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ABSTRACT  
In this paper, we describe the geohazard-related elements of the Eastern Tyrrhenian Sea 
continental margin, situated between the 40° and 41° North latitude. These features were 
recognised principally through morphological analysis. The investigation utilized medium – 
and high-resolution digital models of the submarine landscape, produced within the 
framework of the Magic project (Marine Geohazard along Italian Coasts), and primarily 
focusing on the bathymetric range of 50–700 meters. The surveyed area encompasses a 
recently formed continental margin, which connects the internal segments of the Apennine 
fold-and-thrust belt, verging NE, to the Tyrrhenian Sea bathyal plain, a 3000-m-deep back-arc 
basin that has developed since the Middle-Late Miocene. Several classes of hazard-related 
elements have been identified offshore, primarily associated with high-gradient slopes and a 
large number of volcanic edifices and banks. These include canyon systems, erosive scarps, 
landslide complexes, fault – and volcanic-related features, such as the products of the volcanic 
edifices instability, which claim to varying degrees of geo-hazard. Additionally, bedforms, fluid 
seepages and creeping phenomena in the prodelta slopes suggest high morpho-tectonic and 
environmental dynamics. 

Highlights  

. This article reports on the thematic maps developed along the Lazio – Campania offshore 
(Central-eastern Tyrrhenian Sea, Italy) within the framework of the Magic Project, based on 
geomorphological analysis of the HR Digital Elevation Model of the seafloor.

. Several classes of hazard-related elements have been identified offshore, mainly associated 
with high-gradient slopes, volcanic activity and intense morphodynamic processes.

. The entire suite of maps created in the context of the Magic Project serves as a valuable base 
of knowledge, extending to the national scale and benchmarks for future monitoring of 
critical sites and geo-hazard-related features, as well as for maritime spatial planning actions.
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1. Introduction

The article illustrates the maps of geohazard-related 
features offshore of the Pontine Islands, Gulf of Naples 
and Gulf of Salerno. These maps were produced 
between 2007 and 2013 within the framework of the 
Magic project (Marine Geohazard along Italian 
Coasts), a nationally coordinated venture that led to 

examining approximately 100,000 km2 of seafloor 
deeper than – 50 m around the Italian Peninsula 
(Chiocci et al., 2021). The features were derived 
from the analysis of submarine Digital Elevation 
Models (DEMs) and primarily rely on the morpho
logical expression of the seafloor and shallow sub-bot
tom geo-morphological processes and events, 
regardless of their timing.
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Over the last decades, relevant advances in marine 
geohazard knowledge have been achieved primarily 
through large-scale, high-resolution multibeam bathy
metry and geo-referenced mapping of hazard-related 
features. Pioneering studies on submarine landslides 
(Huhnerbach and Masson, 2004; Urgeles & Camerlen
ghi, 2013 and references therein), paved the way for 
research on marine geohazard based on Multibeam 
echosounders (MBES) surveys. These surveys have 
proven indispensable for coastal management and 
risk assessment (Chiocci et al., 2011) and strategic 
planning for marine infrastructure upgrading (pipe
lines, cables, harbor breakwaters etc.). Conducting 
such surveys in a repeated mode over time (4D) 
(Kelner et al., 2016 among many others), would be 
particularly appropriated in areas where seabed moni
toring actions are advisable, e.g. areas with ongoing 
volcanic and seismic activity (De Natale et al., 2017), 
recurrent gravitational instability, erosional processes 
(de Alteriis et al., 2010; Ferrando et al., 2021), and 
multiple threats from natural and anthropogenic 
stressors (Budillon et al., 2022a, 2022b; Sprovieri 
et al., 2022).

The Main Maps present two levels of interpret
ation: (i) the Physiographic Domains and (ii) the Mor
phological Units and Morpho-bathymetric Elements 
(Sheets 1–5), at approximately 1:325,000 and 
1:85,000 scales, respectively.

2. Study area: the geology of Ventotene and 
Palmarola basins, Gaeta, Naples, and 
Salerno gulfs

The continental margin off the Lazio-Campania 
regions is located in the central-eastern Tyrrhenian 
Sea and exhibits typical characteristics of an exten
sional domain associated with the geodynamic evol
ution of a back-arc basin: (i) widespread normal 
faulting (Figure 1), (ii) high heat flow rates, (iii) 
large volumes of ignimbrite formations (Malinverno 
& Ryan, 1986; Della Vedova et al., 2001; Bellucci 
et al., 2006) and (iv) high subsidence rates in the basi
nal domains (Milia & Torrente, 2007). During Neo
gene times, the Tyrrhenian side of the Southern 
Apennines experienced the effects of the eastward 
migration of the W-dipping subduction zone 
(Patacca, & Scandone, 2007). Since the Upper Mio
cene, the migration of the accretionary prism led to 
the extension in the back-arc area, resulting in the 
onset of the Tyrrhenian Basin (Doglioni, 1991) and, 
since Pliocene, volcanic activity. Initially, an E-W- 
oriented rifting episode created major Apennine nor
mal faults and structures, which are now poorly 
traceable due to subsequent tectonic events over
printing (Caiazzo et al., 2006), in the Gaeta Gulf 
and Campania Plain (Milia et al., 2013). Since 
Upper Pliocene - Early Pleistocene, the tectonic 

regime present in this sector of the chain is of the 
extensional type towards ESE, approximately. It is 
expressed through the development of WNW-ESE 
faults with left transtensive kinematics, linked to the 
opening phases of the Tyrrhenian Sea and the con
temporary migration of the Calabrian Arc towards 
the ESE (Casciello et al., 2006; Conti et al., 2017; 
Milia et al., 2013). The combined displacement of 
these structures shaped the physiography of the cen
tral-eastern Tyrrhenian margin, characterized by 
strongly subsiding half-grabens and uplifting inter
posed ridges. This geological context gave rise to sev
eral intraslope basins (Palmarola and Ventotene 
basins, Gaeta, Naples and Salerno Gulfs), bounded 
by steep escarpments (Pontine escarpment, Amalfi 
escarpment) and minor seamounts (Figure 1) 
(Cuffaro et al., 2016; Marani & Gamberi, 2004; 
Milia & Torrente, 1999; Misuraca et al., 2018; Tor
rente & Milia, 2013; Zitellini et al., 1984). Epi – and 
volcani-clastic deposits, locally reaching 3000 ms 
(two-way travel time, TWTT) in thickness, are 
accommodated in the morpho-structural depressions, 
(Mariani & Prato, 1988). The strike-slip kinematics 
along WNW-ESE oriented lineaments has been 
ascribed to the disjunction between Southern Apen
nines and the Calabrian arc (Knott & Turco, 1991; 
Doglioni et al., 1996) or, in the view of a broader geo
dynamic context, to the development of a Subduc
tion-Transform-Edge-Propagator fault along the 
northern margin of the Ionian slab (Milia et al., 
2017). Starting from Middle-Upper Pleistocene, a 
NW-SW oriented extentional regime is established, 
still acting, with the development of NW-SE striking 
normal faults, dipping toward the Tyrrhenian Sea 
(Caiazzo et al., 2006; Casciello et al., 2006).

Overall, the area is characterized by widespread 
intense and long-lasting magmatic and volcanic activity, 
as recorded by the products of the Pontine Archipelago, 
Campi Flegrei volcanic field, Phlegrean Islands, Mt. 
Somma-Vesuvius and Mt. Roccamonfina. Additionally, 
buried or submerged Plio-Pleistocene volcanic edifices 
occur on the continental margin (Torrente & Milia, 
2013; Cuffaro et al., 2016; Misuraca et al., 2018; Conte 
et al., 2020a). The western group of the Pontine Islands 
records the oldest volcanic activity (4.2 Ma) in the study 
area, characterized by orogenic calc-alkaline rhyolites 
(Peccerillo, 2005; Conte et al., 2016), whereas the Phle
grean Islands and Mt. Somma-Vesuvius resulted from 
the most recent volcanic activity. In the Gulf of Naples, 
the Campanian Grey Tuff (CGT) and Neapolitan Yellow 
Tuff (NYT), aged 39 kyr (De Vivo et al., 2001) and 15 kyr 
(Deino et al., 2004), respectively.

3. Methods

All 71 maps produced within the scope of the Magic 
Project were drafted using consistent interpretative 
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and cartographic standards (Chiocci et al., 2021), 
including those presented in this study (Main Maps). 
These standards encompassed mapping criteria, legend, 
partitioning of mapped elements into homogeneous 
layers and the software employed (Casalbore et al., 
2024; De Falco et al., 2024; Morelli et al., 2024). The 
geomorphic elements were primarily derived from the 
analysis of high-resolution digital terrain models 
(DTMs), with grid cell sizes ranging from 10 × 10 m 
in the shallowest to 50 × 50 m in the deepest sectors 
and were obtained from the MBES dataset acquired 
in 1997–2007-time span (Chiocci et al., 2021). 
Additionally, seismic line interpretations were used to 
support the analysis at targeted sites.

The legend for the Physiographic Domain layer is 
included in the overview map, whereas the legend of 
the Morphological Units and Morpho-bathymetric 
Elements map is presented separately (Supplemental 
maps).

4. Maps of morphological units and 
morpho-bathymetric elements

4.1. Western Pontine Islands (MaGIC sheet 5)

The Sheet 5 ‘Western Pontine Islands’ is located on 
the southern sector of the Lazio continental margin 
(central Tyrrhenian Sea), off the Circeo Promontory, 

and includes the western islands of the Pontine Archi
pelago (Ponza, Palmarola and Zannone) and minor 
submerged volcanic edifices (Main Maps, Sheet n. 5). 
The three islands are located at the summit of a mor
pho-structural high, mainly elongated in the NE-SW 
(the Ponza-Zannone high) and NW-SE direction 
(the Ponza-Palmarola high). The Ponza-Zannone 
high separates the Palmarola and Ventotene intra- 
slope basins, which have undergone high-rate subsi
dence during the Plio-Pleistocene (Zitellini et al., 
1984). The western islands of the Pontine Archipelago 
are mostly composed of volcanic units, rhyolites and 
trachytes, emplaced during the Plio-Pleistocene 
(Conte et al., 2020a and references therein). The volca
nic activity ceased approximately 0.9 Ma ago with the 
emplacement of trachytic products in the southern 
sector of Ponza Island (Conte & Dolfi, 2002).

The three islands are surrounded by a narrow shelf 
with varying widths (minimum width of 1.5 km south 
to Ponza Island, maximum width up to 8 km between 
Ponza and Palmarola), mainly controlled by the 
offshoots of the volcanic bedrock in the subsurface, 
and bounded by a well-defined shelf break, located 
between – 95 and – 160 m. On the shelf, the seafloor 
morphology is highly irregular due to the presence 
of several rock outcrops are close to the coasts and 
are composed of Plio-Pleistocene volcanic units 
(Chiocci & Martorelli, 2018). The limited 

Figure 1. Bathymetry (from IAMC-CNR, now ISMAR CNR, and Emodnet dataset; isobath in metres), main structural lineaments and 
volcanic edifices of the Lazio-Campania continental margin. The isochrons (s, TWT) of the acoustic basement and structural linea
ments have been compiled according to Bigi et al. (1992), Cuffaro et al. (2016), Conti et al. (2017) and Milia et al. (2013, 2017). NBG, 
Northern Gaeta Basin; CGB, Central Gaeta Basin; SGB, Southern Gaeta Basin; GoN, Gulf of Naples; GoS, Gulf of Salerno; ZI, Zannone 
Island; VB, Ventotene Basin; PB, Palmarola Basin; PaB: Paestum Basin; AE, Amalfi Escarpment; CC, Cuma Canyon; MC, Magnaghi 
Canyon; DC, Dohrn Canyon.
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accommodation above the volcanic bedrock ham
pered sizable sedimentation in the inner shelf. Con
versely, a moderate-thick sediment prism formed 
close to the shelf break (i.e. the western Pontine sub
marine depositional terrace; Chiocci & Orlando, 
2004; Casalbore et al., 2017); it represents an infralit
toral prograding wedge formed during the LGM 
period (Chiocci & Martorelli, 2018).

The outer shelf/shelf-break sector is locally charac
terized by slope instability with two main submarine 
slides located south of Ponza Island, close to Punta 
La Guardia, and several gullies and canyons mostly 
located along the shelf break of the southern sector. 
Moreover, offshore Zannone Island five peculiar 
giant depressions (max. 0.5 km2), with complex 
shapes, are bounded by 1–20 m-high steep 

escarpments (Figure 2). These giant depressions rep
resent the morphological expression of hydrothermal 
emissions, associated with a recently discovered shal
low-water hydrothermal field (Martorelli et al., 
2016), in which the major depression is the Zannone 
Giant Pockmark, characterized by several active 
vents (Ingrassia et al., 2015) and by mineralization 
and alteration products (Conte et al., 2020b).

The continental slope can be subdivided into two 
main sectors: 

. the slopes facing the Palmarola and Ventotene 
basins are generally characterized by a regular mor
phology and gentle slope gradients; here, medium- 
size landslides scars and deposits along the flanks of 
the Palmarola intraslope ridges have been recently 

Figure 2. (a) Shaded relief map of the shelf and upper slope off the Zannone island, where rocky outcrops, slope channels and 
pockmarks are present; (b) 3-d image of Zannone Giant Pockmark (location in Figure 2a; vertical exaggeration 5x), a large seafloor 
depression characterized by an irregular seafloor (Ingrassia et al., 2015), where minor pockmarks are also present; (c) bathymetric 
profile (location in Figure 2b, dashed black line; vertical exaggeration 5x) across the Zannone Giant Pockmark.
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described, likely controlled by slope gradients and 
tectonic structures (Casalbore et al., 2016a).

. the slope facing the Vavilov Basin that is pervasively 
affected by erosive-instability processes, in response 
to high slope gradients (locally exceeding 30°; 
Chiocci et al., 2003) associated with NW-SE exten
sional faults (Conti et al., 2017). Here, widespread 
slide scars, erosional channels, canyons and gullies 
are recognizable.

4.2. Ventotene (MaGIC sheet 6)

The Sheet 6 ‘Ventotene’ includes the seafloor sur
rounding the Ventotene and Santo Stefano islands, 
which belong to the eastern Pontine Archipelago 
(Main Maps, Sheet n. 6). These islands, located 
about 50 km off the coasts of the Gulf of Gaeta, rep
resent the emergent part of a large volcanic edifice 
(the Ventotene Volcano), currently inactive. The Ven
totene Volcano is a truncated-cone-shaped strato-vol
cano emplaced during the Pleistocene (0.8–0.13 Ma, 
Peccerillo, 2005). Its base has a diameter of 20- 
25 km and lies at about 700 m water depth. The volca
nic activity includes several explosive eruptions with 
the youngest and most prominent event – the Parata 
Grande Tuff, dated around 0.15 and 0.3 Ma, (Perrotta 
et al., 1996) – ensued in a caldera collapse. Such event 
is also testified by the presence of a sub-circular 
depression located west of Ventotene Island 
evidenced by multibeam bathymetric data (Casalbore 
et al., 2016b). A well-developed insular shelf 
surrounds the volcano, which is characterized by 
widespread rock outcrops, often covered by biogenic 
build-up and Posidonia oceanica meadows. The shelf 
margin displays several slope breaks related to the 
presence of a set of submarine depositional terraces 
(SDT, Chiocci & Orlando, 2004; Casalbore et al., 
2017; Budillon et al., 2022a).

Volcanic-related (i.e. cones and secondary eruptive 
centres, dikes and/or eruptive fissures) and erosive 
and mass-wasting features characterize the flanks of 
the edifice. Erosional morphologies, such as landslide 
scars and channel heads, incise the edge of the SDT, 
causing its retreat through retrogressive erosion 
along the whole margin of the volcanic edifice 
(Casalbore et al., 2016b). Conversely, in the south- 
eastern sector, the insular shelf displays the largest 
width. The Ventotene Volcano is located at the center 
of a subsiding area, the Ventotene intra-slope basin, 
whose evolution is related to the extensional tectonics 
associated with the opening of the Tyrrhenian Sea 
during Lower Pliocene (Zitellini et al., 1984; Conti 
et al., 2017). The basin is E-W oriented and has a 
sub-circular geometry. It is bordered by the Ponza- 
Zannone morpho-structural high to the NW, by a sub
marine ridge adjacent to La Botte Islet to the SW, by 

the continental slope of the central Tyrrhenian margin 
to the N and NE, and by the volcanic edifice of Ischia 
to the E. The southern sector gently merges with the 
lower continental slope. The basin reaches a maxi
mum depth of about 950 m in the eastern part and 
is filled with Plio-Quaternary sediments that can be 
up to 1000 m thick. The morphology of the basin 
seafloor is quite smooth, apart from some bedform 
fields and low relief fault scarps. The main features 
of the basin are represented by isolated morphological 
highs, located in the N, NW and S sectors. At a more 
detailed spatial scale, several small-scale depressions, 
interpreted as pockmarks are widespread on the 
seabed (Ingrassia et al., 2015).

Other relevant features of the sheet are: (1) the 
Cuma Canyon, a 70 km-long turbidite system, whose 
head is composed of three main branches extending 
for about 18 km across the continental slope and 
locally affected by debris avalanches and sedimentary 
gravity flows originated from Ischia Island (see also 
Supplemental maps, Sheet n.7), and (2) a series of ero
sive channels, which originate from the shelf break 
offshore of the Volturno river mouth, carving the 
upper slope, down to about 500 m water depth. 
These features were probably related to hyperpycnal 
flows following the large volcaniclastic input gener
ated by the nearby Campi Flegrei volcanic field, during 
the early stages of post-glacial transgression (Chiocci 
& Casalbore, 2011).

4.3. Ischia (MaGIC sheet 7)

The Sheet 7 ‘Ischia’ is located on the Campania con
tinental margin and includes the Phlegraean Islands 
(Ischia, Procida and Vivara), the Bay of Pozzuoli, the 
‘Banco di Fuori’ intra-slope relief and the distal sec
tors of Magnaghi and Dohrn canyons (Main Maps, 
Sheet n. 7). A deep-buried main structural lineament, 
located along the inner section of the Dohrn Canyon, 
bounds the northwest sector of the Gulf of Naples, 
where the submarine topography is significantly 
influenced by volcanic processes and morphologies 
(Bruno et al., 2003). Notable features include erosive 
scarps, volcanic banks, canyon heads, hummocky 
topographies, substrata outcrops which jointly confi
gure an uneven seabed.

The volcanic activity of Campi Flegrei, Ischia and 
Procida islands, documented by the outcropping pro
ducts, spans the last 0.15 Ma and has been character
ized by low-intensity eruptions, which generated small 
monogenic eruptive centres, and by major events pri
marily correlated with thick ignimbritic flows and pyr
oclastic fall out (Rosi & Sbrana, 1987; Rosi et al., 1988; 
Scarpati et al., 1993; Sbrana et al., 2018). Large erup
tions have been accompanied by caldera formations 
and subsequent resurgences, as testified by the Mt. 
Epomeo resurgent block on Ischia Island (Orsi et al., 
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1991; Acocella & Funiciello, 1999; Vezzoli et al., 2009), 
La Starza terrace at Campi Flegrei and uplifted marine 
terraces in the Bay of Pozzuoli (Sacchi et al., 2014; 
Steinmann et al., 2018; Natale et al., 2022). Ischia 
Island is made of alkali-trachytic products and is 
part of a much wider volcanic complex that extends 
further west of the island in the submerged sectors 
(Figures 1 and 3) (Bruno et al., 2002).

The Ischia Island and Campi Flegrei are active vol
canic areas, as proved by intense hydrothermal activity 
(Chiodini et al., 2004), localized seismicity 
(Giudicepietro et al., 2021; Selva et al., 2021), historical 
and current ground deformation (Buchner et al., 1996; 
Vilardo et al., 2009). The Campi Flegrei sector has 
been under geophysical and geochemical monitoring 
since the 1980s, for it is regarded as one of the most 
hazardous volcanic calderas worldwide, due to the 
combination of volcanism and shallow seismicity 
unrest in a densely populated coastal area (Orsi 
et al., 1996; De Natale et al., 2017). Recent studies, con
ducted after the conclusion of the Magic Project, have 
unveiled new significant findings at the seafloor: the 
uplifted seafloor areas, the fractures associated with 
apical doming deformation and multiple fluid venting 
sites connected to post-caldera activity (Sacchi et al., 
2014; Di Napoli et al., 2016; Somma et al., 2016; Stein
mann et al., 2016, 2018).

Despite 20 y-long geodetic measurements showing 
constant subsidence in the western sector of Ischia 
Island (Beccaro et al., 2021), a wide range of geological 
and geophysical data indicate that the island has been 
uplifting since 33 ky BP. The uplift has significantly 
controlled the morphological evolution of the island 
(Gillot et al., 1982; de Vita et al., 2006), particularly 
the collapses affecting the lateral flanks (Tibaldi & 
Vezzoli, 2004; Della Seta et al., 2012), that have left a 
marked footprint on the present-day seabed (Chiocci 
et al., 1988; Chiocci & de Alteriis, 2006; de Alteriis & 
Violante, 2009; de Alteriis et al., 2010; Passaro et al., 
2016a). Indeed, the continental shelf north and west 
of Ischia Island accommodates the offshoots of huge 
mass movements – sudden collapses or slow defor
mations – resulting from the volcano-tectonic uplift 
of the island. Several debris avalanches radiating out 
from Mt. Epomeo entered the sea (Budillon et al., 
2003; Violante et al., 2003; Milia et al., 2021) in prehis
toric times and currently lie on the shelf as blocky 
deposits (Figure 3). The most distal elements rest in 
the heads of the Cuma Canyon’s lateral branches, 
and still others lie further downslope in the canyon 
path; this condition raises the question whether the 
branches originated or were further carved precisely 
because of the impressive landslides’ runout.

Seismic lines acquired for the geological mapping 
project of the marine areas (Servizio Geologico d’Ita
lia, 2019), though not calibrated by coring data, and 
therefore interpreted solely in seismic-stratigraphic 

relative terms, highlight the geometric relationships 
between mass transport/avalanchig deposit, character
ized by chaotic seismic facies and hummocky mor
phologies, sedimentary units made of mixed marine 
/ fine-grained epiclastic material and ‘deaf’ units of 
volcanic origin. In the western area at least four 
mass transport deposits, interbedded within well-stra
tified units, can be identified (Figure 3).

The sector south of Ischia Island exhibits broad 
erosional scarps that come within a few hundred 
meters of the shoreline, canyon heads that lap rocky 
headlands (Alberico et al., 2018), canyon talwegs 
embedded between steep sidewalls and deep-seated 
slump lobes and debris avalanches linked to mass 
wasting phenomena. All these features point to an 
intense morphological evolution of the continental 
slope, up to very recent times. Among these features, 
the most distinctive one is certainly the IDA (Ischia 
debris avalanche), which originated from the south 
slope of Ischia. Blocks from this avalanche are 
observed up to 50 km downslope (Chiocci & de Alter
iis, 2006; de Alteriis et al., 2010) and seemingly over
print the outer fan of the Magnaghi Canyon. This 
observation, based solely on morphological analysis, 
establishes an important chronological relationship 
between depositional and erosive processes in the area.

The Magnaghi and Dohrn canyons run almost in 
parallel and are separated by the Banco di Fuori ridge, 
a meso-cenozoic carbonate monocline, bounded to the 
southeast by a major structural lineament (Milia & Tor
rente, 1999). The Magnaghi canyon spans about 20 km 
in length and originates from the continental shelf south 
of Procida, between the Ischia and Gaia volcanic banks 
(Milia & Torrente, 2003), over an area of 20 km2. The 
canyon’s thalweg is deeply incised along its middle sec
tion, with side walls having slopes of up to 40°. Several 
channels and gullies from Ischia Island and Banco d’Is
chia converge from the right side, whereas a great num
ber of niches affect the left canyon wall. The tributary 
channels are often suspended at the confluence with 
the canyon’s axis, indicating a subsequent re-incision 
of the main thalweg. The Canyon Dohrn develops for 
about 50 km, from the Gulf of Pozzuoli to about 
1100 m deep south of the Banco di Fuori along the 
NE-SW-oriented structural lineament that bounds the 
ridge. Here, too, several gullies and tributary channels 
are disconnected from the main canyon base level. Par
ticularly, the side branch from the southern shelf fea
tures an elevation drop of about 100 m.

4.4. Napoli (MaGIC sheet 8)

The Sheet 8 ‘Naples’ encompasses the eastern sector of 
the Gulf of Naples off the Mt. Somma-Vesuvius shore, 
the surrounding marine sectors of Capri Island and 
Sorrento Peninsula, as well as the western portion of 
the Gulf of Salerno, and the Salerno Valley, an ENE- 
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WSW elongated structural depression, exceeding 
1000 m in depth (Main Maps, Sheet n. 8).

The Gulf of Naples and the Gulf of Salerno lie in the 
southwestern part of two morpho-structural 
depressions that include the Campania Plain and the 
Sele Plain on the mainland and are separated by the 
Sorrento Peninsula structural high (Figure 1). Both 

depressions developed as half-grabens and were struc
turally lowered by NW-SE striking normal faults and 
NE-SW-striking listric faults (Casciello et al., 2006). 
The sedimentary infill consists of some thousands of 
meters of sediments resulting from the dismantling 
of the Apennine chain, volcanic products and epiclasts 
(Milia & Torrente, 1999; Milia et al., 2017).

Figure 3. (a) Shaded relief map of the continental shelf and upper slope around Ischia Island, where large mass transport deposits 
lie (yellow dashed line), related to the gravitational instability episodes of the island’s flanks; (b) interpretation of seismic lines 
(Sparker 1 kJ), acquired within the framework of a cartographic project, shows the stratigraphic relations among chaotic deposits, 
marine units and deaf seismic units (modified from Servizio Geologico d’Italia, 2019) in the western sector of Ischia Island: at least 
four events of mass transport depositions are evident.
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The continental shelf in the inner Gulf of Naples 
exhibits an almost smooth topography. More articu
lated seafloors are observed offshore of Mt. Somma – 
Vesuvius, particularly at the Banco della Montagna 
mound and near the inner sections of the canyon 
heads. In these sectors, wavy bedforms marking the 
entry of pyroclastic flows into the sea, volcanic 
domes, lava flows, debris avalanches, crater-like sink
holes (Milia et al., 2008 and references therein; Passaro 
et al., 2016b) and active fluid vents (Passaro et al., 2014, 
2018; Paoletti et al., 2016) can be observed at the 
seafloor. Offshore of the Sarno river mouth, wavy bed
forms indicate creep deformation in the prodelta sec
tion of the pumice deposits from the 79 AD eruption 
(Sacchi et al., 2005). Recently, evidence of seabed dom
ing and widespread fluid emissions have also been 
identified at the Banco della Montagna mounds and 
off the Somma-Vesuvius coast (Passaro et al., 2016b).

In the Gulf of Salerno, a tectonically controlled 
ENE-WSW trending steep slope (locally exceeding 
20°) connects the narrow shelf to the deep part of 
the Salerno Valley via a large base-of-slope apron. 
The entire slope is affected by extensive erosional pro
cesses, resulting in a deeply carved erosive scarp, 
characterized by furrows and gullies arranged in a her
ringbone pattern, alternating with highly unstable 
crests. The heads of deep channels run close to the 
coast and serve as the primary pathways for transfer
ring coastal sediment downslope.

The southern slope of the Salerno Valley experi
enced recurrent mass failure processes. In this area, 
a complex landslide system known as the Poseidonia 
landslide covers an area of 200 km2. It is formed by 
a depletion front 12 km – long at about 300 m of 
depth and by a set of transverse ridges and an apron 
belt at the foot of the slope. The landslide area is situ
ated within a continental margin sector that has been 
deformed and weakened by older, deep-seated gravita
tional deformations (referred to as the ‘father land
slide’). This feature is marked by a deep trench in 
the depletion area at the slide crown, as well as SW- 
NE trending compressional ridges – the longest of 
which exceeds 17 km in length – folding the marine 
succession in the toe region (Budillon et al., 2014). 
The junction of the deep trench and the fault-con
trolled slope of the Paestum Basin may have possibly 
favored the uprising of fluids and the formation of 
major pockmarks with uncommon dimensions and 
deepness (Figure 4 a – d).

The broad vertical displacements (up to 1.500 m), 
resulting from extensional tectonics and accompany
ing seismic activity, are seen as the primary agents 
responsible for gravity-driven mass wasting processes 
recorded in the stratigraphic succession of the Sale
rno Valley and the adjacent intraslope basins (Aiello 
et al., 2009; Budillon et al., 2014; Sammartini et al., 
2019).

4.5. Salerno (MaGIC sheet 9)

The Sheet 9 ‘Salerno’ encompasses part of the conti
nental margin off the Sorrento Peninsula, the Sele 
Plain and the Cilento Promontory. It mainly com
prises the continental shelf, the upper continental 
slope and the proximal sector of the Salerno Valley, 
which lies within the Salerno half-graben (Main 
Maps, Sheet n. 9).

The overall thickness of the Pleistocene basin infills 
within the Salerno half-graben, based on offshore wells 
and seismic data, ranges between 1500 and 2000m, 
locally reaching up to 3000 ms (Bartole et al., 1984; 
Sacchi et al., 1994). These sediment successions consist 
of marine clastic, epicontinental and volcaniclastic 
deposits, organized in a complex stratigraphic archi
tecture. They document interactions between glacio- 
eustatic sea-level fluctuations, volcano-tectonic 
activity in the source region and tectonic deformation 
in the sinks.

The asymmetric morphology of the margin reflects 
the structure of the half-graben: the continental shelf is 
very narrow to the north, corresponding to the emer
gence of the regional faults (Milia & Torrente, 1999), 
whereas it is much broader to the south, due to the 
presence of bedrock in the subsurface. Consequently, 
the most significant hazard-related morphological fea
tures cluster in the northern sectors of the bay and 
include landslide scars, gullies and canyon heads 
associated with the erosive scarp that bounds the Sale
rno Valley. Additional distinctive morphological 
elements are observed in the relict and current Sele 
River prodelta system: in the first case, a set of coales
cing channels behind the shelf break fed a deep-sea fan 
in the Salerno Valley during the Late Pleistocene low
stand of sea level and the early stage of postglacial 
transgression, when the alluvial plain extended nearly 
to the present-day shelf break (Aucelli et al., 2012). In 
the second case, undulated sediment features in the 
present-day prodelta slope, likely related to density 
flows of riverine origin (Urgeles et al., 2011) cover 
an 8 km2 area. Finally, two extensive fields of wavy 
bedforms occur in the southern sector of the map on 
the outer shelf, deeper than 150 m, with crests perpen
dicular to the isobaths. These features are possibly 
associated with the ongoing action of geostrophic cur
rents at the shelf margin.

5. Conclusions

The submarine landscape in this sector of the Tyrrhe
nian margin presents a unique scenario due to the 
complexity and variety of geomorphic elements 
potentially associated with varying degrees of hazard. 
The morpho-bathymetric data reveals a highly articu
lated submarine landscape, primarily resulting from 
the recent structuring of the continental margin and 
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intense volcano-tectonic activity. Specifically, volcanic 
processes, differential vertical ground movements, 
active faulting, glacio-eustasy and rapid dismantling 
of emerging landscapes, though acting at different 
time scales, have led to steep slopes, canyoning, deep 
fans, aprons accretion, gravitational instability and a 
wide spectrum of volcanic-related features (e.g. chan
nels, gullies, landslides, tuff cones, volcanic structures 
and banks, fluid venting and wavy bedforms). Key 
observations made across approximately 10,000 km2 

of seafloor include: 

. steep and large escarpments related to regional 
structural lineaments and significantly impacted 
by widespread mass-wasting processes. Notable 
locations include south of the Pontine Islands, 
west of Ischia Island, south of the Sorrento Penin
sula and Capri Island;

. shelf-break retrogression, resulting from the 
entrenchment of canyon heads. This phenomenon 
occurs south of Ponza Island, south of the Sorrento 
Peninsula, south of the Ischia Island and in the Gulf 
of Gaeta;

. large-scale debris avalanches and debris flows, orig
inating from the lateral slopes of Ischia Island. 
These mass transport complexes have interacted 
with lateral branches of the Cuma Canyon and 
with the Magnaghi Canyon deep-sea fan;

. fluid escape features, both active and inactive, ran
ging from small to giant dimensions. These features 
are found off the western Pontine islands, as well as 
in the Pozzuoli, Naples and Salerno Gulfs;

. extensive bedform fields on the open slope of the shelf 
margin or within channel/canyon systems in the Gulf 
of Salerno, south of Ischia Island. These bedform mark 
recent or ongoing actions of geostrophic and downfl
owing channelized currents from river mouths.

. a wide spectrum of linear erosive features, including 
short and localized gullies and channels, up to region
ally extending canyons. These features appear to have 
contributed to the formation of deep – sea fans.

Understanding the submarine morphological fea
tures in this geodynamically active and densely popu
lated coastal area, and monitoring those considered 
most hazardous over time, are crucial practices for 
geological and environmental risk assessment and 
implementation of area-based management 
tools. This study could serve as a benchmark for future 
monitoring of hazardous features and for spatial plan
ning initiatives, relative to the first decade of the 2000s.

Software

Mapping was implemented using Global Mapper® 
software, Magic Project release, for bathymetric data 

Figure 4. (a) Shaded relief map of the shelf and upper slope approximately 25 km south of the Sorrento Paeninsula, where a set of 
giant pockmarks (green arrows) occurs along the base of a fault-controlled scarp (dashed-line), bounding the Paestum Basin. The 
largest pockmark, surrounded by a sub-circular unstable slope, lies at the junction between the fault scarp and the trench of a 
buried landslide (Budillon et al., 2014); (b) 3D image of the giant-pockmark (vertical exaggeration 2x); (c) topographic profile 
across the depression (profile track in Figure 4b); (d) echo-soundings in the water column deployed in 2014 did not record 
any anomalies related to leakages from the seabed.
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visualization and geo-morphological features outlin
ing. Standardization and topological control among 
maps were carried out using freeware GIS. Figures 
in this article were compiled with Global Mapper® 
and Corel Draw® graphical suite.
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