energy in the buffer layer nor in the turbulent core of the boundary
layer at the bottom. Consequently, the bottom turbulent phenomena are not represented in
these models.

In order to reduce the average motion energy dissipation introduced in the numerical
schemes and thus leave the task of dissipating that energy only to the turbulence model,
this paper proposes a new shock-capturing numerical scheme based on three elements
of novelty in addition to a new k− l turbulence model. The proposed numerical scheme
solves the three-dimensional Navier–Stokes in integral contravariant form expressed in a
generalized time-dependent curvilinear coordinate system, in which the vertical coordinate
moves by following the free surface. The first element of novelty of this numerical scheme
is that the equations of motion and the Poisson equation (that is the Laplacian of the scalar
potential) are expressed in terms of the conserved variables (Hul , and H). The second
element of novelty is related to the reconstruction technique for the point values of the
conserved variables on the cell face. The numerical scheme is based on a new fifth-order
reconstruction technique named in this paper as WTENO (Wave-Targeted Essentially
Non-Oscillatory). This reconstruction technique uses different polynomials defined on
contiguous cells, and also uses a so-called cut-off function (which varies in space and time)
that depends on the polynomial regularity, and on the definition of a dynamic threshold
(which also varies in space and time), which varies as a function of the steepness of the wave
fronts. This reconstruction technique ensures high-order accuracy, good non-oscillatory
properties and avoids excessive dissipation of the energy of the averaged motion due to the
TVD reconstruction technique. The last element of novelty is the use of an exact solution of
the Riemann problem for the time advancing of the point values of the conserved variables
on the cell faces. By using the new high-order numerical scheme, it is possible to leave the
task of dissipating the energy of the averaged motion to the turbulence model.

A new k− l turbulence model is proposed that overcomes the limitations introduced
by the Smagorinsky and existing k− l models. In the new turbulence model, the mixing
length is defined as a function of the maximum water surface elevation spatial variation and
its second derivative; in this way, the existing significant differences between the turbulent
phenomena, that occur before and after the breaking point, are taken into account.
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2. Governing Equations

A new model is proposed for the simulation of hydrodynamic and free-surface eleva-
tion fields under breaking waves, based on the solution of the three-dimensional Navier–
Stokes equations. Let H be the total water depth, and ul (l = 1, 3) be the contravariant
components of the velocity. The three-dimensional Navier–Stokes equations are expressed
in integral contravariant form, without the Christoffel symbols, in terms of the conserved
variables H and Hul .

Let us assume a reference system in which x1 and x2 are the Cartesian horizontal
coordinates, and x3 is the Cartesian vertical coordinate pointing upward with the origin
on the undisturbed water surface. In this reference system, the total water depth is given
by H

(
x1, x2, t

)
= h

(
x1, x2)+ η

(
x1, x2, t

)
, where h is the undisturbed water depth and η

is the free-surface elevation with respect to the undisturbed water level. By defining the
curvilinear coordinates,

(
ξ1, ξ2, ξ3, τ

)
, the specific coordinate transformation from the

Cartesian coordinate system,
(
x1, x2, x3, t

)
, to the curvilinear one, is given by the following:

ξ1 = ξ1
(

x1, x2, x3
)

; ξ2 = ξ2
(

x1, x2, x3
)

; ξ3 =
x3 + h

(
x1, x2)

H(x1, x2, t)
; τ = t (1)

The coordinates ξ1 and ξ2 are not time dependent, whereas the vertical coordinate ξ3

moves with the free surface according to the σ-coordinate transformation by [14] which
we adapt to the proposed reference system.

→
g (l) = ∂

→
x /∂ξ l indicates the covariant base

vectors, and
→
g
(l)

= ∂ξ l/∂
→
x indicates the contravariant base vectors. The metric tensor

and its inverse are defined by glm =
→
g (l)·

→
g (m) and glm =

→
g
(l)
·→g

(m)
(l, m = 1, 3), where

the symbol “·” indicates the vector scalar product. The Jacobian of the transformation is

given by
√

g = H
√

g0, in which
√

g0 =
→
k ·
(→

g (1)Λ
→
g (2)

)
;
→
k indicates the vertical unit

vector and Λ indicates the vector product.
The momentum balance equation expressed in integral contravariant form in a time-

dependent curvilinear coordinate system is given by the following:

∂Hur

∂τ =

− ∆t
∆V0
√

g0

3
∑

α = 1

{∫
∆Aα+

o

[
→
g̃
(r)
·→g (k)

(
Huk

)
((Huα/H) − vα) +

→
g̃
(r)
·→g

(α)
G(ηH)

]
√

g0dξβdξγ−

∫
∆Aα−

o

[
→
g̃
(r)
·→g (k)

(
Huk

)
((Huα/H) − vα) +

→
g̃
(r)
·→g

(α)
G(ηH)

]
√

g0dξβdξγ

}
+

∆t
∆V0
√

g0

3
∑

α = 1

{∫
∆Aα+

o

→
g̃
(r)
·→g (k)

Tkα

ρ H
√

g0dξβdξγ −
∫

∆Aα−
o

→
g̃
(r)
·→g (k)

Tkα

ρ H
√

g0dξβdξγ

}
(2)

where Hul is the cell average value of the conserved variable Hul , uk (k = 1, 3) are
the contravariant components of the fluid velocity, vα (α = 1, 3) are the contravariant

components of the velocity of the moving coordinates;
→
g̃
(l)

is the covariant base vector
defined at the center of the control volume. V0 = ∆ξ1∆ξ2∆ξ3; ∆Aα

0 = ∆ξβ∆ξγ; ∆Aα+
0 and

∆Aα−
0 are the boundary surfaces of the control volume ∆V0 on which the coordinate ξα is

constant, that surfaces are located in correspondence to the larger and smaller values of ξα

(α, β and γ are cyclic). Tkα are the contravariant components of the stress tensor that contain
the dynamic pressure term; ρ is the fluid density and G is the gravitational acceleration.

The equation relative to the movement of the free surface expressed in integral con-
travariant form in a time-dependent curvilinear coordinate system is given by the follow-
ing equation:

∂H
∂τ

=
1

∆A3
o
√

g0

2

∑
α = 1

[∫ 1

0

∫
∆ξα+

o

Huα√g0dξβdξ3 −
∫ 1

0

∫
∆ξα−

o

Huα√g0dξβdξ3
]

(3)
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where H is the cell average value of the variable H, and ∆ξα+
o and ∆ξα−

o (with α = 1, 2)
are the contour lines of the surface element ∆A3

o = ∆ξ1∆ξ2 on which ξα is constant and
are located, respectively, in correspondence to the larger and smaller values of ξα.

The numerical scheme that is adopted to advance in time the numerical solution is a
predictor-corrector procedure. This scheme is composed of two steps. In the first step, the
momentum balance equation is solved without the dynamic pressure. An approximated
non-divergence-free velocity field is obtained. To this field, named predictor field, (Hur)P,
is added a corrector field, (Hur)C = grsH(∂Ψ/∂s), that takes into account the dynamic
pressure; this field is divergence-free. The corrector field is obtained by the solution of the
Poisson equation (in which Ψ is the potential scalar); the right-hand side of this equation is
the divergence of the predictor velocity, and is opposite in sign:

∂
(

grs ∂Ψ
∂ξs H
√

g0

)
∂ξr = −

∂(Hur)P√g0

∂ξr (4)

3. Turbulence Models

In the literature, in order to simulate the turbulent phenomena in the context of the
three-dimensional simulation of breaking waves, Smagorinsky and k− l turbulence models
are used. Hereinafter the Smagorinsky model is shown, and the new k− l model proposed
in this paper is presented.

3.1. Smagorinsky Turbulence Model

A first model largely used in the literature [9–11] for modeling the turbulent stress
tensor is the Smagorinsky model. In this turbulence model, the closure relation for the
turbulent stress tensor, Tlm = −2νtSlm, is related to the strain rate tensor through the eddy
viscosity given by the following equation:

νT = (Cs∆)2
∣∣∣Slm

∣∣∣ (5)

in which ∆ = 3
√

∆x∆y∆z represents the length scale related to the grid size, and CS is the
Smagorinsky coefficient.

In the literature, the bottom boundary layer is generally divided into three zones
characterized by different types of stresses: the viscous sublayer is characterized by the
dominance of the viscous stresses; in the buffer layer coexist the viscous and turbulent
stresses; the turbulent core of the boundary layer is characterized by the dominance of the
turbulent stresses. Let y+ be the adimensionless wall distance defined as follows:

y+ = zu∗/ν (6)

in which z is the vertical distance from the wall, u∗ is the bottom friction velocity and ν is
the kinetic viscosity coefficient.

In this paper, the equations of motion that use the Smagorinsky turbulence model are
solved in the turbulent core. The boundary condition on the velocity field is placed on the
border between the buffer layer and the turbulent core. From the theory of the boundary
layer [15], a formulation for the eddy viscosity is deduced. As demonstrated by [15], the
turbulent stresses parallel to the bottom (that in this case for the sake of simplicity are
considered horizontal) can be expressed in the boundary layer outside the viscous sublayer
as follows:

− u′w′ = τw

ρ
= u∗2 (7)

where u′ and w′ are the fluctuating velocity components (in a Cartesian coordinate system),
respectively, in the horizontal and vertical directions. The same authors [15] approximate
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the vertical derivative of the cell average velocity parallel to the bottom, u, in the boundary
layer outside the viscous sublayer as follows:

∂u
∂z

=
u∗

κz
(8)

Knowing that the turbulent stresses are expressible as u′w′ = −νT(∂u/∂z), by using
Equations (7) and (8) it is possible to obtain the following expression for the eddy viscosity
in the turbulent boundary layer outside the viscous sublayer:

νT = κu∗z (9)

in which κ = 0.41 is the von Kàrmàn constant.
The bottom friction velocity is defined by the logarithmic law once the value of the

velocity in the turbulent core, u(z), is known:

u(z)
u∗

=
1
κ

ln

(
z
ks
30

)
(10)

in which ks is the roughness. The boundary condition for the velocity parallel to the bottom,
uB, (that in this case is horizontal), placed at the border between the buffer layer and the
turbulent core, is calculated through the logarithmic law once the value of the friction
velocity, u∗, is known.

3.2. k− l Turbulence Model

In the proposed model, the closure relation for the turbulent stress tensor is expressed
as a function of the turbulent kinetic energy, k, and the mixing length, l (k − l model).
The equation for the turbulent kinetic energy in the present paper is written in integral
contravariant form in a time-dependent curvilinear coordinate system, and it is given by
the following:

∂Hk
∂τ =

− 1
∆V0
√

g0

3
∑

α = 1

{∫
∆Aα+

o
[Hk(uα − vα)]

√
g0dξβdξγ−

∫
∆Aα−

o
[Hk(uα − vα)]

√
g0dξβdξγ

}
+ 1

∆V0
√

g0

3
∑

α = 1

{∫
∆Aα+

o

[(
ν + νT

σk

)
gαr ∂k

∂ξr H
√

g0

]
dξβdξγ−∫

∆Aα−
o

[(
ν + νT

σk

)
gαr ∂k

∂ξr H
√

g0

]
dξβdξγ

}
+

1
∆V0
√

g0

∫
∆V0

[
(P− ε)H

√
g0
]
dξβdξγ

(11)

where ε is the dissipation of turbulent kinetic energy, P is the production of turbulent
kinetic energy, and σk = 1.0. In Equation (11) the production of turbulent kinetic energy is
given by the following:

P =
∫

∆V0

Tlm(ul),mH
√

g0dξ1dξ2dξ3 (12)

and the dissipation is given by the following:

ε = Cµ
k

3
2

l
(13)

The closure relation for the turbulent stress tensor is as follows:

Tlm = −2νTSlm +
2
3

kδlm (14)
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in which the eddy viscosity is determined as follows:

νT = Cµ

√
kl (15)

where Cµ = 0.09. Some authors [4,12] suggested that the mixing length is proportional to
the undisturbed water depth. The proportional coefficient for the mixing length is given by
experimental measurement [3], and is usually given by the following:

l = 0.1h (16)

In the present paper, two different configurations for the mixing length are adopted.
The new k− l model in turbulent kinetic energy (expressed in contravariant form) that uses
the mixing length proposed by Bradford [12] in Equation (16) is named Constant k− l. This
is the first configuration adopted in this study.

In the wave propagation from deep water to the coastline, five different zones, charac-
terized by the turbulent phenomena, can be identified in order to simplify the representation
of the different characteristics of turbulence. The five zones are synthetically defined in the
graph of the maximum wave surface elevation, shown in Figure 1. From this graph, Zone 1
is identified before the breaking point, where the shoaling phenomenon takes place; in this
zone, the production of turbulent kinetic energy is mostly located near the bottom. Zone 2
is located around the breaking point, and it is the zone in which there is the maximum
wave height. In this zone, the waves become steep until they reach a limit value beyond
which they break. When the breaking starts, there is a strong production of turbulence
both at the bottom and at the free surface. In the surf zone are two different zones, as
shown in Figure 1. The first one, defined as Zone 3, is characterized by a strong reduction
in the maximum water surface elevation; hence, there are strong gradients of the maximum
water surface elevation. In the graph of the maximum water surface elevation, this zone is
characterized by the maximum slope of the envelope at this water surface elevation. In the
second part of the surf zone, named Zone 4, the wave continues to break with gradients of
the water surface elevation that are lower than the previous ones in Zone 3. Here, there
is also a production of turbulent kinetic energy at the bottom and at the free surface until
the wave is completely dissipated in the wet and dry zones. Zone 5 is in proximity with
the bottom, in which the production of turbulent kinetic energy in the boundary layer is
very important.
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In order to correctly take into account the turbulent phenomena associated with
wave propagation, it is necessary to distinguish the behavior of the turbulence model
in the different above-mentioned zones. When the mixing length increases, the eddy
viscosity increases. As will be demonstrated in Section 5.2 of the Results, high values
of the eddy viscosity produce an increase in the diffusion in the motion direction of the
momentum, with a consequent slope reduction, in absolute value, of the envelope of the
maximum water surface elevation (Zone 3). A new k− l model is proposed to increase
(in accordance with the experimental results) the slope (in absolute value) of the envelope
of the maximum water surface elevation in Zone 3. In this model, the mixing length is
proportional to the undisturbed water depth through a coefficient that is a function of the
spatial variation of the maximum water surface elevation, ∂ηmax

(
ξ1)/∂ξ1, and its second

derivative, ∂2ηmax
(
ξ1)/(∂ξ1)2. Both derivatives vary in the different four zones that are

along the wave propagation.

l = l2 × h =
λmax

(
ξ1)

4Hmax(ξ1)

k + k1


∂ηmax(ξ1)

∂ξ1 −
∣∣∣∣ ∂ηmax(ξ1)

∂ξ1

∣∣∣∣∣∣∣∣ ∂ηmax(ξ1)
∂ξ1

∣∣∣∣
 ηmax

(
ξ1)

max ηmax(ξ1)

∣∣∣∣∣∣∣∣
∂2ηmax(ξ1)

(∂ξ1)
2 −

∣∣∣∣ ∂2ηmax(ξ1)

(∂ξ1)
2

∣∣∣∣
2
∣∣∣∣ ∂2ηmax(ξ1)

(∂ξ1)
2

∣∣∣∣
∣∣∣∣∣∣∣∣
 ∗ h (17)

where l2 = A1{k− k1[A2 A3 A4]} is the multiplier of the undisturbed water depth,
λmax

(
ξ1) = ηmax

(
ξ1)+ ηmin

(
ξ1) is the maximum wave height, point by point in time;

Hmax
(
ξ1) = ηmax

(
ξ1)+ h

(
ξ1) is the maximum total water depth, point by point in time;

ηmax
(
ξ1) = max

t
η
(
ξ1, t

)
and ηmin

(
ξ1) = min

t
η
(
ξ1, t

)
are, respectively, the maximum

and minimum water surface elevations. The coefficients k and k1 are, respectively, equal
to 1 and 0.3. The model that uses the mixing length given by Equation (17) is the second
configuration adopted in this work. The spatial variation of the maximum water surface
elevation allows us to find the first four zones previously described: the two zones be-
fore the breaking point (Zone 1 and 2) characterized by positive values of the derivative
∂ηmax

(
ξ1)/∂ξ1, and the two zones in the surf zone characterized by negative values of

the same derivative. By using this derivative, it is possible to differentiate the behavior
of the mixing length before and after the breaking point. The mixing length undergoes a
reduction in Zone 3 by modifying the effects of the diffusive terms in the motion direction
of the momentum. For the k− l turbulence model, two different configurations for the
boundary conditions are defined (Configuration A and Configuration B).

Configuration A is characterized by the fact that the equations of motion that use
the k− l turbulence model are solved in the turbulent core. It is known that the balance
between production and dissipation of the turbulent kinetic energy strictly holds true only
at the border between the buffer layer and the turbulent core [15,16]. In this configuration,
the boundary conditions come from the same considerations made for the Smagorinsky
model. The eddy viscosity in the boundary layer, outside the viscous sublayer, is calculated
by using Equation (9). The turbulent kinetic energy equation (Equation (11)) is solved
inside the turbulent core. Although the balance between production and dissipation of
turbulent kinetic energy strictly holds true (as already mentioned) at the border between
the buffer layer and the turbulent core, the turbulent kinetic energy boundary condition is
determined by assuming the above-mentioned balance is also in the turbulent core.

P = −u′ iu′ j
∂ui
∂xj

= ε (18)

By substituting into Equation (18) the Equations (7) and (8), an expression for the
dissipation of turbulent kinetic energy is obtained as follows:

P = u∗2
u∗

κz
= ε (19)
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Finally, by combining Equations (19) and (13) we obtain the following:

ε = Cµ
k

3
2

l
=

u∗3

κz
(20)

from which one can obtain the following:

k =
u∗2

Cµ
(21)

Equation (21) is used as a turbulent kinetic energy boundary condition just outside
the buffer layer.

In the buffer layer and in the turbulent core of the bottom boundary layer there is a
significant production of turbulent kinetic energy and a strong variability of this along the
vertical direction. The balance between production and dissipation of turbulent kinetic
energy strictly holds true (as already mentioned) at the border between the buffer layer
and the turbulent core. The above-mentioned production of turbulent kinetic energy
in the buffer layer and in the turbulent core influences the distribution of the turbulent
kinetic energy along the vertical direction. In order to adequately represent the turbulent
phenomena in addition to the distribution of turbulent kinetic energy in the proximity of
the bottom, it is necessary to solve equations of motion and the turbulent kinetic equation
in the turbulent core, and also in the buffer layer. Configuration B is characterized by the
fact that the equations of motion and the turbulent kinetic equation are solved also in the
buffer layer. In the above-mentioned Configuration B, the velocity boundary condition is
placed at the border between the viscous sublayer and the buffer layer, while the turbulent
kinetic energy boundary condition is set to zero directly on the seabed.

The value of the mixing length inside the boundary layer, outside the viscous sublayer,
is given by combining Equations (15) and (9) to obtain the following:

l =
κu∗z
Cµ

√
k

(22)

In the boundary layer, outside the viscous sublayer, the eddy viscosity in Equation (9)
is also used in this configuration.

4. Numerical Schemes

The equations of motion are solved by using a finite-volume shock-capturing scheme,
which uses a Riemann solver. The advancing in time of the numerical solutions is obtained
by using a predictor-corrector procedure. In the first step of this scheme (predictor step)
the momentum balance equation, without the dynamic pressure, is solved. In this way,

an approximated non-divergence-free velocity field,
(

Hul
)P

, is obtained. The predictor

field
(

Hul
)P

is used to define the right-hand side of the Poisson equation. The solution of
the above-mentioned equation gives the scalar potential Ψ, with which the velocity field is

corrected,
(

Hul
)c

. By summing the predictor and the corrector fields, we obtain the velocity

field,
(

Hul
)

, which takes into account the dynamic pressure, and is divergence-free.

4.1. Numerical Scheme with TVD Reconstructions

In order to numerically solve the equations of motion, many authors in the litera-
ture [9–12] adopt a finite-volume shock-capturing numerical scheme that uses a second-
order TVD (Total Variation Diminishing) reconstruction technique of the point values from
the cell-averaged ones, and that uses an approximated Riemann solver. Numerical schemes
that use TVD reconstructions and an approximate Riemann solver are low-order schemes.
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The spurious oscillations, generated in the proximity of the shocks and from their
propagation in the solution, are limited by the use of reconstruction techniques not greater
than second order. In the scheme proposed from the literature [9–12] where the solution is
regular, the scheme allows us to have second-order accuracy; where there are shocks, the
order of accuracy is reduced to the first order, in order to avoid spurious oscillations. In
the numerical model, the solution of the Poisson equation (used to take into account the
dynamic component of the pressure) uses the primitive variables (ul , and H).

4.2. Numerical Scheme with WTENO Reconstructions

In this paper, a new high-order numerical scheme is used to numerically solve the
equations of motion and the Poisson equation, and is expressed in terms of the conserved
variables (Hul , and H), through a finite-volume shock-capturing numerical scheme that
uses new reconstruction techniques based on Targeted Essentially Non-Oscillatory (TENO)
schemes [17,18], but specifically for the waves. This new scheme is referred to in this paper
as WTENO (Wave-Targeted Essentially Non-Oscillatory). An exact Riemann solver is used.
The equations of motion and the Poisson equation are expressed in terms of the conserved
variables (Hul , and H), in order to correctly represent the velocity of the shock waves. It
is well known from the literature [13] that the use of a conserved numerical scheme, in
which the equations of motion are expressed in terms of the primitive variables (ul , and
H) [10,11], produces shocks with incorrect velocity propagation.

The shock-capturing scheme uses the new fifth-order WTENO reconstruction tech-
nique that allows us to reduce the numerical dissipation introduced by the low-order
schemes, in order to limit the spurious oscillations that can be generated by the shocks. A
high level of accuracy in addition to good non-oscillatory properties are ensured in the
numerical scheme using this technique. The numerical scheme introduces small numerical
dissipations, in order to leave the task of dissipating the energy of the averaged motion to
the turbulence model on the steep wave fronts that occur in the breaking zone. The excess
dissipation introduced in the numerical solution by the second-order reconstructions is
reduced. In the surf zone, the wave front is followed by a tail that is characterized by small
kinetic energy dissipations among the turbulence. In this part of the wave as well as for the
non-breaking wave fronts, it is necessary that the numerical scheme introduces numerical
dissipation in order to reduce spurious oscillations at the free surface during the steepening
of the wave front. The WTENO technique allows us to have targeted reconstructions as a
function of the time variation of the free surface. Three different third-order polynomials
are defined; these polynomials can intervene in the reconstruction, depending on their
regularity and on the steepness of the wave front. At every instant of the simulation and
at every point of the numerical domain, a dynamic threshold is defined; it allows us to
determine the numbers of the polynomials that intervene in the reconstruction of the point
values of the conserved variables. The new numerical scheme allows us to reduce the
trend of cutting off one or two candidate polynomials from the reconstruction in order to
ensure maximum order of accuracy on the steeper wave-breaking fronts. In order to ensure
fifth-order accuracy, all three polynomials must participate in the reconstructions. The
reconstruction technique can cut off one or two of the three candidate polynomials on the
tails and on the wave fronts of the non-breaking waves, in order to have more dissipation
of the energy in solution.

The point values of conserved variables calculated at the cell faces are determined
by the cell average values of these variables. The point values represent the initial values
of the local Riemann problem. The fifth-order WTENO reconstruction uses a polynomial
function Fi,j,k

(
ξ1), (i, j, k = 1, 3) indicate the cell in which the polynomial, Ii.j,k, is defined)

that is obtained by the combination of three different second-order polynomials Pp,i,j,k
(
ξ1),

with p = −1, 0,+1, defined on contiguous cells.

Fi,j,k

(
ξ1
)

= ω0P0,i,j,k + ω1P1,i,j,k + ω2P2,i,j,k (23)
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where ωp, with p = −1, 0, 1, are the nonlinear weights defined by the following:

ωp =
δpcp

∑2
p = 0 δpcp

(24)

in which cp are the linear weights for the second-order polynomials that are equal to
c0 = 0.1, c1 = 0.6 and c2 = 0.3, and the parameter δp = 0, 1 chooses how many
polynomials participate in the reconstruction. δp is calculated by a regularity function,
depending on the polynomial regularity, and by a dynamic threshold CT . By matching
instantly and in each point of the domain the value of Γp with the threshold value CT , the
number of polynomials that participate to the reconstruction is defined.

The dynamic threshold common to all three polynomials varies in space and time as
a function of the regularity of the polynomials, and as a function of the steepness of the
wave fronts. {

CT = 10−n

n = Bl1 + (θ + θ2)(Bh − Bl)
(25)

in which Bl1 = 1, Bl = 4 and Bh = 10. The fifth-order of accuracy and the ability of the
scheme to limit spurious oscillations are ensured by the parameters θ and θ2 of the steep
wave fronts. The parameter θ = 0− 1 is a function of the regularity of each polynomial.
The parameter θ2 ≥ 0 is a function of the time variation of the free-surface elevation, i.e.,
the steepness of the wave front. If the exponent n is low, the reconstructions cut off one or
two of the three candidate polynomials. The parameter θ2 is calculated as follows, in order
to take into account the steepness of the wave front:

θ2 =


(

∂η(ξ1,ξ2,t)
∂t − E∗

)
+
∣∣∣ ∂η(ξ1,ξ2,t)

∂t − E∗
∣∣∣

2
∣∣∣ ∂η(ξ1,ξ2,t)

∂t − E∗
∣∣∣


[

∂η(ξ1,ξ2,t)
∂t
E∗

− 1

]
(26)

where ∂η(ξ1, ξ2, t)/∂t is the time variation of the free-surface elevations, and E∗ = 0.3
√

gh
is a threshold of ∂η(ξ1, ξ2, t)/∂t that is used to identify the breaking wave fronts. The
dynamic threshold is reduced when θ2 increases; it happens on the wave-breaking fronts
where the tendency of the reconstruction technique to cut off one or two of the three
candidate polynomials is reduced. In this way, the energy dissipation due to the numerical
scheme is reduced. On the tails of the waves, where CT = 0, and on the non-breaking wave
fronts, the numerical scheme tends to cut off one or two of the three candidate polynomials,
in order to introduce a larger quantity of energy dissipation by the numerical scheme.

5. Results

Wave breaking is a very complex, dissipative phenomenon that involves air entrain-
ment and bubble generation. As experimentally observed by several authors [19–21], the
surface tension can have an effect on the energy dissipation rate of breaking waves, es-
pecially at the small scale of laboratory breaking waves. The experimental comparison
between breaking waves conducted by [21], using freshwater in addition to water solution
of lower surface tension, shows that the higher the surface tension is, the higher the energy
dissipation rate is during breaking. Surface tension can reduce the instability of the free
surface as well as the formation of bubbles during breaking, with a consequent reduction in
the energy dissipation rate. The same experimental results by [21] show that the effect of the
surface tension on the energy dissipation rate can be relevant only for laboratory breaking
waves with lengths shorter than 4 m, and heights lower than 0.11 m. In the present paper,
the comparison between numerical simulation and experimental data concerns breaking
waves with a deep-water wavelength greater than 4 m, and a height greater than 0.11 m.
Consequently, in the proposed model we do not introduce any modification to take into
account the effect of surface tension on wave breaking.
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In this section, a Ting and Kirby [3] case study for a spilling breaking is numerically
reproduced, in order to verify the ability of the turbulence model to represent the breaking
phenomenon and turbulent phenomena that develop in the surf zone. The experimental
test consists of a cnoidal wave with wave height Hs = 0.125 m, wavelength L = 6.35 m
and wave period T = 2 s, propagating in a channel with a 1 : 35 seabed slope and
undisturbed water at a depth of h = 0.40 m. In order to numerically reproduce the above
experimental test, we use a computational grid with 512 nodes in the horizontal direction
(∆x = 0.05 m), and 13 non-uniformly distributed sigma layers along the vertical direction,
as shown in Figure 2. At the left boundary of the computational domain, we impose the
velocity components and the free-surface elevation according to the cnoidal theory by [22].
At the right boundary of the computational domain, a wet and dry technique is adopted. A
no-slip boundary condition is imposed on the seabed.
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The results obtained with two different numerical schemes (the low-order and new
high-order numerical schemes) are presented in Section 4. Two different turbulence models
(the Smagorinsky turbulence model shown in Section 3.1, and the new k− l turbulence
model presented in Section 3.2) are shown in this section.

The numerical simulations are made in different configurations named for the sake of
simplicity as follows:

• Configuration TS. In this configuration, the eddy viscosity is expressed through the
Smagorinsky model given in Section 3.1. The equations of motion are solved by the
low-order numerical scheme exposed in Section 4.1 (TVD and approximate Riemann
solver). In this numerical scheme, the Poisson equation is expressed in terms of
primitive variables (ul , and H). The discretization of the calculation grid cells in the
turbulent boundary layer is shown in Figure 4. The first calculation grid cell (indicated
with a 1 in Figure 4) in which the equations of motion are solved, is placed in the
turbulent core. The boundary condition for the velocity, uB, parallel to the bottom,
is placed on the lower face of the first cell (zB in Figure 4), at the border between the
buffer layer and the turbulent core, where y+ is equal to 30. The velocity boundary
condition, uB, is calculated by using the logarithmic law (Equation (10)) from the
value of the velocity calculated at the center of the first calculation grid cell, u, once
the value of the friction velocity, u∗, is known. On the lower and upper faces of
the first calculation grid cell (at y+ = 30 and y+ = 90, respectively), the eddy
viscosity is calculated by using Equation (9). Outside the boundary layer (y+ > 90),
the Smagorinsky model is used for determining the eddy viscosity (Equation (5)).

• Configuration WS. This configuration differs from Configuration TS only by the
numerical scheme: the reconstructions of the point values of the conserved variables
are carried out by the WTENO technique; the time advancing of the point values of
the conserved variables on the cell faces is obtained by an exact Riemann solver; the
Poisson equation is expressed as a function of the conserved variables (Hul , and H).
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• WKC configuration. This configuration differs from Configuration WS only by the
turbulence model: the eddy viscosity is expressed by the new Constant k− l turbu-
lence model (where the turbulent kinetic energy is in contravariant form) exposed
in Section 3.2. In this model, the mixing length is calculated by Equation (16). The
discretization of the calculation grid cells in the turbulent boundary layer is shown
in Figure 3a. The first grid node in which the turbulent kinetic energy is calculated
is placed on the upper face of the second calculation grid cell, indicated with a 2 in
Figure 3a, in the turbulent core. On the lower face of the same calculation grid cell
(at y+ = 90) is placed the turbulent kinetic energy boundary condition, given by
Equation (21).

• Configuration WK. This configuration differs from Configuration WKC only by the
turbulence model: we propose a new turbulence k− l turbulence model in which the
mixing length, l, is calculated by Equation (17).

• Configuration WKI. This configuration differs from Configuration WK only by the
discretization of the boundary layer. In order to adequately take into account the
turbulent phenomena and the distribution of the turbulent kinetic energy, it is neces-
sary to solve the equations of motion and the turbulent kinetic energy equation in the
turbulent core and in the buffer layer. In this configuration, there are two calculation
grid cells in the turbulent core and one also in the buffer layer. The first calculation
grid cell in which the equations of motion are solved (indicated with a 1 in Figure 3b)
is placed in the buffer layer. The velocity boundary condition, uB, is placed on the
lower face of the first calculation grid cell (zB in Figure 3b) at the border between
the viscous sublayer and the buffer layer (y+ = 10). On the faces of the first three
calculation grid cells (up to y+ = 80), the eddy viscosity is calculated by Equation (9).
In order to take into account the turbulent phenomena also in the proximity of the
bottom, the first grid node in which the turbulent kinetic energy is calculated is placed
at the lower face of the first calculation grid cell (y+ = 10). The turbulent kinetic
energy boundary condition is equal to zero, and is imposed at the seabed (y+ = 0).
Up to y+ = 80, the mixing length is given by Equation (22).
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In Table 1 there is a synthetic description of the configurations.

Table 1. Configurations.

Name Numerical
Scheme Turbulence Model y+ of the Lower Face of the First Calculation Grid Cell Vertical Layers

TS TVD 2nd order +
approximated Riemann Smagorinsky y+ = 30 13

WS WTENO + exact Riemann Smagorinsky y+ = 30 13
WKC WTENO + exact Riemann Constant k− l y+ = 30 13

WK WTENO + exact Riemann k− l
l = l2

y+ = 30 13

WKI WTENO + exact Riemann k− l
l = l2

y+ = 10 18

5.1. Results Obtained by Smagorinsky Model

The numerical simulations, whose results are shown in this section, are made by the
Smagorinsky turbulence model presented in Section 3.1. The numerical results obtained
with the two different configurations (TS and WS) are compared with the experimental
results by [3]. In both configurations, the lower face of the first calculation grid cell is
placed at the border between the buffer layer and the turbulent core, at y+ = 30, and the
boundary conditions are assigned as shown in Figure 4.

In Figure 5, the numerical results (solid line) obtained by Configuration TS with
a Smagorinsky coefficient equal to Cs = 0.2 are shown, compared with the experi-
mental measurements (circles) in terms of the minimum, average and maximum water
surface elevations.
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showing numerical results (solid line) and experimental measurements (circles).

Figure 5 shows that the maximum water surface elevation is underestimated with
respect to the experimental measurements around the breaking point (Zone 2 in Figure 1);
the breaking point is anticipated. The wrong position of the breaking point, shown in
Figure 5, is due to the Poisson equation. Indeed, this equation is used to take into account
the dynamic component of the pressure, and uses the primitive variables (ul , and H). It is
known that the use of the primitive variables produces incorrect velocity propagation of
the shock [13]. The underestimation of the maximum water surface elevation is due to the
shock-capturing numerical scheme used: this is a low-order numerical scheme that has the
task of dissipating the largest part of the kinetic energy of averaged motion. The adopted
low-order scheme limits spurious oscillations that are generated in proximity of the shock
by using TVD reconstruction techniques (from the cell average values to the point ones)
that are no higher than second order. This scheme allows us to have second-order accuracy
where the solution is regular, while it limits spurious oscillations by reducing the order of
accuracy in proximity to discontinuities. The additional reason that too much dissipation of
kinetic energy of the averaged motion is produced (as we can see in Figure 5) is due to the
use (in Configuration TS) of an approximate Riemann solver. The solver only considers in
the solution the shock and rarefaction waves, and does not consider the contact waves. In
the presence of shock, the incomplete solution produces an excess in numerical dissipation
of kinetic energy of the averaged motion.

From Figure 5 it is clear that the low-order numerical scheme, which uses an approxi-
mate Riemann solver, is less accurate; it anticipates the breaking point and introduces an
excess dissipation of kinetic energy of the averaged motion, producing an underestimation
of the wave height and of the maximum water surface elevation around the breaking
point (Zone 2 in Figure 1). It is necessary to overcome these limits and develop a new
high-order shock-capturing numerical scheme. High-order schemes, in general, introduce
less numerical dissipation and allow us to attribute the right quantity of dissipated kinetic
energy of the averaged motion mainly to the turbulence model, in order to adequately
represent the turbulent agitations that affect the resuspension of the sediments.

Figures 6 and 7 show the numerical results obtained by Configuration WS, in which
the turbulence model is the same as that used in Configuration TS; the numerical scheme is
the high-order one proposed in this paper.
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From Figure 6 it can be seen that the breaking point is slightly anticipated with respect
to the one obtained by the experimental measurements; the maximum water surface
elevation around the breaking point (Zone 2 in Figure 1) is slightly underestimated, while
in the surf zone (Zones 3 and 4 in Figure 1) the maximum water surface elevation is
overestimated with respect to the experimental one. It is evident from Figures 5 and 6 that
the proposed high-order numerical scheme (using an exact Riemann solver, fifth- order
WTENO reconstructions and conserved variables also in the Poisson equation) allows us
to limit the excessive numerical dissipation of the averaged motion introduced by the
low-order numerical scheme.

In Figure 7, the numerical results obtained with the same turbulence model of Config-
uration TS and three different Smagorinsky coefficients in Configuration WS, Cs = 0.1, 0.2,
and 0.3 are shown, but also includes the new high-order numerical scheme presented in
this paper (Configuration WS).
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The comparison between the three different simulations shows that when the Smagorin-
sky coefficient increases (i.e., from the blue line to the red one) in the shoaling zone (Zone 1
in Figure 1) and around the breaking point, the maximum water surface elevation is overall
underestimated; consequently, the turbulence model increases the dissipation of energy of
the averaged motion. Increasing the eddy viscosity increases the reduction in the maximum
wave height. As shown in Figure 7, the numerical results are strongly influenced by the
choice of the Smagorinsky coefficient. In all three simulations, the maximum water surface
elevation is overestimated in the surf zone (Zones 3 and 4 in Figure 1). The overestimation
of the maximum water surface elevation is considered dependent on a high value of the
eddy viscosity, as calculated by the Smagorinsky model. A high value of this coefficient
produces diffusion in the motion direction of the momentum, and this means that the
steepness of the breaking wave fronts is reduced, and that the maximum water surface
elevation is high. From the previous consideration, it can be seen that the capability of the
Smagorinsky model in representing the turbulent phenomena as well as their effects on
the dissipation of kinetic energy of the averaged motion in the surf zone (Zones 3 and 4 in
Figure 1) is limited. Consequently, a new turbulence model k− l, presented in Section 3.2
with an equation for the turbulent kinetic energy, is proposed in order to overcome the
above-mentioned limits.

5.2. Results Obtained by k− l Model

The numerical simulations, whose results are shown in this section, are made by the
k− l turbulence model in three different configurations: WKC, WK and WKI. As already
mentioned in the descriptions of these configurations, the new numerical scheme which
has fifth-order reconstructions, an exact Riemann solver and conserved variables also in
the Poisson equation, is used.

In Figure 8, the numerical results obtained with the new Constant k− l turbulence
model presented in Section 3.2 (in which the mixing length is given by the Equation (16))
(Configuration WKC) are shown and compared with the experimental results. In this
configuration, the lower face of the first calculation grid cell is collocated between the buffer
layer and the turbulent core, y+ = 30, and the boundary conditions are assigned as shown
in Figure 3a.
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From the comparison between the numerical and experimental results, it can be seen
that the new Constant k− l model slightly underestimates the maximum water surface
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elevation at the breaking point, and anticipates the breaking point. The new Constant k− l
does not vary the value of the mixing length, l, in the different zones; thus, it does not
vary the eddy viscosity nor the viscous dissipation of the turbulent kinetic energy in the
zones, i.e., in the shoaling zone (Zone 1 in Figure 1), around the breaking point (Zone 2
in Figure 1), in the surf zone (Zones 3 and 4 in Figure 1) and in proximity of the bottom
(Zone 5 in Figure 1). The effect produced by the mixing length in the new Constant k− l in
Zones 3 and 4 can be summarized by an increase in the diffusion in the motion direction of
the average momentum, with a consequent reduction in the slope of the envelope line of
the maximum water surface elevation with respect to the experimental results.

Figures 9 and 10 show the time mean vertical distribution of the turbulent kinetic
energy and horizontal velocity at x = 7.27 m and x = 7.88 m.
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The vertical distribution of turbulent kinetic energy in Configuration WKC is overesti-
mated with respect to the experimental measurements, as shown in Figure 9. The vertical
distribution of the time mean horizontal velocity, shown in Figure 10, is characterized by
the fact that the velocity near the bottom is offshore directed, while near the free surface it
is onshore directed. This particular mean horizontal flow is called undertow. In Figure 10,
the undertow obtained by the numerical simulation is overestimated.

The comparison between the experimental and the numerical results obtained by the
new Constant k− l model (in which the mixing length is given by Equation (16)), shows
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that it is necessary to further reduce the effects produced by an excess of the diffusion in the
motion direction of the average momentum, in order to increase the slope of the envelope
line of the maximum water surface elevation.

A new k− l model (presented in Section 3.2) is proposed; in this model, the mixing
length is calculated as a function of the spatial variation of the maximum water surface
elevation and its second derivative. In Figure 11, the numerical results obtained with
the new k− l model are shown. The lower face of the first calculation grid cell is placed
at y+ = 30 away from the wall (Configuration WK), as was done with the previous
Configuration WKC.
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From the comparison between the experimental and numerical results shown in
Figure 11, it is deduced that the new turbulence model increases (even if insufficiently)
the steepness of the maximum water surface elevation after the breaking point (Zone 3 in
Figure 1) with respect to the steepness in Figure 8. Figures 12 and 13 show the time mean
turbulent kinetic energy and undertow profiles at x = 7.27 m and x = 7.88 m.

Water 2022, 14, x FOR PEER REVIEW 18 of 23 
 

 

The comparison between the experimental and the numerical results obtained by the 
new Constant 𝑘 − 𝑙 model (in which the mixing length is given by Equation (16)), shows 
that it is necessary to further reduce the effects produced by an excess of the diffusion in 
the motion direction of the average momentum, in order to increase the slope of the en-
velope line of the maximum water surface elevation. 

A new 𝑘 − 𝑙 model (presented in Section 3.2) is proposed; in this model, the mixing 
length is calculated as a function of the spatial variation of the maximum water surface 
elevation and its second derivative. In Figure 11, the numerical results obtained with the 
new 𝑘 − 𝑙 model are shown. The lower face of the first calculation grid cell is placed at 𝑦 = 30 away from the wall (Configuration WK), as was done with the previous Config-
uration WKC. 

 
Figure 11. Results 5: minimum, average and maximum water surface elevations in Configuration 
WK., showing numerical results (solid line) and experimental measurements (circles) [3]. 

From the comparison between the experimental and numerical results shown in Fig-
ure 11, it is deduced that the new turbulence model increases (even if insufficiently) the 
steepness of the maximum water surface elevation after the breaking point (Zone 3 in 
Figure 1) with respect to the steepness in Figure 8. Figures 12 and 13 show the time mean 
turbulent kinetic energy and undertow profiles at 𝑥 = 7.27 m and 𝑥 = 7.88 m. 

  
(a) (b) 

Figure 12. Result 5: time mean turbulent kinetic energy profiles in Configuration WK, showing nu-
merical results (X) and experimental results (circles) [3]. (a) 𝑥 = 7.27 m,  (b) 𝑥 = 7.88 m , 𝑧∗ =(𝑧 − �̅�)/𝐻 and 𝑘∗ = 𝑘/(𝑔𝐻). 

Figure 12. Result 5: time mean turbulent kinetic energy profiles in Configuration WK, showing
numerical results (X) and experimental results (circles) [3]. (a) x = 7.27 m, (b) x = 7.88 m,

z∗ = (z− η)/H and k∗ =
√

k/
(

gH
)
.



Water 2022, 14, 2050 19 of 23Water 2022, 14, x FOR PEER REVIEW 19 of 23 
 

 

  
(a) (b) 

Figure 13. Result 5: undertow profiles in Configuration WK, showing numerical results (X) and 
experimental results (circles) [3]. (a) 𝑥 = 7.27 m,  (b) 𝑥 = 7.88 m , 𝑧∗ = (𝑧 − �̅�)/𝐻  and 𝑘∗ =𝑘/(𝑔𝐻); 𝑧∗ = (𝑧 − �̅�)/𝐻 and 𝑈 = 𝑢/ (𝑔𝐻). 

From Figures 12 and 13, it is evident that also in this configuration the vertical distri-
bution of turbulent kinetic energy and undertow are overestimated with respect to the 
experimental measurements. In the buffer layer and in the turbulent core in the bottom 
boundary layer, there is significant production of turbulent kinetic energy, as well as a 
strong variability in it along the vertical direction. The above-mentioned production in 
the turbulent core and in the buffer layer influence the vertical distribution of the turbu-
lent kinetic energy. It is necessary (see Figure 13) to solve the equations of motion in ad-
dition to the turbulent kinetic energy equation in the turbulent core, and also in the buffer 
layer, in order to adequately represent the distribution of the turbulent kinetic energy 
nearer to the seabed. The turbulent kinetic energy equation is solved from 𝑦 = 10, and 
the equations of motion are solved in the buffer layer. 

Figure 14 shows the numerical results obtained with the new turbulence model, in 
which the lower face of the first calculation grid cell is placed at 𝑦 = 10 (Configuration 
WKI). The discretization of the calculation grid cells inside the boundary layer, in addition 
to the boundary conditions, are shown in Figure 4b. 

 
Figure 14. Results 6: minimum, average and maximum water surface elevations in Configuration 
WKI, showing numerical results (solid line) and experimental measurements (circles) [3]. 

In Configuration WKI, the breaking point is well predicted, and the maximum water 
surface elevation is in good agreement with the experimental results. 

Figure 13. Result 5: undertow profiles in Configuration WK, showing numerical results (X) and exper-

imental results (circles) [3]. (a) x = 7.27 m, (b) x = 7.88 m, z∗ = (z− η)/H and k∗ =
√

k/
(

gH
)
;

z∗ = (z− η)/H and U = u/
√(

gH
)
.

From Figures 12 and 13, it is evident that also in this configuration the vertical dis-
tribution of turbulent kinetic energy and undertow are overestimated with respect to the
experimental measurements. In the buffer layer and in the turbulent core in the bottom
boundary layer, there is significant production of turbulent kinetic energy, as well as a
strong variability in it along the vertical direction. The above-mentioned production in the
turbulent core and in the buffer layer influence the vertical distribution of the turbulent
kinetic energy. It is necessary (see Figure 13) to solve the equations of motion in addition to
the turbulent kinetic energy equation in the turbulent core, and also in the buffer layer, in
order to adequately represent the distribution of the turbulent kinetic energy nearer to the
seabed. The turbulent kinetic energy equation is solved from y+ = 10, and the equations
of motion are solved in the buffer layer.

Figure 14 shows the numerical results obtained with the new turbulence model, in
which the lower face of the first calculation grid cell is placed at y+ = 10 (Configuration
WKI). The discretization of the calculation grid cells inside the boundary layer, in addition
to the boundary conditions, are shown in Figure 3b.
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In Configuration WKI, the breaking point is well predicted, and the maximum water
surface elevation is in good agreement with the experimental results.

In Figure 15, the time mean turbulent kinetic energy distribution along the vertical
direction is shown. The first calculation grid cell in the buffer layer produced numerical
results that were in good agreement with the experimental results, as shown in Figure 15.
From Figure 16, it can be seen, moreover, that the time mean undertow profiles are in good
agreement with the experimental profiles at x = 7.27 m; meanwhile, at x = 7.88 m the
velocity at the free surface and at the bottom are slightly overestimated.
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Figure 16. Result 6: undertow profiles in Configuration WKI, showing numerical results (X) and
experimental results (circles) [3]. (a) x = 7.27 m, (b) x = 7.88 m, z∗ = (z− η)/H, and

k∗ =
√

k/
(

gH
)
; z∗ = (z− η)/H and U = u/

√(
gH
)
.

By comparing Figures 15 and 16, it is evident that solving the equations of motion in the
buffer layer and for the turbulent kinetic energy at the border between the viscous sublayer
and the buffer layer allows us to more accurately represent the turbulent phenomena in the
boundary layer. In this way, it is possible to achieve good agreement between the numerical
and experimental results in terms of turbulent kinetic energy and undertow profiles.

In Figure 17a,b, instantaneous wave fields of turbulent kinetic energy and eddy
viscosity at time t = 98.75 s are shown. The greater values of the turbulent kinetic energy
and eddy viscosity are produced on the breaking wave fronts. On these fronts, the WTENO
reconstructions significantly reduce the numerical dissipation of energy of the average
motion, entrusting to the turbulence model the task of dissipating the right quantity of
this energy. From Figure 17b it can be seen that the eddy viscosity is reduced in Zone 3
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(x ∼= 6.5 m− 7.5 m) because the mixing length (Equation (17)) reduces its value in this zone.
Figure 17c,d represent, respectively, an instantaneous velocity field and a zoom of the same
velocity field in which one vector out of every two is shown at the same time, t = 98.75 s.
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Figure 17. Results 6: instantaneous wave fields in Configuration WKI. (a) Turbulent kinetic energy k
contour, (b) eddy viscosity νT contour, (c) velocity fields (one vector out of every two is shown) and
(d) zoom of velocity fields at t = 98.75 s.

6. Conclusions

In this paper, the hydrodynamic and free-surface elevation fields in breaking waves
are simulated by solving the integral and contravariant forms of the three-dimensional
Navier–Stokes equations expressed in a generalized time-dependent curvilinear coordinate
system, in which the vertical coordinate moves by following the free surface.

A new k− l turbulence model in contravariant form is proposed; in this model, the
mixing length, l, is defined as a function of the maximum water surface elevation spatial
variation. A new original numerical scheme is proposed based on three elements of
originality. The first element of originality consists of expressing the Poisson equation
in terms of conserved variables. The second element is to propose a new fifth-order
reconstruction technique of the point values of conserved variables, named in this paper
as WTENO, that allows us to modify the polynomials choice in a dynamic way. The third
element of originality is the use of an exact Riemann solver.

In this paper, it has been demonstrated that the Smagorinsky turbulence model, which
uses a low-order numerical scheme, produces an excess dissipation in kinetic energy of
average motion. The proposed high-order numerical scheme, the new k− l turbulence
model in contravariant formulation (with a mixing length, l, and functions of the spatial
variation of the maximum water surface elevation) and the refinement in the bottom
boundary layer of the gird cells allow us to achieve numerical results that are in good
agreement with respect to the experimental results in terms of the maximum water surface
elevation, the vertical distribution of turbulent kinetic energy, and the undertow.
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