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Introduction: Deep brain stimulation of the subthalamic nucleus (STN-DBS) can

exert relevant e�ects on the voice of patients with Parkinson’s disease (PD). In this

study, we used artificial intelligence to objectively analyze the voices of PD patients

with STN-DBS.

Materials and methods: In a cross-sectional study, we enrolled 108 controls and

101 patients with PD. The cohort of PD was divided into two groups: the first

group included 50 patients with STN-DBS, and the second group included 51

patients receiving the best medical treatment. The voices were clinically evaluated

using the Unified Parkinson’s Disease Rating Scale part-III subitem for voice

(UPDRS-III-v). We recorded and then analyzed voices using specific machine-

learning algorithms. The likelihood ratio (LR) was also calculated as an objective

measure for clinical-instrumental correlations.

Results: Clinically, voice impairment was greater in STN-DBS patients than in

those who received oral treatment. Using machine learning, we objectively and

accurately distinguished between the voices of STN-DBS patients and those under

oral treatments. We also found significant clinical-instrumental correlations since

the greater the LRs, the higher the UPDRS-III-v scores.

Discussion: STN-DBS deteriorates speech in patients with PD, as objectively

demonstrated by machine-learning voice analysis.

KEYWORDS

Parkinson’s disease, voice analysis,machine-learning, deepbrain stimulation, subthalamic

nucleus
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1. Introduction

Patients with Parkinson’s disease (PD) manifest variable
degrees of voice abnormalities characterized by hypophonia,
mono-pitch, and mono-loudness speech, and hypophonic and
hypokinetic articulation. These specific voice impairments have
been collectively identified as hypokinetic dysarthria (1, 2). PD
patients may experience voice disorders from the prodromal phase
of the disease, with speech deteriorating as the disease progresses
(2–6). Accordingly, it is important to investigate voice changes in
PD under pharmacological as well as advanced treatments such as
deep brain stimulation of the subthalamic nucleus (STN-DBS).

DBS is a well-established therapeutic option for advanced-
stage patients with PD (7), as demonstrated by short- and long-
term follow-up studies (7–10). Besides the well-known beneficial
effects of STN-DBS on the cardinal motor symptoms in PD
(i.e., bradykinesia, rigidity, and tremor), the effect of this surgical
procedure on specific axial functions such as voice remains
elusive (7, 11–14). Following STN-DBS procedures, the estimated
prevalence of speech disorders, as a post-surgical side-effect, has
been reported in PD to vary between 1% after 6 months and 70%
at 3 years of follow-up (12, 15–17). Hence, STN-DBS may lead
to a significant worsening of parkinsonian hypokinetic dysarthria,
resulting in a rather different voice abnormality characterized by
a hypophonic voice with a strained and spastic speech mainly
associated with stuttering, as suggested by previous studies in the
field (18). Therefore, DBS-related voice impairments in PD patients
have been identified as DBS-related dysarthria (19).

The complexity of voice as a biological phenomenon, the
heterogeneity of dysarthria in PD, and, finally, the variable
effect of STN-DBS on the voice would therefore require more
advanced techniques, including artificial intelligence that allows the
analysis and dynamic combination of high-dimensional datasets
of voice features (20–22). Machine learning offers a potentially
useful methodology to investigate voice abnormalities, especially
in complex and multifactorial neurologic disorders, including PD
(2, 20, 21, 23, 24).

To date, no study has assessed voice abnormalities in a large
cohort of STN-DBS patients with PD compared to chronically
treated L-Dopa patients with PD through objective procedures
based on machine-learning analysis. Moreover, no study has
correlated the clinical and instrumental assessments of voice in
patients with PD by using machine-learning output measures.
Filling these knowledge gaps would be relevant for the objective
recognition of voice abnormalities in STN-DBS patients with PD.

In the present cross-sectional study, we examined voice
performances in a large cohort of STN-DBS and chronically
treated L-Dopa patients with PD using machine-learning analysis
for automatic classification purposes. Therefore, we compared
voice samples recorded from STN-DBS and chronically treated
L-Dopa patients as well as from healthy subjects (HS), using
standardized perceptual analysis as well as advanced analysis
based on machine-learning procedures. We assessed the sensitivity,
specificity, positive and negative predictive values, and accuracy
of all diagnostic tests and calculated the area under the receiver
operating characteristic (ROC) curves. Finally, by providing an
objective instrumental measure of voice impairment, the likelihood

ratio (LR), for each patient based on machine-learning analysis, we
also assessed possible clinical-instrumental correlations.

2. Materials and methods

2.1. Subjects

This cross-sectional study enrolled 101 patients with PD (61.9
± 7.5 years, range 41–81 years) and 108 patients with HS (60.3
± 10.3 years, range 42–76 years). Participants were progressively
recruited during regular follow-up clinical evaluations in the
outpatient clinic for movement disorders at IRCCS Neuromed
and University Departments and Public Hospitals on behalf of
the “Lazio DBS Study Group.” All participants were native Italian
speakers and non-smokers. None of the participants reported
bilateral/unilateral hearing loss, respiratory disorders, or other non-
neurologic disorders affecting the vocal cords. The participants
provided written informed consent, which was approved by the
institutional ethics committee of the IRCCS Neuromed Institute
(NCT04846413), according to the Declaration of Helsinki.

The clinical diagnosis of PD was made according to the current
standardized clinical criteria of the International Parkinson and
Movement Disorder Society (25). Symptoms and signs of PD
were scored using the Hoehn and Yahr (H&Y) scale and the
Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III) (26).
The clinical (i.e., perceptual) evaluation of speech abnormalities
in PD was achieved by an independent rater using the specific
item (item 3.1) for speech evaluation included in the UPDRS-
III scale (UPDRS-III-v) during the overall motor assessment (26).
In all participants, we excluded cognitive and mood impairments
potentially affecting speech production through the Mini-Mental
State Examination (MMSE) (27) corrected for years of education,
the Beck’s Depression Inventory (BDI) (28), and the Frontal
Assessment Battery (FAB) (29).

The cohort of PD included patients in the mid-to-advanced
phase (H&Y scores > 2) (30) and those who were chronically
treated with L-Dopa. The PD cohort included two separate
subgroups of patients: the first subgroup included 50 STN-DBS
patients (61.6 ± 6.6 years, range 45–75 years), whereas the second
subgroup included 51 patients (62.1 ± 8.3 years, range 41–81
years) chronically treated with the best medical treatment (i.e.,
L-Dopa). To specifically recognize the effect of STN-DBS on
voice in PD, patients were enrolled and assigned to each of the
two subgroups according to the inclusion criteria, attempting to
statistically match the age, gender, H&Y, UPDRS, disease duration,
and the L-Dopa equivalent daily doses (LEDDs) (all measures were
calculated for each patient before the enrollment in the study). All
patients were evaluated clinically and instrumentally 1–2 h after the
administration of their chronic dopaminergic therapy (i.e., in the
ON state). All implanted patients received chronic bilateral non-
directional and non-interleaving STN-DBS with stable treatment
and stimulation parameters for longer than 3 months. Most of
the STN-DBS received bilateral monopolar stimulation (n = 43),
the remaining being treated with bilateral bipolar stimulation
(n = 7). Moreover, most of the patients received DBS at a
frequency higher than 100Hz (n = 35), whereas the remaining
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patients received DBS at a frequency lower than 100Hz (n =

15). Stimulation parameters were set to optimize motor symptoms
and fluctuations (31, 32). DBS pulse width was set at 60 µs
for all STN-DBS patients. All STN-DBS patients were evaluated,
clinically and instrumentally, on stimulation (i.e., when ON DBS)
and on medication. Participant demographic and clinical features
(including the STN-DBS parameters) are reported in Table 1.

2.2. Voice recordings

Voice recordings were performed by asking healthy subjects
and patients to produce a specific vocal task that consisted of the
sustained emission of a close-mid front unrounded vowel/e/for at
least 5 s (2). All audio signals were collected in a quiet and echo-
free room. Voice recordings were recorded by expert neurologists.
All voice samples collected in this study from controls and patients
were recorded using a specific smartphone available on the market,
equipped with a high-definition microphone and a dedicated
application allowing for recording in linear pulse-code modulation
(PCM) format (.wav) at a sampling rate of 44.1 kHz, 16-bit depth,
without compressions or filtering. Participants were asked to hold
the smartphone in front of their face, at ∼30 cm from the mouth,
and then to speak with their usual voice intensity, pitch, and quality
(33) (Figure 1).

2.3. Machine-learning analysis

Specific spectral subtraction techniques, such as multi-band
spectral subtraction, were initially used to remove background
noise and other artifacts from each audio track of the voice sample.
Spectral subtraction is a powerful noise reduction method based
on a “learned” noise profile estimated during speech pauses and
subtracted from the noisy spectrum to enhance speech. Specifically,
we detected the frequency spectrum of the background noise by
selecting specific sections of the audio tracks, including noise
and other artifacts without biological signals (i.e., voice). The
toolbox specifically employed in our analysis was the Izotope RX7
(iZotope, n.d.), which offers fine-tuning capabilities, enabling the
algorithm to prioritize gating-like effects over the “musical noise”
that exacerbates distortion. This procedure allowed us to reduce file
corruption, possibly affecting the following analysis (34, 35).

Then, voice features underwent feature extraction and pre-
processing through the Data Analytics Research and Technology
in Healthcare group’s Voice Analysis Toolbox (DARTH-VAT)
(36). The DARTH-VAT Toolbox is open-source software provided
by MATLAB (MathWorks, USA) that allows the extraction of a
grand total of 345 acoustic features specific to the analysis of
pathological voices. The main domains of extracted features are
jitter, shimmer, HNR, glottal model-based features, empirical mode
decomposition (EMD), entropy, Teager-Kaiser energy operator
(TKEO), pitch period entropy (PPE), recurrence period density
entropy (RPDE), and detrended fluctuation analysis (DFA) (36).
Each domain entails several single-value descriptors, such as
mean or standard deviation, computed as the result of a
moving average on the original signal evolving in time. In T

A
B
L
E
1

D
e
m
o
g
ra
p
h
ic

a
n
d
c
li
n
ic
a
l
fe
a
tu
re
s
o
f
h
e
a
lt
h
y
su

b
je
c
ts

(H
S
),
S
T
N
-D

B
S
a
n
d
L-
D
o
p
a
p
a
ti
e
n
ts
.

A
g
e

(y
e
a
rs
)

W
e
ig
h
t

(k
g
)

H
e
ig
h
t

(c
m
)

B
M
I

D
D

(y
e
a
rs
)

S
T
N
-

D
B
S

(y
e
a
rs
)

L
E
D
D
s

M
M
S
E

B
D
I

F
A
B

H
&
Y

U
P
D
R
S
-

II
I

U
P
D
R
S
-

II
I-
v

D
B
S

fr
e
q
.

(H
z
)

D
B
S

p
u
ls
e

w
id
th

(µ
s)

D
B
S

in
te
n
s.

(m
A
)
d
x

D
B
S

in
te
n
s.

(m
A
)
sn

P
D

ST
N
-D

B
S

61
.6
±
6.
6

74
.8
±

13
.7

16
8.
7
±

9.
6

26
.3
±
4.
4

15
.7
±
6.
2

2.
9
±

5.
2

74
7.
3
±

38
6.
4

28
.0
±
2.
1

9.
6
±

6.
9

14
.5
±
2.
8

2.
7
±

0.
5

20
.6
±

8.
1

2.
5
±

0.
5

13
4.
5
±

41
.1

58
.1
±

9.
7

2.
8
±

1.
5

3.
0
±

1.
3

P
D

L-
D
op

a
62
.1
±
8.
3

72
.5
±

12
.0

17
2.
1
±

8.
3

24
.4
±
3.
1

14
.0
±
4.
5

–
75
8.
3
±

31
7.
6

28
.0
±
2.
7

9.
5
±

4.
0

14
.8
±
2.
5

2.
8
±

0.
4

24
.5
±

14
.7

2.
0
±

0.
6

–
–

–
–

H
S

60
.3
±

10
.3

68
.5
±

10
.6

16
9.
0
±

10
.1

23
.9
±
3.
0

–
–

–
29
.0
±
0.
8

3.
3
±

1.
7

17
.9
±
1.
1

–
–

–
–

–
–

–

D
D
,d

is
ea
se

du
ra
ti
on

;L
E
D
D
s,
L-
D
op

a
eq
ui
va
le
n
t
da
ily

do
se
s;
M
M
SE

,M
in
i-
M
en
ta
l
St
at
e
E
va
lu
at
io
n
;B

D
I,
B
ec
k
In
ve
n
to
ry

Sc
al
e
fo
r
D
ep
re
ss
io
n
;F
A
B
,F

ro
n
ta
l
A
ss
es
sm

en
t
B
at
te
ry
;H

&
Y,

H
oe
hn

an
d
Ya
hr

Sc
al
e
fo
r
as
se
ss
m
en
t
st
ag
e
of

P
D
;H

S,
he
al
th
y
su
bj
ec
ts
;P

D
,

pa
ti
en
ts
w
it
h
P
ar
ki
n
so
n
’s
di
se
as
e;
U
P
D
R
S-
II
I,
U
n
ifi
ed

P
ar
ki
n
so
n
’s
D
is
ea
se

R
at
in
g
Sc
al
e
pa
rt
II
I;
U
P
D
R
S-
II
I-
v,
U
n
ifi
ed

P
ar
ki
n
so
n
’s
D
is
ea
se

R
at
in
g
Sc
al
e
pa
rt
II
I,
vo
ic
e
im

pa
ir
m
en
ts
ub

it
em

;r
es
ul
ts
ar
e
ex
pr
es
se
d
as

av
er
ag
e
±

st
an
da
rd

de
vi
at
io
n
.

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2023.1267360
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Suppa et al. 10.3389/fneur.2023.1267360

FIGURE 1

Experimental design. (A) Recording of voice samples through the high-definition audio recorder embedded in the smartphone; (B) narrow-band

spectrogram of the acoustic voice signal; (C) feature extraction; (D) feature selection; (E) feature classification; (F) the receiver operating

characteristic (ROC) curve analysis; (G) twenty-layer artificial neural network (ANN) for calculating the Likelihood Ratios (LRs).

addition, the DARTH Toolbox also provides additional algorithms,
including SWIPE, that can extract vectors of values relative to
the variation of fundamental frequency (f0) over time, such as
mean, median, standard deviation, minimum, maximum, and
70% trim mean, which is the mean computed, excluding the
15% top and bottom values. Moreover, jitter, shimmer, HNR,
and F0 are selected since they are common feature domains in
the analysis of voice abnormalities in PD patients. Therefore,
DARTH-VAT has been specifically implemented for detecting

voice abnormalities in PD patients, as shown by previous
research (37–39).

Moreover, extracted features underwent feature selection pre-
processing using the correlation-based feature selector (CFS) (40,
41) available as an open-source toolkit in Weka (42, 43). The
optimal subset was chosen with the help of a (non-greedy) Best
First Search method, which involves the selection of the optimal
subset and path via progressive enlargement of the cardinality while
evaluating the factor of merit. The most relevant features selected
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by the CSF were ranked by relevance using the Information Gain
Attribute Evaluation (IGAE) algorithm (44) available as an open-
source toolkit in Weka (40, 41). The IGAE algorithm measures the
information gained concerning the class.

After the pre-processing, the audio features underwent
classification procedures. The classification focused on the 20 most
relevant features, as ranked by the IGAE (23), and streamlined
the data needed for machine-learning purposes (2, 20) (see
Table 2). Given the relatively small dataset considered here, an
SVM with a linear kernel and soft margins was used as a
classifier. The SVM classifier is suitable for small datasets and noisy
data since it allows for reducing the likelihood of “overfitting”.
Then, we applied Platt’s Sequential Minimal Optimization method
to perform the supervised training of voice features (45, 46).
Platt’s method is an algorithm used to train SVMs and solve
their quadratic programming problem. Platt’s method is a fast
methodology based on iteratively solving analytically small sub-
problems of minimization, which only involve two Lagrange
multipliers (22). The SVM was also calibrated using a logistic
regressor to convert its score-like output into probabilistic values
suitable for producing ROC curves. Calibration essentially works
by fitting a probabilistic model to various sub-versions of the
main classifier to cast the observed likelihood of their outputs into
probabilities (47). However, a hyperparameter optimization was
also performed to find the best-performing setup for the SVM.
The main hyperparameters of the SVM are complexity (or C),
which quantifies the amount of penalization for a classification
error within the training set, allowing for softer or harder
margins, and the ridge of the calibrator. The optimization was
performed automatically owing to a look-up table of discrete
values for each parameter, effectively training various versions
of SVM and then posteriorly choosing the best combination
of hyperparameters.

Finally, in order to improve the biological interpretation of our
results by providing automatic binary discriminations among the
three classes of participants (i.e., HS, STN-DBS, and L-Dopa), we
identified the smallest subset of features, which were then included
in further analysis. As reported in the next section of results,
among the most relevant and representative extracted features, we
identified Jitter.F0_TKEO_mean, Shimmer.F0_TKEO_mean, and
HNR_mean. The jitter and shimmer indicate the frequency and
amplitude of micro-instability in vocal fold vibrations, respectively,
and both contribute to rough speech. Conversely, HNR represents
the amount of noise in voice signals. In the case of our analysis,
the Jitter.F0_TKEO_mean and the Shimmer.F0_TKEO_mean were
both calculated as the average of the jitter and the shimmer,
respectively, as computed with the aid of a Teager-Kaiser energy
operator, whereas the HNR_mean was calculated as the average of
the HNR.

Finally, we performed a further machine-learning analysis for
clinical-instrumental correlation purposes after achieving feature
extraction and selection in parallel with the SVM classification
procedures. We used a feed-forward artificial neural network
(ANN) consisting of a 20-neuron input layer, a 10-neuron hidden
layer, and a 1-neuron output layer. Input for ANN consisted of the
first 20 most relevant selected features, which thus matched the
20-neuron input layer. Then, the ANN was trained to calculate a

continuous numerical value (the likelihood ratio, or LR), ranging
from 0 to 1 and reflecting the degree of voice impairment in each
patient with PD (i.e., the closer the LRs are to 1, the higher the
degree of voice impairment). ANN was trained by using the same
selected features used to train the SVM. The experimental paradigm
is also summarized in Figure 1 (22).

2.4. Statistical analysis

The normality of all parameters was assessed using the
Kolmogorov-Smirnov test. The Mann-Whitney U-test was used
to compare demographic and anthropometric parameters in HS,
STN-DBS, and L-Dopa patients. The Mann-Whitney U-test was
also used to compare the UPDRS-III and UPDRS-III-v scores
between STN-DBS and L-Dopa patients. Finally, the Mann–
Whitney U-test was used to compare UPDRS-III, UPDRS-III-v,
and LRs values in STN-DBS patients who received monopolar
or bipolar stimulation as well as in patients who received low
(<100Hz) and high STN-DBS frequencies (>100 Hz).

ROC analyses were performed to identify the optimal
diagnostic cutoff values to discriminate between HS vs. L-Dopa
patients, HS vs. STN-DBS patients, and STN-DBS vs. L-Dopa
patients. We provided detailed values for sensibility, specificity,
positive predictive value (PPV), negative predictive value (NPV),
accuracy, and area under the curve (AUC). Moreover, we showed
the output of the ROC analysis by calculating the Youden index
and its optimal criterion value, the associated criterion.

Spearman’s rank correlation coefficient was used to assess
correlations between clinical scores (including the STN-DBS
parameters) and LR values. A p-value of <0.05 was considered
statistically significant.

3. Results

Demographic and anthropometric parameters were normally
distributed and comparable in HS, STN-DBS, and L-Dopa patients
(all p > 0.05). MMSE scores were comparable among groups (all p
> 0.05). BDI was higher, and FAB was lower in PD patients than
in controls (all p < 0.05). Disease duration, LEDDs, MMSE, BDI,
FAB, H&Y, and UPDRS-III were all similar between STN-DBS and
L-Dopa patients (all p > 0.05) (Table 1).

3.1. Voice impairment in STN-DBS and
L-Dopa patients

According to our results, all PD patients included in our cohort
manifested a variable degree of clinically overt voice impairment
(UPDRS-III subitem voice, UPDRS-III-v ≥ 1). STN-DBS patients
scored higher at UPDRS-III-v than L-Dopa patients (p < 0.01),
suggesting greater voice impairment in the first study group. When
considering only STN-DBS patients, UPDRS-III and UPDRS-III-v
scores were comparable in the patients who received monopolar
or bipolar stimulation (p > 0.05). UPDRS-III was also similar
in the patients who received low (<100Hz) and high STN-DBS
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TABLE 2 Most relevant voice features selected by correlation-based feature selector (CFS) algorithm during the recording of the sustained emission of

vowel/e/in healthy subjects (HS) vs. L-Dopa patients; HS vs. STN-DBS patients; and STN-DBS vs. L-Dopa patients.

Ranking position HS vs. L-Dopa HS vs. STN-DBS STN-DBS vs. L-Dopa

1 DFA (Detrended Fluctuation Analysis) F0s_median HNR_mean

2 Jitter->F0_FM Jitter->F0_FM Jitter->F0_abs0th_perturb

3 mean_0th delta Jitter->F0_TKEO_mean Jitter->F0_TKEO_prc5

4 mean_10th delta mean_MFCC_10th coef Jitter->F0range_5_95_perc

5 mean_11th delta-delta mean_MFCC_11th coef mean_1st delta delta

6 mean_12th delta mean_MFCC_1st coef mean_delta delta 0th

7 mean_12th delta-delta mean_MFCC_4th coef mean_MFCC_4th coef

8 mean_1st delta delta mean_MFCC_6th coef NHR_mean

9 mean_2nd delta-delta mean_MFCC_7th coef Shimmer->F0_abs_dif

10 mean_4th delta-delta PPE (Pitch Period Entropy) Shimmer->F0_abs0th_perturb

11 mean_5th delta-delta Shimmer->F0_abs0th_perturb Shimmer->F0_FM

12 mean_MFCC_3rd coef Shimmer->F0_FM Shimmer->F0_PQ11_classical_Baken

13 mean_MFCC_6th coef Shimmer->F0_TKEO_mean Shimmer->F0_TKEO_mean

14 mean_MFCC_7th coef Shimmer->F0_TKEO_prc75 Shimmer->F0_TKEO_prc5

15 NHR_mean Shimmer->F0_TKEO_prc95 Shimmer->F0_TKEO_std

16 NHR_std std_MFCC_10th coef std_MFCC_10th coef

17 Shimmer->F0_FM std_MFCC_11th coef std_MFCC_12th coef

18 Shimmer->F0_PQ11_classical_Baken std_MFCC_12th coef std_MFCC_4th coef

19 Shimmer->F0_PQ5_classical_Baken – std_MFCC_5th coef

20 Shimmer->F0_TKEO_prc25 – std_MFCC_6th coef

frequencies (>100Hz) (p = 0.53). Conversely, the patients who
received STN-DBS at a frequency of >100Hz manifested higher
UPDRS-III-v scores than patients treated with a frequency of
<100Hz (p < 0.05).

Concerning machine-learning analysis, voice samples collected
from eight patients with PD (3 STN-DBS and 5 L-Dopa patients)
were excluded from further analysis due to unexpected file
corruption.When discriminating betweenHS and L-Dopa patients,
the artificial classifier based on SVM allowed us to achieve a
significant performance on our test. Specifically, when comparing
the 20 most relevant selected features extracted from the sustained
emission of the vowel, the ROC curve analyses identified an optimal
diagnostic threshold value of 0.39 (associated criterion) when
applying discretization and 10-fold cross-validation (Youden index
= 0.63). Using this cutoff value, the performance of our diagnostic
test was as follows: sensitivity = 80.0%, specificity = 78.9%, PPV
= 78.4%, NPV = 80.4%, accuracy = 79.4%, and AUC = 0.852
(Figure 2A; Table 3).

When comparing HS and STN-DBS patients using the
SVM, we achieved a significant diagnostic performance of our
test, identifying an optimal diagnostic threshold value of 0.82
(associated criterion) when applying discretization and 10-fold
cross-validation (Youden index = 0.83) to the 20 most relevant
voice features. Using this cutoff value, we obtained the following:
sensitivity = 88.6%, specificity = 95.8%, PPV = 95.1%, NPV =

90.2%, accuracy= 92.4%, and AUC= 0.874 (Figure 2B; Table 3).

When classifying STN-DBS and L-Dopa patients, the SVM
applied to the 20 most relevant selected features extracted from the
sustained emission of the vowel identified an optimal diagnostic
threshold value of 0.51 (associated criterion) when applying
discretization and 10-fold cross-validation (Youden index = 0.74).
Using this cutoff value, the performance of our diagnostic test was
consistent, as suggested by the following values: sensitivity= 85.4%,
specificity = 88.2%, PPV = 85.4%, NPV = 88.2%, accuracy =

87.0%, and AUC= 0.874 (Figure 2C; Table 3).
Concerning the analysis of binary discriminations between

the three groups of classes (i.e., HS, STN-DBS, and L-Dopa),
we identified Jitter.F0_TKEO_mean, Shimmer.F0_TKEO_mean,
and HNR_mean, among the most relevant and representative
extracted features.We achieved the following results for the L-Dopa
vs. HS classification: sensitivity = 67.3%, specificity = 57.1%,
PPV = 81.5%, NPV = 38.5%, and accuracy = 64.7%. Moreover,
concerning the DBS vs. L-Dopa classification, we obtained the
following results: sensitivity = 78%, specificity = 72.9%, PPV
= 66.7%, NPV = 82.7%, and accuracy = 75%. Finally, for the
DBS vs. HS classification, we reported the following significant
statistic output: sensitivity = 78.3%, specificity = 75.7%, PPV
= 88.9%, NPV = 58.3%, and accuracy = 77.5%. The output
of this further analysis is visually displayed in a 3D scatter
plot (Figure 3).

The Mann-Whitney U-test showed comparable LR scores
in STN-DBS patients receiving bilateral monopolar or bipolar
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FIGURE 2

The receiver operating characteristic (ROC) curves were calculated through the support vector machine (SVM) classifier in healthy subjects (HS) and

STN-DBS or L-Dopa patients with Parkinson’s disease (PD). (A) HS vs. L-Dopa patients; (B) HS vs. STN-DBS patients; (C) STN-DBS vs. L-Dopa patients.

AUC: area under the curve.

stimulation (p > 0.05), as well as in the patients who received
low (<100Hz) and high (>100Hz) frequencies of STN-DBS
(p > 0.05).

3.2. Correlation analysis

In L-Dopa patients, we found a positive correlation between
UPDRS-III and UPDRS-III-v scores (r = 0.40, p < 0.01). A similar
positive correlation between UPDRS-III and UPDRS-III-v (r =

0.48, p < 0.01) was also found when considering the cohort of
STN-DBS patients. These findings demonstrate that the greater
the disease severity, the higher the impairment of voice in L-Dopa
patients as well as in STN-DBS. We also found that UPDRS-III and
UPDRS-III-v scores did not correlate with years from the STN-DBS
implant (r = 0.09, p = 0.58; r = 0.08, p = 0.54, respectively), the
frequency (r = 0.02, p = 0.92; r = 0.14, p = 0.37, respectively),

and the intensity of STN-DBS (mean value between the right and
left STN-DBS electrodes) (r = 0.12, p = 0.45; r = −0.18, p =

0.25, respectively).
Concerningmachine-learning analysis, we found that LR scores

collected in L-Dopa patients positively correlated with UPDRS-
III (r = 0.31, p < 0.05) and UPDRS-III-v (r = 0.41, p < 0.01)
values. Moreover, when considering STN-DBS patients, we found a
correlation between LR scores and UPDRS-III (r = 0.51, p < 0.01)
as well as UPDRS-III-v values (r= 0.33, p< 0.05). Accordingly, our
analysis showed that the higher the LR values calculated bymachine
learning, the greater the severity of motor (UPDRS-III) as well
as voice (UPDRS-III-v) symptoms in both groups of PD patients
(i.e., L-Dopa and STN-DBS). Finally, LR scores also correlated with
the intensity (mean value between the right and left STN-DBS
electrodes) (r= 0.33, p< 0.05) but not with the years from the STN-
DBS implant (r = 0.06, p > 0.05) or the frequency of STN-DBS
(r = 0.08, p > 0.05) (Figure 4).

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2023.1267360
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Suppa et al. 10.3389/fneur.2023.1267360

TABLE 3 Performance of the machine learning algorithm.

Comparisons Instances Cross
validation

Associated
criterion

Youden
index

Se
(%)

Sp
(%)

PPV
(%)

NPV
(%)

Acc
(%)

AUC

HS vs. L-Dopa 154 10 folds 0.39 0.63 80.0 78.9 78.4 80.4 79.4 0.852

HS vs. STN-DBS 155 10 folds 0.82 0.83 88.6 95.8 95.1 90.2 92.4 0.931

STN-DBS vs.
L-Dopa

93 10 folds 0.51 0.74 85.4 88.2 85.4 88.2 87.0 0.874

Performance of Support VectorMachine (SVM) linear classifier elaborating the 20 most relevant selected features during the sustained emission of the vowel/e/for three independent conditions:

(1) Healthy subjects (HS) vs. L-Dopa patients; (2) HS vs. STN-DBS patients; (3) STN-DBS patients vs. L-Dopa patients. Selected features refer to the number of features able to obtain the best

results; instances refer to the number of subjects considered in each comparison; cross validation refers to standardized validation procedures (see Methods for details). Se, sensitivity; Sp,

specificity; PPV, positive predictive value; NPV, negative predictive value; Acc, accuracy; AUC, area under the curve.

FIGURE 3

Three-D scatter plot relative to the discrimination between healthy

subjects (HS), L-Dopa, and STN-DBS patients, achieved by using the

three most relevant features (i.e., jitter, shimmer, harmonic to noise

ratio—HNR) from those selected by machine-learning analysis. Note

that the combined measurement of jitter, shimmer, and HNR

allowed the discrimination of STN-DBS patients from HS and

L-Dopa patients.

4. Discussion

The present study provided convergent data from perceptive
(i.e., clinical) as well as instrumental analysis (i.e., machine-
learning), showing the effect of STN-DBS on voice in PD patients.
Indeed, STN-DBS significantly worsened dysarthria in patients
with PD, leading to DBS-related dysarthria. Supporting this
conclusion, we found significant clinical-instrumental correlations
between machine-learning output measures (LRs) and the clinical
assessment of voice impairment (UPDRS-III-v). Our study,
therefore, indicates that machine-learning analysis is a reliable
tool to assess voice abnormalities objectively in STN-DBS patients
with PD.

The strengths of the study include the large sample of patients
and their rigorous selection based on comparable demographic,
anthropometric, and clinical parameters among groups. All
patients were assessed clinically and instrumentally when ON
L-Dopa. STN-DBS patients were clinically and instrumentally
assessed when ON DBS and ON L-Dopa, with their chronic
stimulation parameters (i.e., polarity, frequency, and intensity)

based on efficacy and safety on motor and non-motor symptoms,
according to the best clinical practice (48, 49). The comparable
LEDDs in STN-DBS and L-Dopa patients allowed us to exclude
confounding factors due to dopaminergic stimulation when
comparing implanted and not-implanted PD patients. The
specific vocal task (i.e., sustained emission of the vowel/e/)
was selected since it represents a language- and culture-free
vocal task, according to previous reports (20, 21, 33, 50). All
corrupted vocal samples were excluded from the analysis to avoid
confounding factors due to non-biologic audio signals. Finally,
our machine-learning analysis included the RASTA filtering
technique, which allowed us to reduce the irrelevant and potentially
misleading information added to the signal by the background
noise or electromagnetic interference of the implantable pulse
generator (33).

4.1. Clinical assessment of voice

The clinical observation that all patients manifested a certain
degree of voice impairment (UPDRS-III-v ≥ 1) is consistent
with the estimated prevalence of hypokinetic dysarthria, reaching
90% of the global PD population in the advanced stages of
the disease (1, 4). Since our patients manifested higher BDI
and lower FAB scores than controls, it might be argued that
hypokinetic dysarthria also reflected a mild decline in mood and/or
frontal functions. However, STN-DBS and L-Dopa patients were
characterized by comparable overall disability (H&Y scores) and
disease severity (UPDRS-III values), as well as BDI and FAB
scores. The clinical observation that STN-DBS patients showed a
higher degree of voice impairment (i.e., UPDRS-III-v) than L-Dopa
patients indicates a more severe dysarthria in STN-DBS patients,
in line with previous reports (7, 15–17, 51–54). Previous studies
indeed reported prominent voice impairments characterized by a
harsh, breathy, strained voice, hypernasality, imprecise consonant
emission, speech rhythm disturbances, stammering, and stuttering
in STN-DBS patients (13, 14, 53, 55). We also found a significant
correlation between voice impairment (UPDRS-III-v scores) and
overall disease severity (UPDRS-III scores), both in patients
treated with STN-DBS and in those under L-Dopa, in line with
previous observations (2, 13). Finally, concerning the specific STN-
DBS parameters, we found that voice prominently deteriorated
in patients receiving a higher (>100Hz) rather than a lower
frequency (<100Hz) of STN-DBS. This finding t fully agrees
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FIGURE 4

Clinical and instrumental analysis. LR scores recorded in STN-DBS

patients significantly correlate with the UPDRS-III (A) and

UPDRS-III-v (B). Also, the LR scores analyzed in STN-DBS patients

significantly correlate with the STN-DBS intensity (mean value

between the right and left STN-DBS electrodes) (C).

with previous observations (13, 14, 31, 56), which outlined the
well-known detrimental effect of high-frequency (>100Hz) STN-
DBS on phonatory and articulatory aspects of speech production.

It is posited that high-frequency (>100Hz) STN-DBS severely
affects laryngeal coordination due to the current spreading to
contiguous brain structures (57). Overall, our clinical assessment
showed that STN-DBS patients manifest a significant worsening
of dysarthria compared with those who received only L-Dopa
therapy (17, 58).

4.2. Machine-learning analysis of voice

The accuracy achieved in discriminating L-Dopa patients
from HS confirmed and expanded a recent observation from
our group (2), showing that voice is altered in advanced-
stage patients with PD under chronic L-Dopa treatment. This
observation receives further support from the significant
correlation we found between the instrumental scores
(i.e., LRs) and the clinical impairment of voice (UPDRS-
III-v scores) as well as motor symptoms (UPDRS-III
scores) (2).

Machine learning achieved robust accuracy (92.4%) in the
comparison between STN-DBS patients and controls, and the
performance of the algorithm was significantly higher than that
observed in the discrimination between controls and L-Dopa
patients (79.4%). Moreover, machine learning achieved consistent
accuracy in the comparison between STN-DBS and L-Dopa
patients (87%). Again, the severity of motor (UPDRS-III) and
voice (UPDRS-III-v) impairment significantly correlated with
the instrumental scores (i.e., LRs) provided by the algorithm.
Overall, these findings objectively demonstrate a significant
worsening of voice in STN-DBS patients. Concerning the specific
output of our machine-learning analysis in PD, it is worth
noting that, when discriminating between STN-DBS and L-Dopa
patients and, finally, healthy controls, the 20 most relevant
features selected by our classifier included those reported in
previous reports on spectral analysis, such as jitter, shimmer,
HNR, and fundamental frequency (F0) (16, 53, 58). Further
relevant biological information came from our final machine
learning analysis concerning the most relevant voice features
allowing discrimination among STN-DBS and L-Dopa patients
and healthy controls. We demonstrated that the combination of
only three independent voice features (Jitter.F0_TKEO_mean,
Shimmer.F0_TKEO_mean, and the HNR_mean) allowed
discrimination among the three groups of participants. Indeed,
we found that jitter (i.e., the Jitter.F0_TKEO_mean) and
shimmer (i.e., the Shimmer.F0_TKEO_mean) were both lower
in HS than in L-Dopa and STN-DBS patients, whereas HNR
(i.e., the HNR_mean) was higher in HS than in L-Dopa and
STN-DBS patients. Jitter and shimmer indicate the frequency
and amplitude of micro-instability in vocal fold vibrations,
respectively, and both contribute to rough speech. Conversely,
HNR represents the amount of noise in voice signals. Hence,
we conclude that L-Dopa and STN-DBS patients are mostly
characterized by abnormally rough and noisy speech compared
with healthy controls. Overall, we confirm that jitter, shimmer,
and HNR are very common domains in voice analysis in PD,
allowing us to objectively recognize dysarthria in STN-DBS and
L-Dopa patients.
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4.3. E�ect of STN-DBS on voice in PD:
putative mechanisms

The prominent voice abnormalities observed in STN-DBS
patients may reflect several mechanisms.We have recently reported
that L-Dopa may improve, even though it does not restore
dysarthria in PD (2). Following STN-DBS procedures, patients
experience a significant reduction of LEDDs by ∼50% (59),
as a result of relevant improvements in motor and non-motor
symptoms (60, 61). If not given the STN-DBS procedure, patients
would have probably required at least twice the dose of L-
dopa. Accordingly, following STN-DBS, our patients would be
characterized by prominent voice changes simply because of
decreased LEDDs. However, we did not examine voice in STN-
DBS patients after a further increase of LEDDs; both implanted and
non-implanted subgroups received the best medical treatment and
had comparable disease stages, severity, and duration, thus making
the hypothesis of suboptimal LEDDs rather unlikely. Alternatively,
a mechanism for explaining the STN-DBS-related worsening of
dysarthria in PD would imply a specific pathophysiological effect
of electric stimulation on target neuronal populations. The DBS
implanted in the STN may activate antidromically axons of the
hyperdirect pathway (i.e., cortico-subthalamic fibers), which in
turn may lead to abnormal activation of cortical areas involved
in voice production, thus leading to stuttering and spastic speech
(16, 19, 53, 62–64). Another reasonable mechanism would imply
the spread of current from STN to contiguous brain structures
owing to horizontal propagation of the electric field and the
related volume of tissue activation (VTA) (65). Accordingly,
STN-DBS would deteriorate voice in PD owing to the spread
of the VTA to the descending corticobulbar and corticospinal
tracts (53, 54, 58, 66). Moreover, an additional mechanism would
imply the propagation of VTA to ascending fibers traveling in
the cerebellothalamic and pallid-thalamic radiation, including
those in the adjacent medial Zona Incerta, Hassler’s pre-lemniscal
radiation, and Forel’s prerubral field or H-field (16, 17). Finally,
an alternative hypothesis of DBS-related dysarthria would imply
the lead location of DBS within the STN in our PD patients, as
suggested by previous reports showing differential motor outcomes
following the stimulation of the posterolateral/dorsomedial portion
of the STN (67). Although our study lacks the neuroimaging
reconstruction of electrode position and VTA for each patient, the
correlation we found between the intensity used for STN-DBS and
LRs values (i.e., the higher the STN-DBS intensity, the greater the
voice impairment) provides support to the hypothesis of STN-DBS
deleterious effect on voice in PD as a result of VTA propagation to
contiguous brain structures (12, 15, 17). Accordingly, we speculate
that STN-DBS deteriorates voice in PD through an abnormal
engagement of specific brain structures included in the human
phonological loop (68). The phonological loop is a complex cortico-
subcortical network that mediates speech planning, programming,
and articulation and includes regions such as the inferior frontal
gyrus, supplementary motor area, primary somatosensory cortex,
superior temporal gyrus, and inferior parietal lobule (69, 70). The
phonological loop also includes subcortical regions, such as the
striatum (i.e., the putamen) and interconnected basal ganglia nuclei
(69). The cortical output of the phonological loop is the laryngeal

primary motor cortex and its descending projections directed
to alpha-motoneurons in the brainstem structure responsible for
speech articulation, such as the nucleus ambiguous (69). In patients
with PD and hypokinetic dysarthria, previous neuroimaging studies
indeed reported abnormal activation of cortical and subcortical
areas included in the phonological loop, such as the supplementary
motor area, inferior lateral premotor cortex, and putamen. We,
therefore, conjecture that STN-DBS may deteriorate dysarthria in
patients with PD by degrading the activity of the phonological loop,
a hypothesis that requires further investigation in future studies.

4.4. Limitations

When interpreting our results, several limitations should be
considered. We did not record vocal samples before and after
surgery or examine patients in a pharmacological OFF state or
with the stimulator turned off (OFF DBS). Hence, our results
do not fully explain the specific interaction of STN-DBS with
dopaminergic stimulation and their combined effect on the voice
in PD. This will be the topic of a future study. Moreover, the
variable timing of observation after surgery (2.9 ± 5.2 years)
would not affect the overall interpretation of our findings since
we found no correlation between UPDRS-III-v scores as well
as LRs and years from the STN-DBS implant. Our artificial
intelligence could not discriminate between various components
of DBS-related dysarthria (i.e., spastic and hypokinetic) in patients
with PD during the analysis. Thus, this will be the topic of a
future study. Furthermore, in the absence of neuroimaging data
allowing the reconstruction of electrode position within the STN
and the resulting VTA for each patient, our new pathophysiological
interpretation based on STN-DBS interference on the human
phonological loop remains rather speculative. Also, we recognize
that a speech task based on the sustained emission of a vowel
would be judged as not sufficient for analyzing speech production
thoroughly and that short language-specific sentences based on
various phonological features would provide additional results.
However, as demonstrated in our previous studies, vowel emission
can provide diagnostic accuracies similar to those achieved bymore
detailed speech tasks, including the reading of sentences (2, 71, 72).
Moreover, the vowel emission gives the advantage of a language-
and culture-free speech task that is useful for cohorts of advanced-
stage PD patients (20, 33). Hence, we believe that sustained vowel
emission represents a useful task for interpreting speech-related
abnormalities in STN-DBS patients.

5. Conclusions

We here report the first machine learning study of voice
in a homogeneous and clinically well-characterized cohort of
PD patients and provide instrumental evidence of significant
worsening of dysarthria in STN-DBS patients, thus leading
to DBS-related dysarthria. Owing to an accurate methodology
based on a cross-sectional design, our findings demonstrate that
STN-DBS exerts a relevant impact on dysarthria, particularly
when given at high frequency and intensity of stimulation.
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Our observations in PD can pave the way for new approaches
based on machine-learning analysis of voice associated with
current steering technology or adaptive stimulation to optimize
the overall management of motor symptoms and fluctuations
without worsening dysarthria in STN-DBS patients (65, 73, 74).
Future studies based on a comparative analysis between vowel
emission and short language-specific sentences would also be
of help in clarifying the pathophysiologic underpinnings of
DBS-related dysarthria.
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