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ABSTRACT Image classification with small datasets has been an active research area in the recent past.
However, as research in this scope is still in its infancy, two key ingredients are missing for ensuring
reliable and truthful progress: a systematic and extensive overview of the state of the art, and a common
benchmark to allow for objective comparisons between published methods. This article addresses both
issues. First, we systematically organize and connect past studies to consolidate a community that is currently
fragmented and scattered. Second, we propose a common benchmark that allows for an objective comparison
of approaches. It consists of five datasets spanning various domains (e.g., natural images, medical imagery,
satellite data) and data types (RGB, grayscale, multispectral). We use this benchmark to re-evaluate the
standard cross-entropy baseline and ten existing methods published between 2017 and 2021 at renowned
venues. Surprisingly, we find that thorough hyper-parameter tuning on held-out validation data results in a
highly competitive baseline and highlights a stunted growth of performance over the years. Indeed, only a
single specialized method dating back to 2019 clearly wins our benchmark and outperforms the baseline
classifier.

INDEX TERMS Data-efficiency, image classification, benchmark, neural networks, small datasets.

I. INTRODUCTION
Many recent advances in computer vision and machine learn-
ing in general have been achieved by large-scale pre-training
on massive datasets [15], [16], [45]. For instance, the most
popular dataset for image classification, ImageNet-1k [48],
contains one thousand classes, each comprised of several hun-
dred or over one thousand training examples. However, reach-
ing high recognition performance by training on large-scale
datasets is strictly connected to the laborious process of
collecting and labeling large quantities of samples. Applica-
tion scenarios in which the usual pre-training on large web-
sourced image datasets is useless due to a strong domain shift
(e.g., document style classification [51]) or even impossible
due to different data modalities (e.g., multi-channel spectral
data from satellites [21]) strictly depend on methods for
learning directly from the limited amounts of data available.
Deep learning from small datasets is a research area that

has been receiving increasing interest in the past couple of
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years [3], [8], [9], [41]. The distinctive feature that makes this
field of research differ from other learning problems is that,
the use of additional, external datasets, e.g., for pre-training
neural networks, is not available. While nowadays popular
datasets contain hundreds or thousands of training examples
per class, deep learning from small data trains neural net-
works on tens or hundreds of samples per category. These
extreme settings exacerbate the well-known weaknesses of
neural networks i.e., being prone to memorizing spurious
correlations among training features instead of actually learn-
ing a general function for the requested task [18]. Therefore,
deploying a performant classifier in this scenario remains an
important challenge.

To keep focus, we limit the scope of our study to image
classification with few examples, excluding other computer
vision domains such as object detection or semantic segmen-
tation that have also recently gained increasing attention [9],
[38]. Despite their invaluable importance, such domains are
still lacking a sufficiently large body of literature for an
extensive overview. In contrast, our literature analysis on
image classification with small datasets led to a substantial
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number of existing works, probably because image classifi-
cation remains one of the most established tasks for artificial
neural networks.

A key missing piece of the current literature is an objective
comparison of proposedmethods due to the lack of a common
benchmark. Fortunately, there recently have been activities
to establish common benchmarks and organize challenges
to foster direct competition between proposed methods [9].
Still, they are often limited to a single dataset, e.g., Ima-
geNet [48], which comprises a different type of data than
usually encountered in a small-data scenario. Moreover, most
existing works compare their proposed method against insuf-
ficiently tuned baselines [3] or baselines trained with default
hyper-parameters [26], [29], [41], [52], [56], which makes
it easy to outperform them. Careful hyper-parameter opti-
mization (HPO) [6] is not only crucial for applying deep
learning techniques in practice but also for a fair compar-
ison between different methods so that each can obtain its
optimal or near-to-optimal performance. Comparing against
an untuned baseline with default hyper-parameters does not
provide clear evidence of improvements. Additionally, due to
the fragmentation of the relevant literature, approaches are
rarely compared to the existing state of the art, obfuscating
the progress of the field.

The contributions of this paper enrich the literature on
image classification with small datasets with two fundamen-
tal building blocks that are currently missing: 1) a review of
the recent literature and 2) a dedicated benchmark. The for-
mer represents the first comprehensive collection of works on
image classification with small datasets. We provide a clear
overview of the current literature and existing approaches.
The second building block is a dedicated benchmark allow-
ing for a direct, objective, and informative comparison of
existing and future methods. The benchmark consists of five
datasets from different domains: natural images of every-
day objects, fine-grained classification, medical imagery,
satellite images, and handwritten documents. Two datasets
consist of non-RGB data, where the common large-scale
pre-training and the fine-tuning procedure is not straight-
forward, emphasizing the need for methods that can learn
from limited amounts of data from scratch. Our dataset
splits, implementations of all compared methods, and code
for reproducing our experiments is publicly available under
https://github.com/lorenzobrigato/gem.

For our benchmark, we carefully optimize the hyper-
parameters of all methods for each dataset individually on
held-out validation data, while evaluating the final perfor-
mance on a separate test split. Surprisingly and somewhat
disillusioning, we discover two key findings that are summa-
rized in Fig. 1: 1) hyper-parameter optimization makes the
categorical cross-entropy loss a strong baseline that is outper-
formed by only one of the ten specialized methods evaluated;
2) there is no clear performance progress considering the
approaches published in the recent literature. The untuned
baseline (red dashed line), i.e., a classifier trained with default
hyper-parameters, underperforms the baseline trained with

FIGURE 1. Accuracy of state-of-the-art methods and baselines on the
proposed benchmark. The untuned baseline (red dashed line) is trained
with default hyper-parameters i.e., a learning rate of 0.1, and weight
decay of 10−4. Conversely, for all other methods, including the baseline
(green dashed line), we performed hyper-parameter optimization.
Methods are ordered on the x-axis according to their publication
year.

HPO (green dashed line) by ∼13 percentage points. In more
detail, such a strong baseline is obtainable by combining
small batch sizes (i.e., as small as 8), strong regularization
(i.e., weight decays up to ∼10−2), and small learning rates
confined to a limited range (i.e., ∼[10−4, 10−3]). To show
the lack of performance progress, we order the evaluated
methods on the proposed benchmark along the x-axis of Fig. 1
according to the original publication year. We notice that
the accuracy does not monotonically increase throughout the
years, as it would be desirable.

Hence, we learn that default hyper-parameters found in the
image classification literature are inadequate in data-deficient
scenarios and should be substituted with properly tuned con-
figurations, e.g., more aggressive regularization for baseline
classifiers. We identify the lack of such hyper-parameter
tuning and comprehensive comparisons in the existing lit-
erature as the cause for the illusion of frequent progress.
In contrast, only a single method analyzed in our study is
able to outperform the baseline consistently in a realistic
setting.

First, we differentiate the faced learning settings from
related research areas in Section II. We then dive deeper
into image classification from small datasets and review the
existing literature in this field in Section III. Afterward,
we describe our proposed benchmark, starting with the meth-
ods selected for the comparison in Section IV and datasets
in Section V. Our experimental setup and training procedure
are detailed in Section VI and the results are presented in
Section VII. In Section VIII, we discuss potential limitations
of our comparison. Section IX summarizes the conclusions
from our study.
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II. RELATED RESEARCH AREAS
To avoid potential sources of confusion, we will first give a
brief description of research areas that are related to learning
from small datasets but different in crucial aspects.
Transfer learning is a well-established approach that uses

knowledge from a previous task to solve a secondary, gener-
ally related task [43], [60]. Often, the target task has a much
smaller number of training examples, hence, fine-tuning a
pre-trained network has benefits in terms of recognition per-
formance. Note that this area should not be included in the
literature on image classification with small datasets, as the
pre-training is performed on large image databases such as
ImageNet. This is not possible in some scenarios, especially
when the type of the input data (e.g., multispectral images
from satellites) is different from RGB.

Domain adaptation is a subfield of transfer learning
that assumes related source and target tasks, with the latter
undergoing a distributional shift. Typically, the target task
has only unlabeled data or a few annotated pairs. We refer
the reader to [58] for a survey on this topic. Similar to the
previous paradigm, domain adaptation also uses knowledge
extraction from a data-rich source task.
Few-shot learning is a domain that has received consider-

able attention over the past years [23], [59]. The goal of this
approach is to train a model that learns to recognize similar-
ities and in turn perform tasks in data-poor target domains,
including scenarios with only 1 or 5 samples per class. While
the goal of few-shot learning overlaps with that of learning
from small datasets, their implementations practically differ.
Few-shot learning relies on a qualitatively rich base set of
annotated pairs, from which it can meta-learn more general
representations that are then used to solve the few-shot task.
On the other hand, learning from small datasets uses a very
modest training set to learn from that is slightly larger than
a few shots, but does not have access to any large-scale pre-
training data.

Weakly supervised learning deals with training datasets
with few, noisy or inconsistent labels [69]. Moreover, in this
domain, there are no assumptions about the dimension of
the training dataset. There could be samples for which
there is no training label, but which are still available to a
semi-supervised algorithm. In contrast, learning from small
datasets assumes that the correct label is available for each
member of the small training dataset.
Long-tailed recognition, also known as unbalanced classi-

fication, is a largely researched area, as high-class imbalance
naturally occurs in many classification problems [25]. In this
scenario, the learner is regularized to not only learn effec-
tive representations to classify the majority classes but also
correctly recognize the minority classes [14]. The number
of samples in the tail of the training distribution is com-
parable in size to the dimensions of the datasets used in
classification with small data. However, the latter excludes
the existence of other classes with a large number of sam-
ples, which would contribute to the learning of general
representations.

FIGURE 2. Distribution of publication venues concerning the reviewed
body of literature.

III. LITERATURE REVIEW
In this section, we present the body of literature that we
found after a careful search for image classification methods
with small datasets. Moreover, we propose a classification
taxonomy to organize the relevant research directions that
have been explored so far.

A. SEARCH
We included in our collection mainly articles that fulfill
two criteria: First, they should have been peer-reviewed at
renowned conferences and journals. Second, they propose
an approach for specifically tackling the problem of learn-
ing from a small sample. To verify the latter, we checked
whether the experiments described in each candidate paper
were executed on small or sub-sampled versions of popular
image classification datasets.

To find relevant papers, we searched popular search
engines and archives using keyword arguments that strongly
match the features of this research domain such as data effi-
ciency, small data, small datasets and data-efficient. Along
with that, we also used direct paper references as a channel
to find additional connections.

As a result of our search, we found 26 articles published
between 2015 and 2021. Five of these works are published
in journals while the rest have been presented at conferences
or workshops. Figure 2 shows the distribution of articles
among venues. From the figure, it stands out that computer
vision conferences (e.g., CVPR, ICCV, ECCV, WACV) are
the venues where the community is more inclined to pub-
lish. Instead, machine learning (e.g., ICLR and ICML) and
signal processing conferences are slightly behind in terms of
preferences.

B. MAP
To provide a clear visual picture of the literature and extract
additional insights on the current status of the research
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FIGURE 3. Visualization of relative connections within the reported body
of literature. Works are shown chronologically along the x-axis and
distributed along the y-axis for better readability. Colors represent the
taxonomic classes architecture ( ), cost function ( ), data augmentation
( ), latent augmentation ( ), and warm-starting ( ).

domain, we employ the online tool Litmaps1 to generate
a literature map of the state-of-the-art methods for image
classification with small datasets (Fig. 3).

Each circle on this map represents a paper, denoted with
a short keyword composed of part of the first-author name
and the year of publication. The radius of the circle is pro-
portional to the total number of citations and the colors
represent the taxonomic classes to which the paper has been
assigned by our breakdown. Therefore, circles of the same
color represent articles that proposed methods belonging to
the same methodological approach. More details about the
taxonomy will follow in the next sub-section. Furthermore,
articles are ordered along the x-axis according to publication
time in ascending order. Connections between circles indicate
references.

From the literature map, two things seem evident: the
domain has gained increasing interest in the recent past and
exhibits low connectivity in terms of references. The first
fact, undoubtedly positive, is evincible from the growth of
circles in the rightmost part of the map. While only 7 papers
appeared between 2015 and 2018, the number of publica-
tions has grown to 19 in the subsequent three years. The
second factor, which is instead negative, regards the fragmen-
tation of the current state of the art. We notice that different
papers published in 2020 or 2021 do not reference any of
the older papers (bottom right corner of Fig. 3) indicating
that a comparison between newly proposed approaches and
the existing state of the art is often missing. Moreover, arti-
cles that are graphed to the upper part of the map, despite
having higher connectivity, still did not reference multiple

1https://www.litmaps.co/

previous works. For instance, the most cited work by other
members of the map, denoted withWor16 and corresponding
to [61], has only been referenced by 5 subsequent papers.
In response to the aforementioned connectivity issue of the
current literature, we propose and organize the largest col-
lection of works related to image classification with small
datasets.

C. TAXONOMY
In this section, we categorize current methods into a method-
ological taxonomy that well fits the existing literature. Pre-
cisely, we distinguish five families of approaches, depending
on how the model is regularized:

• architecture ( )
• cost function ( )
• data augmentation ( )
• latent augmentation ( )
• warm-starting ( )

We briefly illustrate the intrinsic characteristics of each
taxonomic category and describe the papers belonging to
each one. Notice that our proposed taxonomy classifies
methods along independent axes, but it is also possible that
some papers proposed a combination of multiple components
falling into different families. A trivial example could be
the proposal of a novel architecture trained with a new loss
function.

1) ARCHITECTURE ( )
This category includes all possible modifications to standard
network architectures at all topological levels. This covers
changes applied to network layers, blocks, stages, etc. Rea-
sonably, this is a quite general class that is composed of
multiple sub-categories and contains a significant number of
works in our collection (7).

An important contribution to this family derives from those
methods relying on geometric priors i.e., techniques that use
intrinsic and geometric approaches coming from the signal-
processing literature. We include the use of pre-set, fixed
filters based on wavelet transformations [41], [42] or discrete
cosine transform [55], [56]. Also, invariance to rotation and
translation are desirable properties that have been embedded
into CNNs through the use of steerable filters or circular
harmonics [61].

Other architectural changes aim for invariance with respect
to input transformations without employing mathematics
from signal processing. For instance, F-Conv [26] uses an
alternative padding strategy to decrease image-boundary
effects and improve translation invariance. Xu et al. [62]
introduced an alternative convolution block to favor
the learning of scale-invariant representations. Similarly,
Sun et al. [52] modified the standard residual block and pro-
posed a multi-branch structure with anti-aliasing modules
and selective kernels. Finally, Arora et al. [1] employ neu-
ral tangent kernels, which are equivalent to infinitely wide
networks.
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2) COST FUNCTION ( )
Networks are optimized to minimize a so-called cost function
to learn the target task. Cost functions are generally com-
posed of multiple items, including different regularization
or penalty terms (e.g., weight decay). We prefer to employ
the term cost instead of loss since, colloquially, the latter is
widely used to exclusively indicate the error between predic-
tions and targets without considering other terms. We notice
that this family of regularization is the most popular within
this community with 9 different contributions.

Two works proposed losses based on cosine similarity to
regularize network training [3], [29], while Sun et al. [52]
employed a three-term cost function including a change of
the standard cross-entropy to a combination of itself and the
cosine loss. Xu et al. [62] hand-crafted a rotation-invariant
regularizer based on prior knowledge, which is added
to the cost function as a penalty term. Bietti et al. [5]
tested multiple existing regularization principles (i.e., gra-
dient penalties, spectral norms) and also proposed new
regularization penalties for learning from small datasets.
Moreover, Lezama et al. [32] conceived a geometric loss
term based on an orthogonal low-rank embedding that can be
plugged into any cost function and encourages embeddings
for different classes to be orthogonal. Bornschein et al. [7]
calibrate the cross-entropy loss using a scalar temperature
parameter, which is optimized alternatingly on a validation
set. Navon et al. [40] use implicit differentiation to either
learn how to combine multiple losses or predict auxiliary
targets. Also overlapping with this category is the work of
Zhao and Wen [66], who employ a two-stage training using
a modified version of the contrastive loss for self-supervised
representation learning and a distillation loss to regularize the
features learned by the final classifier.

3) DATA AUGMENTATION ( )
All methods that increase the size of the training dataset
reside in this category. For instance, standard data augmen-
tation (i.e., cropping, flipping transformations, etc.) is a clas-
sical strategy belonging to this family. We also include in this
category the coupling of generative models with classifiers
since, the latter, can be used to synthesize additional examples
and improve classification accuracy. Data augmentation tech-
niques have received plenty of attention in the deep learning
literature [49] and are based on simple tricks [68] or more
complex automated strategies [12], [13].

Surprisingly, in our literature collection, we only found
3 works proposing data augmentation approaches specifi-
cally designed for the small-sample regime. One common
approach consists in deep adversarial augmentation [64], [65]
and the other one on generative latent implicit conditional
optimization [2].

4) LATENT AUGMENTATION ( )
Stochastic or adversarial transformations applied to features
inside networks constitute the main building block of this
family of regularizers.

Ishii and Sato [24] adversarially augment features at ran-
domly selected hidden layers by adding small perturba-
tions to the original features extracted from training data.
Lin et al. [35], [36] propose a framework that regularizes the
classifier by sampling latent variables encoded in Gaussian
distributions. Finally, Keshari et al. [27] introduce a more
advanced dropout policy by measuring the strength of each
node.

5) WARM-STARTING ( )
This class of approaches employs algorithmic schemes to
initialize the classifier with weights that favor better learning
on small datasets. We assume that warm-starting may happen
a single time or multiple times in the training process. For
instance, the self-supervised paradigm belongs to this family
since encoders are first pre-trained on unsupervised tasks and
then used to warm-start the final classifier.

The oldest work of our collection [47], and its succes-
sive implementation [44], trained networks in a layer-wise
greedy manner, analogous to that used in unsupervised deep
networks. In other words, each layer is initialized with the
weights obtained from the precedent run. Similarly, Feng and
Darrell [17] proposed a multi-step initialization algorithm
that adapts the model complexity to the available training
data and learns the structure of filters. Subsequent research
decouples the structure and strength of convolutional fil-
ters to reduce the overall number of parameters by using a
dictionary-based filter learning algorithm and, subsequently,
standard training [28]. More recently, Zhao and Wen [66]
used self-supervised learning to learn a general encoder fol-
lowed by self-distillation coupled with the standard classifi-
cation objective.

IV. BENCHMARK METHODS
In this section, we first present in more detail the approaches
that we evaluated on our benchmark (Section IV-A).
Then, we name the methods that we discarded and moti-
vate such exclusions by describing their limiting factors
(Section IV-B).

A. EVALUATED
Along with a baseline cross-entropy classifier, we evaluated
ten specialized methods of our literature review. Out of the
ten approaches, four belong to the taxonomic category archi-
tecture ( ), five to cost function ( ), and one to both warm-
starting and cost function ( ). We describe the evaluated
approaches in more detail in the following.

1) CROSS-ENTROPY LOSS
This is the widely used standard loss function for classifica-
tion. We use it as a baseline with standard network architec-
tures and optimization algorithms.

2) DEEP HYBRID NETWORKS (DHN) ( )
This approach represents one of the first attempts to incor-
porate pre-defined geometric priors via a hybrid approach
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of combining pre-defined and learned representations [41],
[42]. According to the authors, decreasing the number of
parameters to learn could make deep networks more data-
efficient, especially in settings where the scarcity of data
would not allow the learning of low-level feature extractors.
Deep hybrid networks first perform a scattering transform on
the input image generating feature maps and then apply stan-
dard convolutional blocks. The spatial scale of the scattering
transform is controlled by the parameter J ∈ N.

3) ORTHOGONAL LOW-RANK EMBEDDING (OLÉ) ( )
Lezama et al. [32] proposed this geometric loss that is
intended to reduce intra-class variance and enforce inter-class
margins for deep networks. This method collapses deep fea-
tures into a learned linear subspace, or union of them, and
inter-class subspaces are pushed to be as orthogonal as pos-
sible. The contribution of the low-rank embedding to the
overall loss is weighted by the hyper-parameter λole.

4) GRAD-`2 PENALTY ( )
This is a regularization strategy tested in the context of
improving generalization on small datasets [5]. The `2
(squared) gradient norm is computed for the input samples
and used as a penalty in the loss weighted by parameter
λgrad. Amongmany regularization approaches evaluated in by
Bietti et al. [5], we have chosen the grad-`2 penalty because
it was among the best-performingmethods in the experiments
with ResNet and sub-sampled versions of CIFAR-10.

5) COSINE LOSS ( )
Barz and Denzler [3] proposed this loss to decrease over-
fitting in problems with scarce data. Thanks to an `2 nor-
malization of the learned feature space, the cosine loss is
invariant against scaling of the network output and solely
focuses on the directions of feature vectors instead of their
magnitude. In contrast to the softmax function used with the
cross-entropy loss, the cosine loss does not push the activa-
tions of the true class towards infinity, which is commonly
considered a cause of overfitting [20], [53]. A further increase
in performance was obtained by combining the cosine with
the cross-entropy loss after an additional layer on top of the
embeddings learned with the cosine loss.

6) HARMONIC NETWORKS (HN) ( )
HN uses a set of preset filters based on windowed cosine
transform at several frequencies which are combined by
learnable weights [55], [56]. Similar to hybrid networks, the
idea of the harmonic block is to have a useful geometric
prior that can help to avoid overfitting. Harmonic networks
use Discrete Cosine Transform filters which have excellent
energy compaction properties and are widely used for image
compression.

7) FULL CONVOLUTION (F-CONV) ( )
Kayhan and Gemert [26] proposed F-Conv to improve
the translation invariance of convolutional filters. Standard

CNNs exploit image boundary effects and learn filters that
can exploit the absolute spatial locations of objects in images.
In contrast, full convolution applies each value in the fil-
ter to all values in the image. According to Kayhan and
Gemert [26], improving translation invariance strengthens the
visual inductive prior of convolution, leading to increased
data efficiency in the small-data setting.

8) DUAL SELECTIVE KERNEL NETWORKS (DSKN) ( )
In this approach [52], the standard residual block is modi-
fied, keeping the skip connection, with two forward branches
that use 1 × 1 convolutions, selective kernels [34] and an
anti-aliasing module. To further regularize training, only one
of the two branches is randomly selected in the forward
and backward passes, while at inference, the two paths are
weighted equally.

Besides the specialized network architecture, the original
work uses a combination of three custom loss functions [52].
Despite best efforts, we were unable to derive the correct
implementation from the ambiguous description of these loss
functions in the paper. Therefore, we only use the DSKN
architecture with the standard cross-entropy loss.

9) DISTILLING VISUAL PRIORS (DVP) ( )
Zhao and Wen [66] introduce this two-stage framework that,
firstly, learns a teacher model via self-supervised learning
using the popular MoCo approach [10], and secondly, dis-
tills the representations into a student classifier using self-
distillation [22]. A contribution of this work regards the novel
margin loss implemented to better learn general representa-
tions under the data-deficient scenario. Hence, in addition to
the hyper-parameters for MoCo, a margin λm needs to be set.
In addition, for the second stage of training, λdist weights the
contribution of the distillation loss to the overall cost function.

10) AUXILIARY LEARNING (AuxiLearn) ( )
AuxiLearn is a method for generating meaningful and novel
auxiliary tasks [40]. This is achieved by training an auxiliary
network to generate auxiliary labels while training another,
primary network to learn both the original task and the auxil-
iary task. The objective is to push the representation of the
primary network to generalize better on the main task by
exploiting multi-task learning as a regularizer. To train this
method, multiple hyper-parameters need to be set. First, the
dimension of the auxiliary set which is a small percentage
of the training data. Then, the strength of the auxiliary loss
component along with the update-frequency of auxiliary gra-
dients. Finally, the type of the auxiliary network i.e., linear
or not linear, and, for the latter case, its depth and number of
units per layer.

11) T-vMF SIMILARITY ( )
This similarity [29] is a generalization of the cosine similarity
and was proposed to make modern CNNs more robust to
some realistic learning situations such as class imbalance,
few training samples, and noisy labels. As the name suggests,
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T-vMF Similarity is mainly based on the von Mises-Fisher
distribution of directional statistics and built on top of the
heavy-tailed student-t distribution.

The combination of these two ingredients provides high
compactness in high-similarity regions and low similarity in
heavy-tailed ones. The degree of compactness/dispersion of
the similarity is controlled by the parameter κ .

B. DISCARDED
We now describe the approaches belonging to the literature
overview that we discarded and provide the related reasons.

A group of papers does not provide the original implemen-
tation of the proposed methods. To avoid unreliable or wrong
re-evaluations, we restricted our final choice to approaches
for which source code was available. For this reason, we dis-
carded two contributions from architecture ( ) [1], [62], three
from cost function ( ) [7], [52], [62], two from latent augmen-
tation ( ) [24], [27], and four from warm-starting ( ) [17],
[28], [44], [47]. Only for DSKN [52], we were able to imple-
ment the proposed architecture by ourselves but unable to
correctly derive the proposed loss function.

In a few cases, despite best efforts and the availability
of source code, we were unable to reproduce a properly
working implementation. Faced obstacles included diver-
gence issues [35], [36] or very poor results [61], [64], [65].
Finally, one data augmentationmethod employs a pre-trained
VGG network to compute a perceptual loss embedded in the
proposed framework [2]. This approach does not fully respect
the assumptions of deep learning from small data, which does
not allow external data or pre-trained models. Furthermore,
it can not be adapted straightforwardly to different data types
(e.g., grayscale or multi-spectral images).

V. BENCHMARK DATASETS
Most works on deep learning from small datasets use custom
sub-sampled versions of popular standard image classifica-
tion benchmarks such as ImageNet [48] or CIFAR [31]. This
is visible from Fig. 4, where we show the frequency of use
of all datasets employed in the reviewed body of literature.
CIFAR-10, ImageNet, and CIFAR-100 were utilized 14, 7,
and 5 times, respectively, accounting for an overall fraction
of∼40% of datasets together. It is also striking that∼50% of
the articles carried out experiments on CIFAR-10, making it
the most frequently used dataset in this community.

This limited variety bears the risk of overfitting research
progress to individual datasets and the domain covered by
them, in this case, photographs of natural scenes and everyday
objects. In particular, this is not the domain typically dealt
with in a small-data scenario, where specialized data that is
difficult to obtain or annotate is in the focus. Additionally,
very recent work showed that high performance on ImageNet
does not necessarily correlate with high performance on other
vision datasets [54].

Therefore, we compile a diverse benchmark consisting of
five datasets from a variety of domains and with different data
types and numbers of classes. We sub-sampled all datasets to

FIGURE 4. Frequency of datasets used used in the reviewed literature.

fit the small-data regime, except for CUB [57], which was
already small enough. By default, we aimed for 50 training
images per class. To account for variance stemming from
the sub-sampling operation, we employ 3 different sets of
dataset splits. In other words, we sub-sample the original
datasets three times, when possible, and train and evaluate
methods on each sub-portion independently. Full training
splits are only used for the final training and split into training
(∼ 60%) and validation sets (∼ 40%) for hyper-parameter
optimization. For testing the final models trained on the train-
val{i} splits, with i ∈ {0, 1, 2}, we used official standard test
datasets where they existed. Only for two datasets, namely
EuroSAT [21] and ISIC 2018 [11], we had to create own
test splits, i.e., test{i}. Given the already small size of CUB,
we could not vary the training splits but only the train and val
ones. A summary of the dataset statistics is given in Table 1
and Fig. 5 shows examples from all datasets. In the following,
we briefly describe each dataset used for our benchmark.

1) ciFAIR-10
Barz and Denzler proposed a variant [4] of the popu-
lar CIFAR-10 dataset [31], which comprises low-resolution
images of size 32 × 32 from 10 different classes of everyday
objects. To a large part, its popularity stems from the fact that
the low image resolution allows for fast training of neural
networks and hence rapid experimentation. However, the test
dataset of CIFAR-10 contains about 3.3% duplicates from the
training set [4], which can potentially bias the evaluation. The
ciFAIR-10 dataset [4] provides a variant of the test set, where
these duplicates have been replaced with new images from
the same domain.

2) CALTECH-UCSD BIRDS-200-2011 (CUB)
CUB is a fine-grained dataset of 200 bird species [57]. Anno-
tating this kind of images typically requires a domain expert
and is hence costly. Therefore, the dataset is rather small
and only comprises 30 training images per class. Pre-training
on related large-scale datasets is hence the de-facto standard
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for CUB [15], [37], [50], [67], which makes it particularly
interesting for research on sample-efficient methods closing
the gap between training from scratch and pre-training.

3) ISIC 2018
ISIC 2018 is a medical dataset consisting of dermoscopic
skin lesion images, annotated with one of seven possible
skin disease types [11]. Since medical data usually requires
costly expert annotations, this domain is important to be
covered by a benchmark on data-efficient deep learning.
Due to the small number of classes, we increase the num-
ber of images per class to 80 for this dataset, so that
the size of the training set is more similar to our other
datasets.

4) EuroSAT
This is a multispectral image dataset based on Sentinel-
2 satellite images of size 64 × 64 covering 13 spectral
bands [21]. Each image is annotated with one of ten land
cover classes. This dataset does not only exhibit a substantial
domain shift compared to standard pre-training datasets such
as ImageNet but also a different number of input channels.
This scenario renders the standard pre-training and fine-
tuning procedure impossible.

Nevertheless, Helber et al. [21] adhere to this procedure by
fine-tuning a CNNpre-trained onRGB images using different
combinations of three out of the 13 channels of EuroSAT.
Unsurprisingly, they find that the combination of the R, G,
and B channels provides the best performance in this setting.
This limitation to three channels due to pre-training is a waste
of data and potential. In our experiments on a smaller subset
of EuroSAT, we found that using all 13 channels increases the
classification accuracy by 9.5% compared to the three RGB
channels when training from scratch.

5) CLaMM
CLaMM is a dataset for Classification of Latin Medieval
Manuscripts [51]. It was originally used in the ICFHR
2016 Competition for Script Classification, where the task
was to classify grayscale images of Latin scripts from hand-
written books dated 500 C.E. to 1600 C.E. into one of twelve
script style classes such as Humanistic Cursive, Praegoth-
ica etc. This domain is quite different from that of typ-
ical pre-training datasets such as ImageNet and one can
barely expect any useful knowledge to be extracted from
ImageNet about medieval documents. In addition, the stan-
dard pre-training and fine-tuning procedure would require
converting the grayscale images to RGB for passing them
through the pre-trained network, which incurs a waste of
parameters.

VI. EXPERIMENTAL SETUP
In this section, we give an overview of the experimental
pipeline that we followed for a fair evaluation of the afore-
mentioned methods on the five datasets that constitute our
benchmark.

A. EVALUATION METRICS
In our benchmark, we evaluate each method on each dataset
with the widely used balanced classification accuracy. This
metric is defined as the average per-class accuracy, i.e., the
average of the diagonal in the row-normalized confusion
matrix. We turned our attention toward this metric since some
datasets in our benchmark do not have balanced test sets.
In any case, for balanced test sets, the balanced accuracy
equals the standard classification accuracy.

Since our benchmark contains multiple datasets it is hard
to directly make a comparison between two methods without
computing an overall ranking. Therefore, for each method,
we also compute the average balanced accuracy across all
datasets to provide a simple and intuitive way to rank meth-
ods. Additionally, in this manner, future methods will be
easily comparable with those already evaluated.

B. DATA PRE-PROCESSING AND AUGMENTATION
All input images were normalized by subtracting the
channel-wise mean and dividing by the standard deviation
computed on the trainval splits. We applied standard data
augmentation policies with slightly varying configurations,
adapted to the specific characteristics of each dataset and
problem domain. Note that none of the currently re-evaluated
methods in our benchmark had as original contribution a
specialized data augmentation technique. Nothing prevents
the use of a data-augmentation-based method from partaking
in the benchmark.

For datasets with a small, fixed image resolution, i.e.,
ciFAIR-10 and EuroSAT, we perform random shifting by
12.5% of the image size and horizontal flipping in 50% of
the cases. For all other datasets, we apply scale augmentation
using the RandomResizedCrop transform from PyTorch2

as follows: A crop with a random aspect ratio drawn from
[ 34 ,

4
3 ] and an area between Amin and 100% of the original

image area is extracted from the image and then resized to
224× 224 pixels. The minimum fraction Amin of the area was
determined based on preliminary experiments to ensure that a
sufficient part of the image remains visible. It therefore varies
depending on the dataset: we use Amin = 20% for CLaMM
and Amin = 40% for CUB and ISIC 2018.

For ISIC 2018 and EuroSAT, we furthermore perform ran-
dom vertical flipping in addition to horizontal flipping, since
these datasets are completely rotation-invariant and vertical
reflection augments the training sets without drifting them
away from the test distributions. On CLaMM, in contrast,
we do not perform any flipping, since handwritten scripts are
not invariant even against horizontal flipping.

C. ARCHITECTURE AND OPTIMIZER
To perform a fair comparison, we use the same back-
bone CNN architecture for all methods. For ciFAIR-10,
we employ a Wide Residual Network (WRN) [63], precisely

2https://pytorch.org/vision/stable/transforms.html#torchvision.
transforms.RandomResizedCrop
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TABLE 1. Datasets constituting our benchmark. To account for variance stemming from the sub-sampling operation, we employ three different training
splits (except for CUB). On ISIC 2018 and EuroSAT, given the lack of a fixed testing set, we also vary such splits. The value of i refers to the identifier of the
three splits, i.e., i ∈ {0, 1, 2}.

FIGURE 5. Example images from the datasets included in our benchmark. For EuroSAT, we only show the RGB bands.

WRN-16-8, which is widely used in the existing literature for
data-efficient classification on CIFAR. For all other cases,
the popular and well-established ResNet-50 (RN50) archi-
tecture [19] is used. Note that we made changes to the
architecture when that was an original contribution of the
paper, but all those changes were applied to the selected base
architecture. Due to the high popularity of residual networks,
the majority of the selected approaches were originally tested
with a RN/WRN backbone. This fact allowed us to perform a
straightforward porting of the network setup, when necessary.

We furthermore employ a common optimizer and training
schedule across all methods and datasets to avoid any kind
of optimization bias. We use standard stochastic gradient
descent (SGD) with a momentum of 0.9, weight decay, and a
cosine annealing learning rate schedule [39], which reduces
the learning rate smoothly during the training process. The
initial learning rate and the weight decay factor are optimized
for each method and dataset individually, together with any
method-specific hyper-parameters as detailed in the next sub-
section. The total number of training epochs for each dataset
was chosen according to preliminary experiments.

D. HYPER-PARAMETER OPTIMIZATION
Careful tuning of hyper-parameters, as one would do
in practice, is crucial and can have a considerable
impact on the final performance [6] (empirical proofs in
Section VII).

For our benchmark, we hence first tune the hyper-
parameters of each method on each individual dataset using
the training and validation splits, which are disjoint from
the test sets used for final performance evaluation (see
Section V). Since for each dataset we have three different
sets of training splits, we perform three hyper-parameter
optimization runs. Only on CUB, we perform the three
searches on the unique available training split. For any
method, we tune the initial learning rate and weight decay,
sampled from a log-uniform space, as well as the batch size,
chosen from a pre-defined set. Details about the search space
are provided in Table 2. In addition to these general hyper-
parameters, any method-specific hyper-parameters are tuned
as well simultaneously, considering the boundaries used in
the original paper, if applicable, or lower and upper bounds
estimated by ourselves.
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TABLE 2. Summary of hyper-parameters searched/used with ASHA [33]. Method specific hyper-parameters were included in the search space but not
included in this table due to space limitations. An epoch number in parentheses means that a higher number of epochs was used for the final training
than for the hyper-parameter optimization.

For selecting hyper-parameter configurations to be tested
and scheduling experiments, we employ Asynchronous
HyperBand with Successive Halving (ASHA) [33] as imple-
mented in the Ray library.3 This search algorithm exploits
parallelism and aggressive early-stopping to tackle large-
scale hyper-parameter optimization problems. Trials are eval-
uated and stopped based on their accuracy on the validation
split.

Two main parameters need to be configured for the ASHA
algorithm: the number of trials and the grace period. The
former controls the number of hyper-parameter configu-
rations tried in total while the latter the minimum time
after which a trial can be stopped. Since the number of
trials corresponds to the time budget available for HPO,
we choose larger values for smaller datasets, where training
is faster. The grace period, on the other hand, should be large
enough to allow for a sufficient number of training itera-
tions before comparing trials. Therefore, we choose larger
grace periods for smaller datasets, where a single epoch
comprises fewer training iterations. The exact values for
each dataset as well as the total number of training epochs
can be found in Table 2. These values were determined
based on preliminary experiments with the cross-entropy
baseline.

E. FINAL TRAINING AND EVALUATION
After having completed HPO for each split using the pro-
cedure described above, we train the classifiers with the
three determined configurations on the trainval{i} splits and
evaluate the balanced classification accuracy on the test splits.
To account for the effect of random initialization, this training
is repeated ten times. Therefore, the final performance is the
balanced average accuracy over 30 repetitionswith each set of
10 repetitions initialized with the parameters found through
HPO runs on the three sets of splits.

F. METHOD-SPECIFIC IMPLEMENTATION DETAILS
Twomethods required individual modifications to the general
training and evaluation pipeline described above, which we
describe in the following.

3https://docs.ray.io/en/master/tune/

1) GRAD-`2 PENALTY
We disabled weight decay because this method is an alter-
native regularizer and considered as mutually exclusive
with weight decay in the original paper [5]. Moreover,
in contrast to the original implementation, we enabled
the use of batch normalization since, without this com-
ponent, we obtained extremely low results in preliminary
experiments.

2) DISTILLING VISUAL PRIORS
DVP [66] required several adaptations due to its two-step
training process.

First, task-agnostic features are learned using self-
supervision. Then, the resulting model is used as a teacher for
a student model trained for classification. Thus, not only the
training of the final classifier needs tuned hyper-parameters
but the pre-training step as well. For evaluating the qual-
ity of the pre-trained models during HPO, we attach a lin-
ear classification head on top of the learned representations
but do not back-propagate through it. The contrastive
pre-training criterion furthermore requires larger batch sizes
than we usually use and longer training schedules. We hence
select batch sizes from {64, 128, 256} and increase the
number of epochs until the accuracy of the additional
classification head converges. This resulted in a training
schedule of 2,000 epochs for ciFAIR-10, 6,400 epochs for
CUB, and 16,000 epochs for ISIC 2018, CLaMM, and
EuroSAT. These numbers are one to two orders of magnitude
larger than our usual training durations used for all other
methods.

After we found hyper-parameters for the self-supervised
pre-training, we trained a single model on the training split,
which served as a basis for the subsequent HPO for distilling
the learned knowledge into the student classifier. For this step,
we used the same batch sizes and numbers of epochs as usual.
Finally, we trained 30 self-supervised models, on the com-
bined training and validation data and subsequently used each
of them as a teacher for 30 other student models performing
the classification task. As for the other methods, HPO and the
final training of each group of 10 are performed on a different
set of dataset splits.
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TABLE 3. Average balanced classification accuracy in % over 30 repetitions for each task and across all tasks. The best value per dataset is highlighted in
bold font. Numbers in italic font indicate that the result is not significantly worse than the best one on a significance level of 5%. Colored dots represent
the taxonomic classes to which the approaches belong, i.e., architecture ( ), cost function ( ), and warm-starting ( ).

VII. RESULTS
In the following, we first present the main results of
our benchmark in Section VII-A, followed by compar-
isons in terms of training speed and memory require-
ments (SectionVII-B), and between taxonomic classes
(Section VII-C). We then show an analysis concerning an
additional high-resolution fine-tuning step in Section VII-D.
In Section VII-E, we compare benchmarked methods with
transfer learning. Next, in Section VII-F, we provide evi-
dence that published baselines are underperforming. The
importance of hyper-parameter optimization is discussed in
Section VII-G. Finally, in Section VII-H we provide addi-
tional insights on the tuned hyper-parameters of the cross-
entropy baseline.

A. BENCHMARK FOR IMAGE CLASSIFICATION WITH
SMALL DATASETS
Table 3 presents the average balanced classification accuracy
over 30 repetitions for all methods and datasets. We per-
formed Welch’s t-test to assess the significance of the advan-
tage of the best method per dataset in comparison to all others.
All results but one are significantly worse on a level of 5%
than the best method on the respective task.

Harmonic Networks [55], [56] clearly win the bench-
mark by providing top performance on all datasets. However,
an even more interesting finding of this study is that the
default cross-entropy loss is highly competitive when tuned
carefully. In terms of average balanced accuracy across all
datasets, the baseline scores 70.24%, which is only clearly
below the accuracy scored by Harmonic Networks (74%)
but superior than or on par with the results of the remain-
ing methods. To better characterize the impact of hyper-
parameter optimization (HPO) on the baseline, we also

perform experiments with the cross-entropy loss and default
hyper-parameters (untuned baseline in Table 3). By default
hyper-parameters, we mean the learning rate and weight
decay that are usually employed in data-rich scenarios, i.e.,
0.1 for the first and 10−4 for the latter. Without HPO there is a
substantial degradation of the baseline performance resulting
in a very low average balanced accuracy across all tasks. The
untuned baseline only scores 57.74% which is ∼13 percent-
age points below the tuned baseline and clearly outperformed
by all other specialized methods.

A relatively large group of state-of-the-art approaches, i.e.,
OLÉ [32], Cosine + Cross-Entropy Loss [3], Dual Selec-
tive Kernel Networks [52], Distilling Visual Priors [66], and
T-vMF Similarity [29], obtains an overall recognition perfor-
mance comparable to the one of the baseline. However, the
finding that the vast majority of recent methods for image
classification with small datasets does not exceed the perfor-
mance of the baseline is sobering. We attribute this to the
fact that the importance of hyper-parameter optimization is
immensely underestimated, resulting in misleading compar-
isons of novel approaches with weak and underperforming
baselines. We will investigate this hypothesis further in later
sub-sections.

B. TIME AND MEMORY REQUIREMENTS
In the previous sub-section, we compared the benchmarked
methods in terms of accuracy. Further important factors for
choosing a method from a practical point of view are the
training speed and memory requirements. Wemeasured these
two metrics on an Nvidia V100 GPU with 16 GB of memory
using PyTorch 1.7.

For measuring training throughput, we run each train-
ing method for 10 epochs on the CUB dataset and count
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FIGURE 6. Comparison between architecture ( ) and cost function ( )
methods in terms of GPU memory usage and training time (500 images).
Training times are derived from the training speeds shown in Table 4.

TABLE 4. Comparison between methods in terms of training speed
(images/second) and GPU memory requirements (GB) for input
resolutions of 224 × 224 and 448 × 448 on an NVIDIA V100. The best
value per column is reported in bold font. Colored dots represent the
taxonomic classes to which the approaches belong, i.e., architecture ( ),
cost function ( ), and warm-starting ( ).

the number of images processed per second during the last
5 epochs. For a fair comparison, we used a constant batch
size of 8 for all methods, which was the most common batch
size found by HPO. The only exception is the self-supervised
pre-training step of Distilling Visual Priors, which depends
on sufficiently large batch sizes. For this method, we used a
batch size of 64, as determined by HPO.

In Table 4, we report training throughput and GPU mem-
ory requirements for input resolutions of 224 × 224 and
448 × 448. We also report the latter resolution to gain addi-
tional insights regarding how computational requirements
scale with larger inputs. As we will see in Section VII-D,
some tasks benefit from larger resolutions.

Five among the top methods concerning recognition
accuracy, namely Harmonic Networks, the baseline, OLÉ,
Cosine + Cross-Entropy Loss, and T-vMF Similarity, are
also among the fastest and most memory-efficient ones. The
slowest and most memory-consuming methods are Auxiliary

FIGURE 7. Comparison between architecture ( ) and cost function ( )
methods in terms of recognition performance. We order methods along
the x-axis from the least to the best performing one.

Learning and Grad-`2 Penalty, which take 5-7 times longer to
train than the baseline and consume 5-7 times more memory.
In addition, they are the worst-performing methods in terms
of classification accuracy. For Auxiliary Learning, the mem-
ory of the V100 was insufficient for the higher resolution of
448× 448, wherefore wemeasured thememory consumption
in this case on an A100 GPU with 40 GB of memory. Due to
the different compute hardware, we do not report the training
throughput in this case.

C. COMPARISON BETWEEN TAXONOMIC CLASSES
In this paragraph, we briefly discuss the performance differ-
ence among the two largest taxonomic groups evaluated on
our benchmark, i.e., the architecture ( ) and cost function ( )
classes.

First, we compare these two classes considering the recog-
nition performance over the benchmark. In Fig. 7, we show
the results of each method on the full benchmark in ascend-
ing order. We notice that colored bars follow an alternating
pattern, i.e., the worst two methods belong to the cost func-
tion class, then architecture, and so on. Hence, there is no
clear winner considering this evaluation metric. Harmonic
Networks [55], [56], which belong to the architecture class,
however, remain the winners of our benchmark.

Second, we discuss the differences concerning compu-
tational requirements and show the comparison in Fig. 6.
We plot the training time needed to process 500 images vs
the GPU memory usage. Training times are derived from the
speeds shown in Table 4. We opted for 500 images because
they well represent the time to perform a single epoch on a
small dataset (e.g., the size of our ciFAIR-10 training splits).
We notice that the two taxonomic classes have similar com-
putational requirements but lie on opposite sides of a linear
fit. The majority of red dots are above, while the green ones
are below. Hence, architecture methods seem to be slower to
train while cost function ones to require more GPU memory.
This is reasonable since the introduction of modifiedmodules
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in the architecture may induce more complex processing and
hence lower training speeds. Modified losses may instead
require gradient updates that consume more memory.

D. HIGH-RESOLUTION FINE-TUNING
In the field of fine-grained visual recognition, it is
common practice to increase the input image resolution
from 224 × 224 pixels usually used for pre-training to
448× 448 pixels [15], [37]. Therefore, in these experiments,
we test such an additional step for the CUB and CLaMM
datasets. Initially, we also experimented with high-resolution
fine-tuning for ISIC 2018 but did not observe any substantial
advantage. We run the test on ten models that have been
trained on the training set with the standard resolution. Such
networks are fine-tuned with the double input image size of
448 × 448, which is, consequently, also used for evaluation.
For this high-resolution fine-tuning step, we use the same
hyper-parameters and number of epochs as for the initial
standard-resolution training.

OLÉ [32], Full Convolution [26], and T-vMF Similar-
ity [29] benefit the most from the high-resolution fine-tuning
step on CUB and CLaMM, which improves the balanced
accuracy by 18%-23% on CLaMM and 15%-18% on CUB
for these methods. Deep Hybrid Networks [41], [42], in con-
trast, take the least advantage from the higher resolution.
On CLaMM, they only gain∼3 percentage points. The base-
line is in-between with an improvement of 8% on CLaMM
and 13% on CUB. For AuxiLearn [40], we omitted the high-
resolution fine-tuning step since the computational cost for
this method becomes too high with the increase of resolu-
tion (see Section VII-B). Training would have taken several
months to complete, which is by no means advantageous.

We believe that this analysis turns out to be useful for prac-
titioners facing problems with data scarcity in fine-grained
scopes. High-resolution fine-tuning can be performed to raise
the recognition performance of the classifier through a rela-
tively straightforward additional training step.

E. STRENGTHS AND LIMITS OF TRANSFER LEARNING
In scenarios where it is possible, so-called transfer learning
by pre-training on a large related dataset and fine-tuning on
the target data is a popular technique. It does not qualify
for our benchmark due to the use of external data, but a
comparison with this approach allows us to understand its
benefits and limitations. ImageNet pre-training particularly
benefits down-stream tasks whose labels are well-represented
in ImageNet (e.g., CUB) [30]. Yet, we show that the outcome
changes as the target domain moves away from the one of
natural images.

In this set of experiments, we fine-tune a ResNet-50
pre-trained on ImageNet-1k on the datasets of our bench-
mark which do not contain natural images, i.e., ISIC 2018,
EuroSAT, and CLaMM using the standard cross-entropy loss
and compare it with the best small-data method in Table 6.
The hyper-parameters for the fine-tuning step are tuned in the
same manner as for our benchmark (see Section VI-D). For

TABLE 5. Impact of high-resolution fine-tuning step on two fine-grained
datasets, i.e., CUB and CLaMM. We report the average balanced
classification accuracy in % over 10 repetitions. Colored dots represent
the taxonomic classes to which the approaches belong, i.e., architecture
( ), cost function ( ), and warm-starting ( ).

TABLE 6. Comparison between the best performance when training from
scratch according to Table 3 and fine-tuning from weights pre-trained on
ImageNet-1k. Numbers are the average balanced classification accuracy
in % over 30 repetitions.

EuroSAT, which is a multispectral dataset, we have to restrict
the fine-tuning to the R, G, and B channels to be feasible.
Transfer learning has a clear advantage on the ISIC dataset.

The latter, despite being from a different domain (medical),
shares low-level textures and colors with natural images.
On EuroSAT, which comprises satellite images, we note a
smaller accuracy difference (2.24 percent points). Finally,
on CLaMM (manuscript imagery) the domain shift is detri-
mental: training from scratch outperforms fine-tuning by
2 percent points. Here, an additional factor that might play
a role besides the domain shift is the data modality, since
CLaMM contains only grayscale images.

We learn from this analysis that transfer learningmay only
be applicable in data-deficient scenarios that share low-level
features with natural images, but fail as the domain shift
becomes more significant.

F. PUBLISHED BASELINES ARE UNDERPERFORMING
We show further evidence of why tuning the hyper-
parameters and not neglecting the baseline in a small-data set-
ting is fundamental for performing a fair comparison between
different methods.

We analyzed the original results reported for the methods
considered in our study and compare those that share a similar
setup with the performance of our re-evaluation. Further-
more, we compare the performance of the baseline published
in those works with ours. Note that due to the lack of a
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TABLE 7. Summary of published/our results of the cross-entropy loss (left) and other methods (right) on similar setups.

FIGURE 8. Classification accuracy obtained with standard cross-entropy and cosine loss [3] on ciFAIR-10 with 1% of the training data for different
combinations of learning rate and weight decay. Gray configurations led to divergence.

standard benchmark and the common practice of randomly
sub-sampling large datasets, we are unable to conduct a fair
comparison with the same dataset splits, training procedure,
etc. Still, our benchmark shares the base dataset and network
architecture with the selected cases. Therefore, we believe
that this analysis is suitable for supporting our point regarding
the common practice of comparing tuned proposed methods
with underperforming baselines. The results of this analysis
are shown in Table 7.

DeepHybridNetworks andHarmonicNetworkswere orig-
inally tested with a WRN-16-8 on CIFAR-10. Full Convo-
lution and Cosine Loss employed RN50 on CUB. Since in
the original Auxiliary Learning paper the authors trained a
ResNet-18 (RN18) on CUB [40], we also perform an addi-
tional experiment with this smaller architecture to perform a
fair comparison. The training set of CIFAR-10was comprised
of 50 images per class. Differently, experiments on CUB
employed the full training set (i.e., 30 images per class).

Our baseline clearly outperforms the published baselines
by large margins (Table 7, left part). More precisely, our
models surpass the published ones by ∼ 9, ∼ 3, ∼ 29,
and ∼ 19 percentage points on the CIFAR and CUB setups.
Recall also that the ciFAIR-10 test set is slightly harder than
the CIFAR-10 one due to the removal of duplicates [4].

The picture looks different in the case of the proposed
methods (Table 7, right part), where the difference between

ours and the original results is sharply less evident. Our
DHN and HN slightly underperform the original ones by
∼ 1.0 and ∼ 0.50 percentage points, respectively. However,
this was expected due to the higher difficulty of ciFAIR-10.
On CUB, our re-evaluation of the cosine loss scores an aver-
age balanced accuracy of 66.94% which is very close to the
original 67.60%. Finally, our AuxiLearn model employing
RN18 gains ∼ 11 percentage points confirming once again
that careful HPO can further boost the performance.

From this analysis, it seems clear that proposed methods
are usually tuned to obtain an optimal or near-optimal result
while baselines are trained with default hyper-parameters
that have been found useful for large datasets but do not
necessarily generalize to smaller ones.

G. IMPORTANCE OF HYPER-PARAMETER OPTIMIZATION
To further underpin the importance of hyper-parameter opti-
mization, especially in a data-deficient setting, we perform a
full grid search for combinations of learning rate and weight
decay with a Wide ResNet architecture [63] trained on as few
as 1% of the CIFAR-10 training data [31] and evaluated on
the ciFAIR-10 test set [4]. We conduct this experiment with
the standard cross-entropy loss and with the cosine loss [3],
which was proposed as a loss function with a regularizing
effect for better performance on small datasets.
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TABLE 8. Hyper-parameters found with ASHA [33] for the cross-entropy
baseline on one of the training splits.

First, the results for standard cross-entropy shown in
Fig. 8a illustrate that this baseline can substantially benefit
from suitable HPO. Typical default hyper-parameters such as
a learning rate of 0.1 and weight decay of 1 × 10−4 as used
by [9] would achieve∼ 46% accuracy in this scenario, which
is entire 12 percentage points below the optimal performance
of ∼ 58%.

In comparison with the results for cosine loss shown in
Fig. 8b, we observe that the cosine loss is less sensitive
to changes of the weight decay factor but more sensitive
to the learning rate. For the experiments in the original
cosine-loss paper [3], the authors did perform HPO for both
methods but only took the learning rate into account while
keeping the weight decay fixed to a small constant. In this
setting, the cosine loss can easily outperform cross-entropy
because it has better chances with arbitrary weight decays.
For 6 out of the 8 weight decay values we tested, cosine
loss achieves better performance than cross-entropy. Only
when both hyper-parameters are tuned can the cross-entropy
baseline demonstrate its strength.

It is furthermore worth noting that the optimal weight
decay in this data-deficient setting is rather large compared to
usual defaults, which range between 1× 10−5 and 1× 10−4.
Such small training datasets apparently requiremuch stronger
regularization.

Moreover, we observe that the best performing hyper-
parameter combinations are close to an area of the search
space that results in divergence of the training procedure. This
makes hyper-parameter optimization a particularly delicate
endeavor.

H. TUNED HYPER-PARAMETERS
For reproducibility, but also to gain further insights into
hyper-parameter optimization for small datasets, we show
one of the three hyper-parameter combinations found during
our searches for the cross-entropy baseline in Table 8.
We can observe that small batch sizes seem to be beneficial,

despite the use of batch normalization. While the learning
rate exhibits a rather small range of values from 0.7 × 10−3

to 7.4 × 10−3 across datasets and spans only one order of
magnitude, weight decay varies within a range of two orders
of magnitude from 4.1 × 10−4 to 1.8 × 10−2.

Furthermore, learning rate and weight decay appear to
be negatively correlated. Higher learning rates are usually
accompanied by smaller weight decay factors. The same
correlation can be observed in Fig. 8.

VIII. DISCUSSION
We designed a rigorous evaluation protocol for each method
based on a common experimental setup in terms of base
architecture, dataset splits, and optimization pipeline. How-
ever, we acknowledge that our study is not inclusive with
respect to all possible aspects. In the following, we provide a
list of the possible limitations of our benchmark along with
explanations and arguments concerning each of them.

A. DATASETS
An extensive focus on individual benchmark datasets and
even certain dataset splits bear the risk of adapting methods
specifically to the test sets of these few datasets. To account
for random variations caused, for instance, by data sub-
sampling, we run our experiments on three independent
dataset splits. To ensure the generalization of the tested
methods across domains, our benchmark transcends the com-
mon datasets, e.g., CIFAR, and incorporates four additional
datasets with widely varying characteristics. These additions
augment the generality of our benchmark, yet keep a balance
between the spectrum of covered domains and the overall
computation time needed to evaluate a method. However,
given the ‘‘living’’ nature of our benchmark, we plan in the
future to introduce domains spanning an even broader range
of fields, data types, and applications to drive further progress
toward small-sample learning methods.

B. BASE ARCHITECTURE
Concerning the base architecture employed, ResNet is not
only a quite popular architecture in the image classification
literature, but also in the image classification with small
datasets community, as we saw from our literature anal-
ysis. We employed this network class to remain consis-
tent with previous literature but we would not exclude an
architectural bias for ResNets a priori. However, including
multi-architecture evaluations in such a large benchmark like
ours would incur high computational costs.

C. HYPER-PARAMETER SEARCH
The strong performance of our baseline and the comparison
with published baselines in TAble 7 demonstrate the impor-
tance of thorough hyper-parameter optimization. Concern-
ing this aspect, our benchmark is fair in the sense that all
methods had the same budget (in terms of the number of
HPO trials) and we tuned all their hyper-parameters jointly.
However, comparing the grid-search results for the cosine
loss on the ciFAIR-10 test set (see Fig. 8b) with the respective
performance reported in Table 3 exhibits a gap of about
5 percentage points. Obviously, in this case, our HPO pro-
cedure did not find hyper-parameters on the validation sets
that provide optimal performance on the test set. We con-
jecture two main reasons that may have caused this failure:
the search algorithm could not find the optimal solutions or
the evaluation performance obtained on the validation sets
does not directly translate into optimal performance on the
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test set. Our correct practice of performing HPO on the few
held-out samples allows us to gain useful insights into the
realistic performance of this method in a practical setting.
A generalization gap in the range between 3% and 15% is to
be expected on the domain of CIFAR when replacing the test
set [46]. In general, we should not consider the best accuracy
in Fig. 8b as the optimal performance since we would be
optimizing hyper-parameters on the test set.

To avoid the possibility of having methods ‘‘luckier’’ than
others concerning HPO, for each training split, we run an
independent hyper-parameter search. Due to the compara-
tively small size of the validation sets in our benchmark,
unstable HPO is not completely unlikely. However, the val-
idation sets cannot be much larger, since we operate in
data-deficient settings and a sufficient number of samples
needs to be available for the actual training. We hence argue
that our solution to this issue, i.e., averaging the results stem-
ming from three groups of found hyper-parameters, improves
the robustness of the results by considering the randomness
of the search process. Clearly, the more precision is requested
for the estimate, the more the cost for evaluating a method
on our benchmark. We believe that increasing the number
of HPO runs would exclude research groups without access
to large clusters. We have shown in Table 7 that our results
for four methods originally evaluated in similar settings are
either on par with the performance reported in the original
publication or even outperform it. This indicates that our
searches found hyper-parameters as effective as the ones in
the current literature.

IX. CONCLUSION
We presented the first comprehensive overview and dedicated
benchmark for deep learning from small datasets in the con-
text of image classification.

First, we carefully searched the literature for specialized
methods applied to small-data tasks. We categorized this
collection into a constructive taxonomy and provided an
overview to consolidate this field, which is currently very
fragmented.

Second, analyzing our literature review, we found that a
common evaluation benchmark with fixed datasets, archi-
tectures, and training pipelines was lacking in the research
domain. In addition, we found experimental evidence of
weak baseline evaluations due to a lack of careful tuning.
To address the urge for a fair comparison, we developed a
benchmark consisting of five datasets from different domains
and data types. Re-evaluating ten selected state-of-the-art
methods led us to the surprising and sobering finding that
standard cross-entropy loss is only surpassed by Harmonic
Networks, and that performance growth is currently lacking
in the literature.

In light of these results, we conclude that the importance of
hyper-parameter optimization is immensely underestimated
and should be considered in future studies to avoidmisleading
comparisons of new approaches with weak and underper-
forming baselines. We also provide the largest collection of

approaches to enable extensive comparisons with the state of
the art. We hope that our benchmark and training procedure
will provide a fruitful basis for future developments and
accelerate the progress in the field of image classification
with small datasets.
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