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Abstract

Unmanned Aerial Vehicles (UAVs) have enormous potential in the public and civilian
domain as an emerging technology that allows to carry out missions where human
intervention would be impossible, unsafe, or just inefficient. While single remotely
controlled drones are used in a wide range of scenarios, an extraordinary improvement
could be reached by employing autonomous networks of drones.

Current work in this direction highlights significant issues caused by the dynamic
topology and the limited energy of the drones, especially in safety-critical missions.
In this thesis, we investigate solutions and methodologies for the coordination and
communication of UAVs to enable autonomous networks of drones in real applications.
We focus on drones’ physical constraints and we study algorithms’ applicability in
real field.

We first address the problem of trajectories planning for safety-critical operations
and we propose several solutions including approximation and genetic-based algo-
rithms. Then we exploit the drones’ communication capabilities to design efficient
algorithms in a broader range of scenarios. We consider missions with uncertain
target positions, in which drones coordinate by sharing their local observations, and
missions in which drones offload the collected data to the depot through a multi-hop
connection.
To improve drone communication capabilities, we propose an enhanced Routing
protocol with Deep Q-Learning. The protocol is designed to work on critical scenarios
requiring urgent communication that can tolerate only a bounded delay.
Finally, we investigate three novel applications for UAV networks to demonstrate how
drones can populate our cities in the next years. We design DRUBER, a distributed
parcel delivery system aided by a blockchain framework; we propose DANGER, an
emergency network of drones to provide WiFi connection to any smartphone in case
of disasters; and we discuss an application of drones for Food Safety and Security.
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Chapter 1

Introduction

This thesis investigates the use of networks of Unmanned Aerial Vehicles (UAVs) in
safety critical scenarios, proposing solutions and methodologies to fill the current
gap in state-of-art work. In details we study applications, communication protocols,
and coordination and control algorithms for aerial drones.

1.1 Motivation
UAVs or drones are air-crafts without human pilot aboard. Originally designed for
military missions in which human intervention was too dangerous, drones are now
commonly used in a wide range of public and civilian applications.

Drones are being used for rescue operations [1], remote health care [2], agriculture-
crop survey [3], wildlife search [4], or parcel delivery [5]. Drone technology is growing
rapidly with an estimated market value of around 46 billion dollars in the United
States by 2026 [6].
The fundamental benefit of UAVs is the combination of powerful sensor equipment
(e.g., cameras, radars, and GPS), wireless networking, and mobility on the same
device, making them perfect for applications that need little to no human control.
While remotely controlled drones are widely used, squads of multiple autonomous and
cooperative drones are still rare due to their high complexity of control, coordination
and deployment [7]. This thesis provides new solutions to enable autonomous network
of drones, unleashing their potential in terms of scalability, cost, failure probability,
and speed.

Prior work for multi-UAVs networks highlights significant issues caused by their
dynamic topology and limited energy, and provide preliminary solutions for safe
and reliable communication, routing algorithms, and drones’ applications [8–13].
However these solutions do not consider several issues related to coordination and
control, which must be addressed before UAVs can be deployed in real applications.

In this thesis we study squads of drones and we propose new solutions and
methodologies for UAVs coordination and communication. We mostly focus on
safety critical scenarios, as fleets of aerial drones are a powerful tool to support the
rescue operations. The Horizon Europe Work Program recently envisioned the use of
drones to enable situation awareness in critical areas and provide a more appropriate
and timely intervention [14].
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1.2 Contribution
This thesis improves the current state-of-art for multi-UAVs by addressing the
following problems:

Trajectory Planning. We first address the task-assignment and trajectory
planning in critical settings (e.g., search-and-rescue of survivors, medicines distri-
bution, water delivery to trapped or disabled humans or animals). We consider
the timeliness of intervention a strict requirement, and we develop two automated
trajectory planning algorithms to provide early inspection of target locations. We
consider a variant of the traveling salesman problem [15] for multi-UAV, with known
target locations. Conversely from existing literature [16, 17], we consider drones’
physical constraints (e.g., battery lifetime) and we study the algorithms’ applicability
in a real test-bed. In Section 2.1 we formally analyze the problem, we propose
a Mixed-Integer Linear Programming formulation and two related approximation
algorithms, namely AC-GaP and TC-GaP [18, 19]. We demonstrate a constant
factor approximation of 1/2 from the optimal solution, and superior performance
with respect to the existing work. In Section 2.2 we propose Gen-Path [20], a
genetic-based approach able to adapt to a wider range of scenarios.

Connected Trajectory Planning. Safety-critical missions are often executed
in highly dynamic environments requiring, for example, continuous communication
with the control center to adapt the mission upon local findings. Therefore, to ad-
dress a wider range of scenarios, we exploit the communication capabilities of drones
in the design of trajectory planning algorithms. In section 3.1 we propose GCD [21],
a Greedy Connected Deployment algorithm to address a monitoring application in
which drones have to communicate the collected data while inspecting the targets.
Conversely from existing literature, we do not rely on any communication infrastruc-
tures (e.g., cellular networking) which may be disrupted in harsh environments [22],
but we propose a novel solution to create connected formations and ensure multi-hop
low-latency communication. We improve the state-of-art solutions by visiting about
15− 20% more target locations.
In section 3.2 we relax the assumption of perfect knowledge of ongoing events and
their location. We consider a safety critical application in which the events’ time
and position can only be estimated with some uncertainty (e.g., survivors after an
earthquake). We propose SIDE [23], a virtual-force based approach to let drones
autonomously inspect an area of interest under uncertainty. In particular, drones
leverage communication capabilities to share their local observations of the environ-
ment and coordinate during the exploration. We show that our proposal discovers
new events 30− 40% faster than existing algorithms.

Communication. Drones are invaluable tools to build fast and reliable networks.
However, due to their unconstrained mobility and unique characteristics, existing
communication protocols designed for Mobile Ad-hoc NETworks (MANETs) fail short
to provide stable communication. In Section 4.1 we propose MAD [24], an enhanced
Routing protocol with Deep Q-Learning, that considers the unique characteristics
of UAV networks like: limited energy, high mobility, dynamic topologies, and the
varying requirements of safety critical application. The protocol is designed to work
on critical applications requiring urgent communication that can tolerate only a
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bounded delay. It enables adaptive selection of the most suitable relay nodes for
packet delivery, resorting to movement-assisted delivery upon need, supported by
a reinforcement learning approach. It doubles the packets delivered by classical
geographical approaches, while it deliveries around 20 − 30% more packets than
existing movement-assisted protocols.

Applications. Finally, we investigate three novel applications for UAVs net-
works. In Section 5.1 we propose and implement DANGER [25], an emergency
network of drones to provide WiFi connection to any smartphone in case of disasters.
In Section 5.2 we design DRUBER [26] a distributed parcel delivery system aided
by a blockchain framework. DRUBER proposes a fully distributed service based on
a fleet of coordinated drones, belonging to multiple owners. The service provides a
parcel delivery, with intermediate pit stops for battery replacement or drone-to-drone
parcel handovers. Finally, we discuss the application of drones for Food Safety and
Security. Drones can be used to improve farms performance by seeding, fertilizing,
diagnosing diseases, monitoring crop and soil health [27]. In Section 5.3 we propose
a crowd-sensing framework [28, 29], to detect plant diseases and analyze farmers’
performance, and we discuss how the use of drones can improve the framework
performance.

1.3 Background
In this section we present a brief introduction to the used methodologies.
We first introduce Integer Linear Programming (ILP) and Mixed Integer Linear
Programming (MILP) mathematical formulations, which are used in Section 2.1,
3.1, 3.2 and Section 5.3. We then discuss modern machine learning algorithms, in
particular Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL),
used in Section 4.1. Finally, we briefly discuss the blockchain technology used in
Section 5.2.

1.3.1 Optimization Problems

In a wide range of real-life applications we face hard problems which have no evident
best solution. An optimization problem try to formally define the set of all feasible
solutions and find the best solution for such problems.

Linear programming (LP). We first introduce the concept of Linear program-
ming (LP) which is commonly used in commercial activities to maximize the income
and minimize costs. For example, we can consider a LP model for a winery that
produces two types of wine, red and white. We can assume that a liter of red wine
requires 3 hours to be produced, while a liter of white requires only 2 hours. Each
liter is sold at 22$ and 14.5$, respectively. Considering 40 working hours per week,
the winery wants to maximize its profit. Therefore, we can define a LP optimization
problem as follows:

maximize 22 ·X + 14.5 · Y
subject to 3 ·X + 2 · Y ≤ 40

X,Y ∈ R
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We define the amount of red and white wine to produce using the continuous
decision variables X and Y, respectively. We constraint the maximum working hours
per week with the linear constraint 3 ·X+ 2 ·Y ≤ 40, which defines the set of feasible
solutions. And finally we formulate an objective function to maximize the profit:
we consider the total liters of red and white produced, multiplied by their per liter
profit (i.e., 22 ·X + 14.5 · Y ).

The optimization problem is solved by means of specialized algorithms, like the
Simplex, and the values of variables X and Y define the winery strategy for the
production.

Integer Linear Programming (ILP). An ILP formulation is a special case
of LP in which all the variables are integers. In contrast to LP, these problems are
intrinsically hard to solve and NP-hard in most cases. A classic example of an ILP
optimization problem is the Traveling Salesman Problem: Given a set of cities and
the distances between each city, what is the shortest possible route that visits each
city exactly once and returns to the origin location?
We can define an ILP formulation for the Traveling Salesman Problem as follows:

minimize
n∑
i=1

n∑
j=1

cijxij

subject to
n∑
j=1

xij = 1, ∀i = 1, . . . , n
n∑
i=1

xij = 1, ∀j = 1, . . . , n∑
i,j∈S

xij ≤ |S| − 1, ∀S ⊂ {1, . . . , n} : 2 ≤ |S| ≤ n− 1

xij ∈ {0, 1}

where the set of integer decision variables xij defines the salesman tour: xij = 1 if
the salesman travels from city i to city j, and xij = 0 otherwise. The variable cij
defines the cost to travel from city i to j. The first two constraints ensure that each
city i is visited exactly once, while the last constraint imposes a single unique tour.
Also this optimization problem can be solved by means of specialized algorithms,
like Branch-and-Bound, and the values of xij variables define the salesman tour to
visit all the cities.

Mixed Integer Linear Programming (ILP). MILP formulations extend ILP
formulations by considering both integer and continuous variables. Generally, MILP
formulations are even harder to solve.

Solution Methods. Several algorithms have been designed to solve such
mathematical formulations, including Simplex, Branch-and-Bound, Branch-and-cut
algorithms. In this thesis we use Gurobi [30], a fast and powerful solver which
provides a collection of algorithms to solve LP, ILP and MILP formulations.

1.3.2 Reinforcement Learning

Reinforcement Learning (RL) [31] addresses the fundamental issue of how an intelli-
gent agent can learn a good sequence of decisions. Based on the observation of an
environment, the agent can take an action that affects the environment and itself,
and depending on the outcome of the action the agent receives a reward that can
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Figure 1.1. Agent-environment interaction in Reinforcement Learning.

be positive or negative. By exploring the different actions and their outcomes, the
agent can learn the best sequence of decisions to maximize the positive rewards over
time.

Figure 1.1 represents the agent’s interaction with the environment. The agent
interacts with its environment in discrete time steps: it executes an action at at
time step t that alters the environment state, from st to st+1. The agent observes
the new environment and obtains a reward rt for the undertaken action. The goal
of the RL agent is to learn the optimal policy and maximize the obtained rewards
in the future.

Formally, a RL problem can be modeled as a Markov Decision Process (MDP) [32].

Definition 1.3.1 (Markov Decision Process). A Markov Decision Process (MDP)
is a 4-tupleM = (S,A,P,R), where:

• S is the state space

• A is the action space

• P : S ×A → ∆(S) is the transition function, where with ∆(S) we indicate the
space of probability distributions over S.

• R : S ×A → R is the reward function

The RL agent learns how to act in order to maximize the amount of rewards
earned, trying to learn an optimal policy π : S × A → [0, 1], which maximize the
expected return defined as:

E
[
T−1∑
t=0

γtR(st, at)
]

where T is the horizon of the problem, which can be infinite or a positive integer,
and γ ∈ [0, 1] is the discount factor to prioritize immediate vs. future rewards.

The policy map π gives the probability of taking action at ∈ A in the state
st ∈ S.

Q-Learning. RL algorithms can be divided into model-based and model-free
or, in parallel, in value-based, policy-search or actor-critic. Model-free algorithms
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Figure 1.2. Deep Q-Network (DQN)

learn from the interactions with the environment, and the most common examples
are Q-learning [33] and SARSA [34].

Q-learning is one of the most important breakthroughs in reinforcement learning,
it learns an optimal policy π by updating an action-value function in a convergent
iterative process that exploits the Bellman equation. According the Bellman Equation
we update a state–action pair value Q(st, at) by looking at the immediate reward
R(st, at) plus the maximum cumulative future discounted reward for the state st+1
the agents ends up to.

The update rule is formally described as follows:

Q(st, at)︸ ︷︷ ︸
New Q-Value

= Q(st, at) +α∣∣∣
learning rate

[R(st, at)︸ ︷︷ ︸
Reward

+ γ∣∣∣∣∣
Discount factor

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

max
a

Q(st+1, a) −Q(st, at)]

Where α is the learning rate, which controls how quickly we learn, and γ is the
discount factor. After an exploration phase, the state–action pair values Q(s, a)
define the optimal policy π, and they are used to select the best action in a given
state s.

Deep Reinforcement Learning (DRL). DRL is the combination of Rein-
forcement Learning with Deep Learning methods. In practice using Q-learning to
estimate an optimal policy is complicated due to the dynamic programming nature
of the process, which requires storing into memory the quality values of |S| · |A|
pairs. For example, when RL was exploited to play Atari games in [35] the state
space had size ≈ 1067970, which is the number of rows of an hypothetical table of
quality values. Even if it is just a sparse table, the dimensionality curse would make
the convergence of the iterative process impossible.

DRL leverages the potential of Deep Learning to solve the decision making
problems of Reinforcement Learning more efficiently. Neural Networks can create
great approximations of functions and extract information from high-dimensional
rough data. They can approximate both the model of the environment; the policy
function; or the state-action values.
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Deep Q-Network (DQN). The most famous DRL algorithm is DQN, a value-
based method that tries to approximate the Q-function using a Deep Neural Network.
The DQN produces Q(s; θ) ≈ Q∗(s) with θ being the weights of the network. The
DQN takes the state s of the environment as input, and it outputs a vector that
represents the Q values for each possible action in that state. Figure 1.2 shows the
structure of a DQN. The neural network allows to model complex scenarios where
the states space is arbitrarily huge.

1.3.3 Blockchain

Blockchain is a novel distributed data structure in which each entry, called "block",
is sequentially and cryptographically linked to the previous one. Each block contains
a cryptographic hash of the previous block, a timestamp, and transaction data, so
that none of them can be changed. Figure 1.3 shows an example of the structure of
blockchain blocks. A block body contains the transactions, the previous block hash,
and a Proof-of-Work. A Proof-of-Work is a difficult mathematical problem which
must be solved to add a new block to the blockchain, to deter malicious uses from
adding corrupted blocks.

The blockchain is commonly built on the distributed ledger logic, which enables
distributed transaction tracking. They are commonly managed by a peer-to-peer
network, which nodes agree on a protocol to validate and add new blocks. This
approach makes the blockchain suitable for economic applications, as it is owned
by all the peers and does not involve a central authority able to change it. Bitcoin
and Ethereum are two examples of blockchains. Ethereum also enables deployment
of "Smart Contracts," which are public software programs. Once written in the
blockchain, such applications cannot be modified, and are executed on all the nodes
in the peer to peer network.

Figure 1.3. Blockchain : Block Structure Example
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Chapter 2

Trajectory Planning

Fleets of cooperative drones are a powerful tool in monitoring critical scenarios
requiring early anomaly discovery and intervention. Despite the large use of aerial
drones in many critical settings, coordination and control is mostly left to human
personnel supervising the flight operations. Automated trajectory planning is an
open challenge, especially for those applicative scenarios where early inspection is
of utmost importance. For instance, in critical missions where drones are looking
for survivors, timeliness of intervention is a strict requirement. Thus, the benefit of
using multiple aerial devices capable of sampling multiple targets in parallel, and
ensuring the best trade-off between monitoring accuracy and rapidity of intervention
is clear. However, planning drone trajectories is still a major challenge under several
points of view, including autonomy, cooperation, coordination, and control.

In this chapter we propose new solutions to the problem of trajectory planning
under safety-critical scenarios. Conversely from existing work, we let drones visit
target points in consecutive trips, with recharging and data offloading in between.
In fact, we specifically consider the limited energy availability of drones, i.e., their
batteries are not sufficient to cover all the targets in one single trip.

In section 2.1 we design a new performance metric to capture timeliness of inter-
vention and prioritize early coverage, namely Weighted Progressive Coverage (WPC).
We show that WPC maximization is NP-hard, and we propose an efficient polynomial
algorithm, called Greedy and Prune (GaP), with guaranteed approximation. By
means of simulations we show that GaP performs close to the optimal solution and
outperforms a previous approach in all the considered performance metrics, including
coverage, average inspection delay, energy consumption, and computation time, in a
wide range of application scenarios. Through prototype experiments we also confirm
the theoretical and simulation analysis, and we demonstrate the applicability of our
algorithm in real scenarios.

In Section 2.2 we analyze the problem of multi-trip coverage in a wider range of
scenarios. We investigate the use of a genetic algorithm to schedule UAVs trajectories
in a multi-round mission, under several objective functions. We demonstrate how
the genetic approach achieves near optimal performance, considering also battery
replacement/charging and data offloading operations. We show that our proposal
fits various scenarios with good performance respect existing approaches.

This chapter has been extracted from the works in [18], [19] and [20].
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2.1 A Multi-Trip Task Assignment for Early Target In-
spection in Squads of Aerial Drones

In this section we consider the problem of monitoring a set of target points in a
safety critical mission, where early inspection is of utmost importance.

Previous approaches to trajectory planning for squads of drones mainly consider
a one-trip per drone assignment, with the purpose of maximizing the number of
inspected targets, or minimizing the task completion time. However, as aerial drones
usually have limited energy and storage availability, they may require multiple trips
to provide complete monitoring coverage, with battery replacement/charging and
data offloading in between. Unlike previous work we address the problem of designing
the trip trajectories, so as to schedule the most inspections in the earliest trips,
under the drone energy constraints. Moreover, we consider heterogeneous drones
(e.g., with different batteries and energy consumption curves), that may depart from
different depots.

For the purpose of evaluating and optimizing the capability of an algorithm
to provide early monitoring, we define a novel metric called Weighted Progressive
Coverage (WPC). The optimization of this metric allows to jointly address the
problems of target coverage and task scheduling. The definition of WPC generalizes
the classic notion of total coverage and also allows to give more value to tasks
scheduled in the earlier rounds. The accumulative coverage metric is also introduced
as a special instance of WPC, which assigns linearly decreasing values to the tasks
executed in progressive rounds. We show how the optimization of the accumulative
coverage metric successfully prioritizes early target inspection and minimizes the
average inspection delay caused by inter-trip operations: battery replacing/recharging
and/or data offloading can have a significant impact on the overall mission time.

We contribute an analytic formulation of the WPC maximization problem as
an Integer Linear Programming (ILP) model and show its NP-hardness. Experi-
ments confirm that the optimization problem has prohibitive execution times for
problem instances of average to large size, requiring many hours of computations.
For this reason we propose a very efficient polynomial algorithm with guaranteed
approximation of the optimal solution.

We compare our proposal to several previous approaches, through extensive
simulations and real field experiments, showing that our approach outperforms
previous algorithms in all the relevant performance aspects including coverage,
average inspection delay, as well as energy cost and computation time.

In summary, the main contributions of this work are:

• We formulate a novel performance metric, calledWeighted Progressive Coverage,
to measure the capability of a trajectory planning algorithm to provide early
target inspection, and formulate the related optimization problem. We show
that under appropriate settings of the weight function, weighted progressive
coverage translates into traditional metrics of coverage, as well as into a
new notion of accumulative coverage which clearly reflects early coverage
capabilities.
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• We formulate the problem of maximizing weighted progressive coverage as an
ILP model and prove its NP-hardness. By means of experiments we show that
such optimization has prohibitive computation times even for small problem
instances, which precludes its application in safety critical scenarios, and
motivates the need of polynomial time heuristics.

• We propose a novel greedy-and-prune polynomial algorithm for approximating
the optimal solution of the aforementioned problem. We prove that the above
algorithm has a constant factor approximation of 1/2.

• We study the proposed approaches in an extensive range of operational settings
through simulations, and we confirm the analysis via real field experiments
in a test-bed implementation. The study shows that the performance of
our approach is close to the optimal, and considerably better than previous
solutions in all the performance metrics, including coverage, inspection delay,
energy consumption and computation time.

This work extends a previous conference contribution [18].

2.1.1 Related Work

Previous works addressing path planning management for teams of UAVs proposed
several approaches including: graph algorithms, optimization problems, genetic
and machine learning algorithms. A common requisite for all the approaches is to
determine one or multiple routes satisfying given requirements related to the visit of
a set of points of interest in an area.

The first approach considers variants of the Traveling Salesman Problem (TSP)
for multiple vehicles [36]. Specifically, the multi-traveling salesmen problem, and its
variant, the vehicle routing problem (VRP) [37], aim at finding the shortest, or lowest
cost paths for the mobile devices to visit all the points of interest under a variety of
constraints such as an upper bound on maximum cost for each trajectory or on the
maximum number of traversed points of interest; the multi-repairmen problem aims
at covering all the points of interest and minimizing the average visit delay of the
points [38–40]; finally, the Capacitated Vehicle Routing Problem (CVRP) [41] aims
at visiting points of interest, while delivering goods under limited vehicle capacity.

The works [16] and [17] generalize the multi-traveling salesmen problem for
multi-UAV path planning for reconnaissance and surveillance contexts. However,
they do not consider the limited energy availability of the drones, an inevitable
constraint of any battery powered devices. In particular, in [17] the authors propose
a path planning algorithm for multiple UAVs which aims at minimizing the mission
completion time in search-and-reconnaissance operations. In Section 2.1.5 we design
an energy-constrained variant (shortly called TCTPA) of this approach, which is
used in our experiments for performance comparisons.

Another line of research considers the use of linear programming tools to guide
decision making in mobile vehicles operations [42–44]. The work [42] proposes a
novel system for wildfire monitoring using a fleet of UAVs to provide on-demand
fast services, through a distributed leader-follower coalition algorithm which aims at
providing full coverage of the area in a timely manner, while minimizing the drones
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and the energy consumption. Despite the similarity with the problem addressed
in our work, the approach proposed in [42] does not explicitly address limited
resource scenarios as we do in our work to provide multiple flight rounds (with
battery recharging or replacement) when the number of drones is inadequate to
cover all the target points within a region in a single trip. The work in [43] studies
the problem of trajectory planning for fleets of UAVs in search and rescue (SAR)
operations, especially in maritime accidents. In this work the UAVs can be recharged
at different stations to complete the mission. The authors propose a mixed integer
linear program (MILP) to generate efficient search and rescue operation plans. The
main limitation is scalability in terms of number of drones and points of interest
due to the high computational complexity of the proposed solutions. The work
in [44] considers a different scenario where drones are employed to provide network
connectivity to a group of users on the ground. Therefore the goal of trajectory
planning is to maximize users’ throughput, which is different from our objective.

Other approaches leverage genetic algorithms to design the trajectories of multiple
UAVs in different missions [45] [46] [47]. The work in [45] considers a fleet of drones
with limited capabilities. The work solves a capacitated Vehicle Routing Problem
(CVRP) for multiple drones by using a genetic algorithm providing selection, mutation
and crossover. However, the solution is efficient only for scenarios with few points of
interest; as the number of points to be visited increases, the required computational
power increases significantly. In intelligence transportation systems, the work in [46]
aims at finding time-optimal paths for multiple UAVs such that they collectively
visit some target areas when they fly from a starting point to a final location.
However, differently from ours, this work considers only a single-depot and a single
trip trajectory for each drone.

We also mention a few solutions that are based on artificial intelligence. The
work in [48] proposes an unsupervised learning algorithm for solving K-DTSP with
Neighborhoods (i.e., a multi-vehicle variant of TSP where a target is considered
visited provided that a drone trajectory traversed an area surrounding it) with
curvature constraints. The work in [49] uses a distributed reinforcement learning
algorithm to find drone paths in a dynamic scenario where the final destination for
each drone is not fixed a priori. These works lack of any performance guarantee
with respect to the optimal solution; moreover learning approaches usually require
significant time to converge to a steady state.

Finally, there is a large number of works on mission control for ground mobile
robots, which are not suitable for the study of UAV task assignment. Assumptions,
requirements and constraints for UAVs are different from those for mobile robots.
Aerial drones have lightweight payloads and shorter operative time, often requiring
multiple trips; moreover, they consume energy also when hovering and have higher
speed. The work by Setter et al. [50] addresses the problem of coordinating a squad
of mobile robots to perform rendez-vous operations within device energy constraints.
The work by Popescu et al. [51] tackles the robot patrolling problem to repeatedly
cover a set of targets during a mission. The works by Yazici et al. [52], and Mei
et al. [53] address the problem of area coverage, with homogeneous devices. Some
of our experiments also study an extension of our approach to the optimization
of area coverage by designing a variant of the target coverage problem. For these
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experiments we also adopt the algorithm Sweep, inspired by [53], as a benchmark
for comparisons in this problem setting.

To the best of our knowledge, our work is the first that tackles the drone path
planning problem into a general scenario requiring early target inspection. We
consider multiple-round exploration and maintenance phases in order to work also in
under-provisioned settings (e.g., where the drone batteries are not sufficient to cover
all the targets in one single trip, therefore they are allowed to return to the depot
station to have their battery replaced or recharged). We propose a novel optimization
problem, where the flight dynamics, energy consumption, and restricted flight zones
are directly incorporated in the input and early inspection is explicitly measured
and optimized; finally, we propose an efficient polynomial algorithm with guaranteed
performance, evaluated against other proposals by means of both simulations and
prototype experiments.

This work extends a previous conference version [18]. With respect to the previ-
ous work the major enhancements are the following: in Section 2.1.3 we introduce a
novel problem formulation which directly computes trajectories and we provide a
related algorithm for trajectory design in Section 10; we present real field experiments
in Section 2.1.6, with an in-depth discussion on the key implementation challenges.
In the Section 2.1.6 we also extend the evaluation to the different operation scenario
requiring area coverage as opposed to target coverage.

2.1.2 Problem formulation

We consider the scenario in which a squad of aerial drones aims at inspecting a given
set of target points Ψ in the region of interest. These points may be the known
locations of survivors of a catastrophe, requiring medicines or water to be dropped
from aerial drones, or more in general they may be areas of suspected anomalies,
requiring immediate surveillance and local inspection. Figure 2.1 shows an example
of the system with two different depots, d1 and d2, a set of 6 heterogeneous drones,
and several critical points to visit, i.e. the red markers in the figures. The goal of
our system is to compute — at the mission start — the multi-trip trajectories that
the squad should follow in order to visit all points of interest.

Let U be the set of aerial vehicles forming the squad, and let du be the home
depot of drone u ∈ U , i.e. the point of the region of interest from which the
drone departs, and where it is recollected, its data are offloaded, and batteries are
recharged at the end of each trip. It is important to notice that the battery of a
drone imposes a limitation on the single trip duration. For instance, the DJI AGRAS
T16 [54] drone, used to nebulize water and medicines on crop fields for professional
agricultural applications, can only fly for 18 minutes in hovering mode without
payload, considering basic battery equipment. The flight time may be instead as low
as 10 minutes when the drone is fully loaded (i.e., with a payload of about 16 Kg),
an amount of time which becomes even smaller if the drone performs complex flight
maneuvres. In our experimental test-bed described in Section 2.1.6, we use DJI
Flame Wheel F550 [55] drones, equipped with a LIPO battery providing 3500mAh
25C, which allows the drone to fly at 5 m/s for about 7 minutes with no additional
payload.
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Figure 2.1. System scenario

Progressive coverage metrics

We consider a progressive execution of the monitoring activity of the drone squad
in consecutive rounds n = 1, 2, . . . , N , where new target points are inspected at
each new round. A round based execution is meant to consider recharging and
offloading at the depot between consecutive rounds. We denote with [N ] the set
{1, 2, . . . , N}. The variables δi(n) ∈ {0, 1} represent the coverage status of target
i at round n ∈ [N ] for any i ∈ Ψ. If target i is visited exactly at round n, then
δi(n) = 1, otherwise δi(n) = 0. To avoid repeated coverage of a single point i, we
impose

∑N
n=1 δi(n) ≤ 1.

We denote with
δ(n) ,

∑
i∈Ψ

δi(n) (2.1)

the amount of target points covered exactly at round n, that we shortly call round
coverage.

We also define a round based utility function w(n) reflecting non increasing
utilities for each round, such that w(n1) ≥ w(n2) ≥ 0, when n1 < n2 for n1, n2 ∈
[N ].

We now introduce a novel metric W(n) called Weighted Progressive Coverage
(WPC), defined as the weighted average of the round coverage, calculated over the
first n rounds:

W(n) ,
n∑
k=1

w(k) · δ(k). (2.2)

The specific setting of the weights w(k) at round k is meant to give different
priorities to the earlier trips, considering one trip per drone at each round.

It is easy to see that the total coverage in n rounds, hereby denoted with ∆(n),
is obtained by setting w(k) = 1, ∀k = 1, . . . , N , in Equation (2.2) as follows:

∆(n) ,
n∑
k=1

δ(k), (2.3)
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which represents the number of targets covered either at round n or at any round
before n. Hence total coverage is a special case of WPC.

We now define a novel coverage metric which prioritizes early coverage of target
points, called accumulative coverage A(n) at round n:

A(n) ,
n∑
k=1

∆(k). (2.4)

We observe that the accumulative coverage metric is also a special case of WPC,
obtained by setting the values of the weights w(k), k = 1, . . . , n, as explained in the
following observation.

Observation 2.1.1. The accumulative coverage function A(n) at round n is a
linear combination of the single round coverage variables which can be expressed as:

A(n) =
n∑
k=1

(n− k + 1) · δ(k). (2.5)

Therefore the accumulative coverage function at round n is a special case of
WPC obtained by setting the values w(k) = (n− k + 1), in Equation (2.2).

Proof. By simple algebraic passages, we see that

A(n) =
n∑
k=1

∆(k) =
n∑
k=1

k∑
j=1

δ(j) =
n∑
k=1

(n− k + 1) · δ(k).

Table 2.1 summarizes the four coverage definitions.

Table 2.1. Summary of notations

Notation Description
δ(n) Round coverage at round n - Eq. 2.1
W(n) Weighted Progressive Coverage (WPC) at round n - Eq. 2.2
∆(n) Total coverage at round n - Eq. 2.3
A(n) Accumulative coverage at round n - Eq. 2.4

WPC and, more specifically, its accumulative coverage variant, reflects the
capability of a trajectory planning algorithm to prioritize coverage in the early
rounds.

As an example, let us consider a set of 30 targets to be visited within N = 5
rounds. The plots of Figure 2.2 show, in row order, the value of round, total, and
accumulative coverage. The figure considers two different cases of task assignment,
where the available drones execute different trips at each round n ∈ [N ], as evidenced
by the first row, which highlights the covered targets per round, i.e., round coverage.
We see that the value of total coverage, shown in the second row, is the same for the
two cases at the end of the first five rounds, as both the executions ended the fifth
round with complete coverage of the set of targets. Measuring the total coverage
metric at the end of the mission does not capture the difference between the two
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executions as it only considers what was covered at the end of the flight schedule. In
contrast, the accumulative coverage value, shown in the third row, properly captures
the fact that the trips designed for the second case provide higher round coverage in
the early rounds. The accumulative coverage value at the end of the fifth round is in
fact higher in the second case than in the first case of execution. This is due to the
higher weights assigned to the initial rounds in the computation of the accumulative
coverage value, which reflect the prioritization of early inspections.
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Figure 2.2. Round-, total-, and accumulative-coverage with two different choices of
trajectories for multiple rounds of flight.

Consider now N rounds, and a setting where all the target points of Ψ are
covered in a progressive, round based inspection, namely

∑N
k=1 δ(k) = |Ψ|.

Let τi(N) be the round at which target i is visited, hereby called the inspection
delay of target i ∈ Ψ in an N -rounds progressive solution. It holds that:

τi(N) ,
N∑
k=1

k · δi(k). (2.6)

We denote with D(N) the average inspection delay:

D(N) =
∑
i∈Ψ

τi(N)/|Ψ|. (2.7)

Theorem 2.1.1. For any progressive coverage solution δi(k), with i ∈ Ψ and k ∈ [N ],
it holds that:

A(N) = |Ψ| · [N + 1−D(N)], (2.8)
where A(N) and D(N) are defined in Equations (2.5) and (2.7), respectively. It
follows that any progressive coverage solution which guarantees complete coverage of
the set Ψ and maximizes the accumulative coverage function A(N), also minimizes
the average inspection delay D(N).
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Proof. By applying Observation 2.1.1 we have that

A(N) = (N + 1) ·
N∑
k=1

δ(k)−
N∑
k=1

k · δ(k) =

= (N + 1) · |Ψ| −
N∑
k=1

∑
i∈Ψ

k · δi(k) = (N + 1) · |Ψ| −
∑
i∈Ψ

τi(N) =

= |Ψ| · [(N + 1)−D(N)] .

Discussion on the setting of the number of rounds N : We clarify that the setting
of N — the maximum number of rounds for inspecting the target points in the
field of interest — typically responds to application requirements, for example if
drones are supposed to operate during daylight hours. The setting of N affects
the total duration of the target inspection mission. Assuming that each drone has
enough energy to inspect at least a target of Ψ at each round, an upper bound on
the setting of N is |Ψ|/|U|, which is the maximum number of rounds required to
ensure completion of the target covering mission (i.e., total coverage of the target
points).

Discussion on the round length and synchronization: The WPC metric gives the
same weight to the inspection of different targets when they occur at the same round.
This requires that (1) the time between two consecutive rounds is at least as long as
a single round duration to ensure that the time between two inspections occurring
in the same round is always shorter than the time between inspections occurring
in consecutive rounds; (2) inspection rounds executed by different drones have a
similar length, which ensures that round based utilities are monotonically decreasing
with respect to the target inspection times, regardless of the drone being considered.
However we notice that the first assumption is verified in most application scenarios.
In fact, maintenance operations between consecutive trips (e.g., battery recharging
and data offloading) typically require a time that is a factor of 3 to 8 times the
maximum flight duration. In the experimental test-bed considered in Section 2.1.6,
this factor is about 10. The second assumption is also valid whenever drones have
roughly homogeneous flight capabilities and their trips are terminated only when
the residual energy is not sufficient to inspect any more targets, with the exception
of the last round. In most operative cases, with battery powered copters, the above
assumptions are verified as the inter-round operation time usually dominates the
drone flight duration. If these assumptions are not verified for a specific problem
instance, the WPC metric definition may be revised to consider utilities which
decrease with the actual target inspection time.

2.1.3 WPC optimization

The problem of maximizing WPC or any of its variants, including total and ac-
cumulative coverage, can be formulated as an Integer Linear Programming (ILP)
model, as detailed in Problem 2.1. The objective function (a) of the problem is
the expression of WPC defined in Equation 2.2, where the integer variable δ(n)
denotes the amount of targets covered at round n, i.e., the round coverage defined by
Equation 2.1, and in constraint (h) of the problem. The binary variables xuij(n), with
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i, j ∈ Ψ ∪ {du}, u ∈ U , n ∈ [N ], reflect the decision to let drone u traverse the route
between the locations of target i and j, exploring them in a sequence (xuij(n) = 1), or
not (xuij(n) = 0), at the n-th trip. Based on these variables, constraint (b) imposes
that a target be traversed the same number of times in entry and exit direction.
Sub-tour elimination is obtained via the MTZ technique proposed by Miller, Tucker
and Zemlin in [56], with the constraints (c-d), where the auxiliary integer variables
zui (n) represent the ordinal position of target i in the trajectory of drone u at round
n. Constraint (e) imposes an upper bound bu on the maximum energy expenditure
of drone u at each round, where bu is the drone battery availability (in energy units),
and φuij is a constant value, reflecting the energy cost, for drone u to travel from
target i to target j and inspect target j (we refer to Section 2.1.3 for a discussion
on the setting of the parameters φuij). Constraint (f) relates the value of the target
coverage variable δi(n) to the values of the variables xuij(n), and determines the
decision to cover target i ∈ Ψ at round n. Constraint (g) precludes redundant
coverage of the same target points, constraint (h) relates the round coverage δ(n)
with the values of the variables δi(n) denoting coverage of individual targets, while
constraints (i) define the variable domains.

maxW(N) ,
∑N
i=1w(i) · δ(i) (a)

s.t.,∀n = 1, . . . , N∑
i∈Ψ∪{du} x

u
ij(n) =

∑
k∈Ψ∪{du} x

u
jk(n),∀j ∈ Ψ, u ∈ U (b)

zuj (n)− zui (n) ≥ xuij(n) + |Ψ| · (xuij(n)− 1), ∀u ∈ U , i, j ∈ Ψ (c)

zudu(n) = 0; zui (n) ∈ {1, . . . , |Ψ|},∀i ∈ Ψ, u ∈ U (d)∑
ij∈Ψ∪{du} φ

u
ij · xuij(n) ≤ bu, ∀u ∈ U (e)

δi(n) =
∑
u∈U ,j∈Ψ∪{du} x

u
ij(n), ∀i ∈ Ψ (f)∑N

n=0 δi(n) ≤ 1,∀i ∈ Ψ (g)

δ(n) =
∑
i∈Ψ δi(n) (h)

xuij(n) ∈ {0, 1}, δi(n) ∈ {0, 1}, ∀i, j ∈ Ψ, u ∈ U (i)

Problem 2.1. WPC Optimization (edge-related variables)

Formulation with restricted sets of paths

The solution space defined by the constraints of Problem 2.1 includes all the cyclic
trajectories Cu that each drone u can traverse within its battery limitation, starting
from its depot du. In Problem 2.2 we provide an equivalent formulation, considering
trajectory related variables zup (n) ∈ {0, 1}, to denote the decision to assign the cyclic
path p ∈ Cu to drone u ∈ U at round n ∈ [N ]. Constraint (b) defines the variables
δi(n) as a function of the trajectory related variables zup (n), constraint (c) imposes
that each drone traverses at most one of the cyclic trajectories at any given round
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n, constraint (d) precludes redundant coverage, and the remaining constraints (e-f)
define the domain of the decision variables of the problem.

maxW(N) ,
∑N
i=1w(i) · δ(i) (a)

s.t.

δi(n) =
∑
u∈U ,p∈Cu:i∈p z

u
p (n), ∀i ∈ Ψ, ∀n ∈ [N ] (b)∑

p∈Cu z
u
p (n) ≤ 1, ∀u ∈ U , ∀n ∈ [N ] (c)∑N

n=1 δi(n) ≤ 1, ∀i ∈ Ψ (d)

zup (n) ∈ {0, 1}, ∀u ∈ U , p ∈ Cu, ∀n ∈ [N ] (e)

δi(n) ∈ {0, 1}, ∀i ∈ Ψ, ∀n ∈ [N ] (f)

Problem 2.2. WPC Optimization (path-related variables)

The problem is clearly NP-hard as it generalizes the Travelling Salesman Problem
(TSP) [57]. The number of variables of Problem 2.2 grows with the number of cyclic
trajectories that can be defined on Ψ. Computing all these trajectories is time-
consuming, and can become the bottleneck of the entire trajectory planning problem.

Moreover, it must be noted that in practice not all the trajectories are equally
viable due to no fly-zones, energy constraints, and limited maneuverability of
drones [58].

Provisioning the list of viable trajectories for each drone is in itself an interesting
research problem. The work by Milan et al. [59] discusses the inherent non linearity
of this problem and addresses the generation of spline trajectories by means of
non-linear models which take account of mechanical constraints. Trajectories may be
generated by means of clustering algorithms, including density based clustering [60],
agglomerate hierarchical clustering [61], and spectral clustering [62], just to mention
those that may capture the multivariate nature of the target geographical distribution.

In the following we consider a set of candidate trajectories for each drone
χu(bu, du), as the set of trajectories that drone u ∈ U can use (χu ⊆ Cu). The
definition of this set depends on the battery limitation bu of drone u, on the adopted
energy consumption model, and on the location of the related depot du, as well as
on the other limitations discussed above. We denote χ , ∪u∈Uχu .

Notice that the WPC optimization problem under restricted sets of paths χu,
for u ∈ U , requires a more general definition of the coverage variables δi(n) to take
account of the fact that the optimization problem could select paths with overlapping
coverage of some targets. This is because the use of restricted paths does not ensure
the existence of a full coverage solution composed of disjoint paths only, and we
cannot exclude the selection of paths traversed by different drones and/or at different
rounds, containing the same targets. In Section 2.1.4 we discuss a pruning technique
to be adopted to post-process a solution to the task assignment problem based on
restricted paths, for removing redundantly covered target points without affecting
weighted coverage.
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For the purpose of redefining Problem 2.2 under a restricted set of paths χ, we
generalize the definition of the variables δi(n) given in Section 2.1.2 to this new
setting. Therefore, we define δi(n) = 1 if n is the first round in which i is covered by
one or more drones, and δi(n) = 0 otherwise. The definition of τi(N) is generalized
accordingly, so that τi(N) corresponds to the number of the first round at which
target i is traversed for the first time.

Naturally, the generalized variables δi(n) and τi(N) will produce the same values
described in Section 2.1.2 when adopted in a scenario where the set of paths is
unrestricted.

In agreement with Equation (2.6), in which we defined τi(N) for the case of
unrestricted path sets, we define

τi(N) , min{n ∈ [N ] : ∃(p, u) with p ∈ χu, i ∈ p, zup (n) = 1},

when i is covered, otherwise we set τi(N) = N + 1.

Observation 2.1.2. The values of δi(n), i ∈ Ψ, are uniquely determined from the
values of the variables zup (n), u ∈ U , p ∈ χu, defining a round based trajectory
assignment. Then δi(n) = 1 if n = τi(N) and δi(n) = 0 otherwise, for n ∈ [N ].

Problem 2.2 must be modified to take account of restricted sets of paths, and of
the new variable definitions we have just exposed. The new optimization problem,
under restricted sets of paths, is the following Problem 2.3, where we replaced
constraint (b) of Problem 2.2 with new constraints (b1) and (b2), as follows.

maxW(N) ,
∑N
i=1w(i) · δ(i) (a)

s.t., ∀n ∈ [N ]

δi(n) ≥
∑
u∈U

∑
p∈χu:i∈p

zup (n)
|U| −N ·

∑n−1
k=1 δi(k), ∀i ∈ Ψ (b1)

δi(n) ≤ 1−
∑n−1
k=1

δi(k)
(n−1) , ∀i ∈ Ψ (b2)∑

p∈χu z
u
p (n) ≤ 1, ∀u ∈ U (c)

zup (n) ∈ {0, 1}, ∀u ∈ U , p ∈ χu (d)

δi(n) ∈ {0, 1}, ∀i ∈ Ψ (e)

Problem 2.3. WPC optimization (restricted sets of paths).

The metric δ(n) =
∑
i∈Ψ δi(n) represents the number of newly covered targets at

round n. It generalizes the definition of δ(n) given in Section 2.1.2 for the case of
unrestricted sets of paths.

Energy Models

Problem 2.1 abstracts the details of the energy model of a drone u by introducing
the parameters related to the edge cost φuij , which include the costs of travelling
from target i to target j, and the inspection cost at target j.
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With a similar approach, Problems 2.2 and 2.3 also incorporate the energy
limitation bu of a drone u into the definition of the set of feasible trajectories Cu
and χu, i.e., trajectories that each drone can traverse without depleting its battery
before the end of trip.

By making the assumption that energy consumption is only related to inspec-
tion tasks and trajectories, this approach neglects environmental conditions, e.g.,
varying wind conditions. However, in both the formulations, the abstraction has the
advantage of incorporating the energy model in linear terms of the ILP formulation.
Many different energy models can be used to parametrize our problem formulation,
e.g., those proposed by Goss et al. [63], while still keeping the optimization model
simple and linear.

Moreover, the proposed approach has the advantage of considering drone het-
erogeneity, as both the parameters φuij of Problem 2.1 and the setting of feasible
trajectories Cu and χu of Problems 2.2 and 2.3, respectively, can be calculated on
the basis of device specific energy models.

Since no unique energy model can be general enough to capture the peculiarities
of any specific device, in our experiments we adopt a simple linear model for which
energy consumption is proportional to the travelled distance when the drone moves,
and to the flight time when the drone hovers to inspect a target. This model is
discussed in Section 2.1.5.

2.1.4 Efficient approximation algorithms for WPC optimization

The definition of restricted sets of paths χu for each drone u ∈ U significantly
reduces the size of the feasible region of the WPC maximization problem, i.e., it
reduces the number of cycles to be considered as potential trajectories. Theorem
2.1.2 shows that, despite these simplifications, the problem is still NP-hard, and
motivates research for polynomial time heuristics with good approximation of the
optimal, within the constrained sets of trajectories.

Theorem 2.1.2. Problem (2.3) is NP-hard.

Proof. Any instance of the Max-Coverage problem can be reduced to an instance of
Problem 2.3 in polynomial time. Consider a collection S of sets of elements of T ,
and an integer value m. The Max-Coverage problem requires finding m elements
S1, S2, . . . , Sm of S such that ∪mi=1Si is maximized. We can build an instance of
our WPC problem by considering all the elements of T , as target points, therefore
Ψ = T , and one only drone u, |U| = 1 with depot du, flying for N = m rounds. The
restricted set of paths χu associated to drone u is then formulated as follows: for
any S ∈ S we consider a path pS ∈ χu including all the nodes of S and the depot du
in a cyclic trajectory (any cycle fits our needs). We then set the energy availability
of drone u to bu such that bu is sufficient to complete any trajectory pS for any
S ∈ S. Finally, we set the weights w(n) = 1, for each n = 1, . . . ,m. Any solution to
Problem 2.3 maximizes the number of elements of T covered by m sets of S. The
hardness of Problem 2.3 derives from the hardness of Max-Coverage.

The hardness of Problem 2.3 motivates us to seek for efficient suboptimal
solutions with guaranteed performance. To this end, we identify properties of the set
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of constraints and of the objective functions that allow for easy approximation. In
the following we assume that the sets of feasible trajectories χu is known in advance,
for each drone u ∈ U , and defines the problem instance. In Section 10 we discuss
efficient techniques for generating sets of feasible trajectories.

Trajectory Assignment as Matroid Optimization

We recall the following concepts from combinatorial optimization.

Definition 2.1.1 (Matroid [64]). A matroid M is a pair (E, I), where E is a finite
ground set and I ⊆ 2E a non-empty collection of subsets of E, with the following
properties:

1. ∀A ⊂ B ⊆ E, if B ∈ I, then A ∈ I;

2. ∀A, B ∈ I with |B| > |A|, ∃x ∈ B \A such that A ∪ {x} ∈ I.

Definition 2.1.2 (Partition Matroid [65]). A matroid M = (E, I) is a partition
matroid if E is partitioned into disjoint sets E1, E2, . . . , Em and, for some given
integers b1, . . . , bm, 0 ≤ bi ≤ |Ei|,

I = {X ⊆ E : |Ei ∩X| ≤ bi, for i = 1, 2, . . . ,m}.

Definition 2.1.3 (Monotone submodular function [64]). Given a finite ground set
E and a function f : 2E → R,

• f is monotone if ∀A ⊂ B ⊆ E, f(A) ≤ f(B);

• f is submodular if ∀A ⊂ B ⊆ E and e ∈ E \ B, f(A ∪ {e}) − f(A) ≥
f(B ∪ {e})− f(B).

By proving that our objective function is monotonically increasing and submodu-
lar, and that our constraints form a matroid, we can apply results from combinatorial
optimization to define algorithms with known approximation guarantee. More specif-
ically, we recall the following result on the greedy approach1.

Theorem 2.1.3 ( [67]). Consider the maximization of a set function f : 2E → R
over a collection I ⊆ 2E of sets. We denote with f∗ the optimal value, and with
fg the value achieved by the greedy algorithm. If M = (E, I) is a matroid and f is
monotone and submodular, then fg ≥ f∗/2.

We show that our trajectory assignment problem can be cast as the problem of
maximizing a set function under matroid constraints. In fact, under the assumption
that each drone u may be activated a given number of rounds at most equal to ku,
with full battery charge bu, the constraints of Problem 2.3 define a set of feasible
solutions that can be mapped to a partition matroid.

Each drone selects up to ku cycles on a round basis, for a total of maximum N
rounds, where N = maxu∈U ku. For simplicity, we hereby consider ku = N, ∀u ∈ U .
Notice that the round-based cycle selection does not imply that the drone activities

1A more complex algorithm with the best approximation known so far, (1− 1/e), was proposed
by Calinescu et al. in [66].
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must be synchronized. Nevertheless as a first study we consider the round based
weight decreasing in the number of elapsed rounds (namely, targets visited in the
first round have the largest weight, regardless of the time taken by their drone to
complete the round).

In the following lemma we show that the feasible region of Problem 2.3 can be
mapped to a matroid.

Lemma 2.1.1. The solution space of Problem 2.3 can be modelled by means of the
pair M = (E , I), defined as follows:

• E is a ground set, E = [N ]× χ composed of all the cyclic trajectories for any
vehicle u ∈ U , each cloned N times, one for each round: E = {(i, p) : i ∈
[N ], p ∈ χ}. Such a ground set is partitioned into N · |U| disjoint subsets
Ei,u = {(i, p) : p ∈ χu}, ∀i ∈ [N ] and u ∈ U .

• I is nonempty collection of subsets of E defined as I = {S ⊆ E : |S ∩ Ej,u| ≤
1, ∀(j, u) ∈ [N ]× U}.

The pair M = (E , I) is a matroid (a partition matroid).

Proof. We first establish a one to one mapping between any feasible solution of
Problem 2.3, identified by the variable vectors δ̄ and z̄, and a set S = S(δ̄, z̄) ∈ I,
then we show that M is a matroid.
(One to one mapping.) Given a solution of Problem 2.3, we can build the cor-
responding set S ∈ I consisting of all the elements (n, p), with p ∈ χu, for which
zup (n) = 1. Thanks to constraint (c) of Problem 2.3, there will be at most one
element in S ∩ En,u, for each n ∈ [N ] and u ∈ U . The opposite is also true. If we
take any set S ∈ I, this will have at most one element in each partition subset
En,u of the matroid M . More specifically, if S ∩ En,u = ∅, no trajectory of χu is
assigned to drone u at round n and zup (n) = 0, for all p ∈ χu and for the selected
drone u ∈ U at round n. If instead the set S ∩ En,u is not empty, by the definition
of the partition matroid M , S will contain only one element (n, p∗) with p∗ ∈ χu.
This corresponds to assigning zup∗(n) = 1, and zup (n) = 0, ∀p 6= p∗. The variables δ̄
are defined according to the setting of z̄ in agreement with constraints (b1-b2) of
Problem 2.3, or equivalently using the definition introduced in Observation 2.1.2.
(M is a matroid.) In order to prove that the pair M = (E , I) is actually a matroid,
we must verify the two conditions of Definition 2.1.1 on M . For condition (1), let us
consider A and B, with A ⊂ B ⊆ E . A and B are sets of indexed cyclic trajectories,
for selected vehicles and round indexes. As a consequence, if B belongs to the solu-
tion space I then A also belongs to I (A represents a solution with fewer trajectories
than in solution B). For condition (2), given any A and B in I, such that |B| > |A|,
we can write |B| =

∑
(i,u)∈[N ]×U |B ∩ Ei,u| and |A| =

∑
(i,u)∈[N ]×U |A ∩ Ei,u|, because

the sets Ei,u constitute a partition of E .
We can see that there exists at least an element x = (i′, u′) ∈ [N ]× U such that

|B ∩ Ei′,u′ | = 1 and |A∩ Ei′,u′ | = 0. Therefore the element x that satisfies the second
condition of Definition 2.1.1 is such that {x} = B ∩ Ei′,u′ . Indeed, x ∈ B \ A and
A ∪ {x} is still a solution in I, i.e., A ∪ {x} ∈ I. It is straightforward to verify that
the definition of the matroid M is consistent with Definition 2.1.2, hence M is a
partition matroid.
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In the following, with p we interchangeably denote either the cycle or the set of
nodes traversed by the cycle.

Lemma 2.1.2. Problem 2.3 can be cast as a set function optimization on the
partition matroid M defined in Lemma 2.1.1, where the objective function is

f̃(S) ,
N∑
n=1

w(n) · | ∪(n,p)∈S p \ ∪(i,p)∈S:i<np|. (2.9)

Proof. We consider the objective function of Problem 2.3 and express it in terms of
the elements of matroid M . We recall that the objective function of Problem 2.3 is
W(N) =

∑N
n=1w(n) · δ(n). According to Observation 2.1.2, δi(n) = 1 if n = τi(N)

and δi(n) = 0 otherwise, for n ∈ [N ]. Therefore the value of δ(n) is the cardinality
of the set of targets visited at round n for the first time. Consequently, in terms of
the matroid M we can write

δ(n) = | ∪(n,p)∈S p \ ∪(i,p)∈S:i<np|. (2.10)

It follows that f̃(S) =
∑N
n=1w(n) · δ(n) =W(N).

Lemmas 2.1.1 and 2.1.2 show that the WPC problem can be cast as the optimization
of a set function over a matroid constraint. In the following we prove that this set
function is monotone submodular.

Theorem 2.1.4. Function f̃ : I → R is a monotone submodular function on the
matroid M = (E , I).

Proof. We discuss monotonicity and submodularity separately.
Monotonicity proof: Let us consider A,B ∈ I such that A ⊂ B. We must show that
f̃(B) ≥ f̃(A).

Given a solution S we define with τ̃S(i) the value of

τ̃S(i) , min{n ∈ [N ] : ∃(n, p) ∈ S with p ∈ χ, i ∈ p},

if i is covered, and τ̃S(i) = N + 1 otherwise. Notice that, given Lemma 2.1.2, f̃(S)
can be rewritten as

f̃(S) =
∑
i∈Ψ

w(τ̃S(i)) (2.11)

Since A ⊂ B, it holds τ̃A(i) ≥ τ̃B(i), ∀i ∈ Ψ. As a consequence w(τ̃A(i)) ≤
w(τ̃B(i)), ∀i ∈ Ψ, because w(n) is a non-increasing function of n. Therefore, applying
Equation (2.11), we obtain

f̃(B) =
∑
i∈Ψ

w(τ̃B(i)) ≥
∑
i∈Ψ

w(τ̃A(i)) = f̃(A).

Submodularity proof:
To prove the submodularity of f̃ , according to Definition 2.1.3 we must prove that
∀A ⊂ B ⊆ E and e ∈ E \B, f̃(A ∪ {e})− f̃(A) ≥ f̃(B ∪ {e})− f̃(B).
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Let e = (ne, pe) be the generic element of E \B. For a generic solution S, applying
Equation (2.11), we obtain

f̃(S ∪ {e})− f̃(S) =
∑
i∈pe

max{w(ne)− w(τ̃S(i)); 0}.

As we observed for monotonicity, A ⊂ B implies τ̃A(i) ≥ τ̃B(i), and consequently
w(τ̃A(i)) ≤ w(τ̃B(i)), ∀i ∈ Ψ, as we recall that w(n) is non-increasing in n. There-
fore f̃(A ∪ {e}) − f̃(A) =

∑
i∈pe max{w(ne) − w(τ̃A(i)), 0} ≥

∑
i∈pe max{w(ne) −

w(τ̃B(i)), 0} = f̃(B ∪ {e})− f̃(B), which proves submodularity.

As a consequence of this observation we can apply Theorem 2.1.3 to define a
greedy approach with 1/2-approximation of the optimal.

Algorithm Greedy and Prune (GaP) for weighted progressive coverage

In agreement with the discussion of Section 2.1.4 on the constant factor approximation
of the greedy approach, we propose the adoption of an enhanced greedy algorithm,
called Greedy and Prune (GaP) described in Algorithm 1. This algorithm provides
a preliminary greedy trajectory assignment phase, followed by a pruning step which
removes redundant target points from the selected trajectories, without affecting
WPC .

Algorithm 1: Greedy and Prune (GaP)
Input: A set of drones U , a family of candidate cyclic trajectories

{χu : u ∈ U}, a number of rounds N , and a weight function
w : [N ]→ R

Output: An assignment of |U| ordered lists of cycles L̄, where
Lu = (pu1 , . . . , puN ) ∈ χu to each drone u ∈ U

1 Rassigned = (r1, r2, . . . , r|U|)← (1, 1, . . . , 1)
2 V ← ∅, L̄ ← ∅|U |
3 while ∃u ∈ U s.t. ru ≤ N ∧ ∪p∈χup \ V 6= ∅ do
4 (u∗, p∗) = arg maxu∈U ,p∈χu: ru≤N w(ru) · |p \ V|
5 χu∗ = χu∗ \ p∗
6 ru∗ = ru∗ + 1
7 V = V ∪ {p∗ ∩Ψ}
8 append pu∗ to Lu∗
9 prune of redundantly covered targets

10 return L̄

GaP iteratively builds an assignment of paths for the drones, along the available
rounds, by selecting at each step the next tour that maximizes the WPC . When the
set of feasible paths χ is restricted, the solution may contain overlapping trajectories,
namely trajectories assigned to distinct drones or to the same drone at distinct
rounds, containing at least a common target point. In such cases, the pruning
algorithm removes this redundancy without affecting WPC. In particular, it removes
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a target t from a path p if exist an earlier round with a path p′ s.t. t ∈ p′. If overlaps
occur in the same round, the algorithm prune every occurrence but one. Clearly, as
the algorithm removes only redundant targets and leaves them in earliest rounds, it
provides the same value of WPC as a pure greedy approach. Therefore we derive
the following corollary.

Corollary 2.1.1. GaP achieves 1/2-approximation of the optimal solution to the
WPC maximization problem under restricted sets of trajectories2.

That is, the WPC obtained by the trajectories selected by GaP is at least half
of the maximum that can be obtained by optimally choosing the drone trajectories
within the restricted feasible sets χu.

We recall that the formulation of weighted progressive coverage generalizes the
other coverage metrics described in Section 2.1.2. The total coverage metric of
Equation (2.3) and the accumulative coverage metric of Equation (2.5) can be
obtained by setting the weight parameters w(k), k = 1, . . . , N , to specific values,
such that w(k) is non increasing with k. Therefore Theorem 2.1.4 is still valid
for assessing monotonicity and submodularity of the total and of the accumulative
coverage metric, which implies that the Greedy and Prune approach of Algorithm 1
provides a constant factor approximation of 1/2 also for these metrics. The result
naturally extends to the case of unrestricted sets of trajectories, considering Cu = χu.

Theorem 2.1.5. The complexity of GaP is O(|U| · |X | · |Ψ| ·N)

Proof. The greedy assignment of trajectories runs in O(|U| · |X | · |Ψ| ·N). In fact, it
iterates in the while loop (lines 3-8) at most N · |U| times, because at each iteration
at the algorithm selects a new path for a drone u, and the related drone index ru is
increased. Its body loop can easily be implemented to run in O(|X | · |Ψ|), which
is the time of dominant instruction at line 4. In fact, assuming that the weighted
function w(x) is constant (O(1)), the arg max function runs in O(|X | · |Ψ|) while
the other instructions in O(|Ψ|).

The pruning step can be implemented in polynomial time in O(|U| · |Ψ| ·N). In
fact, the pruning step iterates over the trajectories selected in the while loop, and
updates a list of visited targets, sorted by round number, so that it can remove
redundant targets already in the list, and shortcut the related trajectories.

Generation of the restricted sets of paths

For the formulation of Problem 2.3, we have assumed that a set of feasible drone
trajectories is part of the definition of the WPC optimization problem instance.
In the following we discuss a technique to compute a set of efficient candidate
trajectories, taking account of the energy limitations of the drones. Algorithm 2 is
used to generate a subset of feasible trajectories for our simulations in Section 2.1.5
and prototype experiments in Section 2.1.6.

The algorithm initially calculates an approximate solution of TSP over the set
of targets points Ψ ∪ {du}, for each drone u ∈ U . This step is based on the 1.5-
approximation algorithm for TSP proposed by Christofides [15] which produces a

2A relaxation to the continuous and consequent random rounding of the problem 2.3 conducted
with the technique described in [66] guarantees an approximation factor of 1− 1/e.
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Algorithm 2: Drone-trajectory generation
input : drones U , targets Ψ, energy consumption models

ωu : Cu,∀u ∈ U → R
output :Candidate trajectories {χu : u ∈ U}

1 sol= ∅;
2 for u ∈ U do
3 χu = ∅;
4 τu = 1.5-TSP(Ψ ∪ {du});
5 sort(τu); //τu =< du, v1, v2, . . . , v|Ψ| >;
6 for i ∈ {1, . . . , |Ψ| − 1} do
7 for j ∈ {i+ 1, . . . , |Ψ|} do
8 τ ′u =< du, vi, . . . , vj , du >;
9 if ωu(τ ′u) ≤ bu then

10 χu = χu ∪ {τ ′u};
11 sol = sol ∪ {χu};
12 return sol

route τu. The target points are then numbered according to their order of visit in
τu, starting from the depot: τu =< du, v1, v2, . . . , v|Ψ| >. The algorithm computes
the restricted set of trajectories for drone u, by extracting all the possible sub-tours
from τu which, connected to the depot du, meet the energy limitation bu, i.e. all the
sub-tours τ ′u for which ωu(τ ′u) ≤ bu, where ωu : Cu → R gives the energy consumption
of traversing τu according to the energy model of drone u.

As the drones may have different depots, energy availability and energy con-
sumption models, the algorithm iterates on each of them to produce different sets of
trajectories χu, ∀u ∈ U , generating at most |Ψ| · (|Ψ|−1)/2 candidate trajectories for
each drone. If the energy model allows polynomial time verification of the feasibility
of a trajectory, Algorithm 2 is also polynomial in the number of drones |U| and
targets |Ψ|.

2.1.5 Performance evaluation

In the following we give a simulative evaluation of the algorithms discussed in this
work, while we devote Section 2.1.6 to real prototype experiments. We recall that
both Problem 2.3 and the GaP algorithm aim at optimizing weighted progressive
coverage, in its general formulation given in Equation (2.2), for any setting of the
weight function w(k), k = 1, . . . , N . In this section we consider the two practical
coverage metrics introduced in Section 2.1.2, namely total coverage ∆(N) defined by
Equation (2.3), and accumulative coverage A(N) defined by Equation (2.5). Total
and accumulative coverage are instances of WPC obtained by setting w(k) = 1 for
total coverage in N rounds, and w(k) = N − k + 1 for accumulative coverage in N
rounds, ∀k = 1, . . . , N .

We hereby refer to the two variants of the optimal solution with the names
TC-OPT and AC-OPT, for total coverage and accumulative coverage optimiza-
tion, respectively. Similarly, the GaP algorithm variants corresponding to the two
objectives are called TC-GaP and AC-GaP.
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In the following, we compare the aforementioned approaches against a previous
proposal, introduced by Kim et al. [17], hereby referred to with the name Tree Cover
Trajectory Planning Algorithm (TCTPA) as it is based on the creation of tree covers
rooted at the depot locations. In Section 2.1.5 we discuss this previous approach,
explaining its limitations when applied to the scenario considered in this work, and
showing the way in which they are addressed.

Energy model and restricted set of paths

While our algorithms work independently of the specific technique adopted to
generate the restricted set of paths χu for each drone, in this experimental section
we adopt the drone trajectories generated by Algorithm 2, considering that the
energy consumed by a drone is proportional to the traversed distance and length of
hovering time.

Concerning hovering, if φi is the necessary time to inspect the target point i, the
energy consumption related to target inspection is assumed to be proportional to φi.
We also assume φdu = 0 for each depot du of any drone u ∈ U .

Given any two points i, j ∈ Ψ we denote with `ij the distance that a drone needs
to traverse to move from point i to point j. With an abuse of notation we say that
i ∈ p if target point i is traversed by p and that (i, j) ∈ p if the target points i, j are
traversed by p in a sequence.

The energy expenditure for traversing a path p, including hovering on the
traversed target points, is E(p) , a ·

∑
i∈p φi + b ·

∑
(i,j)∈p `ij , where a and b are

dimensional coefficients which reflect the energy consumption in energy units (eu)
for a second of inspection of a target and a meter of flight, respectively. In all the
experiments we consider a = 1eu/sec and b = 1eu/m.

Tree Cover Trajectory Planning Algorithm (TCTPA)

In [17] the authors address the problem of planning multiple drone trajectories to
inspect a number of target points positioned in an area of interest. The primary goal
is to ensure complete coverage of the target points, while minimizing the mission
completion time, i.e. the time at which the last drone returns to its depot.

TCTPA builds a graph whose vertices coincide with the target points and depots.
Then, it builds a set of |U| balanced tree covers rooted at the depot stations, and
convert each tree to a drone trajectory by means of a technique inspired to the
Christofides algorithm for the TSP [15].

The authors consider a multiple depot scenario, but assume each device has
unlimited energy, therefore the drone squad is always able to inspect all the targets
in a unique round. Unlike this previous approach, our algorithms work in a more
general scenario, where the flight autonomy of each vehicle is constrained because of
the limited energy availability of each drone. To have fair comparisons, we made
TCTPA work under limited energy availability, letting drones fly in multiple rounds
N , possibly depleting their batteries before the completion of the target inspection
mission. To make TCTPA produce N tours for each drone, we let it work as if
the number of available drones was N · |U|, considering N virtual clones for each
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physical drone, each with its logically replicated depot, and we let each physical
drone traverse one of its clones’ tours at each round.

AC-OPT

points
depot
Round: 1
Round: 2
Round: 3

Figure 2.3. Consecutive flights under AC-
OPT.

AC-GaP

points
depot
Round: 1
Round: 2
Round: 3

Figure 2.4. Consecutive flights under AC-
GaP.

TCTPA

points
depot
Round: 1
Round: 2
Round: 3

Figure 2.5. Consecutive flights under
TCTPA.

Figures 2.3, 2.4, and 2.5, show the execution of AC-OPT, AC-GaP, and TCTPA,
respectively, in a field of interest of 600m ×600m. Three drones are launched from
different depots located on the bottom border of the field, and are required to inspect
50 target points randomly generated in the field area. Each drone speed is 8m/s, the
drone battery is set to allow a continuous flight of about 2000m in a single round.
The inspection of each target requires 5 sec of hovering time.

The figures show that AC-OPT and AC-GaP definitely succeed in designing
trajectories which, under the battery limitation, contain more target points in the
early rounds. The first round trajectories produced by AC-OPT and AC-GaP for
the three drones are almost the same and contain a number of targets which is much
higher than the average number of targets in the successive rounds. Both these
algorithms complete the mission of inspecting the 50 targets in just two rounds. By
contrast, TCTPA produces a more uniform distribution of targets in the exploration
time, and ends up requiring one additional round for the two drones on the left of
the figure.

These figures show that, in the addressed scenario, TCTPA performs worse
than AC-OPT and AC-GaP in terms of accumulative coverage as it does not give
priority to target coverage in the early rounds. They also show that TCTPA requires
a longer completion time (in number of rounds) than the other two algorithms,
which is its specific objective. Notice that in emergency critical settings, the time
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interval between consecutive rounds is devoted to recharging, maintenance and data
offloading, which are time consuming activities. Hence a solution that minimizes
the number of rounds, together with early coverage, such as AC-GaP, is preferable
in these settings.

Performance comparisons

In this section we give performance comparisons through simulations, evaluating
several key performance metrics under different settings. Where not otherwise stated,
the experiments consider a drone fleet of 5 vehicles, monitoring a squared area of
interest of 2000m ×2000m with randomly located target points requiring 5sec of
hovering time, with depots uniformly deployed at 100m of distance, out of the area
of interest, to reflect the inaccessibility of the monitored field. Each of the drones
executes a maximum number of N = 20 rounds of flight, with a speed of 8m/sec,
under a uniform battery constraint b for each drone, which allows a flight of 7200m
at constant speed (for 15min). Each point in the plots is the result of 30 runs, and
the error bars denote one standard deviation of uncertainty.

Progressive coverage percentage

In the experiments we will evaluate the algorithms in terms of several performance
metrics including the achieved progressive total coverage percentage, hereby defined
as the percentage of target points covered up to a given round (according to
Equation (2.3)), evaluated in progressive rounds. A progressive coverage percentage
of x% at round n reflects a situation in which x% of the target points have been
covered in any round from the first to the n-th.

Fig. 2.6 compares the two optimal and the two greedy approaches with TCTPA,
in a setting with 225 target points, in terms of progressive total coverage achieved
round by round. It is worth noting that the area under the plot until round n is
equal to the accumulative coverage at round n divided by the total number of target
points. The figure shows that, after AC-OPT, the algorithm that performs the best,
both in total coverage and in accumulative coverage, is AC-GaP, with an excellent
approximation of the optimal. Both the algorithms achieve very high coverage in the

Figure 2.6. Progressive coverage (225 tar-
get points).

Figure 2.7. Coverage percentage (varying
nr. of targets).
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Figure 2.8. Quartiles of progressive cover-
age.

Figure 2.9. Average inspection delay in
rounds.

early rounds of execution because they adopt decreasing weights w(n) as prescribed
by Equation 2.2 to give decreasing priority to the coverage achieved at any round
n = 1, . . . , N .

It is interesting to notice that in terms of progressive total coverage, TC-GaP
performs better than TC-OPT, until round 20 in which both algorithms achieve
100% of total coverage. This is due to the fact that by setting the number of rounds
to N = 20, and the weight parameters to w(n) = 1, TC-GaP and TC-OPT make
any of the 20 rounds as important as the others in terms of coverage. None of these
algorithms aim at obtaining high coverage in the early rounds, but only at the 20-th
round. An algorithm that obtains zero coverage at the first 19 rounds and obtains
complete coverage at round 20, has the same value of total coverage ∆(N = 20) as
another algorithm that obtains complete coverage since the very first round. Finally,
we observe that TCTPA has a very good performance in this setting in terms of
total coverage after round 3. Nevertheless in the early rounds TCTPA performs
poorly with respect to all the other algorithms, and in particular, in the first round
it achieves only less than half the coverage obtained by our AC-GaP.

Figure 2.7 shows the coverage percentage achieved at any round by AC-GaP and
TCTPA in settings with a number of target points growing from 100 to 650. The
stacked bars show the percentage of points covered at each round (i.e., from the
points covered at the first round, corresponding to the stack filled with solid texture,
up to the last used round). For example, when the number of target points is 100,
AC-GaP covers more than 90% of the targets within the first round (solid color
block), and the remaining targets in the second round (block with dense diagonal
lines). In contrast, AC-GaP covers only a little more than the 40% of the targets
within the first round, and a little more than the 90% by the end of the second
round, although it also needs a third round to complete target coverage. Due to the
large size of the problem instances, we do not include the optimal policies in this
figure, nor do we include the TC-GaP heuristics because its purpose is not to obtain
high coverage in the early rounds but only within a given round N . The figure
shows that also in this setting, for any round n = 1, . . . , N the coverage obtained by
AC-GaP is always higher than with TCTPA. These results match the analysis of
Figure 2.8 where we use a box-with-whiskers plot to show, by varying the number
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of target points, the round at which the algorithms achieve the different coverage
quartiles. The figure highlights that AC-GaP meets all the quartiles in an earlier
round than TCTPA, demonstrating the superiority of AC-GaP in total coverage
and in accumulative coverage per round.

Average inspection delay

The average inspection delay, in number of rounds, has been introduced with
Equation 2.7. With Theorem 2.1.1 we proved that AC-OPT is optimal both for
accumulative coverage and for average inspection delay in rounds. Figures 2.9
compares our algorithms in terms of this metric, for a growing number of target
points and confirms the optimality of AC-OPT. Due to the high computational time
of the optimal solution (discussed in Section 2.1.5), we only compare the optimal
AC-OPT with the heuristic algorithms AC-GaP and TCTPA for small problem
instances in Figure 2.9, whereas when the size of the problem instance grows, as
shown in Figure 2.10, we compare the two heuristics AC-GaP and TCTPA alone.
As explained by Theorem 2.1.1, AC-OPT performs always better than the other
algorithms in terms of average inspection delay in rounds. Indeed, Figures 2.9
and 2.10 show that the inspection delay in rounds of algorithm TCTPA diverges
from the one of AC-OPT and AC-GaP, showing that the latter algorithms excel in
achieving early monitoring of target points. Figure 2.11 shows a different experiment
in which we still consider the average inspection delay, but we measure it in seconds,
by considering zero waiting time between two consecutive rounds, in order not
to penalize TCTPA with this setting. The figure shows that also in these terms
AC-GaP performs better than TCTPA, due to the fact that TCTPA prioritizes the
completion time of the algorithm, which is the inspection time of the last target
point, at the expense of an increased inspection delay of the other targets. Despite
the fact that mission completion time is the specific objective of TCTPA, Figure
2.12 shows that for the considered scenario, TCTPA always completes the mission
with almost twice the number of rounds used by AC-GaP.

Figure 2.10. Average inspection delay in
rounds.

Figure 2.11. Average inspection delay in
seconds.
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Figure 2.12. Completion round. Figure 2.13. Flight time until mission
completion.

Energy cost

Figure 2.13 shows the total flight time over all the 20 rounds, considering all 5
drones, for the three heuristics TC-GaP, AC-GaP and TCTPA. Notice that since we
use the linear energy model discussed in Section 2.1.5, this measure directly reflects
the energy expenditure of drones.

The graph shows that the difference between the algorithms in terms of total
energy expenditure is negligible, although in small favor of the greedy approaches.

This explains that the superiority of the greedy approaches resides on the way
drone visits are scheduled along the rounds and within single rounds, rather than in
the minimization of the traversed paths.

Computation time

In Figure 2.14 we compare the algorithms in terms of computation time. For this and
for all the previous experiments we adopted a homemade simulator, programmed in
Python, and we ran the ILP optimization problems using the Gurobi optimizer [30].
We ran all the experiments on a Lenovo X3550 M5, with 2 CPUs Intel(R) XEON(R)
E5-2650 @ 2.20GHz with 16 cores and 32 GB RAM [68].

Figure 2.14. Algorithm computation time.
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In order to stress the optimal algorithm while keeping the problem size small
enough to be executed in a reasonable time to have enough runs for a reliable
experimental evaluation, we designed a new setting with 10 drones, and a growing
number of target points, from 50 to 300. This experiment shows that the computation
time of the optimal solution grows prohibitively high also for this small a setting.
With 300 target points the computation time is already in the order of 7 hours. Such
a high processing time makes the optimal solution inapplicable to emergency critical
applications which require prompt intervention of the aerial network and do not
tolerate delays. The figure also contains a zoomed plot which shows the difference
between TCTPA and AC-GaP in terms of running time. Though negligible, this
performance parameter is also in favor of AC-GaP.

2.1.6 Real field experiments

In this section we experimentally investigate the applicability of our proposal and
validate simulation results. The equipment we use for the test-bed includes a fleet of
drones — able to follow way-point missions using GPS coordinates — and, a laptop
— needed to run the algorithms, compute the trajectories and to provide them to
drones.

Figure 2.15. DJI F550 Hex-rotor with Naza-M V2

First, we discuss the major challenges we dealt with while performing the mission.
Then, we compare the simulation results with real-field experiments, under the
same settings. Finally, we compare our algorithms against state-of-art solutions.
We evaluate two scenarios, with battery replacement and with battery recharging
between consecutive rounds. To conclude the analysis, we also use our approach to
address area coverage, i.e., a different objective function for which the algorithm is
not specifically designed.

Real-field Scenario

In the experiments we simulate a rescue mission with several survivors needing help.
The experiments are performed in a university soccer field in Amman, Jordan, with
an area of interest of around 140m × 90m, with |Ψ| = 40 randomly distributed
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target points, modeling survivors. For each experiment, we perform 3 different runs.
Where not otherwise stated, we use a fleet of four drones, with four different depots,
located at the borders of the field, 5 meters apart from each other. The drones
are DJI Flame Wheel 550 (F550) [55] hex-rotor combined with a Naza-M V2 [69]
flight control system, as showed in Figure 2.15. The Naza-M V2, through the GPS
module, allows drone localization and enable way-point missions. All the drones
were equipped with LIPO batteries, 3500 mAh, 11.1 v, 25 C which allow around
7 minutes of consecutive flight with a speed under 5m/s. The time required for
a full recharge is around 1 hours. Notice that, temperature can affect the LIPO
battery’s performance. Most of the experiments were carried out in February, with
a temperature from 7°C to 15°C.

We consider a maximum number of rounds N = 7. After the end of each round,
we recharge or replace the drone batteries and measure the required times. These
times are then used to evaluate two scenarios in which drone batteries are: a)
replaced with fully-charged batteries, or b) recharged, between consecutive rounds.

Table 2.2 lists all the relevant experimental parameters.

Table 2.2. Experiment settings

Field Jordan University Stadium,
Amman, Jordan

Local time 9.00-17.00 a.m.
Local temperature +7− 15◦C
Wind Speed 1.0 to 2.1 m/s
Field Size 140 x 90 (meters)
Number of drones 4
Number of targets 40
Hovering time 90 seconds
Height above the ground 4 to 10 meters
Max number of rounds 7

Experiment workflow. To reproduce a real application scenario, we take the
following steps:

• We perform a preliminary computation of the set of candidate trajectories for
each drone. We compute these trajectories by using the Algorithm 2, which is
also adopted in the simulations.

• We run the algorithms AC-OPT, AC-GaP and TCTPA to obtain the selected
trajectories and their schedule in rounds.

• We let the drones fly along the selected trajectories, taking measures at each
depot and target point.

Moreover, as experiments are conducted on a flat soccer field, we consider flight
trajectories such that drones vertically take off, fly each at a different constant height,
and vertically land to the depot.

To precompute candidate trajectories we assume that drones fly at constant
speed when moving from target to target, and hover for about 90s above each
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inspected target. To take into account the different speed that the drones may reach
during flights of different lengths, we consider a uniform speed of 1.3 m/s for flight
distances of up to 30 meters, 2m/s up to 50 meters, and 2.5m/s for longer distances.

We model the drone energy availability on the basis of the information advertised
by the producer and our previous experience: around 450 seconds of flight-time
when the speed is up to 5m/s. We adopt this value by considering that in similar
experiments the drones never exceeded 5m/s of speed. It is worth to notice that
these values affect the set of feasible trajectories in any algorithm that takes energy
limitation into account. Nevertheless, the errors in this preliminary phase have a
negligible impact in the algorithm comparative evaluation, with inspection delays
that are just few seconds away from the offline calculated estimate.

Mission issues and challenges

We now discuss the major challenges we faced while deploying drones and performing
missions.

Aerial collisions. To avoid potential collisions between drones, we used different
flight heights for each drone. We underline that thanks to the pruning algorithm
phase (2.1.4), two drones never visit the same target, which reduces collision risks
considerably. In the experiments for which multiple drones shared the same depot,
take off and landing procedures must be performed in a serial schedule. Moreover,
drones can collide with physical objects. In this case two solutions are possible.
First, drones may have integrated obstacle avoidance systems [54]. Second, drones
can integrate an online collision avoidance mechanisms in the UAV control pipeline,
to dynamically change the trajectories. For example, the work in [70], presents an
online avoidance maneuver that alters the reference trajectory of the vehicle by
adding an offset in height in case of a possible collision.

In the proposed presented in this section, we did not have any physical obstacle
along the field, and each drone had its own depot.

Errors in the candidate trajectory pre-computation. As drones have
limited energy, estimating their flight capabilities is a significant challenge for a
successful mission. If the algorithms underestimate the energy consumption of
drones, they may produce unfeasible paths, leading to emergency landings. As
drones manufacturers give little information on the energy consumption model —
they typically describe the device energy availability in terms of indoor hovering time
or flight at uniform speed — we measured the drones’ capabilities by analyzing real
field past experiments. Specifically, when computing the set of candidate trajectories
χu for each drone u, we estimate the flight capabilities by averaging and interpolating
measures obtained in similar environmental conditions, considering the different
activities such as take-off, flight at uniform speed, hovering and landing. Then, we
slightly reduced the value of this estimate to have a conservative evaluation of the
drone capabilities to make the solution more tolerant to unpredictable conditions,
such as adverse wind.
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Figure 2.16. Simulation vs Experiment visit times.

Validation of simulation results

We now compare simulations and experiments conducted on the real test-bed using
the same settings described in Table 2.2. We do not show a comparison between
simulated and real experiments in terms of rounds as they produce the same results.
Figure 2.16 shows the time elapsed (y-axis) until the visit of an increasing number
of target points (x-axis) for all the compared algorithms. For this experiment, we
considered zero waiting time between two consecutive rounds. The dotted lines
represent the offline simulated trajectories, while the solid ones are the real field
experiments. The lines show only very small differences between simulations and
experiments. Confirming this analysis, Figure 2.17 evaluates the difference between
simulations and experiments in terms of the Mean Absolute Percentage Error
(MAPE). The figure shows that the MAPE of the average inspection delay is always
below 7%. This slight discrepancy is mostly due to uncontrollable environmental
factors (e.g., wind), measurement errors, and drone acceleration/speed in the real
field.

Thus, our first set of experiments validates simulation results.
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Figure 2.17. Simulation vs Experiment average inspection delay in seconds.

Progressive coverage evaluation

We experimentally compare our algorithms with previous solutions. We evaluate
two scenarios, which differ in the operation between two consecutive rounds: the
first implements battery replacement while the second provides battery recharging.
Obviously, battery recharging has a significant impact on overall mission time.

Figure 2.18 shows the progressive coverage percentage for the three algorithms
(see section 2.1.5), with respect to mission rounds. Specifically, AC-GaP performs
very well, close to AC-OPT. Both algorithms achieve very high coverage in the early
rounds of execution, with complete coverage before round 3 for AC-OPT and round
4 for AC-GaP. Instead, TCTPA performs poorly, as it requires 7 rounds to complete
the visit.

We further investigate progressive coverage in the two scenarios in terms of
elapsed time from the mission start.

In the battery replacement scenario, shown in Figure 2.19, AC-OPT and AC-GaP
perform better than TCTPA, reducing the average inspection delay of about 25%
(see Table 2.3). This gap heavily increases in proportion to the time spent at the
depot for battery replacement and device maintenance, due to the higher number of
rounds required by TCTPA.

If we consider battery recharging between rounds, as we show in Figure 2.20, the
performance of TCTPA degrades significantly with respect to AC-OPT and AC-
GaP, which however present a step-wise increase in progressive coverage percentage.
TCTPA takes 5000s to cover about 50% of targets, while at the same time, AC-OPT
and AC-GaP cover 75% and 72% of targets, respectively.

Table 2.3. Average Inspection Delay on real-field experiments

Average Inspection Delay AC-OPT AC-GaP TCTPA
# of rounds 0.85 ± 0.02 0.9 ± 0.04 2.32 ± 0.13
# of seconds - with battery replacement 727 ± 15 744 ± 21 992 ± 11
# of seconds - with battery recharging 3578 ± 62 3717 ± 127 6147 ± 247

Finally, Table 2.3 shows the average inspection delay (see section 2.1.5) with
respect to the number of rounds and time elapsed from the mission start, in both
the battery replacement and recharging scenarios. The results clearly show that
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Figure 2.18. Progressive Coverage
(Rounds)

Figure 2.19. Progressive Coverage with
battery replacement (sec)

Figure 2.20. Progressive Coverage with
battery recharging (sec)

AC-OPT and AC-GaP are comparable and outperform the TCTPA. In detail, the
optimal and greedy algorithms perform better than TCTPA, reducing the average
inspection delay in seconds of around 25% and 40%, with battery replacement and
recharging, respectively.

To conclude, our second set of experimental results confirm the real field applica-
bility of our approximation algorithm, which outperforms TCTPA. The experiments
also reveal that the new WPC metric correctly reflects the algorithm capabilities to
provide early target inspection, especially in battery recharging settings.

Energy model - sensitivity analysis

As we previously discussed when we addressed the challenges of a real field test-bed,
errors in the energy model may result in the computation of inefficient or infeasible
trajectories due to an incorrect estimate of the drone capabilities. We studied
the effects of under-estimating and over-estimating the drone energy consumption
considering different error values. Due to the randomness of the target deployment
over the area, in none of the experiments we had a situation in which drones had
the exact energy availability to complete their trajectories with no residual energy.
Therefore the algorithms showed a good flexibility to errors in the energy model. We
had to introduce an error as high as the 30% before being able to observe significant
differences in number of rounds with respect to the case of a correct energy model.
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In a scenario with 20 randomly deployed target points and 4 drones an overesti-
mation error of 30% in the drone energy consumption produces shorter trajectories
than necessary, requiring 1 additional round in all the algorithms. In contrast, an
underestimation error of 30% produced unfeasible trajectories, so that some drones
were not able to complete their tasks and had to return to the depot, requiring
additional time to identify the un-visited targets and re-compute a solution to
complete the mission.

Area coverage evaluation

In this section, we investigate the performance of our approach when the application
requires coverage of an entire area, and not just of some target points. To extend
our target coverage algorithms to the new application scenario, we provide a square
tessellation of the area (with tile sized such that they can be inscribed in the drone
monitoring range) and set a target at the center of each tile with null hovering time
requirement. With this setting, by inspecting each target, a drone entirely covers the
area of interest. For this evaluation, we consider an algorithm specifically designed
to obtain area coverage: the cooperative Sweep algorithm — an extension of the
approach proposed in [53] to drone networks. The algorithm partitions the whole
area among the available drones, taking into account their capabilities and different
initial locations. Each partition is then covered with a rectangular scale-line pattern.

Figure 2.21. Cooperative coverage path planning sample scenario.

The drawing of Figure 2.21 shows an example of the algorithm trajectories in
the addressed scenario. The left image represents the Sweep algorithm. Notice that,
if a path requires to much energy to be executed by a drone in a single trip, we
truncate it and we reassign the remaining part to a subsequent round. The right
image exemplifies the setting of target points to address this scenario with target
coverage algorithms.

We run two different experiments to test the algorithm performance while covering
the whole area with 4 drones, both with replacement and recharging actions between
consecutive rounds. We consider a 360°-camera with a monitor range of 2.5 meters.
We do not consider hovering time, but we slow down the maximum speed to 2m/s,
to allow the camera to collect data during the flights.
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(a) Battery replacement (b) Battery recharge

Figure 2.22. Percentage of covered area.

In this scenario we compare Sweep with our greedy algorithms: AC-Gap, which
employs the accumulative coverage metric, and TC-GaP, which employs the total
coverage metric. Figure 2.22(a) and 2.22(b) show the percentage of covered area since
the beginning of the mission, in case of battery replacement and battery recharge,
respectively. While all the algorithms have the same performance in number of
rounds to achieve total coverage (i.e., they cover the whole area in 2 rounds), AC-Gap
covers around 82% in the first round, while Sweep only the 78% and TC-GaP the
62%. In particular, the figures show that AC-GaP visits most of the points at the
beginning of the mission, which is extremely helpful in critical situations, especially
when the batteries are being recharged. In Figure 2.22(b) AC-GaP visits the 82% of
the points in the first 8 minutes of mission, while Sweep needs more than 1hour to
reach the same coverage percentage.
Finally, we note that despite the performance differences shown so far, the three
algorithms need about the same time to achieve a complete coverage, for both the
battery replacement and battery recharging scenarios. Sweep needs 800s and 4000s,
AC-GaP needs 900s and 4350s, and TC-GaP completes the mission in 1050s and
4400s, respectively, in the two scenarios.

2.1.7 Conclusions

The work addresses the problem of assigning location based tasks to a fleet of drones
in an emergency critical scenario, to ensure early inspection of target locations.
We propose a novel metric, called weighted progressive coverage, to measure the
capability of a trajectory planning algorithm to provide early target inspection,
and formulate a related optimization problem. We show that weighted progressive
coverage generalizes traditional metrics of coverage, as well as a new notion of
accumulative coverage which is directly related to early coverage capabilities. Due
to the NP-hardness and high computation time of the optimal approach, we propose
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a new polynomial time algorithm with a constant factor approximation of 1/2 of
the optimal. We study the proposed algorithm by means of extensive simulations,
showing that it outperforms previous approaches in terms of all the metrics of
coverage, average inspection delay, energy consumption and computation time. We
also validate our simulation results through prototype experiments and demonstrate
the applicability of our approach in real field scenarios.
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2.2 GenPath - A Genetic Multi-Round Path Planning
Algorithm for Aerial Vehicles

In the previous section we highlighted the importance of dealing with limited energy
and capability of drones. We monitored target points in multiple consecutive trips,
allowing battery replacement and data offloading in between.

In this work we further analyze multi-trip missions into a wider range of applica-
tions. We study the use of a Genetic Algorithm to adapt and schedule trajectories
into a multi-trip mission, dealing with applications and drones’ constraints. In
fact, as already mentioned, there have been several proposals for task assignment
which consider a one-trip per drone assignment, with the purpose of maximizing the
number of inspected targets, or minimizing the task completion time. But drones
have limited and heterogeneous energy and storage availability, and may not be
able to complete the assigned path with a single trip. Existing approaches stop at
this point — they do not tackle the problem of dealing with multi-round missions
to provide complete monitoring coverage, with battery replacement/charging and
data offloading in between. A drone may start from a depot, reach some points of
interest, go back to the depot to recharge or replace the battery, and then continue
the mission, exploring other points of interest.

Figure 2.23. Example of a mission: two different depots (d1 and d2), a set of three
heterogeneous drones, and several critical points to visit (i.e., the red markers) and
multiple tours for the same drone (orange arrows).

Although most of the available path planning algorithms may be adapted to deal
with multi-round missions (e.g., they can split a mission in multiple tours allowing
battery replacement), path assignment is not immediate and should be optimized.
In particular, the paths should be assigned in an optimized way, according to the
objective function. For example, for early coverage objective, the tours should be
optimized such that the majority of points are covered in the earliest tours. While
for total coverage objective, tours should be optimized so that most of points are
visited within the end of mission.

To this end, we propose Gen-Path, a genetic algorithm that optimizes path
scheduling in multi-round missions. Gen-Path takes as input a set of feasible paths
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for each drone, generated by other path planning systems. Then, through selection,
crossover, and mutation, Gen-Path optimizes the solutions, finding a near optimal
assignment of tours under any objective function. Differently from other proposals,
Gen-Path is able to optimize already defined paths and deal with limited energy
constraints.
We implemented Gen-Path on DEAP [71], an evolutionary computation framework
developed in python. We analysed its performance and compared it to related
algorithms. Simulation results demonstrate that Gen-Path can fit different scenarios,
characterized by different objective functions, decreasing the energy consumption,
with respect to related solutions, up to 30% with 12 drones, while inspecting
comparable number of targets. A distinguishing aspect of Gen-Path is that it can
easily incorporate paths that present restrictions, such as paths imposed by public
authorities: in some areas no fly-zones may define the only viable paths.
To summarize, the key contribution of this work is a genetic based path selection
algorithm, called Gen-Path, which integrates and adapts single-path missions to
multi-round missions, eventually improving their performance, while dealing with
real scenario constraints.

2.2.1 Problem Formulation

We consider a multi-round mission where a swarm of drones, located at different
depots, will perform monitoring operations to inspect an area of interest with several
target points (see Fig. 2.23). Drones can offload data and replace/recharge batteries
between consecutive rounds.

Let N be an upper-bound to the number of rounds. Notice that, N may reflect
the hours available to complete the mission, or the number of recharging phases
or the batteries available for the drones (i.e., the maximum possible consecutive
rounds).

We denote with U the set of drones and with χ the input set of possible candidate
tours. We recall that this formulation allows us to adapt most of the literature
path planning algorithms to multi-round missions. Our proposal allows to assign
trajectories to drones in the rounds according to a given objective function. In fact,
the algorithm outputs S, i.e., an assignment of tours, maximizing a given score
function f(S)→ R. This general definition allows the proposed genetic framework,
Gen-Path, to be adapted upon need, and in several different scenarios. For example,
the algorithm can consider target coverage, round based accumulative coverage, visit
latency minimization, and so on.

Path assignment optimization

We now formalize the problem of path selection in terms of integer programming.
We define with χu the set of all paths that each drone u ∈ U can traverse. χu is
composed of only valid tours, namely tours that include the depot, namely du, of
drone u and that can be traversed within the constraint on energy consumption
imposed by the drone’s battery, i.e., bu. We consider trajectory-based variables as
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follows: zup (n) ∈ {0, 1}, to denote the decision to assign path p ∈ χu to drone u ∈ U
at round n ∈ [0, .., N ].

We define Problem 2.4 as follows:

max f(
⋃
u∈U,n∈[0,N ],p∈χu:zu

p =1 p) (a)
s.t.∑

p∈χu
zup (n) ≤ 1, ∀u ∈ U , ∀n ∈ [0, N ] (b)

zup (n),∈ {0, 1}, ∀u ∈ U , p ∈ χu, ∀n ∈ [0, N ] (c)

Problem 2.4. Multi-Path Multi-Round Optimization.

Where constraint (b) imposes that each drone performs at most one tour at any
given round n, while constraint (c) defines the binary domain of variable zup (n).

Notice that, the battery constraint is incorporated in the definition of the feasible
trajectories: the input considers only the tours that drones can perform within their
battery limitation bu.

Problem complexity

The defined optimization problem works under any objective function f(S) → R,
defined by the end-user. Therefore, the problem may be NP-Hard for some objective
functions. Moreover, if the function is non linear, the problem may be even more
complex to solve.
This hardness motivated us to seek for more efficient sub-optimal solutions, with near
optimal performance. In a critical scenario the optimal solution may be impracticable,
for example in earthquake emergency, wildfire, and general rescue operations where
a timely intervention is extremely important.

2.2.2 Gen-Path: A Genetic Framework for Path-Planning

A brief primer of Genetic Algorithms

Genetic algorithm (GAs) is an optimization technique, firstly proposed by Holland
in [72], which finds its roots in the biological evolutionary process. The key idea is
that through generations only the most suitable individuals, for humans the stronger
and healthier, survive, making the next generation improved with respect to the
previous one. Genetic Algorithms are frequently used to find optimal or sub-optimal
solutions to hard, or NP-hard, problems. A GA starts with a problem and a set of
possible solutions, the population. These solutions are recombined and mutated (like
in natural genetics). In this way the GA produces new child solutions, repeating for
multiple generations. To each child solution is assigned a fitness value, depending
on the problem’s objective function. In each generation only the solutions with the
higher fitness survive. The GA keeps evolving the better solutions over generations,
until it reaches a stopping criterion. Genetic algorithms have become popular due
to their good performance with respect to other heuristic approaches. Thanks to
their evolution based model, GAs are able to exploit historical information, and to
move only through promising solutions.
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Figure 2.24. Genetic Algorithms components.

One of the main benefits of GAs for our context is the capability to optimize
both continuous and discrete functions, even with multiple objective functions.

Gen-Path overview

We now describe Gen-Path, our genetic algorithm to solve the multi-round trajec-
tory problem. The algorithm starts from a random population: a set of random
assignments Si, composed from the input set of feasible trajectories. Each solution
S is evolved to maximize the value of the given fitness function f(S)→ R, to finally
return a near optimal solution.
This approach has two main advantages: 1) the algorithm finds near optimal so-
lutions in a very short time; 2) through a special mutation and cross-over phase,
the algorithm can generate new trajectories that can be used in the solution. In
particular, this property allows to outperform other path selection approaches, as
the algorithm creates also new optimized trajectories.

Notice that, the creation of new paths is strictly connected with the presence of a
validation operator (see Figure 2.26) which validates each new trajectory feasibility.
We will discuss better this operator in the next section.

Gen-Path components

We now define the main components of the Gen-Path algorithm. As we can see
in Figure 2.24, the individual represents a possible solution S to the multi-round
path-planning problem. We recall that U is the set of drones for which we aim at
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Figure 2.25. Main phase operations.

finding a set of N trajectories to visit the area/points of interest. Therefore, our
individual S can be represented as a matrix Nx|U|:

S =


p1,1 p1,2 p1,3 . . . p1,N
p2,1 p2,2 p2,3 . . . p2,N
...

...
... . . . ...

p|U|,1 p|U|,2 p|U|,3 . . . p|U|N

 (2.12)

where each element pu,n represents the tour which the drone u runs at round n.
Therefore, each drone will run at most N tours, with data offloading and battery
management in between.

A gene represents a single component/feature of the solution. In our case
a gene is a single tour pu,n of the solution (i.e., individual), namely pu,n =<
du, t0, t1, ..., ti, ti−1, du >, where du is the depot of drone u and ti ∈ Ψ is a target
point. We denote with Ψ the set of target points to inspect. We also introduce
smaller components that we call sequence elements. They compose the genes. In
our problem settings, each sequence element represents a target visited by a tour
(i.e., gene), namely each target ti ∈ pu,n is a sequence element. Notice that, the
sequence elements are introduced to increase the solution performance. They allow
to change also the tours that are given as input (i.e., genes), opening the solution to
completely new opportunities.

Finally, the population P is a set of individuals, which iteratively evolves driven
by a biological evolution process. We define as P(0) = {S0,S1, ...,Sk} the initial
population of k-elements, which is randomly generated, allowing different range of
possible solutions. During each successive generation t, we define with P(t) the
current population.
The fitness function f(S)→ R evaluates the solution domain.
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Figure 2.26. Secondary phase operations.

Genetic Algorithm operations

We have two main evolutionary phases: 1) the main phase, based on individuals
and genes to create new solutions; 2) the second phase, based on gene and sequence
elements to increases genetic diversity and creates new tours (genes) in solutions.
We recall that the solution S is an assignment of N-tours for each drone u ∈ U .

Main phase We now define the cross-over and the mutation for individuals,
shown in Figure 2.25. The cross-over operation exchanges tours between two
different individuals (solutions). It selects a random crossover point in the list of
N-tours of drone u; then, in the two solutions, the tours to the right of that point
are swapped. This results in two offspring, each carrying some genetic information.
The mutation operation randomly exchanges a tour from the solution of drone u
by selecting one from its feasible trajectory χu. This operation helps to increases
the genetic diversity and add new tours in the solution.

Secondary phase The secondary phase directly changes tour (gene) structures
and target points (sequence elements). It involves three main operations, the cross-
over, the mutation, and the validation. Figure 2.26 shows the three operators.
The cross-over operation randomly combines tours from same drone u. Given a
tour t, it selects a random crossover point in the tours and swaps them. The targets
to the right of that point are swapped. This results in new tours and solutions, each
carrying some genetic information. The mutation randomly exchanges tour targets.
For a given tour pu,n a target ti is randomly chosen and substituted with a random
one tj ∈ Ψ, j 6= i. As this secondary phase modifies tours, the validation operation
allows to validate tours. It checks the battery and capability constraints (i.e., if a
tour pu,n is feasible for drone u). Notice that, this operator can include any energy
or assessment model to check the tours.
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Algorithm

The Gen-Path algorithm is presented in Algorithm 3. It contains the two main
evolutionary phases.

Algorithm 3: Gen-Path Algorithm
1 Input: The set U of drones, the candidate cyclic trajectories of drones
{χu : u ∈ U}, the maximum number of rounds N , and the fitness function
f : S→ R

2 Output: an assignment of |U|xN tours S.
3 P ← initialize population;
4 gen ← 0;
5 while not stopping criteria do
6 parents ← selection(P(gen), f);
7 gen += 1;
8 — Individual Evolution —
9 P(gen) ← elitist-selection(parents);

10 P(gen) ∪ cross-over(parents);
11 P(gen) ∪ mutation(parents);
12 — Gene Evolution —
13 if Gene-evolution is enabled then
14 P’ ← gene-cross-over(parents);
15 for i ∈ P (gen) do Mutation loop
16 P’ ∪ {gene-mutation(i)} ;
17 P(gen) ∪ validation(P’);
18 return best-individual(P(gen))

The algorithm starts with a random initialization of the population, which evolves
through several evolutionary operations. Each operation is performed on a set of
individuals according to a random probability. At each iteration, the algorithm
chooses some individuals as parents to generate the next generation, based on
the fitness function. Some of these are directly included in the new population
without changes, to avoid loss of performance (i.e., a good solution may be lost or
degraded), while others are mutated and changed. In the main evolutionary phase,
these individuals are changed at the gene level: some of the parents are randomly
chosen for cross-over and mutation. In the second evolutionary phase, some genes
(tours) of the new individuals (solutions) are selected. Their sequence elements
(targets) are mutated and combined to increase genetic diversity and investigates
new possibilities. Therefore, new trajectories are built, and they are validated by
the validation operator.
Notice that the validation can be a function f(p, u)→ [0, 1] which takes a drone u
and a new path p and validates its feasibility (e.g., if the battery constraints are
meet). This function is required to enable the secondary evolution, otherwise this
phase is disabled. The secondary evolution may be disabled also when the tours can
not be changed (e.g., due to strict regulations which define the only viable paths).
The algorithm continues and iterates to modify the population and takes and shares
only better proprieties, according to the chosen optimization function. It stops when
it reaches a stop criteria, which may be defined upon need. The stop criterion is
usually based on: the max number of generations, the convergence of the performance,
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or a score threshold for the solution. Finally, the output is a sequence of N-tours for
each drone, such that the overall mission maximizes the given input function.

2.2.3 Performance Evaluation

We now evaluate the performance of Gen-Path. We compare it with a Greedy based
algorithm, TC-GaP (see Section 2.1), which considers a multi-round optimization
with total coverage objective function. The total coverage aims at providing target
inspection (i.e., maximize the number of targets covered in the mission). We
calculate the input set of feasible trajectories χ as proposed in Section 10, which
uses Christofides approximation algorithm [15]. Given a set of target points Ψ, for
each drone u, it builds a Traveling Salesman Problem (TSP) approximated solution.
Thus, it determines an ordered sequence of the target points, which splits into several
parts, to exclude unfeasible ones and those that do not meet the energy battery
limitations bu of drone u.

We evaluate the following metrics: Covered points defined as the number
of target points covered within the mission; Average Tour Cost defined as the
average time in seconds taken by each tour (i.e., we consider that the drones energy
consumption corresponds to flight time, with one energy unit consumed for each
second of flight (1eu)).

Figure 2.27. Gen-Path path example.

Scenario

We consider a scenario with t = 200 target points randomly distributed on an area of
5x5km. We consider 4 to 12 drones starting from different depots, with 10 minutes
of autonomy, flying at an average speed of 8m/s. We consider N = 3 maximum
mission rounds (i.e., the consecutive flights allowed to each drone).
We consider a stopping criteria based on the maximum generation number, that we
set to 150 generations (i.e., Gen-Path terminates after 150 evolutions and outputs
the best individual found). Figure 2.27 shows an example of paths generated by
Gen-Path in an area of 2x2km, with 2 drones. Red marks represent points of interest
(POIs) that must be explored, while the blue mark represents the depot where UAVs
depart, recharge their batteries and land. Each drone starts the mission by exploring
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some POIs; it returns to the depot for recharging its battery and off-loading data;
eventually it continues the exploration of other POIs.

Figure 2.28. Gen-Path convergence. Figure 2.29. Average Tour Cost.

Figure 2.30. Number of covered target
points.

Performance

Figure 2.28 shows the convergence of Gen-Path for the total coverage objective
function, in case of 4 drones. Gen-Path converges to a optimal solution with less
than 80 generations.

Figure 2.29 shows the performance of Gen-Path under the objective of minimizing
the length of the tours while maximising the covered points. The figure shows how
Gen-Path notably reduces the length of the tours, resulting in a lower energy
consumption for the drones. By increasing the number of drones Gen-Path reduces
the tour cost from 5% in the case of 2 drones up to 30% in the case of 12 drones,
keeping the number of covered points comparable. In particular, Figure 2.30 shows
the number of covered target points by Gen-Path respect to TC-GaP. It shows that
Gen-Path is always comparable, while it also slightly increases the performance for
small scenarios.
The motivation behind such improvement is given by the ability of Gen-Path to
optimize more complex objective functions. Notice that, while TC-GAP has been
specifically developed to optimize coverage, our approach can use any given objective
function. Therefore, these results confirm the Gen-Path applicability, and, thanks
to its Gene-Evolution approach also its superiority in several scenarios. In fact,
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Gen-Path is able to create new paths, increasing the number of trajectories and the
points that can be visited.

2.2.4 Conclusions

We develop Gen-Path, a genetic algorithm for efficient scheduling of multi-round
UAV missions considering the limited capabilities of drones. In fact, most of the
existing works do not consider the limited autonomy of drones, precluding their
applicability in real scenarios.
Gen-Path leverages the existing plethora of algorithms for path planning to build
multiple tour candidates and schedule them into a multi-trip multi-drone mission.
In particular, it enables optimized multiple consecutive trajectories for each drone,
with data off-loading and battery recharging in between.
We evaluate Gen-Path against a state of art algorithm, namely TC-GaP. Gen-Path
achieves the same coverage in less time, improving the performance up to 30% in
terms of energy cost.
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Chapter 3

Connected Trajectory Planning

In the previous Chapter 2 we analyzed the problem of path planning for fleets of
multiple drones without considering the communication capabilities of the drones.
Conversely, in this chapter we propose two novel solutions that explicitly incorporate
communication in the design of path planning algorithms, to address a wider range
of scenarios. We focus on safety critical missions, including post-disaster areas, or
military fields, requiring prompt area monitoring and fast detection of events of
interest. Moreover, we do not rely on any communication infrastructures (e.g., 5G),
which can be (a) unavailable or disrupted in harsh environments [22], (b) inadequate
to meet the data rate and delay requirements of a safety critical application. Instead,
we consider networks of drones that communicate and are connected in ad-hoc
manner, namely Flying Ad-hoc Networks (FANETs).

In Section 3.1 we formulate the connected deployment problem that requires
to urgently monitor a set of target points while streaming data to a base-station.
We leverage communication capabilities of drones and we require the FANET to
create connected formations to ensure multi-hop low-latency communication while
performing the monitoring task. We show that addressing the above problem to
maximize event coverage is NP-hard and we propose a polynomial time solution,
called Greedy Connected Deployment (GCD), based on a two phase approximation
of the problem. By means of extensive simulations and real field experiments, we
show that our approach outperforms existing solutions to the related problem, both
in terms of monitoring accuracy and system responsiveness.

In section 3.2 we relax the assumption of perfect knowledge of ongoing events
and their location. We consider a safety critical application in which the events’
time and position can only be estimated with some uncertainty (e.g., survivors
after an earthquake). We exploit drones’ communication capabilities to share local
observations and build a dynamic probabilistic map of ongoing events. We integrate
such a map into a virtual force approach for a joint solution to distributed dynamic
trajectory planning and collision avoidance. Through extensive simulations and
real-field experiments, we show that our proposal discovers new events 30-40% faster
than the other algorithms, and outperforms them in terms of percentage of visited
events and inspection delay, under a wide variety of scenarios.

This chapter has been extracted from the works in [21] and [23].
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3.1 On connected deployment of delay-critical FANETs
The use of Flying Ad-hoc NETworks (FANETs) in emergency critical scenarios
offers a powerful tool for ensuring inspection of hostile or hazardous areas, where
human intervention is unsafe if not utterly impossible. In these settings, the existing
cellular infrastructure may be completely knocked down, and drones may receive
monitoring tasks and related trajectory plans from a master base station through
long range communication means. However, long range communications typically
allow limited data rate. In order to transmit the rich information necessary to
perform proper assessment of the ongoing events, the drone squad may use high
data-rate communications, allowing multi-hop communications with the base station.
In this work, we tackle the connected deployment problem, namely we study how
to deploy a team of drones so that their trajectories dynamically create connected
formations through which the FANET can inspect a set of targets of interest, while
ensuring low latency, high data-rate multi-hop communications with the master base
station, under the delay-sensitive requirements of safety critical scenarios.

Previous solutions to the trajectory planning problem for teams of drones include:
graph algorithms [17,37], virtual force based approaches [73], optimization problems
[18, 19, 44], bio-inspired, genetic and machine learning algorithms [74, 75]. None
of these works tackle the communication problem. They are all based on the
assumption that applications are delay-tolerant, and that information related to the
inspected targets can be delivered when drones return to their base station or fly in
its proximity.

The problem of path planning under connectivity requirements was studied for
multi-robot exploration scenarios, where several terrestrial robots aim at exploring
an area of interest, or at visiting a set of target points, while connected to the
base station [76–79]. However, these works are based on assumptions on device
mobility and energy consumption that are not applicable to the case of aerial devices.
Other works [80–82] aim at preserving a swarm connectivity to the base station by
controlling the device formation according to the theory of formation rigidity. Few
works explicitly focus on designing drone trajectories while preserving ad-hoc, high
data-rate communications among multiple drones, either considering continuous,
periodic, or best-effort connectivity [83–87].

Unlike previous works, we jointly address the monitoring and communication
needs of emergency critical applications, while considering the specific operational
setting of a drone team. We show that this problem is NP-hard, and propose a
polynomial time solution, called Greedy Connected Deployment (GCD), based on
two phases, the first designing target formations to maximize target coverage, and
the second scheduling the formations for minimal completion time.

We compare the performance of our approach to the optimal solution and to
two previous approaches. The first approach, called AC-GaP (see Section 2.1), is a
recent algorithm for target inspection with multiple drones that aims at optimizing
the cumulative coverage, but does so without constraining connectivity during the
inspection. The second approach, called 2S-APX [77], is designed for multiple ter-
restrial robots, and provides recurrent connectivity but neglects energy consumption,
which is a critical aspect for aerial devices.
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Extensive simulations show that GCD performs close to the optimal solution, but
with negligible computation time. The experiments also highlight the superiority
of GCD to AC-GaP and 2S-APX in terms of achieved coverage, communication
latency, and computation time. In all the simulations GCD provides immediate
communication of the data related to the inspected targets, while inspecting about
20% more targets, with negligible movement overhead to realize connected formations.
Real-field experiments confirm that our approach provides higher inspection

accuracy and system responsiveness than AC-GaP and 2S-APX.
The novel contributions of our work are the following:

• We introduce the connected deployment problem which jointly addresses tra-
jectory planning and low-latency multi-hop communications for FANETs in
emergency critical scenarios, and prove its NP-hardness.

• We give an ILP formulation of the above problem, with fine-grain trajectory
design.

• We provide a polynomial-time algorithm, called Greedy Connected Deployment
(GCD). We also adapt two existing approaches, AC-GaP and 2S-APX, to realize
emergency-critical FANET deployments.

• We perform extensive simulations showing that GCD performs close to the
optimal, and better than AC-GaP and 2S-APX in terms of coverage accuracy
and communication latency, as well as computation time.

• We confirm the superiority of our approach in the considered scenarios, through
real-field experiments.

3.1.1 Problem formulation

In this work we tackle the problem of defining trajectories for a squad of drones so
that they can monitor targets while being in multi-hop communication with their
base station, to ensure prompt anomaly detection and related communication to the
base station.

Let U be the set of homogeneous drones composing the squad, with a common
base station location σ. Each drone is allowed to fly within the limits of energy
availability of its battery b. The drone consumes energy for movements, hovering,
monitoring, and for communications (both for sending and receiving) according to a
device-specific energy model.

We consider an Area of Interest (AoI) where the drones of U are required to
monitor a set ΨTP of target points. Whenever a drone monitors a given target
i ∈ ΨTP, we require it to immediately communicate with its base station to deliver
messages related to the ongoing monitoring activity. Such a communication may
occur in a direct manner, if the target and the base station are in radio proximity
with each other, or through a multi-hop routing path. Continuous connectivity
to the base station ensures network responsiveness. To meet this requirement, we
allow the drones of the fleet to act as both monitoring and relay devices. For this
purpose, the drone trajectories may include points of the AoI where the drones can
temporarily stop to act as relay nodes, in addition to the target points of ΨTP.
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We introduce the following definitions.

Definition 3.1.1. A point p ∈ ΨTP is said to be inspected by a drone u when u
hovers above p for a time at least equal to the required inspection time Γ.

Definition 3.1.2. At a given time instant, a subset of drones F ⊆ U is deployed
according to a connected coverage formation if all the drones of F that are inspecting
a target point of ΨTP are connected to their base station either directly or through a
multi-hop sequence of connected drones.

We consider the problem of designing the drone trajectories so that the drones
depart and return to their base station σ and inspect the maximum number of
targets along their routes by creating a sequence of connected coverage formations.
More precisely we address the following problem.

Problem 3.1.1 (Optimal Connected Deployment (OCD)). Given a set U of drones
with a common base station σ, and available energy b, and given a set of targets
ΨTP over an AoI, find trajectories for the drones of U so that they maximize the
number of targets inspected by means of connected coverage formations, and break
ties among equally optimal solutions by minimizing the mission completion time, i.e.
the time at which the last drone returns to the base station σ.

Theorem 3.1.1 evidences the NP-hardness of OCD which motivates the need of
polynomial time heuristics.

Theorem 3.1.1. Problem 3.1.1 (OCD) is NP-Hard.

Proof. The generic instance of the Traveling Salesman Problem (TSP) considers
an undirected, weighted graph G = (V,E), and looks for a Hamiltonian cycle in
the nodes of G of minimum total weight. Given such an instance, we can map it
onto an instance of OCD in polynomial time. We let σ be coincident with any point
of V , let it be v ∈ V , and set σ = v, while ΨTP = V \ {σ}. We consider a unique
drone whose battery b is larger than the maximum weight of a Hamiltonian cycle
in V . For this purpose it is sufficient to set b = |V | ·max(i,j)∈E wij , where wi,j is
the weight of edge (i, j) in the TSP instance. We then set the drone and the base
station communication range rtx equal to the maximum edge weight of the TSP
instance, i.e., rtx = max(i,j)∈E wij .

Under the described setting, the unique drone of the OCD optimal solution
maximizes coverage by inspecting all the points of ΨTP. It will then break ties among
all the maximum coverage solutions by looking for the one with minimum weight,
which implies that any target will be visited only once, starting and returning to the
base station σ. The optimal OCD solution is therefore also a Hamiltonian cycle on
the points of V , with minimum weight. As the complexity of the above reduction is
clearly polynomial, we derive that the OCD problem is at least as hard as the TSP
problem.

3.1.2 ILP model of the Optimal Connected Deployment

In this paragraph, we give a formulation of the OCD problem in terms of an Integer
Linear Programming (ILP) model which approximates the drone trajectories by
means of a fine grain discretization of the AoI, based on a regular tessellation.
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Fine grain tessellation of the AoI

We hereby consider a regular tessellation of the AoI to take account of candidate
relay node positions, and discretize drone trajectories accordingly. We define the set
of candidate node positions as ΨRP. The set ΨRP includes regular grid points within
the convex hull of the set ΨTP. Any regular grid pattern such as a rectangular or a
triangular lattice can be used here. The grid size is small enough to ensure that the
distance between any two neighbor grid points is lower than or equal to rTX. The
definition of the set of candidate positions ΨRP is necessary to deploy the drones in
connected coverage formations, according to Definition 3.1.2.

We denote Ψ+
RP , ΨRP ∪ {σ} and Ψ+

TP , ΨTP ∪ {σ}. A drone trajectory is thus a
sequence of points of Ψ+

TP ∪Ψ+
RP. A trajectory point belonging to ΨRP is either just a

way-point traversed by the drone, or is a point where the drone participates as a
relay in the communication between another drone and its base station.

We consider a slotted time, with loose synchronization among the drones, with
time slot ∆t. We define the movement graph Gm = (V,Em), where V = Ψ+

RP ∪Ψ+
TP,

and Em = {(i, j), s.t. i, j ∈ V, d(i, j) ≤ dmax}, whose edges are the possible segments
that can be traversed by a drone in a single time slot. Notice that we assume that
the movement graph also contains self-loops, to consider the permanence of a drone
in the same position for multiple steps when needed.

In addition to the movement graph, we define the communication graph Gc =
(V,Ec), where Ec = {(i, j), s.t. i, j ∈ V, d(i, j) ≤ rtx}, and rtx is the transmission
range of the drones. Any pair of drones located in adjacent positions in the communi-
cation graph, can communicate with each other directly (one-hop communications).
As drones are assumed to be homogeneous, we consider Gc as an undirected graph.

We denote with Nc(i) the set of adjacent nodes of i in the communication graph
Gc, and with Nm(i) the set of adjacent nodes of i in the movement graph Gm.

The number of time steps of our problem formulation is upper-bounded by the
number of time slots in the device battery life, i.e., N = b/∆t. We hereby shortly
denote [N ] , {0, 1, 2, . . . , N}.

Trajectory constraints

We introduce the binary decision variables xuij(n), for (i, j) ∈ Em, u ∈ U and n ∈ [N ].
xuij(n) is set to 1 if drone u flies from i to j at time n, meaning that u is in i at time
n and in j at time (n+ 1). It is set to 0 otherwise. With the above variables, we
define the drone trajectories according to the following constraints.∑

k∈Nm(i)
xuk,i(n) =

∑
j∈Nm(i)

xui,j(n+ 1),∀i ∈ V, u ∈ U, n ∈ [N ], (3.1)

∑
j∈Nm(σ),n∈[N ]

xuσ,j(n) =
∑

j∈Nm(σ),n∈[N ]
xuj,σ(n),∀u ∈ U, (3.2)

∑
j∈Nm(i),i 6=j,n∈[N ],u∈U

xui,j(n) ≤ 1,∀i ∈ ΨTP, (3.3)

∑
i∈Nm(σ),i 6=σ,n∈[N ]

xui,σ(n) ≤ 1, ∀u ∈ U, (3.4)
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∑
j∈Nm(i)

xui,j(0) = b(i),∀i ∈ V, u ∈ U, (3.5)

where b(i) is an indicator function that determines whether point i is the base station
σ (b(i) = 1) or not (b(i) = 0).

Equation 3.1 and 3.2 ensure that the drone traverses a closed trajectory which
includes the base station σ. A drone may traverse each point of ΨTP only once
for energy efficiency, as required by Equation 3.3. However, drones may traverse
the points of ΨRP multiple times to realize connected coverage formations. With
Equation 3.4 each drone is forced to return the base station only at the end of the
mission, and once reached, it must stop there. This constraint is necessary because
the following constraint (Equation 3.6) provides that drones land at the base station
with no energy consumption due to hovering. Finally, Equation 3.5 considers the
base station as the starting point of a drone trajectory, and allows a drone to start
a delayed instant of time with respect to the others, thanks to the self-loops in Gm.

Our approach considers the energy consumption of a drone as linearly proportional
to its flight time, considering both for moving and hovering activities1.

In agreement with our energy model, we consider a constant coefficient α which
reflects the average energy consumption per second of flight. We consider a limited
energy availability b (expressed in energy units) at each drone u ∈ U . Then the
energy constraint, due to the battery limitation of each drone, can be formulated as
follows in terms of the number of time slots during which drone u flies over the AoI.∑

(i,j)∈Em,(i,j)6=(0,0),n∈[N ]
α · xui,j(n) ≤ b,∀u ∈ U (3.6)

Coverage constraints

We introduce the binary variable δi(n) for all i ∈ V to denote the presence of a
drone at point i ∈ V at time n (δi(n) = 1) or not (δi(n) = 0). To relate the coverage
to the trajectory variables we introduce the following constraints:

δi(n) ≥
∑
j∈Nm(i),u∈U x

u
i,j(n)

|U | · |V |
, ∀i ∈ V, n ∈ [N ], (3.7)

δi(n) ≤
∑

j∈Nm(i),u∈U
xui,j(n), ∀i ∈ V, n ∈ [N ]. (3.8)

For clarity of notation, we also introduce the variable δ(n) ∈ N, defined as follows,
to represent the number of covered targets, at time n:

δ(n) ,
∑
k∈ΨTP

δk(n), ∀n ∈ [N ], (3.9)

To exploit connected coverage formations, whenever a drone u ∈ U inspects a target
i ∈ ΨTP, we require it to transmit an information message to the base station. For

1This energy model can be extended by considering heterogeneous drones and by providing a
parameterization of their operations, e.g. the energy model proposed by [88], while still adopting a
linear formulation, necessary for modeling the problem as an ILP.
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any two adjacent nodes i and j in the Gc graph, we define the information flow
variable fi,j(n) at time n. For each covered target point i ∈ ΨTP, the monitoring
drone transmits a unit of flow. As drones may act as relay of more than one received
messages, we allow the flow variables to assume values in the non negative integer
field: fij(n) ∈ N. Then we require:

fi,j(n) ≤ δi(n) ·MUB, ∀(i, j) ∈ Ec, n ∈ [N ], (3.10)

fi,j(n) ≤ δj(n) ·MUB,∀(i, j) ∈ Ec, j 6= σ, n ∈ [N ], (3.11)∑
j∈Nc(i)

fi,j(n) =
∑

k∈Nc(i)
fk,i(n) + t(i)δi(n)− b(i)δ(n), ∀n, i ∈ V (3.12)

where MUB is an upper-bound to the amount of flow that can traverse a node at
any instant of time (a valid setting for MUB is |ΨTP|), t(i) is an indicator function
that determines whether point i is a target point (t(i) = 1) or not (t(i) = 0).

Equations 3.10 and 3.11 impose a null flow between pairs of points where there
are no drones, with the exception of the incoming flow to the base station. Equation
3.12 allows the information flow to traverse a connected sequence of drones taking the
message to the base station. To meet these constraints the multi-hop flow variables
balance each other on any node i ∈ V , with either the addition of one unit of flow if
i belongs to ΨTP or the consumption of the flow generated by all the covered points
of ΨTP at time n if node i is the base station.

The inspection time requirement of Γ seconds corresponds to an equivalent
measure in terms of time slots: γ = Γ/∆t. To enforce persistence of the inspecting
drone above the target for at least γ consecutive time slots, we consider the following
constraints. Equation 3.13 ensures that for any time slot n in which a target is
inspected, the drone traverses the self-loop at least γ times in the interval [n−γ, n+γ]:∑

n′∈[n−γ,n+γ],0≤n′<N,u∈U
xui,i(n′) ≥ γ · δi(n), ∀n, i ∈ ΨTP (3.13)

Problem objective

While the primary objective of the OCD problem is coverage maximization, OCD also
breaks ties by choosing the solution with minimum completion time. We introduce
the decision variable tfinal ∈ N to reflect the mission duration. tfinal is bounded by
the following constraint:

tfinal ≥ n ·∆t · xui,j(n),∀u ∈ U, n ∈ [N ], (i, j) ∈ Em, i 6= σ. (3.14)

The objective of the problem can be expressed as follows:

max
∑

i∈ΨTP,j∈Nm(i),i 6=j,n∈[N ],u∈U
xui,j(n)− ε · tfinal, (3.15)

where we use a linear combination of the two objectives, namely coverage and
completion time, assigning an arbitrarily small, but positive weight ε to completion
time, in order to use it only to distinguish equally optimal solutions for the coverage
objective.
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3.1.3 Greedy Connected Deployment (GCD)

To efficiently address the OCD problem, we introduce a polynomial-time greedy
approach hereafter called Greedy Connected Deployment (GCD).
The proposed algorithm works in two phases:

1. Deployment Trees Generation - It designs connected formations of drones
(also referred to as deployment trees). Figure 3.1(a) shows an example of three
formations covering 8 targets, with 4, 4, and 3 drones, respectively.

2. Deployment Trees Scheduling - It determines the cost for the fleet to move
from one formation to another, and looks for a formation schedule of minimum cost.
Figure 3.1(b) shows how the three formations can be scheduled by highlighting
the trajectories of individual drones.

(a) Phase 1 (b) Phase 2

Figure 3.1. GCD Example

Phase 1: Deployment Trees Generation

Phase 1 of GCD consists in constructing deployment trees, i.e. drone formations
connected to the base station σ. The nodes of a deployment tree represent the
position drones should reach to cover target nodes, while staying connected with the
base station in a multi-hop manner. Any deployment tree τ is rooted at the base
station σ. The leaves of a deployment tree are target points of ΨTP, hereafter denoted
as L(τ) ⊆ ΨTP. The intermediate nodes can either be relay or target points, allowing
multi-hop connection with the base station, we refer to them as I(τ) ⊆ ΨTP ∪ΨRP.
Every node of a deployment tree is a drone position in the corresponding formation,
with the exception of the root, which is the base station, i.e., τ = (Vτ , Eτ ), with
|Vτ | ≤ |U |+ 1. As the available drones U may be insufficient to cover the entire set
of targets in a unique connected formation, the goal of GCD phase 1, is to design
a set of deployment trees τ , that covers all the target nodes. In this phase, the
deployment trees are created starting from a |U |-Bounded Depth Steiner Tree [89]
defined on the communication graph Gc and rooted at the base station σ, whose
terminals are the target points of ΨTP. More specifically, we calculate a tree τfull
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Algorithm 4: Greedy Connected Deployment (GCD) - Phase 1
Input: Gc : (V : ({σ} ∪ΨTP ∪ΨRP), Ec) com. graph, U drones set
Output: τ deployment trees set

1 Ψ̂TP ← {σ}
2 τfull : (Vfull, Efull)← bd-steiner-tree (Gc,ΨTP ∪ {σ}, |U |)
3 τopt : (Vopt, Eopt)← ∅

4 while Ψ̂TP 6= Ψ+
TP do

5 ψbest, τbest, cbest ← ∅, ∅,∞
6 for ψtemp ∈ ΨTP \ Ψ̂TP do
7 τtemp : (Vtemp, Etemp)← τopt ∪ P (τfull, σ, ψtemp)
8 if |Vtemp| − 1 ≤ |U | and |Etemp| < cbest then
9 ψbest, τbest, cbest ← ψtemp, τtemp, |Etemp|

10 if τbest 6= ∅ then
11 τopt ← τbest

12 Ψ̂TP ← Ψ̂TP ∪ {ψbest}
13 else
14 τ ← τ ∪ {τopt}
15 τopt ← ∅
16 if τopt 6= ∅ then τ ← τ ∪ {τopt}
17 return τ

that includes all the targets of ΨTP, a minimum number of edges and other nodes of
Gc, under the constraint that the depth of the tree be lower than or equal to |U |.
Such a tree τfull = (Vfull, Efull) is a feasible solution for our deployment problem only
if |U | ≥ |Vfull| − 1 nodes (we recall that as the root σ does not require a positioned
drone). To address the general case where |U | < |Vfull| − 1 we propose Algorithm 4.

The input is the communication graph Gc and the set of drones U . We assume
that all the nodes of the communication graph can be reached from the base station,
through a multi-hop path of length lower than or equal to |U |. More precisely, it
must be: |P (Gc, σ, ψ)| − 1 ≤ |U |, ∀ψ ∈ ΨTP, with P (·) being the shortest path
function. In the initialization phase (lines 1-3), we let: Ψ̂TP be the set of nodes that
have been covered so far; τfull be a Steiner tree that spans the whole set of target
nodes and σ, of depth at most |U |; and τopt be an empty candidate deployment
tree to be added to τ , once fully grown. Until the whole set of targets is covered
i.e., ΨTP = Ψ̂TP, the algorithm tries to add candidate deployment trees τopt to τ
(lines 4-9). These trees are iteratively grown in a greedy manner, for every target
ψtemp yet to cover in ΨTP \ Ψ̂TP, it is checked whether the path spanning ψtemp and
the base station in τfull (i.e., P (τfull, σ, ψtemp)) should be added to τopt or not. Two
checks are made, one is whether the addition to τopt can be made without exceeding
the number of available drones; the other is whether the path is the shortest among
all the possible paths.

If both checks go through (lines 10-15), then a new extension of τopt is found
and τopt is set to the new grown version τbest. The new reached target node is
added to the set of covered nodes Ψ̂TP. In case no new target node could be added,
without exceeding the number of available drones, the candidate deployment tree
τopt is added to the cover τ and reset. Finally, (lines 16-17), the last candidate
deployment tree τopt is added to the cover and the algorithm outputs the set of
deployment trees τ that includes all the targets.
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Algorithm 5: Greedy Connected Deployment (GCD) - Phase 2
Input: τ deployment trees set
Output: S∗ an ordered list of deployment trees

1 τσ ← ({σ}, ∅)
2 Gτ ← (τ ∪ {τσ}, {(τ, τ ′, cm(τ, τ ′)) | τ, τ ′ ∈ τ ∪ {τσ}})
3 S ← TSP (Gτ , τσ)
4 S∗, p∗ ← (∅, 0)

5 for τi, τj ∈ S | 1 < i ≤ j ≤ |S| do

6 S ′, p′ ←

(
〈τσ, τi, τi+1, . . . , τj−1, τj , τσ〉,

∣∣∣∣∣ j⋃
k=i

L(τk)

∣∣∣∣∣
)

7 c′ ← cm(τσ, τi) +
j−1∑
k=i

cm(τk, τk+1) + cm(τj , τσ)

8 if αc′ ≤ b and p′ > p∗ then
9 S∗, p∗ ← (S ′, p′)

10 return S∗

Phase 2: Deployment Trees Scheduling

Phase 2 of GCD consists in finding an optimal schedule of deployment trees, and is
addressed by Algorithm 5.

The choice of such a schedule considers the effort for the entire fleet of drones
to execute the transition. We will refer to this effort as the cost of migration
cm(τ, τ ′) with τ being the source deployment tree, and τ ′ the destination. Intuitively,
such a cost function is the time required for the drones covering τ , to establish
a connection between L(τ ′) and σ according to τ ′. We consider assignments that
minimize the maximum transition time of the drones, because we want nodes in
L(τ ′) to be connected as soon as possible. We then reduce the problem to what in
the literature in known as the Bottleneck Matching Problem (BMP) for bipartite
graphs [90]. We recall that BMP takes a bipartite graph G = (V0, V1, E), and a
non-negative edge cost function c(e) > 0, ∀e ∈ E, and finds a perfect matching
M ∈Mp where Mp is the set of subsets of E of cardinality |V0| = |V1|, of minimal
cost, i.e., minM∈Mp maxe∈M c(e). We define our reduction to a BMP as follows.
Let G(τ,τ ′) = (Vτ , Vτ ′ , E(τ,τ ′)) be the complete bipartite graph such that, nodes in
part Vτ represent nodes in the source deployment tree τ , while nodes in part Vτ ′
represent nodes in the destination deployment tree τ ′. As these parts represent
drones deployments, we add to Vτ as many replicas of the base station as the
number of unused drones in τ , we do the same with Vτ ′ . Eventually we have that
|Vτ | = |Vτ ′ | = |U |. The set of undirected edges E(τ,τ ′) ⊂ Vτ × Vτ ′ are weighted with
d(u,w)/v, ∀u ∈ Vτ , w ∈ Vτ ′ , i.e., the time needed for the drone to move from node
u to w. Solving a BMP instance with G(τ,τ ′) as input, will eventually produce a
perfect matching M∗(τ, τ ′) that is the migration plan set for all the drones in the
fleet. The transition cost is then computed as cm(τ, τ ′) = maxe∈M∗(τ,τ ′) c(e).

Having the estimated effort needed to migrate from one deployment tree to
another, we can determine an optimal route for the drones, which starting from
the deployment configuration τσ (i.e. all the drones are on the base station), visit
all the trees and go back to τσ. This is clearly a Hamiltonian cycle one can find
by solving the Traveling Salesman Problem (TSP). We reduce the problem of
finding an optimal migration schedule to the TSP as follows. Let Vτ = (τ ∪ {τσ}),
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such that Vτ is the set of nodes representing deployment trees in τ ∪ {τσ}. Let
Gτ = (Vτ , Eτ ) be a complete, undirected graph, where all edges in Eτ are weighted
with cm(τ, τ ′), ∀τ, τ ′ ∈ Eτ . Solving a TSP instance with Gτ as input, will produce
a scheduled migration that is optimal. The algorithm creates Gτ , input of the TSP
(lines 1-3), which returns a list of deployment trees S, that is a migration schedule.
Such a schedule is optimal if the drones are hypothetically assumed to have infinite
battery life. As in a realistic scenario the battery life is a limiting factor on the
cruise time of the drones, we introduce a TSP tour cutting technique (lines 4-10).
First the energy expenditure c′ of the fleet, under a given sub-tour S ′, is computed
as the sum of the maximum cost of migrating from a deployment tree in S ′ to the
next. Finally the algorithm returns the sub-tour S∗, i.e. the tour that allows to visit
the highest number of targets p∗, that fits the battery constraint of the drones.

Properties of GCD

Theorem 3.1.2 (Time Complexity of GCD). GCD with input Gc and U has
polynomial time complexity O(|V |4.5).

Proof sketch. We consider the two phases of GCD. The complexity of phase 1 is:
O(|V |3 + |ΨTP|2 log(|V |)). The computation time for the approximated BDSTP is
O(|V |3), [89,91], with constant 1.52 approximation. The while loop is executed until
the set of reachable targets is fully covered, in O(|ΨTP|) iterations. In particular, one
target node is covered every two while loop iterations in the worst case. In fact, if
no new target can be covered in an iteration, as it would require more drones than
available, the algorithm would create a new deployment tree, and would therefore
enable coverage of a new target at the next iteration. At each while iteration, a
simple path lookup in τfull is done with cost O(log |V |), for every uncovered target
in |ΨTP|.

The complexity of phase 2 is: O(|ΨTP|3 + |ΨTP|2(|U |2
√
|U |/ log |U |+ log |ΨTP|)).

The maximum number of deployment trees is |ΨTP|, for every pair of deployment
trees |ΨTP|(|ΨTP| − 1)/2 = O(|ΨTP|2), a migration cost is evaluated, which consists
into solving a BMP of a complete, undirected, bipartite graph with |U | nodes. Such
a BMP can be computed in O(|U |2

√
|U |/ log |U |) [90]. We consider the Christofides

approximation to the TSP solution [15], with complexity O(|ΨTP|2 log |ΨTP|). Finally,
the algorithm selects the longest sub-tour in the number of nodes, from the TSP
solution. The computation and evaluation of all the sub-tours from the TSP
trajectory costs O(|ΨTP|3). Considering that |E| = O(|V |2) and |U | = O(|V |), with
simple algebraic steps we obtain that the overall complexity:

O

(
|V |4

√
|V |

log |V | + |V |3 + |V |2 log |V |
)

= O(|V |4.5).

3.1.4 Performance Evaluation

In this section we evaluate GCD against the optimal solution and two state of the
art approaches, both in a simulated environment and through real-field experiments.
In the simulated environment, we consider 2 different scenarios: (1) In the first
scenario we deploy 5 drones and let the number of target nodes vary from 3 to 15,
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and compare GCD to OCD. (2) In the second scenario, we deploy 10 drones and let
the number of target nodes vary from 10 to 40, to study the performance of GCD
with respect to state-of-art approaches. As for the real-field experiments, we deploy
4 drones with a number of targets varying from 8 to 15.

As benchmarks for comparisons, we consider two state-of-arts solutions for
multiple drones and multiple robots target inspection. We first consider AC-GaP
(See Section 2.1), a recent algorithm for multiple drones that aims at minimizing
the target average inspection delays, considering multiple trips for the drones, with
recharging and off-loading operations in between. We recall that, AC-GaP computes
a set of feasible trajectories, traversing different subsets of the targets, and then it
greedily selects and schedules some of them, according the drones’ battery constraints.
To cope with our problem setting, we consider a single trip, and we consider targets
as visited only if the drones are able to communicate with the base station during
the inspection. As second benchmark we consider 2S-APX [77], a work for multiple
robots that provides inspection with recurrent connectivity (i.e., each visited target
requires a multi-hop path toward the base station to send the data). 2S-APX
iteratively solves the inspection problem by means of a two-stage strategy. The first
stage computes the next set of drones’ locations to maximize the number of inspected
targets while maintaining connectivity with the base-station. It enumerates and
evaluates the subsets of targets, to compute the cheapest Steiner tree allowing to
connect targets to the base station. The second stage decides which robot goes to
which vertex by applying the Hungarian assignment algorithm, which minimizes the
cumulative traveled distance. As 2S-APX does not consider energy consumption,
which is a critical aspect for drones, to cope with our scenario, we cut the mission
as soon as the battery is depleted.

We evaluate the algorithms in terms of several performance metrics. We consider
the Percentage of Covered Targets, during the mission, where a target is considered as
covered only if there exists a connection toward the base station during its inspection.
We then consider Cumulative Target Inspection, which reflects the integral of the
former, and reflects early coverage by providing a time based cumulative evaluation
of the percentage of covered targets. We also consider the Average Traveled Distance,
which reflects the average distance traveled by all the drones during the mission.
Finally, we evaluate the algorithms in terms of Computation Time.

Simulated Environment

We run our tests on a Lenovo X3550 M5, with CPUs Intel(R) XEON(R) E5-2650@
2.20GHz, 16 cores and 32 GB RAM [68]. For OCD we used the Gurobi solver [30].

We simulate commercial drones with a communication range of 100m, a speed of
5 m/s; 5 seconds of inspection time; and a fixed base station placed at the bottom of
the area of interest (see Figure 3.1). While OCD and GCD work independently of the
specific energy model, we consider a simplified energy consumption model, i.e., we
consider a constant coefficient α = 1 which reflects the average energy consumption
per second of flight (see Section 3.1.2).

For each point in the plots we execute 30 runs, and the error bars represent the
standard error.
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(a) Perc. of Covered Targets (b) Computation Time

Figure 3.2. First Scenario.

First Scenario The first simulations consider all the algorithms in a scenario with
a field of 300× 300m and 5 drones with 150s of flight time. This simplistic setting
is needed to create a scenario where OCD can be computed in a moderate execution
time. We vary the number of targets from 3 to 15.

In Figure 3.2(a) we show the percentage of covered targets. The plot shows how
OCD has the best performance visiting almost all the targets, under the drones
battery limitations. Our greedy proposal GCD performs close to OCD. It visits at
least 90% of the targets visited by the optimal in the worst case (i.e., 8 targets),
while 2S-APX visits 30% fewer targets than OCD, in the same scenario. As AC-GaP
does not require connectivity to the base station, therefore only targets in the
communication range of the base station are correctly inspected, and only in lucky
circumstances it finds a multi-hop path for communications with the base station.

Figure 3.2(b) shows that the optimal performance of OPT comes at the expense
of computation time. OCD requires 25.5 · 103 s ≈ 7hrs when the number of targets
is 15, a time that cannot be accepted in emergency critical scenarios.

Second Scenario In the second simulation scenario, we consider a larger area of
1500× 900m with 10 drones whose battery allows 600 seconds of flight time. We
investigate the performance of the algorithms by varying the number of targets from

Figure 3.3. Perc. of Covered Targets Figure 3.4. Cum. Targets Inspection
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Figure 3.5. Computation Time Figure 3.6. DJI F-550

10 to 40. Due to the extremely high computation time of OCD in this setting, we
only compare GCD against AC-GaP and 2S-APX algorithms.

Figure 3.3 shows the percentage of covered targets with 10 drones, increasing
number of target nodes. GCD shows the best performance with an improvement
from 10% to 40% with respect to 2S-APX.

In Figure 3.4 we analyze the case of 30 targets. Not only GCD outperforms
2S-APX in terms of the total number of visited targets, but it also visits about 50%
of the targets in the first 350 seconds of the mission, while 2S-APX requires 450
seconds. Instead, AC-GaP visits only 20% of the targets visited by GCD, which are
almost all in the communication range of the base station.

Finally, in Figure 3.5 we notice how the computation time for 2S-APX is a serious
issue for the applicability of the method in an emergency critical scenario. In fact,
the computation time of 2S-APX grows significantly when the number of targets
increases (i.e., from 5 minutes to 5 hours with 10 and 40 targets respectively).

Real-Field Experiments

In this section we experimentally investigate the performance of GCD and validate
the simulation results in a real scenario.

The test-bed includes a fleet of 4 DJI Flame Wheel (F550) [55] with GPS and
communication capabilities, and a laptop to setup the deployment and act as a base
station. While the design and implementation of collision avoidance mechanisms is
beyond the scope of this work, we recall that our trajectories are computed offline
and thus collisions may be easily prevented by using different flight heights, for the
drones whose trajectories intersect one another. Moreover, in the presence of physical
obstacles in the area, drones may be equipped with on-board collision avoidance
systems (e.g., DJI Phantom 4 Pro V2.0 [92]).

For the multi-hop communication purpose we equipped each drone with a
Raspberry Pi Zero W [93], with a WiFi antenna, which weighs less than 10 grams.
We implemented the B.A.T.M.A.N. routing protocol [94] to route packets towards
the base-station. We notice that, B.A.T.M.A.N. is able to automatically handle
disconnections and re-connections of the drones, by means of periodic hello packets
which are known as originator messages (OGM). Thus, it is able to dynamically
manage data exchange.
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(a) Perc. of Covered Targets (b) Average Traveled Distance

Figure 3.7. Real-Field Experiments

The experiment location has a size of 300× 200m with no obstacles. The drone
speed was limited by 4m/s and, by prior in field measurements, we consider 100m
of communication range and around 240 seconds of flight time. All the drones were
equipped with LIPO batteries, 3500 mAh, and the experiments were performed
under good weather conditions, with a wind speed less than 1m/s and a temperature
around 15°C. We evaluate the algorithms by varying the number of targets from 8
to 15, and we consider 5 execution runs to take average performance measurements.

In Figure 3.7(a) and 3.7(b) we evaluate the performance in the real-field and we
validate the simulations. Figure 3.7(a) validates the trends of the first scenario. In
particular, GCD outperforms both 2S-APX and AC-GaP in terms of target coverage,
of about 15− 20% and 70% respectively.

Figure 3.7(b) shows the average distance traveled by the drones during the
mission. It shows how GCD utilizes the drone resources better than the other
algorithms. With GCD the drones travel more than with 2S-APX and AC-GaP,
but they also cover more targets. Instead, 2S-APX is not able to benefit from the
available energy, and results in lower traveled distance, but also in a lower number
of visited targets. In the same setting, AC-GaP shows the worse performance, as
the drones do not facilitate packet delivery with their movements. Finally, the red
bars in the figure highlights the differences between the traveled distance estimated
in the simulations, and the actual distance traveled in the real field. Is worth to
notice that, conservative parameters are used in the simulation to avoid unfeasible
trajectories and therefore, the traveled distance in the real-field was slightly lower
than the one computed in the simulations.

3.1.5 Conclusion

We present the connected deployment problem, where a FANET creates connected
formations to ensure multi-hop high-rate communications while performing a moni-
toring task in an area of interest. We show that this problem is NP-hard, and we
provide an optimal formulation and a polynomial time solution, called Greedy Con-
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nected Deployment (GCD) based on a two phase approximation of the problem. We
demonstrate polynomial time complexity of GCD and we study its performance both
in a simulated environment and real field. Results show that GCD performs close
to the optimal solution, and outperforms existing solutions in the literature, with
remarkably lower computation time making it particularly adequate for emergency
critical scenarios.
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3.2 SIDE: Self drIving DronEs embrace uncertainty
In the previous sections we demonstrated how fleets of multiple and cooperative
drones are particularly suitable for scenarios where a timely and reliable intervention
is of uttermost importance, including post disaster operations. Nevertheless, a
number of issues need to be addressed before autonomous fleets of drones can
be efficiently used [7] also in dynamic environments. In particular, the drones of
the fleet require ad-hoc coordination and control systems which should be able to:
determine tasks, plan drone trajectories across the field of interest, and update the
mission strategy based on local findings along the field. Moreover, self-coordination
capabilities are essential to take the human out of the control loop as much as
possible, to guarantee a quickly deployable, highly responsive monitoring network.

Existing issues. Prior research has addressed the problem of inspecting target
locations in a field by means of multiple vehicles in a centralized manner [16–19,36,43,
48,49,95]. However these works cannot be used in dynamic environments, since they
assume perfect knowledge of target locations and persistence of the related events
during the monitoring activity [95]. Indeed, many scenarios require the capability
to detect and inspect dynamic events whose location and duration can only be
estimated with non negligible uncertainty, i.e., events may arise any time during the
mission, and their positions are known in a probabilistic manner. As an example,
a squad of drones employed for search and rescue in a post-disaster setting may
identify collapsed buildings, which may potentially host many subsequent critical
events (e.g., presence of survivors, further collapses, or new accidents). In crime
prevention and monitoring applications, drones may facilitate the identification of
dangerous areas where future crimes are likely to occur in the proximity of prior
events [96]. A squad of drones may also be helpful in maritime traffic accidents
monitoring, where the drones may identify hazardous locations for maritime traffic,
or on-going accidents in need of further intervention [97].

Approach. In this work we target scenarios with dynamic, temporally and
geographically correlated events. In particular, we consider the problem of monitoring
dynamic events with minimum inspection latency, under uncertainty of time and
location of event occurrences. Under our approach, while exploring the area of
interest, the drones of the squad build and update a shared map that provides a
probabilistic representation of the ongoing events. The management of this map is
realized by applying the Parzen-Rosenblatt approach, also called the multivariate
kernel density estimation (KDE) method. The use of this map enables the squad
to determine the most likely locations of future events within the field, during the
mission execution. Individual drone trajectories are then calculated using a virtual
force model which guides drone movements. In particular, drones are attracted
towards critical zones of their map, while they exert mutually repulsive forces to
ensure load balancing and collision avoidance.

We consider battery-powered drones that use home depot locations for take-off
and landing operations, battery replacement, data offloading and map updates,
upon need. The drones of the fleet execute several consecutive flights, during which
they inspect targets within the field of interest, and possibly detect the presence
of new ongoing events requiring additional monitoring. The drones create a highly
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responsive self-adaptive network, with self-healing capabilities. Simulations and
test-bed experiments show that our approach outperforms previous solutions under
a wide range of experimental settings.

Summary of contributions. The original contributions of the work are the
following:

• We propose a distributed algorithm which lets drones build and update a
dynamic probabilistic map of the events. Such a map is managed by means of
the multivariate kernel density estimation (KDE) method, also known as the
Parzen-Rosenblatt approach.

• We contribute a distributed trajectory planning algorithm that employs a
virtual force approach to guide drone movements along the Area of Interest
(AoI), while taking account of upcoming events and their dynamics.

• We evaluate our proposal through extensive simulations in terms of key per-
formance metrics including average inspection delay, coverage percentage,
and average delay in new event detection. We compare our approach to two
previous proposals showing that it significantly outperforms the others in all
the relevant metrics, doubling the inspection rate and halving the inspection
latency in many of the considered scenarios.

• We perform real-field experiments to validate and confirm the analysis carried
out via simulations.

3.2.1 Related Work

As our proposal considers a path planning algorithm with a collaborative map
built through multi-hop communications, we first report some surveys and tutorials
on UAV networks, and then we present the related work for path planning and
collaborative map building.

UAV Networks

In the last years, networks of UAVs have been increasingly used in several scenarios
to: offload users’ tasks and data to mobile edge servers [98]; enhance ground user
connectivity, acting like aerial base stations [99]; capture and stream real time
videos [100]; and collect data from ground sensors [101].
To make UAV networks practical, a number of communication issues have to be
addressed [7]. Recent literature studies the performance of previously proposed
protocols in the context of aerial communication and networking [9, 11] but, to date,
a de facto standard does not exist [12]. Concerning routing, the most promising
approach leverage the geographical scheme [102], or controlled mobility to deliver
packets [24]. Concerning data link, several air-to-ground (AG) and air-to-air (AA)
propagation channel models have recently been studied to support the design of
communication protocols for UAVs networks [103–105]. However, AA communica-
tions between UAVs have not been extensively studied, and the free space model is
still the state of the art [104].
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In our work, we do not rely on a specific routing algorithm, as we consider message
broadcast to neighbors nodes, while we adopt a two ray propagation model [106],
which extends the commonly used free space model for AA communications.

Path Planning

The problem of inspecting target locations in a field through multiple vehicles
has been addressed with several centralized approaches including graph algorithms
[16,17,36,38–40], optimization problems [18,19,95], genetic [45] and machine learning
algorithms [47,48,99, 107], and virtual force approaches [108]. All of the above aim
at designing multiple trajectories satisfying monitoring, inspection delay and energy
requirements, while visiting a set of points of interest in an area. However, these
works assume accurate knowledge of the area of interest or a static set of targets,
and cannot be directly applied to search operations with unknown event locations.
For its analogy with our work in the objective to minimize the target inspection
delay, we considered AC-GaP (see Section 2.1) as benchmark for the performance
comparisons. The proposed approach determines the trajectories of a multi-trip
mission. We modified it so as to dynamically update the set of target points at each
trip, upon detection of new events by the drones.

Few works specifically focus on search-and-reconnaissance operations for UAVs
with a single drone [109], and multi-drone systems [110]. Unlike our work, the
uncertainty map is given at the beginning of the mission, thus the drones only visit
the uncertain zones to increase their awareness of the area but they do not consider
the event dynamics.

The works in [111,112] optimize target coverage and cooperation among drones
in dynamic environments where events, including drone failures or threats in the
area of interest, can appear during the mission. In particular, [112] addresses the
path planning problem by maximizing the number of targets visited at most once,
before the drone batteries deplete. However, both the proposals are centralized and
do not provide full coverage of the area of interest. In addition, notification of new
events requires external sources of information.

We observe that only few works on mission control and cooperative search for
ground mobile robots can be adapted to our scenario [51–53], while most of the
other works for ground robots differ in assumptions and addressed scenarios. In
particular, differently from mobile sensors or terrestrial robots, aerial drones do not
benefit from a static deployment (i.e., they consume energy while hovering) and,
moreover, they take advantage of expanding coverage thanks to device re-positioning.
For these reasons, most of the existing work can’t be applied in our scenario.
We introduce an approach called Sweep, inspired by a related approach designed
for terrestrial robots [53], and adapted to our scenario by performing multiple trips
within drones battery constraints. The main goal of Sweep is to obtain complete
area monitoring coverage, and it is used in Section 3.2.5 as another baseline for
performance comparisons with our proposal.
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Figure 3.8. Example of a common target-based search mission (b) against a search mission
with uncertainty of target positions (c).

Collaborative map building

In our proposal, the drones share their observation of the environment to gradually
refine and build a probabilistic map of ongoing events. The problem of combining
chunks of information from several drones to build a single robust view of the
environment, has been previously studied under different scenarios [113–120]. A first
scenario involves robots that create a map in a common reference frame, assuming
that every robots knows its position. In the seminal work [120] robots independently
build their maps, and fuse them with the global map using the Kalman Filter. A
second scenario considers relative positions of drones: the drones meet and localize
themselves in each other’s maps to build the global map. In [113], drones consider only
relative positions, exchange data to build a global map with limited communication
capabilities, and localize themselves in each other’s maps during the merging phase
to correctly build the global map. Finally, a third scenario assumes that the robots
relative positions are unknown, and the map is built without positional information.
To address such a challenging scenario [114] defines a similarity metric for the local
maps, and a stochastic search algorithm, to fuse them in the global map.
In our work, each drone knows its exact relative positions and creates a map in
a common reference frame, using the Parzen-Rosenblatt window method [121]
[122]. Therefore, building the collaborative map does not require any sophisticated
algorithm. However, in case positioning is not available or the map frame is unknown,
one of the above works can be easily integrated in our framework.

To conclude, we note that both the Kernel Density Estimation (KDE) and Virtual
Force (VF) approaches are well-known methods and not original contributions of
our work. The originality of our approach resides in the use of KDE to dynamically
modulate the intensity and direction of the attracting forces that guide the movement
of the drones along the area of interest. Without the KDE approach to estimate
the geographic map of events and their dynamics, the VF alone would only provide
a swarm deployment to cover the area of interest without focusing on the ongoing
events and their dynamics.

3.2.2 Path Planning under uncertainty

Our problem formulation addresses a scenario in which a squad of aerial drones
aims at inspecting an Area of Interest (AoI) with several dynamic events. Most
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importantly, we consider possible uncertainty in the mission requirements, i.e.,
events may arise any time during the mission, and their positions are known in a
probabilistic manner. Therefore, the apriori knowledge of the event’s location can be
represented as an uncertainty map, which is a function of the probability distribution
of the targets in the area. The highest the probability associated to an area, the
greater the chance that area will host an interesting event.

Figure 3.8.a shows an example of an area of interest to monitor, with different
heights above sea level. Figure 3.8.b shows the same area in a deterministic scenario,
with four drones and three known targets. These points may be the known locations
of survivors of a catastrophe, requiring medicines or water to be dropped from
aerial drones, or more in general areas requiring immediate surveillance and local
inspection. Figure 3.8.c represents the same area in case of uncertainty. In this
case only most critical zones can be identified (e.g., collapsed buildings), and they
can potentially host subsequent critical events (e.g. presence of survivors, further
collapses). Different zones in the area are labeled with their probability to host
a critical event, from white (i.e., safe zone) to dark red (i.e., extremely likely to
find an event). Notice that, the third scenario generalizes the problem with known
targets: the probabilistic map can easily incorporate known targets using zones with
probability equal to 1.

Events and Drones

Throughout this work we consider a simplified model of the drone devices. Far
from narrowing the applicability of the proposed approach, this simplified model
serves the purpose of providing a general network architecture and a methodological
framework to deal with uncertain knowledge of upcoming events of interest. We
define an event of interest as any location requiring immediate surveillance and
local inspection. Our model can take more peculiar device specifics into account,
replacing the assumptions described in this section.

We consider a squad of homogeneous battery-powered aerial drones, with com-
putational and communication capabilities, and a set of base-stations. Drones are
equipped with a Global Positioning System (GPS)2, a communication unit, and
an on-board CPU for data processing and movement control. Drones have limited
battery power, requiring maintenance to carry on and complete the mission (i.e.,
battery recharging or replacements). In our approach we consider a simplified energy
consumption model, where each drone has a linear proportional consumption to
its flight time, considering both hovering and monitoring activities. Notice that,
commercial drones often define battery lifetime in term of flight-time, nevertheless,
our proposed solution can be easily adopted with any energy consumption model
(e.g., the energy model proposed by [63].)

The mission can be executed in critical or unsafe scenarios (e.g., the aftermath
of an earthquake or a disaster), in which fixed cellular infrastructure may be
broken or completely knocked down, making direct communication among devices
impossible [125]. Therefore, we assume that drones and base stations can only use
short-range radios (e.g., WiFi) and communicate through a multi-hop communication.

2In case GPS is not available existing alternative techniques can be used [123] [124] to provide
localization.
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Drones approach the base-station to offload collected data through the wireless link,
and they occasionally land for maintenance and battery replacement.

During the mission drones fly at approximately constant height above the ground,
to monitor the area and collect accurate data. For example, considering drones
endowed with a camera, the mission requires a given Ground Sampling Distance
(GSD), which defines the distance between two consecutive pixel centers measured on
the ground, and controls the visible details on the image. The GSD is a function of
the sensor width, focal length of the camera, pixels, and the height of the drone [126].
Thus, the drones have to fly at a given altitude above the ground to achieve the
required GSD, considering their homogeneous cameras. Nevertheless, as discussed in
the rest of the work, during landing phases, or to avoid collisions, drones can adjust
their altitude.

Different from existing works, we define two different monitoring activities, event
detection and event inspection, possibly involving different sensory equipment with
different features. As a practical example, let us consider monitoring eruptions in a
geyser region. A drone can easily detect the occurrence of an eruption by using its
onboard camera or microphone from a distant location. Nevertheless, to measure
temperature and gas composition, the drone resorts to a sensory equipment which
requires a closer inspection. Without loss of generality, for clarity of presentation we
assume a simplified binary sensing model of the two activities. Namely, an event of
interest is positively detected if the drone is within a distance rd (detection range)
while event inspection requires a possibly shorter distance ri (inspection range), with
ri ≤ rd. The drones may also exchange information with each other, and with their
respective base stations located at the home depots. For simplicity of discussion, we
also assume a binary communication model, with communication range rc so that
any two devices can communicate with each other only if their distance is lower
than rc.
In section 3.2.5 we provide an example of inspection and detection tasks using
on-board cameras of the drones.

Environment and Probabilistic Map

We consider an AoI in which drones perform the monitoring tasks. The environment
hosts temporally and geographically correlated events occurring dynamically during
the mission, in the shape of hot-spots in the map, reflecting the most critical zones.
The priori knowledge of the events location can be represented as an uncertainty
map which is a function of the probability distribution of the target in the area.
Areas that most likely host events will have higher probability, and vice versa. If no
prior knowledge is available, the area is considered uniformly critical.

As the drones fly at approximately constant height to monitor the area, with
a limited sensors footprint, we consider a 2D tessellation A. Each cell c ∈ A is
identified by its center coordinates (xi, yi), and has an edge of cedge = ri ·

√
2, where

ri is the drone inspection range, in such a way the drone can monitor the cell by
hovering above that. We denote with |A| the number of cells in the AoI. This
uncertainty map associates each cell c with the current estimate of the probability
pc ∈ [0, 1] that cell c will host a critical event in the future of the mission.
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Notice that, while this map is used to model uncertainty and the probability to
host new events, the map can also reflect heterogeneous targets’ relevance: important
(or critical) targets can have higher relevance than others, attracting the drones and
speeding up their inspection.

Problem Formulation

In this section we formulate the path planning problem under uncertainty.
We consider a set U of battery-powered drones, a set of depots D = {di}i∈N ,

and we represent the uncertainty map with a complete undirected connected graph
G = (V,E) s.t. V , A. The mission lasts for T time (e.g., the mission is executed
during daylight hours) or when all the targets has been visited. We hereby shortly
denote with [T ] , {0, 1, 2, . . . , T} the discretized mission instants. Each vertex
i ∈ V has an associated value pi ∈ [0, 1], which is the probability to host a critical
event, while each edge (i, j) has an associated weight ωij , which represents the travel
time for the drones.

First, we introduce a set of binary decision variables xuij(t) ∈ {0, 1}, for (i, j) in
V , u ∈ U and t ∈ [T ], to define the drone trajectories. The variable xuij(t) is 1, if the
drone ui leaves node i at time step t, to reach node j; it is equal to 0 otherwise. For
simplicity we assume ωij ∈ [T ].

We let drones start their mission at their base-station, at time t = 0, with the
following constraint: ∑

i∈V
xudui(0) = 1, ∀u ∈ U .

where du is the home depot of drone u, where it is located at the beginning of the
mission.
To avoid that the solution mistakenly provides multiple trajectories for a single
drone, we include the following constraint∑

i,j∈V ∪D
xuij(0) ≤ 1, ∀u ∈ U .

which requires drone u to fly over at most one edge at time 0.
Then, we constraint cyclic trajectories for all the drones with the following constraint:∑

i∈V ∪D: ωij≤t
xuij(t− ωij) =

∑
i∈V ∪D

xuji(t),

∀j ∈ V ∪ D, t ∈ [1, . . . , T ], ∀u ∈ U .
(3.16)

Finally, we require drones to return at any of the depots at the end of the mission,
by means of the following constraint:∑

i∈V ∪D,d∈D
xuid(T − ωid) = 1, ∀u ∈ U .

To avoid possible position conflicts over the same targets, we introduce the following
constraint: ∑

i∈V, d∈U
xuij(t) ≤ 1, ∀t ∈ [T ], j ∈ V ∪ D.
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Notice that, two drones can instead come back (leave) to the depot together, as the
landing (take-off) operations are executed sequentially by the drone itself.

For each target i ∈ V , we define the hovering time hi, as the time required to
collect data and complete the inspection of a possible event. Thus, we introduce a
new variable to determine whether a target i ∈ V is inspected or not. The binary
variable yui (t) ∈ {0, 1} is 1 if the drone u completes the inspection of i at time t, 0
otherwise. The variable y is constrained to the edge variables as follows:

yui (t) ≤
t∑

z=max(0,t−hi)
xuii(z)/hi, ∀i ∈ V, u ∈ U , t ∈ [T ]. (3.17)

In agreement with our energy model, we consider battery-powered drones with
a limited battery of bu energy units. The drones consume α energy units for each
time unit of flight, requiring battery recharging or replacement every δu ,

⌊
bu
α

⌋
time

units.
To represent the drone batter limitation, we define a new binary variable kud (t) ∈
{0, 1} for each depot d ∈ D. The binary variable kud (t) is 1, if the drone u completes
the maintenance operations at depot d at time t, 0 otherwise.

kud (t) ≤
t∑

z=max(0,t−∆)
xuii(z)/∆, ∀d ∈ D, u ∈ U , t ∈ [T ]. (3.18)

where ∆ is the average time needed for the maintenance operations (i.e., battery
replacement). The variable kud (t) tracks how many time a drone u come back to the
depot d for maintenance operations. Therefore, we add the following constraint to
deal with limited drone lifetime:

∑
d∈D

δu+∆∑
z=0

kud (t+ z) ≥ 1, ∀t ∈ [T ], u ∈ U , (3.19)

which requires that the maximum time between two consecutive maintenance opera-
tions is less than the drone lifetime δu, plus the maintenance time ∆.

Finally, we define the objective function of the problem, which maximizes the
weighted sum of visited targets. We introduce an auxiliary variable yi ∈ {0, 1} which
is 1 if the target i ∈ V is visited, and 0 otherwise:

yi ≤
∑

t∈[T ],u∈U
yui (t), ∀i ∈ V. (3.20)

We then define the following objective function:

max
∑
i∈V

yi · pi + ε ·
∑

i,j∈V ∪D,u∈U ,t∈[T ]
xuij(t) · φij . (3.21)

The first term maximizes the weighted sum of visited targets, while the second term
minimizes the flight time of the drones. To avoid that maintenance operations are
included in the flight time, we consider φij = 0 if i = j ∧ j ∈ D, otherwise φij = ωij .
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Theorem 3.2.1. The Problem of Trajectory Planning under Uncertainty is NP-
Hard.

Proof. The addressed problem generalizes the Euclidean Traveling Salesman Problem,
which is NP-Hard [127,128]. Given a set of points P = p1, ..., pn in a metric space,
the Euclidean Traveling Salesman Problem requires to find a tour τ that visits all
the target points and minimizes the tour cost.

We can reduce any instance of the Euclidean TSP to an instance of our Trajectory
Problem, by considering a single drone u, a set of known target points V = P with
the same probability, i.e., pi = 1, ∀i ∈ V , and a single base station d ∈ V . For each
node i ∈ V we consider zero hovering time (hi = 0); for each edge (i, j) ∀i, j ∈ E we
consider a cost ωij equal to the Euclidean distance between the two nodes, and we
set the maximum flight time of the drone δu =

∑
i,j∈V ωij .

Thus, our problem formulation finds a tour τ for the drone u that maximizes
the number of visited targets, with a minimum length, which is also the solution to
the Euclidean TSP. The reduction is clearly polynomial, implying that our problem
is at least as hard as the Euclidean TSP.

3.2.3 SIDE

The proposed path planning problem under uncertainty is NP-hard, and intrinsically
hard to solve. The optimal formulation is impracticably, especially in critical
scenarios (e.g., in the aftermath of an earthquake), where drones have to be deployed
immediately, to quantify the damages or help survivors. In fact, it would require
hours of computation before the drones can depart from their depots.

To this end we propose SIDE, a novel distributed system for path planning under
uncertainty. SIDE coordinates the drones to monitor the area of interest in searching
for events while constantly improving the initial uncertainty map.

System Model

The overall monitoring system, presented in Figure 3.9, is composed of two main
components: the depots and the drones. The depots cooperatively exchange the
data collected by the drones and run the Probabilistic Map Manager. By means of
this algorithm, the depot stations support the management of the mission execution.
In particular, they iteratively update the uncertainty map, according to collected
data.

The drones, which receive the probabilistic map from the depots, update their
future trajectories accordingly, by means of our distributed path planning algorithm,
called SIDE. The drone trajectories are computed during the mission, in a distributed
manner, using a virtual-force approach, to handle local findings along the field and
to allow drones to join/leave the mission at any moment.

Notice that depot stations support the construction of a global view of the
probabilistic event map, by updating their view anytime a drone approaches them.
In fact, we assume that the drones cannot perform all the updates on-board, due
to their limited knowledge of the environment and events; and we point out that
the movement protocol of the drones does not preserve connectivity, hence some
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Figure 3.9. System Model

drones may have an insufficient and limited view of the environment. The drones
only perform local updates, upon their local findings, and can eventually request
help to other drones during the monitoring operations.

Probabilistic Map Manager

As we consider scenarios in which the events are geographically correlated, we
represent the environment using a probabilistic map, whose global view is maintained
at depot stations.

The map is continuously updated during the mission, according to a continuous
multivariate probability density function (PDF), which describes how likely events
of interest occur in each zone.

The PDF is built and updated using data from newly notified events, by means of
the multivariate kernel density estimation (KDE) method, also known as the Parzen-
Rosenblatt window method [121] [122]. KDE is a non-parametric way to estimate
the probability density function of a random variable and it is a generalization of
the histogram density estimation where the contribution of each event is smoothed
into the region surrounding it. The smoothing area around an event captures the
location dependent probability of new critical events occurring in its proximity.
This method is often used to represent geographically correlated events which occur
around hot-spots in the area or close to past events [129] [96].

In detail, KDE considers the observed event positions, smooths them with a
kernel function and then it estimates the probability density function by summing up
these kernels with a smoothing parameter h > 0, called bandwidth. A kernel function
K(x) can be a continuous function such as Gaussian, Epanechnikov, Uniform, or
Triangular. In our system we use a Gaussian Kernel with a unit variance but, a
different kernel can be used to model any kind of smoothing around the phenomena
location [130]. Thus, in our approach, each monitored event is smoothed using a
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bi-variate normal distribution:

Y ∼ N2(µ, Σ) (3.22)

where µ ∈ R2 is the event location, represented as a 2-dimensional mean vector,
while Σ ∈ R2×2 is the covariance matrix. This matrix reflects the smoothing area
around an event, and consequently, the extent and shape of the risk area around it.

Finally, we estimate the probability density function of the map by using the
multivariate kernel density estimator. Let us consider a set of N 2-dimensional input
vectors, representing occurred events. The estimated probability density function is:

f̂(x) = 1
Nh

N∑
n=1

K

(
x− Y n

h

)
. (3.23)

The bandwidth h is computed by minimizing the mean integrated squared error [130]
and affects the accuracy of the PDF construction, its smoothing and its orientation.

Figure 3.10 represents an example of the KDE estimation process starting from
raw points, i.e., event locations (a), through kernel smoothing (b), up to the estimated
density function (c). The third figure (c) shows the estimated critical zones from
highest to lowest hazard (red to yellow, in the given heat-map).

Figure 3.10. Examples of KDE

This probabilistic representation is an abstraction of the real environment phe-
nomena. Thus, during the execution of the monitoring mission, as new data become
available, the probabilistic map is updated and refined to produce a more accurate
view of the ongoing events. At each update, the PDF is used to label cells in the
partitioned area of interest A with their probability to host critical events. The
probability pc for a cell c is computed by integrating the PDF over the cell area,
namely:

pc =
∫
c
f̂(x)dx, ∀c ∈ A (3.24)

To prevent neglection of some zones potentially occurring as a consequence of a
biased estimation, we consider a lower bound of ε for the probability pc when the
value obtained by Equation 3.24 is lower than ε. The so constructed probabilistic
map is then shared by the depot stations with all the drones at any contact, which
will consequently update their local views.
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3.2.4 Path Planning Algorithm

The path planning algorithm SIDE is a novel approach to trajectory management
that conjugates the use of a classic virtual force approaches (VFAs) to swarm
movements and the use of the dynamic event probability map.

Our virtual force model considers repulsive drone to drone forces to expand the
network deployment and prevent collisions. It also incorporates attractive force
sources exerted by event locations as determined by the probability map, to guide
devices towards events and to avoid uninteresting or already visited spots.

Virtual forces in SIDE

SIDE is our distributed path planning algorithm. It is mainly based on a virtual
force approach but it does not converge into a static deployment, instead, it aims at
providing a full coverage of the area of interest with better surveillance of critical
zones. According to SIDE each drone calculates the resultant of the composition
of several force components to ensure event coverage and provide dynamic network
deployment.

During the mission, each drone u ∈ U experiences attractive or repulsive forces
determined by ongoing events, by the other drones and by the boundaries of the
AoI which intersect its sensing and communication range. The resultant force ~Fu,
calculated by the vectorial sum of all individual forces, acts on the drone to determine
the direction to travel during the mission. In the following we describe these forces.

Definition 3.2.1 (Drone to drone). The drone to drone force, ~Fui, is exerted by a
drone i to repel a drone u depending on their mutual distance, to avoid overlapping of
sensing areas and to increase the diffusion of the drones over the area. In particular:

~Fui(i) =

wd ·
1

d(u,i) if d(u, i) ≤ min{rd, rc}
0 otherwise

where d(u, i) is the distance between the drones, and rc and rd are the communication
and detection range of drone u, respectively. In particular, a repulsive force of wd
intensity is exerted when drones i and v are too close to each other.

Aerial collisions. Drone-to-drone force is mainly used to provide dynamic coverage
and reduce redundant inspection but, it also avoids potential collisions between
drones. In fact, a repulsive force is exerted when two drones are too close to
each other. However, a drone that is returning to the base station, for battery
replacement, maintenance, or data off-loading, does not exert, nor experience any
force, to speed-up these operations. In that case, to avoid collisions the drones
use different flight heights: while drones monitor the area flying at approximately
constant height during the mission, they return to the depot using different flight
heights. In case of shared or same depot, the take off and landing procedures are
performed in a serial schedule.
We also recall that drones may directly integrate obstacle avoidance systems [54] or
they can adopt online collision avoidance mechanisms [70].

In case of new event detection, an attractive force is exerted on the drones
towards the event cells.
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Definition 3.2.2 (Event to drone). The event to drone force, ~Fue, is exerted from
detected, un-inspected events, to drone u. This force models the attraction of drones
towards target cells that host detected events to be monitored. In particular:

~Fue(c) = we ·
1

d(u, c)

where c is the cell which hosts the events, d(u, c) is the distance between drone u
and cell c, while we is the attractive intensity. Notice that, as soon as the events
in the cell are inspected, this force component is set back to zero by the inspecting
drone as well as by any drone who is notified of the occurred inspection.

This force is introduced to cause the inspection of newly detected events, i.e., to
allow the nearby drones to include the detected event in their tasks. In particular, it
is used to move drones towards newly detected events which need closer inspection
(see Section 3.2.2).

Figure 3.11. Virtual forces on borders

To prevent the drones from crossing the boundaries of the AoI during their
flight we model a repulsive force exerted by the boundary, as shown in Figure 3.11,
similarly to the approach proposed in [131].

Definition 3.2.3 (Border to drone). A border cell occupied by a drone u exerts
a repulsive force ~Fub on the drone itself, directed from the boundary of the cell c
towards the drone position. In particular:

~Fub(c) =

wb ·
1

d(u,c) if d(u, c) ≤ rd ∧ c is occupied,
0 otherwise

where d(u, c) is the distance between u and the center of the border cell c occupied by
u, and wb measures the repulsive force from the border cell, exerted in the direction
of the interior of the AoI. The value of wb is proportional to the area of the cell
which falls out of the AoI (i.e. a cell mostly outside of mission area will have a high
repulsive force).

Finally, as the algorithm aims at providing better surveillance of critical zones,
we introduce the force exerted by the probabilistic map.

Definition 3.2.4 (AoI to drone). The AoI to drone force, ~FuA, is exerted by cell
c ∈ A according to its probability pc to host critical events. This force guides the
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drones towards critical areas. In particular:

~FuA(A) =


∑

c∈rd(A)

wc
d(u,c) , if rd(A) 6= ∅

wc
d(u,c) s.t. c ∈ η(A), if η(A) 6= ∅
0, otherwise

where: rd(A) = {c | c ∈ A ∧ pc > 0 ∧ d(u, c) ≤ rd}

η(A) = {c | c ∈ A ∧ pc > 0 ∧ @c′ s.t.
(pc′ > 0 ∧ d(u, c′) < d(u, c))
∨ (pc′ > pc ∧ d(u, c′) = d(u, c))}

In words, rd(A) defines the set of all critical cells (i.e., pc > 0) inside the drone
detection range rd, while η(A) represents the most critical cells among the closest
ones to the drone. This force uses the probability of neighbor cells (i.e. cells in the
detection range of a drone) to host an event of interest, as defined by the probabilistic
map. The purpose of this force is to move the drones towards the most critical cells.
Therefore, the drone computes the overall force by using the cells in rd(A), if any,
otherwise it picks one cell from η(A) (a closest cell with non null probability value)
to compute this force. If all the cells have null probability (i.e., η(A) = ∅) the drones
move back to the base station, to obtain an updated map or eventually end the
mission. It is worth to mention that, this force is responsible to move the drones
across the area of interest, by producing a sort of gradient ascent towards critical
zones.

SIDE details

Algorithm 6 shows the procedure used by any drone u to monitor the area and
determine its movements. As we consider battery powered drones, each drone
continuously evaluates its residual energy, according the energy consumption model.
It checks whether it is safe to carry on the mission, or its residual energy is just
enough to move back to the closest base station for recharging operations (lines 4-6).
In the algorithm, ωu represents the energy consumption model, which maps flight
distance to the required energy units, while φu denotes the current residual energy
units of drone u. Then, the drone monitors the environment to collect data and
detect events. It also updates the set of events called E , by adding new detected
events and removing inspected, or expired events (line 7). To share monitoring data
and information concerning detected events, u communicates with neighbor drones
and depots. Moreover, if its battery is about to deplete, u can request support from
neighbor drones, by using special purpose messages (line 8). The drone updates its
local map, using also received data, to avoid redundant coverage and update the
information regarding critical zones (line 9). If the area, in the drone local view, has
been covered entirely, the drone moves back to the closest base station to receive
mission updates (i.e., a new map with critical zones to monitor) or concludes the
mission. Otherwise, the drone computes the resultant force ~Fu, by summing up all
the force components described in Section 3.2.4, and moves accordingly (lines 11-19).
Notice that, as the events are unknown, and they dynamically appear in the area,
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Algorithm 6: SIDE
Input: Drone u, AoI A, Depots D, available energy φu, energy consumption

models ωu : R→ R
1 events E ,mission info I ← ∅
2 while (not mission completed) do
3 neighbour drones U ← ∅
4 b̂ = arg min

j∈D
(d(u, j)) #closest base-station

5 if φu − ωu(d(u, b̂)) / 0 then
6 move to b̂
7 collect_sensor_data(E , I)
8 communication(U ,D, E , I)
9 update(A)

10 if
∑
c∈A

pc = 0 then

11 move to b̂

12 ~Fu ← ~FuA(A)
13 for border cell c ∈ A do
14 ~Fu += ~Fub(c)
15 for event cell ce : e ∈ E do
16 ~Fu += ~Fue(ce)
17 for drone i ∈ U do
18 ~Fu += ~Fui(i)
19 move_drone(~Fu)
20 update(φu, ωu)

the algorithm may go on indefinitely, provided that drone batteries are replaced
or recharged upon need. The decision to quit the mission can be made by: A) the
depot stations, when drones come back to recharge or get a new updated map, B)
each drone, according to a timestamp which establishes the end of the mission after
a predefined time (e.g., a mission may be executed only for some daily hours).

We also highlight that SIDE has the advantage to abstract and incorporate any
energy model ωu, which can be selected according the scenario and the drones. In
particular, the algorithm can incorporate complex and non linear models, e.g., those
proposed by Goss et al. [63]; or the consumption model reported by Sun et al. [132].

The communication protocol and the map updates are discussed in detail in the
next two sections.

Communication Protocol

An essential aspect of SIDE is the communication between drones and depots,
necessary to update the probabilistic map, and for the computation of the virtual
force acting on each drone. In particular, as drones can be spread across the area,
they usually have partial knowledge of the environment and of the mission. Only
the base stations located at the depots, which are assumed to be connected and to
receive updates from the drones, have global situation awareness.
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According to SIDE, the drones periodically broadcast hello packets with the
following data: the drone ID, the drone position (used for the force computation),
the version ID of their map. In particular, the latter field is used to allow drones to
recognize the need for a map update and perform it correctly.

Therefore, the drones use the following special purpose messages: 1) map-update
which contains the probabilistic map, and is used to send updates or to notify
visited zones and prevent redundant inspections; 2) inspection-help which contains
an event coordinates and is used to attract neighbor drones towards an event that
the sender drone cannot fully inspect due to limited energy availability (notice that,
this message is answered with an ACK to stop the broadcast of help messages);
3) event-updates which contains the coordinates of an inspected event, to avoid
redundant inspections. In particular, as map and event update messages may have
non negligible size, they are only sent at periodic intervals, or in response to hello
messages with older map version IDs, to force a map update.

Local and Global Probabilistic Map Updates

While the base stations manage global updates of the probabilistic map, to identify
new critical zones, the drones perform some local updates upon collection of new
data. These updates are used to guarantee system responsiveness and to provide
an optimized coverage of the area. We now introduce the local and global update
policies. These operations are of key importance for ensuring full coverage of the
area of interest, especially in the absence of prior knowledge of event positions.

Local Update. During the monitoring operations, SIDE prevents unnecessary
visit of already inspected zones (cells) by ensuring local map updates, and related
information exchange with drones in radio proximity. For this reason SIDE provides a
mechanism for updating information concerning the performed inspection operations.
Whenever a drone inspects a cell c, i.e. the cell lies inside the detection range of a
drone, the drone updates the related information in its local view of the map of events,
by progressively decreasing its event value probability pc during the monitoring
time interval, according to a linearly decreasing function with finite slope parameter
∆ ∈ (0, 1]. Thus, the longer the time spent by a drone in cell c is, the lower the
value of pc will be. Notice that the particular setting of the parameter ∆ impacts
the amount of time that a drone spends on each zone (cell) of the area of interest,
and in particular, defines the inspection time that will be devoted to critical zones.

It is worth observing that this map update operation is key to ensure complete
coverage of the area, as we underline in the proof of Theorem 3.2.2.

Global Update. The global map update is managed by the base stations
located at the depots and is performed according to the KDE method described
in Section 3.2.3. We recall that, any time a global update is performed, the new
probabilistic map is broadcast to the drones, and replaces the previous version of
the map. Notice that, if two drones have different versions of the map, the old
map is immediately updated. To avoid continuous replacements, that may cause
starvation and lack of coverage in some areas (drones may cover only some zones),
the base stations perform the global update only when every cell of the area has
been explored at least once by at least one of the drones of the swarm. A regular
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frequency of updates can be easily added in the model as a minor change, requiring
the drones to regularly visit the depot. Moreover, when a drone depletes is battery
and lands to the base station, it may eventually updates its uncertainty map.

Algorithm properties

While virtual force approaches do not guarantee coverage completeness (i.e. mobile
devices can be trapped in local minima and fail to monitor the area), under specific
conditions, and with a correct parametrization, SIDE covers all the area of interest
in finite time. In the following we formalize these conditions.

Theorem 3.2.2 (Termination). Under the assumption that: (1) the battery avail-
ability of each drone u is sufficient to let u traverse the diameter of the AoI (i.e. the
maximum distance between any two points in the AoI), (2) there are no obstacles in
the aerial space, (3) no new event occurs, (4) batteries can be recharged or replaced
at depot stations, SIDE eventually terminates in O(|A|) iterations and provides a
full coverage of the AoI.

Sketch. We consider a drone u and an AoI with a set E of unknown events at the
mission start. We note that the dynamic generation of new events would prevent
termination of the algorithm. However, new events are excluded by assumptions.
By construction each cell c ∈ A has initial probability pc ≥ ε. Let f(A)→ R be the
function defined as

∑
c∈A pc. Whenever a drone visit a cell c, the related probability

value pc is decreased of an amount equal to min{pc,∆}, until it reaches zero and
the inspection of cell c is terminated.

We note that under the given assumptions we cannot have unreachable cells. In
fact, a cell may be unreachable because of energy limitations or area boundaries
precluding drone movements. However, 1) the energy limitation can only affect
the visit delays: we are assuming that any point is reachable by a drone, at least
when its battery is full, and batteries can be recharged or replaced; 2) there are no
obstacles, thus the drone can reach a cell starting from any position.

We also note that as long as f(A) > 0, there is at least a cell c with non null
probability pc > 0. Hence, if f(A) > 0 SIDE will continue moving the swarm until
all cells are inspected and eventually reach zero probability as a consequence of the
local update mechanism. This is because either the drones are inspecting some cells,
whose probability will eventually reach zero, or they are moving towards other cells
with non null probability, or they are moving to the depot from which they will
receive global updates concerning the presence of unvisited cells, if any, to which
they will move accordingly to ensure further inspection and eventually complete
coverage.

We also note that the local map update mechanism also ensures the algorithm
termination. In fact, we note that the a necessary and sufficient condition for
termination is that f(A) = 0 which implies that the swarm can stop as, by hypothesis,
no new events will be generated to increase the value of f(A). However, we observe
that the value of f(A) reaches zero in at most |A|/∆ iterations, which lets us
conclude that the algorithm terminates in at most the same number of steps.

Notice that if events continuously appear in the AoI the protocol may incur
starvation. To prevent this, the algorithm can use an appropriate scheduling policy
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based on an aging algorithm, for instance the Earliest Deadline First (EDF) algorithm
proposed in [133].

We now analyze the time and message complexity of SIDE. As the algorithm
works online, as soon as new events appear in the area, the drone trajectories
change and the algorithm does not stop. In the following we analyze the algorithm
complexity with a given number of events |E|, and we assume that the number of
events |E| = O(|A|), where |A| is the number of cells in the AoI. While our protocol
sends and asks updates at fixed intervals of time, our analysis considers a worst case
scenario in which only one message is sent at each iteration.

Theorem 3.2.3 (Message Complexity). For each drone, the message complexity of
Algorithm 6 is O(|A|) for transmissions and O(|A| · (|U|+ |D|)) for receptions.

Proof. The worst case message complexity can be calculated by considering a drone
û with the maximum possible number of neighbors, i.e., |U| − 1 drones and |D|
depots. At each iteration, a drone broadcasts the message with its position, the
map summary and the inspected or expired events. It also receives at most (|U| − 1)
messages from neighbor drones, and |D| messages from depots, at each iteration.
As the number of iterations is O(|A|), as stated by Theorem 3.2.2, the message
complexity is O(|A| · (|U|+ |D|)).

Theorem 3.2.4 (Time Complexity). The time complexity of Algorithm 6 is O((|U|+
|D|) · |A|2).

Proof. The worst case time complexity can be calculated by considering a drone û
with the maximum possible number of neighbors, |U| − 1 drones, and |D| depots.
Depending on the available residual energy, the drone may perform one of the
following actions:

1. The drone has insufficient energy to continue the mission and interacts with
at most |D| depots to determine the next recharging station.

2. The drone calculates the resultant of the forces exerted by other drones or cells
of the map, which has complexity of at most O(|U|+ |A|). It also updates the
map with the collected and received data, which has complexity of O(|A|) and
(O((|U|+ |D|) · |A|)), respectively.

Therefore, at each iteration the time complexity is O((|U|+ |D|) · |A|). As SIDE
visits the area in O(|A|) iterations, according to Theorem 3.2.2, the time complexity
is O((|U|+ |D|) · |A|2).

3.2.5 Performance Evaluation

To the best of our knowledge, no previous proposal addresses the distributed tra-
jectory design for a UAV squad in uncertain environments as we do in this work.
Therefore, to enable fair performance comparisons we modified two existing works
to make them suitable to our problem setting. The first algorithm, called AC-GaP
(see Section 2.1), is designed to let a UAV squad visit a set of known points of
interest with minimum average inspection latency. We recall that, given a set of
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feasible trajectories traversing different subsets of the targets, the algorithm selects
and schedules some of them into a multiple trip sequence, with recharging and
off-loading operations between consecutive trips. In order to make AC-GaP suitable
to our problem setting, we make it work with a problem instance where a number
of targets is uniformly distributed over the area, with sufficient density, such that
complete inspection of the targets implies complete monitoring of the area of interest.
AC-GaP is then executed iteratively, with periodic optimization of the trajectory
schedules which prioritizes the trajectories on the basis of the number of detected
events, to obtain maximum inspection rate and minimum average inspection latency.
The second algorithm, called Sweep is also a variant of a previous solution [53]
modified to fit our problem setting. The algorithm was originally designed to guide
the movements of multiple ground robot to ensure complete coverage of an area of
interest. We modified the original algorithm by partitioning the area of interest into
regions that can be explored completely within the energy constraints imposed by
the UAV battery of a single drone. Each drone periodically scans each partition by
using back-and-forth trajectories until the end of the mission.

Metrics

We consider missions with uncertain information, in which targets generation times
and positions are unknown. Thus, evaluating an algorithm’s effectiveness (i.e.,
percentage of monitored targets) is rarely possible, as the events are unknown.
In our simulations and real-field experiments to comprehensively evaluate the algo-
rithms, we use an oracle that knows each target’s exact position and generation time.
The oracle is used to evaluate the performance of the algorithms, i.e., to compare
the events collected by algorithms with respect to the events generated in the AoI.

We evaluate the following metrics. The detection delay measures the time between
the generation of an event and its detection. However, the time between an event
detection and its final inspection may be highly variable, due to energy or trajectory
constraints. When a drone detects an event it may not have sufficient energy to
inspect it. For this reason the event may be inspected by another drone or by the
same drone in a subsequent trip, after a battery replacement. Thus, we also study
the average inspection delay, defined as the average time between the generation of
an event and its actual inspection by a drone (including hovering). Detection and
inspection delays measure the algorithm responsiveness when events are successfully
detected and inspected, respectively. Note that some events may remain undetected
or not inspected because they disappear before the drone intervention. Therefore,
we also measure the coverage percentage, defined as the ratio between the number of
inspected and occurred events; and the percentage of area covered defined as the
ratio between the explored area and total area to inspect.
Finally, we also evaluate the computational time defined as the time needed to
compute the trajectories, over a laptop with a Intel i7-8665U CPU with 32gb of
RAM.
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Simulation results

Where not otherwise stated, we consider a 4-hour long mission, an area of 10 km2, and
2 base stations located at the bottom corners of the area of interest. The inspection,
detection, and communication radii are 150, 200 and 300 meters, respectively; the
maximum speed of a drone is 10 m/s while its acceleration is ±3.5m/s2. Events
occur every 120 seconds in random positions defined according to a bi-variate normal
distribution centered around related epicenters. Events last for 30 minutes and
require a hovering time of 30 seconds for complete inspection and collection of
enough data. We assume that each event has a unique fingerprint, which allows
us to distinguish between the same event or a subsequent event. Notice that, the
fingerprint is mission-specific: a geyser eruption can use the GPS coordinates and
the current time as fingerprint, as any eruption at different coordinates or time
would be another independent event.
The drones running SIDE exchange hello messages every 0.5 seconds, while periodic
map-update and event-updates are sent every 10 seconds.

While SIDE can incorporate any energy consumption model in the simulations we
adopt a simplified model which translates the energy availability into residual flight
time. According to this model a fully charged battery corresponds to 30 minutes of
flight time, potentially including hovering [134].

To simulate the propagation channel we adopt a two ray propagation model [106],
which suits our scenario with no obstacles between drones, and air-to-air (AA)
communications. Notice that, the two ray propagation model is an extension of the
free space model, which is commonly used in AA communications [104], but it also
considers ground reflection.

The model computes the received power at distance d as follows:

Pr(d) = Pt ·Gt ·Gr · ht2 · hr2

d4 · L
(3.25)

where ht and hr are the heights of transmitter and receiver, respectively; Gt and Gr
are their antenna gains; Pt is the transmitted signal power, and L is the system loss.

Where not otherwise stated, plots present the result of 40 simulation runs, and
the error bars denote one standard deviation from the mean.

Optimal Trajectories In the first set of experiments, we compare the optimal
path-planning defined in Section 3.2.2 with SIDE, when the size of the mission
area increases. Given the significant computational requirements of the optimal
formulation, we focus on small scenarios. We consider a mission of 5 minutes, with
one base station and 2 drones. The drones fly at 5m/s and have radii of 200, 100,
and 75 meters, for communication, detection and inspection. For the computation
of the optimal solution, we consider an oracle that provides the uncertainty map,
which denotes the areas where events appear. We have 9 events in the area, and we
execute 5 runs for each experiment.

Figure 3.12 shows the percentage of area inspected by the two algorithms. SIDE’s
performance is close to the optimal solution, achieving around 90% of its coverage.
It is interesting to note that the percentage of inspected area drops by increasing the
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Figure 3.12. Percentage of Area Cov-
ered. Figure 3.13. Coverage Percentage.

Figure 3.14. Required Computational
Time for the solution.

area, as the number of drones is not sufficient to cover the entire area. In Figure 3.13
we evaluate the percentage of inspected targets. While the optimal solution always
shows the best results, SIDE achieves 80% of its performance. The large performance
gap between SIDE and the optimal solution is motivated by the better trajectories
of the optimal approach, which guides the drones towards the zones hosting most of
the events. Finally, Figure 3.14 shows the computational time of the two approaches.
While for SIDE the computation time is almost zero, the computation time of the
optimal grows significantly, due to the complexity of AoI tessellation. Therefore, the
optimal solution is not applicable in safety-critical settings, however small.

Varying distribution of events around one epicenter We now investigate
the performance of SIDE in comparison to two state-of-art approaches. To consider
experiments in larger scenarios, we will not show the performance of the optimal
solution, due to its computational complexity. In this setting we consider events
occurring around a unique epicenter located in the center of the area of interest. We
investigate several scenarios with increasing size of the impacted area, from scenario
1 to 6, whose event distribution is described in the heat-maps of Figure 3.15: out
of the 120 events occurring during an observation period of 4 hours, we observe 40
events taking place in the border area, in the color range from green to white, while
we observe 75 events in the range from blue to white.
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Figure 3.15. Points generation scenario Figure 3.16. Inspection delay

Figure 3.17. Coverage percentage Figure 3.18. Detection delay (Scenario
2)

In the last scenario (i.e., 6) all events are instead uniformly distributed in the
entire area.

We simulate a squad of 5 drones exploring the area. Figure 3.16 shows the
inspection delay of the three algorithms. We use box-with-whiskers plots to highlight
the quartiles of related events falling within each metric interval. The figure shows
that SIDE is remarkably faster than the other algorithms in inspecting events,
with an improvement that ranges between 27% and 40% with respect to the other
solutions. This is due to the capability of SIDE to perform focused trajectories aiming
at providing the required inspection for each upcoming event. This is confirmed in all
the considered scenarios. The Sweep algorithm instead aims at providing complete
area coverage, resulting in a performance that is not affected by the particular size
of the affected area, and is almost uniform across the six scenarios. It is worth
noting that although AC-GaP aims at prioritizing areas where events have been
previously detected, it is not capable of taking into account the duration of the
events, and has a high event miss rate. Indeed, it often visits the event locations
too early or too late with respect to the actual period of event persistence. This is
also confirmed in Figure 3.17 which evaluates the event coverage percentage. In the
first three scenarios, SIDE is able to inspect over 90% of the occurring events. Its
coverage is also the highest, and consistently above 80% even in the other scenarios,
in which Sweep hardly achieves 60% and the performance of AC-GaP gradually
drops below 40%. As the impacted area grows within the considered scenarios, the
event distribution becomes more uniform, which makes Sweep perform better than
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Figure 3.19. Progressive map estima-
tion Figure 3.20. Detection delay

Figure 3.21. Inspection delay Figure 3.22. Coverage percentage

AC-GaP. Nevertheless, SIDE outperforms Sweep even in its most favorable scenario,
i.e. the sixth.

Figure 3.18 evidences the powerful contribution of the map estimation of SIDE
by comparing the average detection delay that is obtained with or without the map
construction. The figure refers to the second scenario and shows the trend of the
average detection time during the mission. The figure highlights how, after an initial
training phase, SIDE with map estimation is able to reduce the detection delay of
around 35% with respect to the same algorithm, without map construction.

Events occurring around two epicenters In our third set of experiments, we
partition the area into four quadrants and generate the events of interest around
two epicenters located at the top-right and bottom-left quadrant of the area of
interest. In the heat-map of Figure 3.19 we show the progressive computation of
the event probability map, during a simulated mission with 8 drones. The colors of
the heat-map reflect the estimated probability to host a critical event during the
mission. The map initially considers uniform event probability, shown in Figure
3.19-A, as drones have no initial knowledge of the events. Drones gradually refine
the probabilistic map with the incrementally available information, as shown in
Figures 3.19-B, 3.19-C, and 3.19-D, corresponding to 10%, 30% and 50% of the
overall mission time (4 hours), respectively.

Figures 3.20 to 3.22 show the results by varying the number of drones. Figure
3.20 shows that the three algorithms need almost the same time to detect events
when they work with only 2 drones. However, SIDE becomes remarkably faster
than the other algorithms when the number of drones increases: with 14 drones
the median detection delay of SIDE is half of the other algorithms’ delay. This
occurs because SIDE performs a focused search for upcoming events, while AC-GaP
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Figure 3.23. BaseStation and DJI F550 Hex-rotor with Naza-M V2

is unable to prioritize event inspection before their expiration, and Sweep aims at
complete area monitoring regardless of the event positions. Such a difference is even
more remarkable when we consider the inspection time, shown in Fig. 3.21, where
SIDE is always faster than the other algorithms. In the case of 12 and 14 drones,
SIDE is able to inspect 50% of the events in the first 370s, resulting 76% faster than
Sweep, which requires 650s. This improvement derives from the ability of SIDE to
promptly respond to detected event by directly inspecting it or asking nearby drones
for intervention.

SIDE outperforms the other algorithms also in terms of event coverage percentage.
As shown in Figure 3.22, with only 2 drones, SIDE inspects 50% of occurred events,
while AC-GaP and Sweep hardly reach 25% of event coverage. The percentage of
inspected events increases to 75% when SIDE employs 4 drones, while it remains
below 40% for AC-GaP and Sweep. For larger fleets (i.e. 12 and 14 drones) the
coverage performance of all the algorithms improves significantly, with SIDE and
Sweep hitting the 95%, and AC-GaP performing 33% and 9% worse than the other
two algorithms. Nevertheless, in our experiments we see that the higher inspection
delay of AC-GaP and Sweep is likely to have an impact on their coverage performance
when the event duration decreases, while SIDE is more flexible to variation of this
parameter.

Real-field experiments

We now experimentally investigate the applicability of our proposal in a real scenario.
We emulate a real mission with several events that appear dynamically in the area.

The equipment we use for the test-bed includes a fleet of 4 programmable drones,
equipped with cameras and GPS modules, and a laptop, needed to run the algorithms
and compute the trajectories provided to the drones. Figure 3.23 shows one of the
drones and a laptop that we used as a base-station. We use hex-rotor DJI F550 [55]



3.2 SIDE: Self drIving DronEs embrace uncertainty 92

Figure 3.24. Detection of a target. Figure 3.25. Inspection of a target.

drones equipped with LIPO batteries, 3500 mAh, 11.1 v, 25 C and a Raspberry
Pi 2 with a WiFi Antenna [135]. Therefore drones can communicate among each
others and with the base station (i.e., laptop). We consider a communication range
of approximately 150 meters according to preliminary in-field measurements. With
this setting, drones have enough energy to perform approximately 7 minutes of
consecutive flight with a speed up to 5m/s. The field of view of the cameras is
10 meters (detection range) while we required a distance of less than 5 meters for
proper inspection (inspection range). The experiments have been performed in a
open field, and drones were deployed in an area of 140x90 meters.

In the experiments we consider a simplified model of the events. We emulate
events of interest by deploying big red balloons along the field (see Figure 3.24).
We distinguish between target detection and inspection on the basis of the distance
between the target and the camera.
Figure 3.24 shows a drone image in which the drone detects the red balloon (i.e., the
red ball with yellow contour), but the ball is not close enough to the image center
(i.e., it is not inside the center yellow box), and therefore only partial data can be
collected (i.e., detection).
Instead, in Figure 3.25 the drone centered the balloon under the camera, allowing
to collect more precise data (i.e., inspection).
The targets are dynamically positioned by a human operator during the mission, to
emulate new events. Notice that this setup models a scenario in which some sensors
(e.g., microphone) can first detect a far new event (e.g., car accident) to later move
and inspect it with a camera.

We initially validated our simulation models by studying similar settings with
both simulations and test-bed experiments. This comparison revealed a difference of
no more than 6% in terms of detection and inspection delays, which may be ascribed
to environmental factors, mostly the presence of wind.

We instead show the results of 2 different sets of experiments, each 30 minutes
long, in which we replace the drone batteries upon need.

The first one (Scenario 1) considers a series of 10 consecutive events starting 2
minutes after the squad take-off. The series of events begins in a location close to
the top left corner of the area of interest. Each 120 seconds a new consecutive event
appears in a range of around 15 meters from the first event location and it lasts
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Figure 3.26. Real Experiments Results

about 100-150 seconds. This experiment models a collapsed building with survivors
to be located and helped.

The second experiment (Scenario 2) considers a similar scenario, with the same
number of events, appearing in a wider range from the first of the series, i.e. in
random locations within a range of around 25-30 meters from the first event. It
models a large size accident, such as a wildfire.

The experimental results, each based on 3 different runs, confirm the algorithm
performance and trends. Figure 3.26 shows that although all the algorithms cover
all the target points, SIDE significantly outperforms Sweep and AC-GaP both in
detection and inspection delay. This is due to the incapability of AC-GaP and Sweep
to focus on critical events if they are not known in advance, i.e., prior to the squad
take-off. As a consequence, both these algorithms spend part of their mission time
searching for upcoming events, consequently performing the related inspection with
significant delay, if they do not miss them altogether, which can occur when the
drone flies above the event location before or too long after the event occurrence.

3.2.6 Conclusions

We introduce SIDE, a novel distributed trajectory planning algorithm for multiple
drones which autonomously coordinate in the exploration of a dynamic environment
to monitor a set of geographically correlated events of interest. With no initial
knowledge, the drones share their observation of the environment and gradually
build a probabilistic map of ongoing events, which they update on the basis of their
findings. SIDE uses this map and leverages virtual force methods to bring drones
towards the most critical zones, avoiding collisions and monitoring redundancy. This
is a new approach that is particularly useful for dynamic environments, in which a
set of temporary and geographically correlated events may occur. Results show that
SIDE outperforms baseline and state of the art approaches. In most of the considered
settings SIDE halves the inspection delay and doubles the event inspection rate,
with respect to previous solutions.
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Chapter 4

Communication Protocols

In the previous Chapter 3 we exploited the communication capabilities of the drones
to address safety critical missions. We discussed how drones can use multi-hop
communication to share control and data packets, and autonomously coordinate
during the whole mission.

However, the fast and unconstrained mobility of FANETs requires new solutions
to enable stable and reliable communication between nodes. Previous work in
this direction aims at extending protocols designed for Mobile Ad-hoc NETworks
(MANETs) or Vehicular Ad hoc Networks (VANETs), but the proposed solutions do
not fully address the unique characteristics of the UAV networks [7].

In this chapter we develop a new protocol for packet routing in the challenging
domain of FANETs, considering an highly dynamic topology scenario. Unlike previous
approaches, we exploit the device controllable mobility to facilitate network routing.
In Section 4.1 we propose MAD (Movement Assisted Delivery): a packet routing
protocol specifically tailored for networks of aerial vehicles. MAD enables adaptive
selection of the most suitable relay nodes for packet delivery, resorting to movement-
assisted delivery upon need, which is supported by a reinforcement learning approach.
By means of extensive simulations we show that MAD outperforms previous solutions
in all the considered performance metrics including average packet delay, delivery
ratio, and communication overhead, at the expense of a moderate loss in average
device availability.

This chapter has been extracted from the work in [24].
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4.1 MAD for FANETs: Movement Assisted Delivery
for Flying Ad-hoc Networks

Multi-hop routing over FANETs is a considerable challenge and an open problem,
due to the highly dynamic topology of these networks, to the fast variability of
application demand, and to the inhomogeneous link quality of typical outdoor
environments [7].

To date, the de facto standard for routing over FANETs has not been determined
yet [12]. The majority of existing approaches consider variants of widely acknowledged
protocols, originally designed for Mobile Ad-hoc Networks (MANETs) [136] and
Vehicle Ad-hoc Networks (VANETs) [137]. Nevertheless, MANETs and VANETs
differ from FANETs in terms of device mobility, topology variability, device speed,
energy constraints, and also application features, the latter having considerable
consequences on the typical traffic profiles. Previous solutions specifically designed
for FANETs, fall short of taking complete advantage of the unique potentialities of
these networks, in particular of the controlled mobility. While most of them rely
on geographic approaches to find the most suitable relay nodes for communication
[138] and device trajectories are only determined on the basis of the application
tasks, other works employ dedicated data-ferries [139] to facilitate communications.
These solutions result in high delivery delay and poor device utilization, which
translates in poor responsiveness to local findings. Instead, we introduce a completely
novel approach, called Movement Assisted Delivery (MAD), where flying devices
actively learn the most suitable trade-off between the requirements of the application
and communication tasks, namely maximum monitoring availability and minimum
communication latency. According to our solution, whenever a UAV detects an
ongoing critical event, it sends a message to the central processing center, located at
the sink. For this purpose, it looks for an existing nearby relay node (Figure 4.1-a) or
actively moves towards the packet destination (Figure 4.1-b), until it finds a suitable
relay. After packet delivery, the UAV returns to its application task, to ensure
continuous application availability (Figure 4.1-c). To the best of our knowledge,
this is the first work in the literature so far to jointly address communication and
application requirements in a unique solution for UAV trajectory design.

MAD adopts a Reinforcement Learning (RL) approach to guide device movements
based on delivery needs (e.g., in case of neighbor device scarcity, or after a number
of unsuccessful transmission attempts) and enables adaptive selection of the most
suitable relay nodes, based on the position of the packet destination, nodes’ speed
and packet loss probability.

We analyze MAD in terms of delivery guarantees and time complexity. By means
of extensive simulations, we give evidence of the beneficial impact of controlled
mobility. We do so by evaluating MAD against baseline approaches with disabled
mobility control. Then, we compare MAD to two existing solutions for packet
routing in networks of aerial vehicles: QMR [138] and DTN [139]. We note that some
protocols specifically designed for MANETS could be extended to consider UAVs’
communications. For this purpose we conclude our experimental analysis comparing
MAD with two MANET protocols: BATMAN [94] and GFG [140]. The experiments
show that MAD outperforms previous solutions in all the considered performance
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Figure 4.1. Event detection and communication using MAD

metrics including average packet delay, delivery ratio, and communication overhead,
at the expense of a moderate, controllable loss in average device availability, due to
its movement-based delivery.
The major contributions of this work are the following:

• We introduce MAD, a routing protocol for FANETs, that utilizes a RL approach
to make adaptive decisions to facilitate packet delivery through controlled device
movements.

• We define an adaptive relay selection scheme which considers measurements of
data link quality, and an estimate of the node positions during the future radio
transmissions.

• We formally analyze the fundamental properties of MAD and characterize its
delivery guarantees and complexity.

• Through simulations, we first motivate mobility assisted delivery by comparing
MAD with benchmark solutions with no mobility control. Then we show the
superiority of MAD over DTN [139], QMR [138], BATMAN [94], and GFG [140],
in all the considered performance metrics, at the expense of a moderate and
controllable loss in device availability, due to the introduction of mobility assisted
delivery.
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4.1.1 Related Work

Most of current approaches consider variations of widely known protocols, origi-
nally designed for Mobile Ad-hoc Networks (MANETs) [12], which are classified in
proactive, reactive, and hybrid protocols, depending on the route discovery strat-
egy. A major pitfall of proactive approaches is poor responsiveness to the fast
topology changes that characterize UAV networks. Optimized Link State Routing
(OLSR) [141] is a routing protocol that periodically broadcasts link-state costs to
allow computation and update minimum cost routes. BABEL [142] is also a proac-
tive protocol which instead utilizes a distance-vector approach. BATMAN (Better
Approach to Mobile Ad Hoc Network) [94] was specifically designed to deal with fast
topology changes. The study in [7] demonstrates the superiority of BATMAN over
OLSR and BABEL when applied to a FANET setting. For this reason we included
BATMAN among our benchmarks for performance analysis. Reactive protocols, such
as Dynamic Source Routing (DSR) [143] and the Ad hoc On-Demand Distance
Vector (AODV) [144], compute routes only when needed. In FANETs this approach
results prone to the problem of obsolescence of the computed routes, due to high
devices mobility.

Geographic approaches are commonly considered the most promising protocols
for FANETs thanks to their moderate network overhead [139, 140, 145–147]. In
geographic routing, a UAV selects a relay so as to minimize the distance between
the next hop and the destination of a packet, but possibly incurring in a local
minimum, which requires protocol-specific countermeasures. AeroRP [145] routes
packets closer to the destination based on a speed-based heuristic that is calculated
for each one-hop neighbor. However, it is designed for high-speed (1200 m/s)
aerial vehicles and requires full trajectory knowledge. Closest to our work are the
DTNgeo, DTNclose, and DTNload algorithms [139] that implement a motion-driven
packet forwarding algorithm, applying delay-tolerant networking (DTN) in case of
disconnection. These protocols exploit sensor information of UAVs to make location-
aware packet forwarding using physical motion of UAVs. When a UAV is disconnected
from the network, its data packets are carried by ferry UAVs. The protocol exploits
long-range low-throughput communication to optimize flight behavior. As DTNclose
addresses mission critical scenarios we include it as a benchmarks for performance
analysis. However, we make no assumption on out-of-band channels, data ferries, or
full trajectory knowledge.

In the context of RL based protocols, QGeo [148] and QMR [138] dynamically
learn and adapt the packet routes to the application scenarios. QMR protocol
employs a RL agent for each packet to select the next hop to destination, based
on the residual energy available at the destination node and current packet delay.
As QMR has shown to perform better than QGeo we include it in our performance
comparison.

Unlike previous approaches, ours is the first that exploits device mobility of the
whole fleet to facilitate packet delivery, without relaying on trajectory knowledge,
dedicated ferry UAVs, or out-of-band channel. Our solution guides device movements
and relay selection decisions on the basis of a geographic approach, supported by a
reinforcement learning framework, trading off between application availability and
delivery guarantees.
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4.1.2 MAD Protocol

We consider a fleet of UAVs, composing the set U , hereafter referred to as nodes.
The nodes are deployed in an area of interest with the goal of collecting sensing
data. Upon detection of anomalies or critical events in the monitored environment,
the nodes may need to communicate with the sink with maximum urgency. For
this reason, in addition to data offloading at the end of the mission, we assume
that nodes may be required to send critical packets to the sink to trigger immediate
intervention. Nodes are equipped with a localization module (e.g., GPS), and
separate transceivers for simultaneous transmission and reception activities. They
move freely across the area of interest, making the network topology highly dynamic.
Without loss of generality we assume that the nodes are aware of their current
geographical destination, i.e., of their next way-point. Each node moves towards it
at approximately constant speed following a linear trajectory. When it reaches its
destination, a node selects a new way-point according to the application needs. This
process repeats until the mission ends or the node exhausts its battery power.

Protocol Overview

We propose a new routing protocol called MAD (Movement Assisted Delivery),
addressing node-to-sink communications, which combines adaptive selection of the
most suitable relay node and movement-based delivery. Whenever a node has data
to send (through a data packet, dpk) it looks for a suitable relay, i.e., a node that is,
and is likely to be in the near future, in a better position for ensuring delivery to the
sink. If a relay is found, the source node forwards the data packet. Otherwise, the
node employs a Q-learning based strategy to decide whether to stay on the mission
and keep on transmitting, or move to the sink and keep on transmitting, to facilitate
delivery.

The nodes of the swarm need to know their current neighborhood, i.e. nodes
within communication range, for selecting optimal relays for routing. As the topology
continuously changes, the nodes periodically (every δhello) exchange hello packets
hello(i,∗) to communicate information that is relevant for routing, including node
direction and speed. In the hello packet notation, ∗ symbol means that for node i,
the destination of this hello packet was U , i.e., the packet was broadcast. When a
node u receives a hello(i,∗) from a node i, it stores the received information in its
neighborhood map Hu. We denote with Hu[i] the last hello packet received by u
from node i. To select the next relay, the source node determines the presence of
nodes among its neighbors, which are approaching the sink. The source node selects
the relay nodes whose next destination and current speed are such that they can
perform a two way communication of data packet and acknowledge messages, before
the mutual distance of the two nodes exceeds their transmission range and the two
nodes cannot communicate with each other any longer. If such a node exists, the
source node transmits the packets to the selected relay node. If the transmission
is successfully acknowledged (through an acknowledgment packet, ack), the relay
node is responsible of delivering the packet to the sink, while the source node can
continue its monitoring task trajectory. If instead a good relay is not available,
the source node makes a new relay selection and transmission attempt after a time
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interval δk, which is assumed to be uniform for all the nodes, and it is used to let the
node distinguish whether a communication failed or not. We set δk larger than the
communication round trip time between any two positions in the field of interest.

To avoid endless re-transmission attempts, and packet loss, MAD employs a
reinforcement learning approach to decide whether the node should resort to a
movement-based delivery, i.e. a physical movement in the direction of the sink to
facilitate packet delivery. Note that the position of the sink, hereby denoted with
σ, is assumed to be known by all the nodes at the mission start. The procedures
for selecting a suitable relay and the transmission policy (i.e., stay or move) are
described in Sections 4.1.2 and 4.1.2, respectively.

Optimal Relay Selection

To find the optimal relay a node must be able to estimate the time needed by a
packet to reach the relay. Assuming loose synchronization among nodes, we estimate
the time δ(u,i) for node u to send a packet to node i as the time between the instant
at which the hello(i,∗) was generated on node i and the instant at which node u
received it. Node u can then estimate the transmission error probability toward
node i, denoted as e(u,i)(t) ∈ [0, 1], by considering the percentage of packets sent to i
that has not been acknowledged by time t. Set optimistically at the beginning of the
mission to encourage exploration, this estimate is then updated over a sliding time
window. Under the assumption that a suitable relay node must show a successful
delivery probability of at least ν ∈ [0, 1], a node u can compute the expected number
of re-transmissions y, required to let node i receive the packet. Thus we can impose
the probability of having at least one success out of y trials be greater than or equal
to the hope ν, that is: 1− e(u,i)(t)y ≥ ν. From the above expression we can compute
an upper-bound on the number of trials as: y ≤ log(1− ν) \ log e(u,i)(t). Considering
the time δk between two consecutive transmission attempts, and given y trials, the
expected waiting time before a successful delivery is given by (y − 1)δk. Notice that
the value excludes the delay for the first transmission. The total expected time for
a packet from u to be received at i, is defined as ∆(u,i) , (y − 1)δk + δ(u,i), and
it is used to estimate the time at which a relay node receives a packet, where, by
definition, δk > 2δ(u,i) ∀ u, i ∈ U .

A node involved in the transmission of a packet selects its relay node on the basis
of a score based mechanism. The score of a node i at time t considers the following
information: position xi(t), speed ẋi(t), transmission radius ri, and next way-point
zi(t). Every node is able to estimate the exact position of its neighbors exploiting
the above features, extracted from the hello packets. We denote the time required
for i to reach its next way-point zi(t) as δiz(t) , ‖zi(t) − xi(t)‖ / ẋi(t), where ‖ · ‖
is the Euclidean norm. Upon transmission of a data packet dpk(u,i) at time t to
a candidate relay i, node u estimates the current position of node i as xi(t). The
estimate is accurate until node i does not reach its next target, advertised at time ti
in hello(i,∗). Such an estimate is computed as follows:

xi(t) =
{
xi(ti) + ẋi(ti) · (t− ti) if t− ti ≤ δiz(ti)
zi(ti) otherwise

(4.1)
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Notice that, as we assume an online mission, the other nodes do not know the
trajectory that node i will take after reaching its next target coordinates. Before
assigning a score to every node, representing the quality of choosing it as a relay, a
set of conditions should be met in order to avoid selecting nodes that will not ensure
connectivity during the entire two-way communication, or that will take the packet
farther from the sink. Node u checks on the following conditions for every node i for
which it has received a hello packet hello(i,∗) at any time ti ≤ t, the most recent one
for every node.

Condition 4.1.1. Node i is considered a relay if it will stay in the communication
range of u until it would send ack(i,u) back to u:

‖xi(t+ ∆(u,i) + δ(i,u))− xu(t+ ∆(u,i) + δ(i,u))‖+
ẋi(ti) · ((t− ti)− δiz(ti)) · τ ≤ min(ri, ru)

(4.2)

The inequality constraints the distance between the expected position of the source
of the data packet u and the destination i, at the time of the ack packet reception
(i.e., t + ∆(u,i) + δ(i,u)), plus a pessimistic estimate in case node i has passed its
advertised target coordinates, to be greater than the minimum communication radius.
In Equation 4.2, t is the time at which node u issues dpk(u,i), ∆(u,i) is the expected
time of reception at node i, δ(i,u) is the time it takes for ack(i,u) to reach u. Notice
that τ is 1 if t− ti ≥ δiz(ti) else 0, reflecting the fact that at time t node i has already
reached its advertised way-point zi(ti) or not, respectively. In the latter case, u
makes a pessimistic estimate. An additive distance equal to the estimated distance
traveled after having overcome zi, is added to the distance of the two nodes. Notice
that we consider only one attempt for i sending the ack for dpk(u,i), and for node u
we do not add an additive distance in case it has overcome his zu(t).

Condition 4.1.2. Node i will be closer than node u to the sink, at the moment of
expected packet reception:

‖xi(t+ ∆(u,i))− σ‖+ ẋi(ti) · ((t− ti)− δiz(ti)) · τ <
‖xu(t+ ∆(u,i))− σ‖

(4.3)

The inequality constraints the distance between the expected position of the destina-
tion of the data packet i and the source u, at the time of the data packet reception
(i.e., t+ ∆(u,i)), plus a pessimistic estimate in case node i has passed its advertised
target coordinates, to be less than the distance between the expected position of
the source node of the data packet and the sink. This condition guarantees greedy
routing with preemptive nodes positioning estimate.

Figure 4.2 shows an example where a node u needs to choose a relay between
nodes v and i. We consider two different scenarios. In the first scenario, we assume
that a two way communication established by node u at time t, between both node
v and i, it is expected to end at time t′ , t+ ∆(u,∗) + δ(∗,u) where ∗ wildcards both
v and i. Thus, Condition 4.1.1 is met for node v as it is still in the communication
range ‖xv(t′)− xu(t′)‖ ≤ min(ri, ru). Instead the position of node i at time t′ may
be out of the communication range of u, in the worst case, thus resulting in the
violation of Condition 4.1.1. To define the second example scenario, using the
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Figure 4.2. Optimal Relay Selection Conditions 4.1.1 and 4.1.2.

same Figure 4.2, we interpret the variable t′ in a different manner, i.e., we consider
t′ , t+ ∆(u,∗), to denote the moment of expected packet reception. At this time,
both nodes v and i satisfy Condition 4.1.2, as their position at packet reception is
closer to the sink than that of u. Nevertheless, node v will be chosen as it meets
both the conditions.

We underline that Condition 4.1.2 ensures that a node u selects relay i only if i
is at closer distance from the sink than u at the time of reception. However, once
i receives the packet it can still move in a direction that increases the distance of
the packet from the sink before its delivery. To prevent packet loss, we introduce
a fail safe mode which ensures packet delivery, provided that the initial TTL of
the packet is large enough to permit movement based delivery. The fail safe mode
ensures that a node always opts for physical movement delivery whenever a packet
residual lifetime is too close to the minimum time necessary to perform movement
based delivery. We denote with Tres(dpk, t), the residual lifetime of a packet at
time t. If the packet dpk has been generated at time t0, with time to live TTL, its
residual lifetime is Tres(dpk, t) = TTL− (t− t0). Since node u is in position xu(t)
at time t, it needs a time of at least δσ(u, xu(t)) to move and reach the sink, with
δσ(u, xu(t)) , ‖xu(t)− σ‖/ẋu(t).
Condition 4.1.3. (Fail Safe Mode - Optional): A node u opts for physical delivery
of dpk at time t whenever:

0 < Tres(dpk, t)− δσ(u, xu(t))−A < δk, (4.4)

where A is the time for the node actuators to modify the direction of the node to
make it move towards the sink.
This condition is optional, and is meant to address critical applications. Theorem
4.1.1 characterizes the capability of MAD to guarantee packet delivery under fail
safe mode.
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Finally, the score of a node i is computed by u as follows:

φ(u,i)(t) , ‖xi(t+ ∆(u,i))− σ‖ (4.5)

The score is the distance of node i to the sink, at the time of the data packet
reception. Now let Γ∗u(t) be the set of candidate relays of node u at time t i.e., the
set of nodes that satisfy Conditions 4.1.1 and 4.1.2. The optimal relay of node u
will be chosen as:

relayu(t) , argmin
i∈Γ∗u

φ(u,i)(t) (4.6)

Node Transmission Policy Learning

MAD aims at meeting performance requirements given in terms of: average packet
delay and packet delivery ratio. As shown in Figure 4.1, in case of neighbor device
scarcity, or after a number of unsuccessful transmission attempts, MAD proactively
moves disconnected nodes to seek for relays. MAD is used to let nodes learn an
optimal policy that guides them through their mission so as to guarantee optimal
performance requirements. The policy lets the nodes decide to either stay on the
mission, in the hope to eventually meet a suitable relay (as defined in Section 4.1.2),
or to move toward the sink. Purpose of the policy is to find a proper trade-off
between application availability and delivery guarantee. Otherwise, (1) the node may
end up moving too frequently towards the sink, even when the network deployment
is quite dense, resulting in a very low packet delivery ratio, as most of the time
the node will be far from its mission location; (2) the node may cause high average
packet delay or may lose packets due to TTL expiration, resulting in a low packet
delivery ratio.

In order to find this trade-off the nodes exploit a Reinforcement Learning (RL)
approach. We will now give a brief introduction to the RL approach being used
presenting the learning paradigm setup.

Reinforcement Learning Paradigm Setup

Through reinforcement learning, an agent gradually finds a decision policy on the
basis of numerical reward signals it receives when performing allowed actions in the
environment. Let S and A be the sets of states and actions, respectively. The goal
of the agent is to learn a policy π∗(s) : S → A, i.e., a function mapping every state
to the action that allows the agent to maximize the cumulative future discounted
reward. Where the discount factor γ ∈ [0, 1] weights future rewards. The policy is
derived by means of a quality function Q∗(s) : S → R|A|, mapping the current state
of the agent to quality values of the actions, according to the well known Bellman
equation [31]. We use state of the art function approximators for estimating Q∗(s),
a neural network predicting action-values or quality values, we will thus refer to
as Deep Q-Neural Network (DQN). We produce Q(s; θ) ≈ Q∗(s) with θ being the
weights of the network. Given training instances: 〈s, ŝ, a, r〉 ∈ S2×A×R the neural
network is trained to minimize the loss computed as the squared error between the
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Figure 4.3. An RL Agent Querying a Pre-treined DQN.

target value of the action-value function and the prediction of the neural network as:

L(θ) =
(
r + γmax

a′
Q(̂s; θ)[a′]︸ ︷︷ ︸

target

− Q(s; θ)[a]︸ ︷︷ ︸
prediction

)2
(4.7)

For MAD, the use of the DQN is twofold: (1) the DQN is trained to predict
optimal action-values in a simulated environment, fed with data collected either
beforehand or synthetically generated; (2) the pre-trained DQN is made available to
all nodes in the network, that can query it to know the best action to take in the
environment. Notice that, nodes could optionally use a pre-trained DQN to make
some on-mission training through on field observations to possibly improve their
performance. Figure 4.3 illustrates the second usage scenario mentioned above. At
a new state observation, the agent queries the DQN to get an optimal action that it
eventually executes in the environment.

Action Space The action space is A , {move, stay}, where move forces the
node to physically head towards the sink, thus suspending the monitoring mission,
while the action stay keeps the node on the monitoring mission. As long as a node
has packets to forward, every κ seconds it selects an action from the action space.
Without loss of generality we assume that κ is a multiple of δk. This to ensure that
the pursued action will be evaluated for a number of transmission attempts that
will grant it to be evaluated fairly, even in case of failed transmission attempts. For
the sake of brevity, throughout the section we adopt the notation [K] to denote the
set of integers 0, 1, . . . ,K.

State Space The state features observed by a node are the following.
Sink Distance: It measures the distance of the node from the sink. It is denoted
as sudist(t) : R → [Md], where Md is the linear distance between the sink and the
farthest point from it, in the map.
Oldest Packet Age: It measures the age of the oldest packet in the buffer. It is
denoted as suage(t) : R→ [Mt], where Mt is the maximum TTL of the packets.
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Local Density: It reflects the node density in the communication range of a node.
Let Γu(t) be the set of neighbors of u at time t, according the last received hello
packets, we denote the local density as sudens(t) : R→ [|U | − 1] , |Γu(t)|.
Probability of Encounter: It measures the probability of meeting at least one
node in the path towards the next target zu(t) of a node u. It is denoted as
sumeet(t) : R→ [0, 1]. The estimate is calculated by tessellating the area in a squared
grid, whose side is set in proportion to the communication radius of the node. The
frequency of observation of nodes in the tiles is used as an estimate of the probability
of meeting at least one node in it, and is updated at every step. Let C be the set
of all the tiles in the map, and C ⊆ C be the set of traversed tiles when heading
from xi(t) to zi(t), the probability of meeting at least one node in the path is given
by 1 −

∏
c∈C(1 − pc), where pc is the probability of meeting at least one node in

the tile c. The estimate of the probability of meeting at least one node in a tile,
is exchanged among the nodes and it is initialized with an optimistic value (high
probability for all the tiles), to encourage exploration of the map in the initial steps
of the simulation. For every tile, the nodes update their guess about the probability
of meeting at least one node, when they fly over it, or when they receive more recent
information from neighbor nodes. The update could be as simple as an average of
the guesses weighted by the time elapsed between the node’s actual guess and the
neighbor’s.
Mobility: It measures the variability of the nodes and consequently of the scenario.
It is proportional to the rate of variation of the position of the neighbor nodes. It
is denoted as sumob(t) : R → R+ . We will now give the analytical formulation for
computing the mobility of a node. Let v(u,i)(t) be the function mapping time to the
distance of node i to u:

v(u,i)(t) , 1− ‖xi(t)− xu(t)‖
ru

(4.8)

The variation of distance is computed as:

v̇(u,i)(t) = − 1
ru

(
xi(t)− xu(t)
‖xi(t)− xu(t)‖ · (ẋi(t)− ẋu(t))

)
(4.9)

Thus we define the mobility measured at a node u as:

sumob(t) ,
∑

i∈Γu(t)
|v̇(u,i)(t)| (4.10)

where the derivative is flipped to the positive co-domain with the absolute value,
since either raises (positive derivative) or drops (negative derivative) of distance
denote a variation in the mobility of the node.

In order for the above cited features to be included in the state, they are evaluated
instantaneously at the time they are queried, except for the mobility and local density,
for which an average of the most recent time window is considered instead. We will
generically refer to the state as the 5-tuple: s , 〈sdist, sage, sdens, smeet, smob〉 ∈ S.
All the co-domains of the features are normalized in the range [0,1] to make them
have equal relevance for the learning process, thus the state space can be formally
defined as: S ⊆ [0, 1]5.
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Reward System When a node needs to transmit packets, it determines its state
s, and performs an action which results in a reward from the environment and a
new landing state ŝ. The reward function reflects what the agent should learn to do
at best. The reward of action a (with a = 0 being the action stay and a = 1 the
action move), while being in state s is the following:

r(s, a) ,
(
a sdist + (1− a) smeet

sage

)(1−2a)

αaρ(1−a) (4.11)

which translates to: ρ smeet/sage in case the node was staying on the mission,
encouraging mission exploration in case of lower urgency of packet delivery and high
probability of meeting at least a relay while heading to the target; α sage/sdist in case
the node was moving, encouraging movement in case of high proximity to the sink
and urgency of packet delivery. The parameters α, ρ ∈ [0, 1] reflect the importance
of mission availability and delay respectively, and can be tuned according to the
mission needs. For example, if delivering packets early is of uttermost urgency,
regardless of mission unavailability, one can set α, ρ to 0 and 1, respectively, while
intermediate values are used to obtain the most suitable trade-off between system
responsiveness and mission availability.

Parameters Tuning

To automate parameter tuning, we introduce a Bayesian optimization framework. We
recall that Bayesian optimization is a common technique used in Machine Learning to
find the hyper-parameters x∗ that maximize the unknown function value f(x), which
returns a noisy observation of the algorithm performance: x∗ = argmaxxf(x) [149].
We consider α, ρ to obtain a function value that balances both delays and packet loss.
We denote with P the set of all delivered packets, while P̂ is the set of lost packets,
due to packet expiration or node unavailability. Therefore, the function value is
f(x) = −

(∑
pk∈P ∆pk + |P̂ | · ω ·Mt

)
, where ∆pk is the delivery time for packet pk.

This function considers the cumulative delays of packets, where packets that were not
received account for ω times the maximum delay Mt. Note that ω incorporates the
roles of both parameters α and ρ, reducing the width of the hyper-parameters space
and easing the algorithm setup according to the mission needs. The experiments
proposed in Section 4.1.4 make use of the parameter values that maximize f(·), with
ω = 1.5.

MAD Algorithm

MAD is formally defined in Algorithm 7. The protocol is illustrated both in training
mode, for off-line training of the DQN, and querying mode for querying a pre-trained
DQN for on field usage of the protocol. Throughout the section we assume that
node u is the node executing MAD at time t. Following an initialization phase, the
algorithm goes through three parts we will now analyze in detail.

Part 1: Node identification and data reception (lines 3-11) Every node
aims at being known by its neighbors and thus periodically, every δhello steps, it
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Algorithm 7: MAD at node u
1 Initialize replay memory M and action-value function Q : S → R|A| with

random weights θ if training mode else if testing mode use input trained
weights θ

2 for t = 0, T do
3 Make and broadcast packet hello(u,∗) if tmod δhello = 0
4 Upon new packet reception pk
5 if pk is hello packet hello(i,∗) then Hu[i]← pk

6 else if pk is data packet dpk(i,u) : 〈id, ·〉 then
7 Enqueue data packet pk in Bu
8 Make and unicast ack packet ack(u,i) for pk
9 else if pk is ack packet ack(i,u) : 〈id, ·〉 then

10 Remove data packet of identifier id from Bu
11 Set zu(t+ 1) to mission coordinates if Bu is empty
12 if tmodκ = 0 and Bu is not empty then
13 if training mode then
14 Observe state ŝ and get reward r(s, a) as in Eq. 4.11
15 Store 〈s, ŝ, a, r〉 in M and sample batch m ∈M
16 for i : 〈s, ŝ, a, r〉 ∈ m do

yi ← Q(s; θ)
yi[a]← r + γ maxa′∈A Q(̂s; θ)[a′]

17 Perform a gradient descent step on (yi −Q(s; θ))2

18 Set s← ŝ and action a:

a←
{
random from A, with probability ε
arg maxa′∈A Q(s; θ)[a′], otherwise

19 else if querying mode then
20 Observe state s from the environment, set action a:

a← argmaxa′∈A Q(s; θ)[a′]

21 Set zu(t+ 1)← σ if a is move, mission coord. if a is stay
22 if tmod δk = 0 and Bu is not empty then
23 for hello(i,∗) ∈ Hu do
24 if Condition 4.1.1 and 4.1.2 hold for node i then
25 Γ∗u(t)← Γ∗u(t) ∪ {i}
26 if Γ∗u(t) is not empty then
27 m← argmini∈Γ∗u(t)φu(i)
28 Make and unicast data packet dpk(u,m) for Bu
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produces a hello packet and broadcasts it. Node u handles received packets according
to their type. (1) A Hello packet is stored in the map Hu, mapping every node to
the last hello message received.
(2) A Data packet dpk(i,u) is enqueued in Bu and a reception acknowledgment
(referred to as ack packet) is prepared and unicast back to the originator of the data
packet. Packets from the same sender will be acknowledged by a cumulative ack. (3)
Ack packets are used to remove packets stored in Bu. Note that even the sink sends
ack packets. If the queue happens to be empty, then the next mission coordinates
zu(t+ 1) are updated, which forces the node to stay on the mission or to return to
it in case it was performing a movement assisted delivery.

Part 2: Node DQN Training/Querying (lines 12-21) This part is executed
at regular time intervals of length κ seconds, when the node has packets to send. It
can be executed in two modalities, training or querying. (1) In the training modality,
the node trains the weights θ of the action-value function Q(· ; θ), the DQN, using the
reward signal received for the action pursued during the previous κ steps. In detail,
the training is done over mini batches of training transitions 〈s, ŝ, a, r〉, sampled
uniformly at random from the replay memory M . Such memory has a key role in
experience replay [150], a technique utilized to help convergence when dealing with
correlated data and non-stationary distributions. Going through all the transitions
in the batch, the squared error in the prediction of quality values (i.e., the loss) is
computed as in Equation 4.7 and the gradient of the loss is back-propagated in the
DQN, exploiting the well known optimization algorithm known as Gradient descent.
Following the training, the new action is chosen from the current state s, either with
probability ε from the set of possible actions or according to the action yielding the
highest value. Notice that ε exponentially decays during the mission, significantly
encouraging action exploration at the beginning of the training. (2) In the querying
modality, a pre-trained DQN is taken as input, thus Q(· ; θ) outputs the optimal
action-values and consequently the optimal action to execute from the currently
observed state. The chosen action will determine if the agent will set its next target
coordinates zu(t + 1) to be the sink coordinates (a is move) or the next mission
coordinates (a is stay).

Part 3: Node data send (lines 22-28) This part handles the optimal relay
selection in case of non empty buffer, and is executed every δk steps. The node
transmits all the packets in its buffer Bu. All the nearby nodes satisfying Condition
4.1.1 and 4.1.2 end up in the set Γ∗u(t). If such a set is non-empty, the node with the
best score (Eq. 4.6) will be chosen as the best relay for data packet transmission.
Notice that, the communication is executed also in the step immediately following
the transition from empty Bu to non empty Bu (i.e., a new packet is generated or
received), without waiting for δk steps for the first transmission.

4.1.3 Properties of MAD

In this section we formally analyze some of the properties of MAD including termi-
nation, and time complexity. To prove termination, we need to ensure that packets
that are generated with a TTL that is sufficient to physically reach the sink onboard
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a moving UAVs, are then delivered (with radio transmission or by physical device
movements) without incurring unnecessary forwarding. Without such requirement,
packets would either be delivered by means of radio transmission, or lost because of
early expiration.

Theorem 4.1.1 (Termination). MAD guarantees packet delivery under the hy-
pothesis that: (1) packets are generated with TTLs that are long enough to permit
movement-based delivery from their location of generation and (2) the fail safe mode
described in Condition 4.1.3 is enabled.

Proof sketch. Let us consider a node u handling packet dpk whose residual lifetime
is Tres(dpk, t). We note that if Tres(dpk, t)− δσ(u, xu(t))−A < 0, then MAD cannot
guarantee mobile delivery. While hypothesis (1) guarantees that this never happens
at the generation of a packet, we will show that this does not happen when the
packet is sent to other nodes either, thanks to the fail safe mode of hypothesis (2).
According to the fail safe mode condition, if Tres(dpk, t)− δσ(u, xu(t))−A < δk then
u takes the packet dpk to the sink with a physical movement. This of course ends
up with a successful delivery provided that, by hypothesis, it is also Tres(dpk, t) >
δσ(u, xu(t)) +A.

In contrast, radio transmissions can imply a loss of time during the delivery
process. We want to exclude that radio transmissions causes the expiration of a
packet, i.e. generate situations in which a packet is sent to a node i that has no
sufficient time left to ensure physical delivery. We note that radio transmission is
only enabled, under fail safe mode, when Tres(dpk, t)− δσ(u, xu(t))− A > δk. Let
us consider the case of u transmitting dpk to node i. Notice that, by definition,
δk is at least equal to the amount of time needed by u to determine whether the
transmission to node i failed, in which case it has time to make a new evaluation or
move towards the sink.

Then, we only need to show that if this transmission succeeds, the receiving node i
has enough time to deliver the packet at least with a physical movement. Notice that
i receives the packet at time t+ δ(u,i), with a residual lifetime of Tres(dpk, t+ δ(u,i)).
It then needs at least a time equal to A + δσ(i, xi(t + δ(u,i))) to change direction
and move towards the sink. Hence we must prove that Tres(dpk, t + δ(u,i)) ≥ A +
δσ(i, xi(t+ δ(u,i))). The above inequality can easily be derived by means of algebraic
steps, given that (i) Tres(dpk, t+δ(u,i)) = Tres(dpk, t)−δ(u,i) obtained considering the
transmission time from u to i, (ii) that Tres(dpk, t) > δσ(u, xu(t))+A+δk because of
the fail safe mode, (iii) that δk > δ(u,i), and (iv) that δσ(i, xi(t+δ(u,i))) < δσ(u, xu(t))
because of Condition 4.1.2.

Theorem 4.1.2 (Time complexity). The time complexity of MAD is O(N+|U |·|C|),
where N is the maximum number of alive packets, |U | is the number of nodes, and
|C| is the number of tiles in the region of interest.

Proof. In the following, we consider the complexity of MAD executed in querying
mode (i.e., on field usage of the protocol), omitting the training process. For the
nodes executing MAD, we assume that: broadcasting, unicasting a packet, choosing
the target coordinates and querying the DQN, require constant time complexity.

The complexity of part 1 is bounded by O(log2(N) + N). In this part, the
most significant contribution to time complexity is given by the removal of the
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packets from the buffer (line 10) upon reception of ack messages. The buffer is
sorted by time of packet arrival, thus removing a packet from it would require a fast
search method, such as binary search, from which the log2 term. In the worst case
min(N,B) packets could be removed, where B is the maximum buffer size. The
complexity of part 2 is O(|U |·|C|). In fact, computing the state observation (line 20)
for the features: local density and mobility, requires iterating over all the neighbors
of a node, |U | in the worst case. Concerning the probability of encounter, we note
that in the worst case it should be updated for every tile and every neighbor, thus
resulting in at most |U | · |C| updates. The complexity of part 3 is instead O(|U |+N).
In this part, optimal relay selection requires evaluating the score of at most |U |
nodes in Γ∗u(t) (line 27). Sending the data packets requires min(N,B) steps. In
conclusion, the time complexity of the whole algorithm is O(N + |U | · |C|).

4.1.4 Performance Evaluation

In this section we study the performance of MAD by means of extensive simulations.
In a first set of experiments we study the key features of MAD protocol, to motivate
the benefits of trading off device availability with delivery guarantees. For this
purpose, in Section 4.1.4, we evaluate MAD with respect to: (1) a baseline MAD
variant, where device movements for physical packet delivery are disabled (i.e.,
π(s) = stay, ∀ s ∈ S), hereafter referred to as MADs; (2) a baseline variant that
employs movement-based delivery only, while actively transmitting along the path
towards the sink (i.e., π(s) = move, ∀ s ∈ S), referred to as MADm; (3) a delivery
approach that employs movement-based delivery only, shortly denoted as Move. In
Section 4.1.4, we compare MAD with state-of-art approaches, namely QMR [138]
and DTN [139], specifically designed for FANETs.

Simulation Setup

We simulated a squared monitoring area of 2.25 km2 with a data collection sink at a
side, and we assumed that the nodes never cross the boundaries. The nodes follow a
random way-point mobility model [12]. According to real field tests with commercial
WiFi drones, and in agreement with recent literature works [102], we consider a node
transmission range of 200m. To simulate the channel error we adopt the Free-Space
Path Loss (FSPL) model [151]. Where not otherwise stated, we consider unlimited
buffer size and energy availability for the nodes. In the following, we investigate the
impact of movement-assisted delivery in terms of mission unavailability and flight
time. We execute 50 runs, considering 3 hours long missions. The error bars in the
plots represent one standard deviation from the mean value. In the simulations, we
consider a critical scenario with urgent communications, which can only tolerate a
bounded delay, reflected in the TTL value of the packets that, where not otherwise
stated, is set to 300 seconds. We consider an event generation rate of about 6 events
per minute, modeling random events occurring throughout the area of interest.

As for the learning process, we trained an offline model for a wide range of
operation scenarios (e.g., increasing speed, or number of nodes). Notice that offline
learning is often used whenever system responsiveness is particularly critical [152–154]
so as to ensure high performance from the earliest mission instants, and to reduce
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the computational overhead on the devices. The DQN neural architecture is made of
5 input neurons as the number of state features presented in Section 4.1.2, 8 hidden
layer neurons, and 2 output neurons as the number of actions (i.e., move and stay).
The discount factor γ is set to 0.85. Finally, we set a re-transmission waiting time
δk = 1.5sec, making decisions every κ = 15sec, with a required delivery probability
ν = 0.95 and a hello packet rate of 0.75 pkt/sec.

Metrics

Through the next sections we evaluate the routing protocol performance in terms of
the following metrics. The average packet delay reflects the average time elapsed from
the generation of a packet to its delivery to the sink. In case of duplicate packets, it
considers only the earliest delivery time. It is computed only for the packets that
are actually delivered, i.e. expired packets do not affect the value of this metric
but are accounted in the packet delivery ratio, i.e., the ratio between the number of
packets which have been successfully delivered to the sink and the total number of
generated packets. The latter metric, reflects the capability of the routing algorithm
to successfully deliver packets to the destination, before they expire. However, it
does not account for missed opportunities to generate useful monitoring packets, due
to node movements. For MAD, whenever a node decides to move for communication
purposes, it abandons the desired application trajectory, and misses events. Similarly,
for DTN, nodes acting as ferries do not actively contribute to the monitoring task
as they would in case of balanced load. To factor the node unavailability due to
controlled movements for transmitting data, we consider another metric, hereafter
called movement overhead. This metric measures the ratio between the time spent
performing movement-based delivery and the total mission duration. Notice that,
this metric implicitly reflects the energy spent by the nodes to physically deliver the
packets as well as their availability for executing the application mission. Finally, the
packet overhead is the average amount of unnecessary transmissions generated by a
data packet (i.e. packet duplicates). The above mentioned metrics will be evaluated
in the next sections in terms of the following independent variables: number of UAVs
deployed to monitor the field of interest, UAV speed, and packet deadline (i.e., the
packets’ TTL).

Performance improvement of mobility assisted delivery

We now show the results of a first set of experiments providing evidence of the
benefits of the movement assisted delivery of MAD, with respect to MADm, MADs
and Move.

We evaluate the four approaches under two experimental settings: (1) fixed speed
of every node set to 8m/s and varying number of nodes in the network, ranging from
10 to 40; (2) fixed size fleet of 15 nodes at varying node speed ranging from 3 to
20m/s.

Fig. 4.4 and Fig. 4.5 show the average packet delay under varying number of
nodes and speed, respectively. With Move such a metric does not vary significantly
when the number of nodes increases, since it represents the average traveling time
from any point of the map to the sink. The delay instead decreases with increasing
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Figure 4.4. Average Packet Delay Figure 4.5. Average Packet Delay

Figure 4.6. Movement Overhead Figure 4.7. Packet Delivery Ratio

Scenario 1 : Baseline Comparison

speed as the average traveling time itself decreases. The average packet delay of
MAD, MADs and MADm improves when the number of devices grows, as the higher
device density enables more frequent multi-hop communications towards the sink,
resulting in faster packet delivery. The same happens at increasing speed, as it takes
less for the moving nodes with onboard packets to approach the sink. Clearly, MAD
and MADs perform poorly when the number of devices is low (i.e., 10), as most of
nodes are disconnected from the sink for a significant amount of time. However, the
better performance of MADm and Move comes with a cost in terms of movement
overhead. As shown in Fig. 4.6, MADm and Move spend respectively almost 40%
and 50% of the observation time in movement for delivery. This result reflects
their unavailability for the application mission, contrasting the apparently good
performance in terms of average packet delay. With MADm and Move, the nodes do
not execute their application mission, for a considerable percentage of the observation
time. The overhead of MAD, instead, is negligible and improves significantly as the
number of devices increases, showing the algorithm ability to successfully exploit
the presence of nearby nodes, when available, to send data packets. In particular,
MAD presents only 10% of movement overhead in the worst case (10 nodes), with a
reduction of 75% with respect to MADm, while it achieves near zero overhead in the
case of 40 nodes. Since MADs does not perform any movement-assisted delivery,
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Figure 4.8. Average Packet Delay Figure 4.9. Packet Delivery Ratio

Figure 4.10. CDF of Delivery Time (8m/s) Figure 4.11. CDF of Delivery Time (20
m/s)

Scenario 2 : State-Of-Art Comparison

it shows no movement overhead, which as we have seen, comes at the cost of the
highest delay among the compared algorithms.

Finally, Fig. 4.7 shows the packet delivery ratio by varying the number of nodes
from 10 to 40. All movement-assisted delivery algorithms deliver nearly 100% of
packets, independently of the number of nodes, while MADs delivers over 80% of
packets only when the number of nodes is greater than 25 (enabling multi-hop
communications towards the sink). We recall that this metric does not account for
missed opportunities to generate useful monitoring packets, due to node movements.
For example, with 10 nodes, MADm and Move participate in less than 60% of the
mission, possibly losing 40% of the opportunities to generate, and therefore deliver,
packets. MAD finds the best trade-off between delivering the most packets with the
least possible delay and movement overhead.

These experiments confirm the validity of the hybrid approach which conjugates
radio transmission with controlled movements for delivering packets to the sink,
which is the key feature of MAD.
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Figure 4.12. Packet Delay Figure 4.13. Average Packet Delay

Figure 4.14. Packet Delivery Ratio Figure 4.15. Movement Overhead

Scenario 2 : State-Of-Art Comparison

State-of-Art Comparison

We evaluate the performance of MAD against state-of-art approaches specifically
designed for FANETs, namely QMR [138] and DTN [139]. In particular, while MAD
can control the mobility of all the nodes of the fleet, DTN controls only a fixed
number of dedicated ferry nodes, which move across the area to periodically carry
packets to the sink, through dedicated routes. Therefore in our scenario we consider
two variants of DTN: a) DTN-w/o-Ferries which does not have any dedicated ferry
drones, and b) DTN-w-Ferries which uses 3 drones of the swarm as ferries to allow
enough coverage of the area, as a higher number of ferries would result in poor
resource usage and high protocol overhead. The trajectories of the ferries are the
ones proposed in [139], with two sideward drones and one central drone. We first
evaluate the protocols by setting the speed of every node to 8m/s and varying the
number of network nodes, from 10 to 40.

Figure 4.8 shows that increasing the number of nodes allows for more chances of
multi-hop delivery for all the algorithms, thus reducing the packet delay. However,
MAD outperforms QMR and DTN-w/o-Ferries in almost all the considered range
with a reduction of the average delivery time, which is higher than 25% when the
number of devices is greater than 20. The similarity between DTN-w/o-Ferries and
QMR is due to their geographical approach. In fact, DTN-w/o-Ferries in absence
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of multi-hop paths towards the sink, selects the next relay based on a geographical
approach like QMR.
MAD also overcomes DTN-w-Ferries of around 5% independently of the number
of nodes. However we underline that this metric favors the benchmark algorithms
because it only considers the delay of delivered packets. For this reason, we see that
the performance gap between the three approaches is only moderate. We better
analyze this aspect in the following figures.

Figure 4.9 shows how MAD outperforms all the protocols delivering almost
100% of the generated packets. When the number of devices is low (i.e., 10 drones)
MAD doubles the delivery ratio of DTN-w/o-Ferries and QMR, while it surpasses
DTN-w-Ferries of about 30%. When the network is more dense, MAD consistently
shows the best performance, even if the delivery ratio of the other approaches
increases, reducing the performance discrepancy (which they do at the expense of a
corresponding increase in delivery time). The improvement of MAD over the other
protocols is especially remarkable when the network density is scarce. This is the
case where MAD benefits the most of movement based delivery.
Figure 4.10 and 4.11 show the cumulative distribution of delivery time, at two
different speeds, with 15 nodes. The figure clearly shows that MAD delivers much
more packets than any of the other algorithms. For instance, when the nodes fly at
8m/s, DTN-w-Ferries delivers 75% of the packets within their expiration time of
300 seconds. In contrast, MAD is able to deliver the same percentage within 200
seconds. DTN-w/o-Ferries and QMR only deliver around 50% of the packets within
their expiration time of 300 seconds. Also, when the nodes fly at 20m/s, MAD
outperforms all the approaches. While DTN-w-Ferries deliveries 90% of the packets
within their expiration time of 300 seconds, MAD takes only half of the time for the
same percentage.
To better analyze the delivery times of the packets, in Figure 4.12 we show a box-plot
representing the quartiles of the packet delay distribution. The figure shows how
MAD has the best performance almost always. With a low number of nodes, i.e. 10
nodes, MAD is slightly penalized in the first quartile (25% of packets) with respect
to the other algorithms. However, as shown in Figure 4.9 it has the best packet
delivery ratio, with possibly more packets in this first quartile, affecting this value.
Increasing the number of nodes, the performance of MAD improves as well: it
delivers most of the packets (i.e., 75%) within 125 and 90 seconds of their expiration
time, for 30 and 40 nodes, respectively; while DTN-w-Ferries requires 150 and 110
seconds. Notice that, for all the algorithms, the minimum value is close to 0 seconds
due to packets detected in proximity of the sink and delivered through a single
hop communication; while the maximum value is 300 seconds representing packets
delivered close to their expiration time. In Figure 4.13 and Figure 4.14 we evaluate
the effect of varying the TTL (i.e., packet deadline) in a scenario with 15 nodes
moving at 8m/s. This study also confirms the benefits of the movement assisted
delivery performed by MAD. While MAD shows a comparable average packet delay
with respect to DTN-w-Ferries, it consistently delivers more packets. In particular,
even when the packet deadline is too tight (i.e., 30 and 60 seconds) MAD has the
best performance. In terms of packet delivery ratio MAD is able to outperform
DTN-w-Ferries of almost 50% when the TTL is 150 seconds.
Notice that in the lower range of the TTL values, all the algorithms show a very low
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delivery ratio due to the scarcity of devices with respect to the size of the area. The
performance of all the algorithms improves with increasing values. In fact, when
the TTL is high, MAD and DTN-w-Ferries cope with the scarcity of devices by
performing movement assisted delivery, while DTN-w/o-Ferries and QMR benefit
from the additional time, which allows network topology changes and increases the
chances of multi-hop delivery. In contrast, when the TTL is too low, MAD and
DTN-w-Ferries do not have enough time to let the nodes physically carry the packets
to their destination: a packet generated at farthest point from the sink may require
up to 200 seconds to be physically delivered at 8m/s and the nodes are not dense
enough to ensure radio delivery.
Figure 4.15 shows the Movement Overhead (% of time) spent by the drones to
physically deliver the packets to the sink, by varying the number of devices. While
MAD spends negligible time to physically delivery new packets, after a monitoring
activity; DTN-w-Ferries dedicates a fixed amount of resources for mobility assisted
delivery through ferries. In particular MAD has less than 10% of movement overhead
with few drones (i.e., 10), outperforming DTN-w-Ferries of 300%, and it achieves
near zero overhead with dense networks, as the communication capabilities reduce
the need of physical delivery.
Is worth to notice that, this overhead reflects energy consumption of the drones
for movement assisted delivery, as well as unavailability for the application mission
(missed events). In fact, MAD nodes that actively move towards the sink temporally
leave their mission tasks, while DTN nodes acting as ferries do not actively contribute
to the monitoring task either resulting in unbalanced mission load (i.e., the drones
actually used for monitoring may not be sufficient coverage of all the events).
At the expense of a small movement overhead, MAD outperforms all the previous
solutions in all the considered metrics.

Finally, we discuss the packet overhead, for which we omit plots due to space
limitations. Under a varying number of nodes, MAD outperforms all other ap-
proaches, in particular it produces a packet overhead that is 20% lower than the best
of the other protocols (i.e., QMR). This trend confirms the benefits of the focused
movement activity, and of the optimized relay selection of MAD, which are helpful
in preventing the generation of unnecessary control messages, or of packet duplicates.
Experiments conducted under varying node speed also confirm our conclusions, as
MAD outperforms all the other algorithms. It is interesting to notice that when the
speed increases, the packet overhead increases as well for all the algorithms, due
to increased channel and transmission errors. Nevertheless, this increase is rather
moderate for MAD, thanks to its optimal relay selection (see Section 4.1.2) which
exploits a prediction of the future node positions.

We mention that we also evaluated MAD against two other algorithms designed
for routing over MANETs, namely BATMAN [94] and GFG [140], which are consid-
ered promising for FANETs as well [7, 155]. These additional experiments were all
favorable to MAD in all the performance metrics considered in this work. We do
not include these results for space limitations.
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4.1.5 Conclusions

In this work, we consider the problem of routing packets in a network of flying
drones. We propose a routing algorithm, called MAD (Mobility Assisted Delivery),
which exploits the device controllable mobility to facilitate network routing. MAD
enables adaptive selection of the most suitable relay nodes and, based on local
observations, resorts to a movement-based delivery (for instance, in case of neighbor
device scarcity). We study the algorithm properties and, by means of extensive
simulations, we show that MAD outperforms previous solutions in all the considered
metrics, at the expense of a small loss in average device availability.
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Chapter 5

Innovative Applications for
Network of Drones

In the last chapters we mostly discussed the use of drones in safety-critical missions,
however networks of drones are increasingly deployed also in other scenarios, including
drone assisted cellular communication, airdropping of water and fertilizer, parcel
delivery, agriculture-crop survey, or wildlife search [3, 5, 156–160],

In this Chapter we study three novel applications for UAVs networks, and we
propose related solutions. In Section 5.1 we propose DANGER, a novel framework
to build an emergency network of drones in case of disasters. Conversely from the
existing work, DANGER can create a mesh network of drones which any WiFi
smartphone can reach: it does not require a special application but the devices can
easily access a simple web-application through a browser to chat with rescuers, with
voice and videos.

In Section 5.2 we design DRUBER a distributed parcel delivery system aided by
a blockchain framework. Druber proposes a fully distributed service based on a fleet
of coordinated drones, belonging to multiple owners. To guarantee a trustable service
Druber leverages blockchain features to develop and control the entire delivery chain.
We show an impressive advantage of our platform regarding existing ground-based
services in terms of service cost and parcel delivery time, at the expense of a negligible
delay for the management of blockchain operations.

Finally, in Section 5.3 we discuss the adoption of aerial drones for Food Safety
and Security. We show how a smartphone with a mobile Deep Learning application
can detect diseases and provide sustainable food production in developing countries.
We propose a MILP formulations and related algorithms to minimize and distribute
smartphones to farmers, and cover all the region of interest. However, considering
the limited amount of available smartphones in developing countries, we also discuss
how drones can be used to cover farms more efficiently.

This chapter has been extracted from the works in [25,26,28,29].
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5.1 DANGER: a Drones Aided Network for Guiding
Emergency and Rescue operations

Has now become more important than ever to guarantee an always present connec-
tivity to users, especially in emergency scenarios. However, in case of a disaster,
network infrastructures are often damaged, with consequent connectivity disruption,
isolating users when are more in need for information and help. Drones may supply
with a recovery network, thanks to their capabilities to provide network connectivity
on the fly. However, users typically need special devices or applications to reach
these networks, reducing their applicability and adoption.

To tackle this problem we present DANGER, a framework able to create a mesh
network of drones, which can be reached by any WiFi smartphone. DANGER is
highly flexible and does not require any special application: all connected devices
can chat, with voice and videos, through a simple web-application. The DANGER
network is completely distributed, can work even partitioned or in case of drones
failures.

5.1.1 Motivation

One of the interesting technology advances in recent years is towards flying network
devices. The vision is that Unmanned Aerial Vehicles (UAVs) or drones can be
equipped with communication technologies that allow them to interact and provide
network connectivity to unserved areas.

The benefits of a wireless network in the sky are clear. Such a network is far
less expensive, far less disruptive and takes far less time to build than implementing
an infrastructure-based network over areas where communications infrastructure
currently does not exist or is disrupted. Above all, drones can reach harsh zones
where land access is not possible, e.g., disaster areas [1]. Drones can provide
communication capabilities to rescue teams and survivors, and provide the needed
support during the overall post-disaster management.

While there has been substantial work on drones deployment [1,161] practical
issues of a real deployment have not been addressed. Most of the current proposals on
emergency infrastructure-less networks have the goal of providing internet connection
to all the nodes, i.e., drones and survivors’ smartphones. To this end, they often
require the user to install tailored mobile applications, which allow them to interact
and participate in the mesh network [161] [162]. However, people typically do not
install apps that may be useful in the event of a disaster. Hence, several users may
remain isolated, unable to use the emergency network because they do not have the
emergency app.

In this work we develop a framework that allows survivors to easily join and
use the emergency network without any preinstalled app. We propose DANGER a
infrastructure-less flying mesh network, which provides ubiquitous connection to all
nodes, e.g., survivors’ smartphones (see Figure 5.1). DANGER aims at providing
interaction between rescuers and survivors (Fig 1.B), using a simple web application
(Fig 1.C). The users and rescuers leverage the WiFi connection, provided by drones,
to access a common distributed chat application. We believe that this approach can
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Figure 5.1. DANGER Architecture.

easily extend the applicability of emergency network to any scenario, without any
special prefixed requirement, such as specific applications or procedures.

5.1.2 DANGER system design

DANGER brings network access to remote or isolated locations via a swarm of
drones that allows users to chat, make voice and video calls through a drone emitted
WiFi connection. Figure 5.2 shows the different drone’s components.

Figure 5.2. DANGER System.

Hardware Components. Each drone is equipped with a Raspberry Pi and multiple
WiFi antennas. One antenna connects the Raspberry Pi to the drone, and allows
to control the drone remotely or through a software intelligence which is executed
on the Raspberry Pi. A second antenna enables drone mesh connection. Routing
in the mesh implements the B.A.T.M.A.N. protocol [94], and allows drones to
disconnect and reconnect, dynamically managing the network and assuring multi-
hop connectivity. The third WiFi antenna creates an unprotected access point that is
accessible by users mobiles. Notice that, if the drones have dedicated serial ports, the
Raspberry Pi can directly use these ports without using a dedicated WiFi antenna.
Software Components. The whole DANGER software is executed on board of the
Raspberry Pi, mounted on drones. DANGER, as depicted in Figure 5.2, includes
multiple components: i) users connectivity, which is composed by DNS, WebRTC
and Page Catch; ii) Mesh Manager; iii) Drone Controller. Each drone exposes an
open WiFi network called DANGER.
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A survivor device can connect to DANGER network automatically, as it does
not require any password. When WiFi is established, the DANGER framework
creates a catch-all page at the address 10.0.0.1, meaning that depending on the
user device configuration it will automatically open that page or will redirect all the
web requests to this page. This catch-all page, depicted in Figure 5.3, is managed
through a DNS light server running on each Raspberry Pi. This page presents a
broadcast section in the upper area of the screen, which shows a public chat where
only the service manager can send information, and the list of users connected to
DANGER. In case of gateway drones, meaning drones connected to external network
or to the Internet, the Raspberry Pi may also have to run an instance of Web-RTC
STUN and TURN servers. This would allow devices to contact other users connected
to a different network (which have not joined DANGER). In this work however all
devices can communicate only with other devices inside the same network, making
STUN and TURN servers not required. The mesh manager is instead developed
over B.A.T.M.A.N., and allows for multi-hop and fast drones disconnection and
reconnection. The Drone Controller interacts with drones managing flight path. In
this work we employ multiple Parrot AR Drone 2. Each one exposes a WiFi access
point: connecting to it, an HTTP interface allows to control the drone. DANGER
allows for both autonomous flight, for which we made a set of simulations on how to
distribute the drones optimally on an area, and manual flight.

Figure 5.3. DANGER Web Interface.

5.1.3 Demonstration

In this work we showcase the use of DANGER with up to 4 flying drones and multiple
smartphones. A real-field demo is performed in an open field of more than 130000m2,
with multiple survivors equipped with a smartphone, which is disconnected from the
cellular network. At the start of the demo the DANGER drones fly over the field.
When a survivor is in the transmission range of a drone, her/his smartphone connects
to the drone network. As soon as it gets connected, the smartphone presents the
DANGER interface, with the possibility to contact the emergency coordinator and
the other users. We showcase the communications through survivors and between a
survivor and a rescuer.
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5.2 DRUBER: A Trustable Decentralized Drone-based
Delivery System

In the latest years the increasing number of online shoppers, 2 billion in 2019 [163],
brought about enormous demand for fast and cheap systems to cope with the
huge rate of parcel delivery requests. In dense urban areas, the delivery problem
is exacerbated by traffic congestion, posing the challenge of maintaining a low
environmental impact. Drones represent the fastest way to deliver parcels, thanks
to their high mobility and automation. Several initiatives on the use of drones for
CEP (Courier, Express and Parcel) delivery have been proposed by actors including
Amazon, DHL, or UPS, just to name a few [164]. The effectiveness of drone delivery
systems is assessed in [165], where more than 730 different use-cases in over 100
countries are presented. From the above discussion, it is clear that the use of drones
is a cornerstone of the world of deliveries. Drones reduce the health risk for operators
or postmen, as well as the tremendous environmental footprint produced by ground
based deliveries [5]. In addition, drones can work automatically 24 hours a day,
providing a faster service than the ground-based counterparts. Last but not least,
law makers are gradually paying more attention to the growing industry of aerial
drones, and are finally embracing the idea that drones are here to stay.

Recently, the interest in autonomous drone delivery received increasing attention
because of the outbreak of COVID-19 emergency thanks to its potential to provide
fast delivery without requiring any physical contact among human beings. Drones, as
autonomous means of transportation, are effectively used in many critical scenarios
to deliver parcels in emergency situations, such as earthquakes, pandemics, or
floods [18,158,159]. Despite the wide interest on the use of drones for parcel delivery,
the harsh reality is that only big companies can afford the cost for setting up and
managing a widespread service infrastructure of drones and pick-up points.

To face this issue we envision the use of drones to enable a novel fully decentralized
service for transportation of goods, based on a distributed cooperation model. The
envisioned Druber service fleet is composed of drones that belong to private owners,
i.e., people who earn money from providing the delivery service. Delivery of a
parcel will be provided by multiple coordinated drones, with intermediate pit stops
for battery replacement or drone-to-drone parcel handovers. Drones can literally
straighten the delivery path of a parcel. Moreover, with Druber the delivery path
will cover potentially unlimited areas, traversing entire urban and suburban regions,
with no added delays but travel time.

The use of a federated approach eliminates the need for a single company
investment and guarantees a quickly deployable, highly scalable, and inexpensive
architecture, but introduces a problem of trust. Thus, the question we need to answer
is whether users can trust private drone owners. Unlike centralized systems where
registrations of devices, insertions of new requests, path planning, and parcel delivery
can conceivably be handled by a trusted authority, we have no such guarantee in a
federated and distributed environment. Thus, the challenge that we face is how to
make Druber’s operations trustable. Our key insight in this work is that Druber
uses a simple but effective trick — all the operations should be public in order to
have a clear feedback and guarantee a correct behavior from all the components.
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Figure 5.4. Druber Delivery System. The figure shows the Druber network in action,
deployed along an urban area, and drones, which deliver parcels with handover at
way-stations.

To this end, Druber leverages blockchain features to develop and control the entire
delivery chain.
This approach allows for continuous validation of the drone work, making hard
for drones to steal, disrupt deliveries, or obtain any sort of illicit profit from the
provided service. We hereafter summarize the novelties of our work.

• First, we propose Druber, a federated decentralized system for parcel delivery
in urban areas, composed of drones that belong to multiple private owners.

• Second, we address the trust issues, arisen from the fact that we deal with
private drone-owners, who may behave in anomalous way or even maliciously.
Our solution leverages blockchain features to develop and control the entire
delivery chain, with moderate costs.

• Third, we evaluate the economic feasibility of the proposal, and evaluate
quantitative and qualitative aspects.

5.2.1 Drones vs Truck delivery

The first question we ask is: are drones more efficient and convenient than ground
vehicles for parcel delivery?

Time - Sending a package using drone shipping is clearly faster than using ground
shipping. In case of traffic congestion, ground means may need a significant amount
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of time to travel from the user pick-up point to the destination. Drones instead
can reduce travel times thanks to the following aspects: i) they can be operational
24-hours a day (some drones can even fly in rainy or snowy conditions [166]); ii) they
can follow the straight line path between departure and arrival location, without
incurring any congestion; and iii) they can pick-up and deliver packets directly,
without any temporary storage at warehouses.

Cost - Sending a package using drone shipping is also cheaper than using ground
shipping. We compared the average cost of delivering a light parcel (<1Kg) with the
Druber service and with ground transportation. For the computation of the average
cost we considered an estimate of: 1) the cost of the drone, to be charged on the
delivery price until break even; 2) the cost for the energy consumed by the drone; 3)
the cost of periodic replacement of exhausted batteries; 4) the cost of the needed
blockchain operations; and 5) the payout for the compensation of the drone owner.
If the drone costs around 1500$, and the owner wants to repay it in one year, with
an average flight distance of 10 km per day, then the fare for each kilometer has to
include 0.4$ for the cost of the drone device. To estimate the cost for the energy
consumed by the drone and periodic replacement of exhausted batteries, we refer
to the work in [167] that quantifies this cost in 0.01$ per kilometer for a payload
of 2Kg (the difference in delivering lighter payloads is negligible). To estimate the
cost of blockchain operations, we consider the Ethereum Blockchain (see Section
5.2.3), taking into account the Ether value in April 2020 and the prices specified
in the Ethereum Technical paper [168]. We developed an Ethereum smart contract
which implements the Druber operations, and we estimated the cost of each hop. A
delivery composed by 5 hops has a cost of about 0.25$, while a delivery of 20 hops
costs about 1$. Finally, we consider the profit for the owner that we set to 0.1$. The
average delivery cost for a parcel in New York, from Central Park to Wall Street
(about 10km), is about 10$.

The cost of the same delivery service can be much higher if we consider ground
based transportation. In New York, FedEx offers a service which guarantees delivery
in 24h starting from 70$ [169].

5.2.2 System Overview

Druber is a novel service for transportation of goods, based on a distributed cooper-
ation model. The envisioned Druber service fleet is composed of drones that belong
to multiple private owners — people who earn money from providing the delivery
service — and is managed by a decentralized system that oversees both customers
and providers, as well as deliveries. The drones of the fleet execute their delivery
tasks optimizing routes, service availability, delivery time, and sharing resources
with each other. Private owners share the property of their drones or way-station,
and make profits from their usage.
The system allows customers to request parcel deliveries, with virtually no distance
limitations thanks to a parcel handover mechanism involving multiple cooperating
drones. A parcel is picked up by a drone and delivered by multiple coordinated
drones, with intermediate pit stops for battery replacement or for drone-to-drone
parcel handover.
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Use Case

Figure 5.4 shows the Druber network in action, deployed along an urban area, which
is composed by: way-stations, for recharging and handover operations, and drones,
flying above the city to deliver parcels. In particular, Figure 5.4.A shows a mission,
i.e., a customer delivery request that is fulfilled by multiple drones, in a multi-hop
manner. A drone picks up the parcel from the customer and flies until it reaches
the next intermediate way-station, to handover the parcel and recharge its battery;
finally, a drone delivers the parcel to the destination. Figure 5.4.B describes the
handover mechanisms in details: first, a drone which is running out of energy lands
at an intermediate way-station to release the parcel; then, a fully charged drone
picks up the parcel and takes off, to continue the mission.

This framework extends the delivery paths to potentially unlimited areas, travers-
ing entire urban and suburban regions, with no added delays but travel time.

System Components

The system is composed by both human and physical entities, namely drone-owners,
drones, way-stations, and end-users.
Drone-Owners - Private people who own drones and way-stations and make them
available to the delivery system, according to a federated approach.
Drones - We consider a set of private drones U = {ui}i∈N , that pick-up, deliver
and exchange parcels for the end-users. Each drone ui is defined by a 6-tuple
{p, r, a, b, oID,M}, where p is the current position, r is the drone range (the maxi-
mum distance that the drone can cover with a full charge), a is the drone current
autonomy (the distance that the drone can cover with the current charge), b is the
drone way-station, oID is the owner identification number, and M is the mission, if
any, corresponding to a delivery request of an end-user.
Way-Stations - Physical points where drones can automatically perform recharging,
off-loading and hand-over operations. In particular, they allow drones to land and
take-off, cooperate by exchanging parcels, wait for new missions, or to recharge
themselves upon need. Way-stations are possibly located on top of the city roofs, or
in parking lots.
End-Users - The customers of the system, who request parcel deliveries.

System operations

We envision four main operations in Druber.
The first operation is the registration of way-stations and drones. When a

drone-owner wants to join Druber she has to register her drone and way-station,
communicating position and drone specs. Drone-owners can also withdraw a drone
or a way-station. For each new registration/withdrawal, Druber updates the map of
connected drones and way-stations in the urban area, useful to compute the set of
delivery paths.

The second operation consists in the insertion of a new Mission request. When
an end-user wants to deliver a parcel, she contacts Druber to create a new Mission
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request M , which is defined by the tuple < s, d, t,m >, where s is the source way-
station, d is the destination way-station, t is the delivery deadline (i.e. the maximum
time within which the parcel has to be delivered); and m is the maximum amount
of money that the customer accepts to spend for the delivery. Once the mission is
created, Druber verifies if it is able to satisfy it under the cost constraint m, and in
case it notifies the users and performs the delivery.

The third operation is path planning, which is responsible for finding a feasible
and reliable path for a parcel, from the source to the destination. When the distance
between the source and the destination is too long for a single drone, a multi-hop
path is computed. To find a path we consider a distributed path planning protocol
that incrementally builds the path (if possible) by collecting drones’ commitments
for the mission.

The fourth operation is the actual parcel delivery through multiple drones and
way-stations (Figure 5.4). Druber guarantees the parcel delivery by handling possible
failures and guaranteeing the correct drone behavior. In particular, the system must
guarantee that all the drones of path P reached an agreement (commit) before the
delivery starts. In case of failures or commitment withdrawal, the system must
restart the mission by computing a new feasible path or a recovery plan. Finally,
the drones receive feedback to penalize/reward their behaviors, i.e., a fee is given or
charged to the drone-owners.

Performing these operations on a federated and fully decentralized framework
as with Druber, poses considerable challenges. Our proposal leverages blockchain
features to develop and control the entire delivery chain. In particular, we use
the blockchain for delivery/chain management, and the Delegation-Bchain for path
planning. In the following we explain how we leverage blockchain technology to
make each of the above operations trustable.

5.2.3 Making Druber trustable

We now give a brief introduction to the blockchain technology and then explain how
to exploit it to make Druber trustable.

Background on Blockchain Blockchain is a data structure in which each entry,
called "block", is sequentially and cryptographically linked to the previous one, so
that none of them can be changed. The blockchain is based on the distributed ledger
logic, which allows to track transactions in a distributed way. So far, the two most
adopted blockchains are Bitcoin and Ethereum. The last is a public blockchain
which also allows to deploy applications called "Smart Contracts". Once written in
the blockchain, such applications cannot be modified, and are executed by a virtual
machine running on all the nodes in the peer to peer network. A deeper explanation
of "Smart Contracts" is available in [168]. Every account in the Ethereum Blockchain
owns an amount of Ether (ETH), i.e., coins that can be exchanged with Dollars,
exactly like Euros or Yuan. An account can obtain Ether mining, i.e. doing work for
the blockchain, or receiving Ether from other accounts, in exchange of services or
real money. Each time that a user wants to write something on the blockchain, or
wants to run some code already written in the blockchain, she has to pay a variable
amount of Ether to the peers in the network behind the blockchain. As every content
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written on the blockchain is saved on all ledgers, writing on the blockchain is slow
and has a cost.

Our proposal We propose Druber-BC, a framework based on the Ethereum
Blockchain that is composed by two main smart contracts:

• a Mission-Broker Smart Contract (MB-SC), which allows end-users to ask the
way-stations for deliveries.

• a Validator Smart Contract (V-SC), which validates a mission path and handles
payments.

We now go through each Druber operation (Sect. 5.2.3) and discuss how to make
them trustable.

Registration of way-stations and drones

When a drone-owner wants to participate in the system by making available a
way-station and/or a drone, she must register them to the framework. In particular,
in order to register a new way-station, she can initiate a transaction with the MB-SC
as shown in Figure 5.5. She must provide: i) the position (coordinates); ii) the IP
address of the way-station; and iii) a list of the drones available at the way-station.
Instead, in order to register a new drone, she must provide: i) the home way-station
and ii) the drone details, i.e. the energy availability. The oID is automatically
derived from the Blockchain user account.
To register a drone or a way-station, the system requires a caution deposit, i.e., a
certain amount of Ether. This encourages genuine behaviors and penalizes bad ones.
The deposit is used in case of a failure during a mission, which may cause a loss for
the system or the end-user. As the delivery is performed in a multi-hop manner,
if a drone withdraws from the mission, the MB-SC can use the deposit in order
to rollback the mission and pay the other users involved. Therefore, each drone
will be able to take part only to missions whose cost is lower than or equal to the
caution deposit, to guarantee a cost-free rollback. The deposit is released when the
drone-owner retires her way-stations and drones from the system.

Once the way-station has been deployed, it notifies its neighbour way-stations, to
cooperate in the deliveries. By using the MB-SC, a way-station enables a cooperation
with: 1) the way-stations that can be reached by its drones, i.e. their distance is less
than the drones flight autonomy; 2) the way-stations whose drones are able to reach
its home position. Therefore, the subscription is performed in double way, and each
time a way-station receives a mission request, it forwards it to all the subscribed
way-stations.
This operation is performed by sending a subscription request directly to the other
way-stations’ IP.

Insertion of a new delivery request

When an end-user wants to deliver a parcel with Druber, she has to create a new
mission, using a dedicated application, and then she has to send it to the MB-SC.

A mission is characterized by:



5.2 DRUBER: A Trustable Decentralized Drone-based Delivery System 127

• the source and destination coordinates;

• the maximum cost that the end-user agreed to spend;

• the current timestamp;

• the end-user blockchain address;

• the receiver blockchain address;

• the cryptographic signature of the first four fields, generated with the end-user
private key;

• a pseudo-unique ID;

Notice that, the current timestamp along with the pseudo-unique ID allow to uniquely
identify the mission request, while the end-user blockchain address identifies the
end-user who requested it.
Once the end-user has defined the mission, she sends it to the MB-SC, along with the
maximum amount of ETH she wants to pay for that delivery. The MB-SC verifies
the mission and assigns the pseudo-unique mission ID. The new mission is saved
inside the MB-SC Smart Contract, as shown in Figure 5.5. If the MB-SC accepts
the mission, it broadcasts the assigned mission ID to all the way-stations through
the emission of an event, which is a function of the Ethereum Blockchain and costs
a fee that is negligible in comparison with the cost of a delivery (as estimated in Sec.
5.2.1). Although the cost for creating a new mission is low, it discourages denial of
service attacks to Druber aimed at creating fake missions.

All the way-stations, even those that cannot participate in the mission, will then
receive the mission details. However, they should immediately drop the mission, as
their commitment would be rejected by the V-SC.

The end-user interacts with a dedicated application that queries the MB-SC for
all the way-stations that own a drone in reach of the source, and sends the mission
request to all of them. When way-stations receive the request they verify it with the
MB-SC, and then they start the path planning operations.

Path planning: Delegation-BChain

We propose the so called Delegation-Bchain, to guarantee trust of path planning
in a fast and cheap way. In fact, we note that a solution that writes in blockchain
every possible hop of the path would be too expensive.

The simple idea is to offload several operations from the main blockchain, and
sign the path only at the end of the planning. Specifically, in order to reduce
costs, we propose the Delegation-Bchain, which allows to compute parcel paths
from sources to destinations offchain, and then sign the path in the blockchain. A
Delegation-Bchain is a chain of contents signed by blockchain accounts. The goal of
a Delegation-Bchain is to reach an agreement on a mission request among a number
of users involved, and sign the agreement on the blockchain.

A Delegation-Bchain is defined by a tuple (M,C, V ). A mission request M
represents a drone mission, and is defined by a set of requirements, namely delivery
time, budget, and (source, destination) couple. The set C = {c1, c2, . . .} contains
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Figure 5.5. The Druber-BC entities.

the commitments of the drones who want to participate in the mission. While
committing, the drone specifies the part of the mission it wants to perform, along
with its constraints. In details, it provides i) the current way-station address; ii) the
address of the next way-station; iii) the cost for the delivery; and iv) the current way-
station signature of the Delegation-Bchain. The Validator V is a blockchain Smart
Contract (V-SC) able to verify a Delegation-Bchain and to convert the commitments
in escrows. With this conversion, each node who issued a commitment is definitely
involved in the mission. For example, Alice wants to send a parcel to Bob and
creates a new mission request (see Figure 5.6). Once way-station B1 receives the
new mission M from Alice, it creates a Delegation-Bchain with the mission M and
its commitment (i.e., its promise to ship the parcel to a next way-station towards
the destination). Commitments are signed with the private node key. Commitment
signature represents the authorization of the drone to write its commitment on the
blockchain. B1 then forwards the Delegation-Bchain to nearby way-stations, in this
case B2 and B3. The way-station B2 does not have any drone available. However, it
forwards the Delegation-Bchain to the near way-stations: they may have a drone
that can go to B2 to pick up the parcel. This is the case of B4, which is also the
destination way-station. Hence B4 sends the Delegation-Bchain to the Validator,
which verifies the feasibility of the commitments (i.e., whether all the signatures of
the Delegation-Bchain are correct and the mission can be accomplished), and finally
approves the Delegation-Bchain (i.e., it transforms all the accounts commitments in
escrows). If a way-station sends a Delegation-Bchain whose commitments do not
reach the destination or cost requirement is not met, the Validator will reject it. An



5.2 DRUBER: A Trustable Decentralized Drone-based Delivery System 129

Figure 5.6. The Delegation-Bchain and the Validator. The Delegation-Bchain (M,<
B1, B3 >, V ) is rejected, as B3 cannot complete the delivery. The Delegation-Bchain
(M,< B1, B2, B4 >, V ) is accepted, as the drones of B1 can take the parcel, perform an
handover in B2 with the B4’s drone, which can finally deliver the parcel.

intermediate way-station can also drop a Delegation-Bchain if the cost of the path
built so far exceeds the mission budget.

The Validator is able to verify the contents of the Delegation-Bchain by checking
that: i) all the commitments are correctly signed; and ii) the collected commitments
are enough to satisfy the requirements of the mission request. If this verification
succeeds the Validator performs all the operations written in the Delegation-Bchain,
i.e., writes the sequence of commitments in the blockchain, and holds the deposits
of involved drones and way-stations, so that they cannot accept multiple missions at
the same time. Otherwise, as the Validator is a smart contract and its execution
is atomic, if it fails in the middle of its execution (e.g. a drone is not available
anymore), all the operations that it made before are rolled back. This may happen
if a drone is already committed to another mission or if its owner has withdrawn
it from Druber. In both cases the Validator can check that the deposit is absent
or already on hold in the MB-SC. This approach is helpful in case of missions
that require multiple tasks to be performed by different nodes, as commitments
identify the hops in the path from source to destination. All the nodes interested
in performing a part of the task required in the Delegation-Bchain can submit a
"commitment" to the Delegation-Bchain. When one of the involved accounts realizes
that the Delegation-Bchain contains enough commitments to complete the Request
(e.g., a way-station has a drone that can complete the delivery), it can send the
Delegation-Bchain to the Validator smart contract. In some cases, the mission may
require every node interested in doing a task to "pay a commitment deposit". In
this way if a node gives its commitment and withdraws it later, after the escrow, the
Validator can hold the deposit. This deposit is used to refund all the other mission
members that have been damaged by the retirement.
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Parcel delivery

Once the path is successfully planned and the Delegation-Bchain is registered, the
first drone on the path can carry the load and start the mission. At each handover
the way-station that receives the parcel updates the parcel position in the MB-SC,
and this information will be notified to the end-users until the delivery is completed.
At the end of the mission the destination way-station updates the status on the
MB-SC, and a fee is given or charged to the drone-owners. In fact, if a drone or
a way-station aborts the mission, the MB-SC may hold their deposits in order to
cover the cost of the mission restart or recovery. In general, for any problem during
the parcel delivery, the current drone or a way-station, which is handling the parcel,
will respond with their security deposit. Therefore the only way to gain money is to
act correctly.

Advantages of using blockchain

The adoption of the blockchain as back-end brings the following significant advantages:
i) as there is no central authority: the system can work without requiring any central
entity and without a single stakeholder; ii) the system is able to offer guarantees
between members, even if there is no trust between them; iii) the system is highly
scalable and bottleneck free; iv) system operations are traceable and auditable; and
v) the system is reliable because is fully developed on the blockchain, thus all the
operations are tracked in an unmodifiable ledger.

5.2.4 Evaluation

Time Evaluation - We evaluate the time required for the creation of a valid
Delegation-Bchain, which includes: i) the time required by Delegation-Bchain to
travel from the source to the destination; ii) the time required by the blockchain to
accept the Delegation-Bchain. In relation to i), each way-station requires no more
than 1 second, meaning that for a delivery that involves 15 hops, the Delegation-
Bchain takes 15 seconds to get to the destination. When the destination submits
the Delegation-Bchain to the V-SC, if accepted, the system needs to wait for at least
two blockchain’s block closure before considering it as confirmed [168]. As for today,
this time can be estimated in 30 seconds, a short time if we consider the advantages
in terms of service cost and parcel delivery time.

Table 5.1. Qualitative Analysis

Confidentiality Integrity Availability Non-Repudiation
Druber High High High High
Standard Post Medium Low Medium Low
Dispatch rider Medium High Low Medium

Qualitative evaluation - We analyzed the Confidentiality, Integrity and Avail-
ability (CIA) features triad and Non-repudiation for Druber, standard post, and
dispatch riders (see Table 5.1). Druber guarantees an unprecedented level of confi-
dentiality, as any unfair entity would be discovered and excluded by the system. In
terms of integrity, only a blockchain based system can guarantee that the system is
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not altered by attacker or unfaithful employee. In terms of availability, Druber-BC
runs on a distributed ledger, and in a complete peer-to-peer network. This makes it
hard to interrupt the service, as there are no single points of failure. Moreover, in
terms of Non-repudiation, once a mission is accepted by Druber the involved drones
will work only and immediately for that order. Differently, both standard post or a
dispatch rider may give different priority to orders.

5.2.5 Related Work

Drone based commercial deliveries are already a reality in some local implementations,
such as the WakeMed’s hospital where drones are used for ferrying medical samples [2],
or Wing (a rib of Google’s Alphabet) which recently launched the first residential
drone-based delivery service to begin commercial operations in the United States [170].
However, all these initiatives provide unique drones’ flights for a single delivery,
where the same drone is in charge of carrying a single parcel from the source to the
destination area.

On the security side, several works related to UAVs address the benefits of
adopting blockchain, investigating new applications, from aerial traffic [171] to dam
control [172], but with a different focus. Jensen et al. [173] propose a survey which
explores how the blockchain can be applied to swarms of drones to provide defense
against cyber attacks such as message spoofing and tampering. Aggarwal et al. [174]
instead approach the Internet of Drones and propose a system, based on Ethereum,
to guarantees anonymity, authentication, authorization and accountability in data
dissemination. Mehta et al. [175] proposed a survey on the integration of UAV,
blockchain and 5G, with the goal of guaranteeing several security aspects. They also
propose a sample framework for drones based on blockchain for package delivery in
the Industry 4.0 context.
However, this approach is not directly applicable to our scenario: performing the
path planning operations in blockchain would introduce substantial overhead in
terms of money and time, resulting inefficient. To the best of our knowledge Druber
is the first attempt that offloads the most frequent operations to a Delegation-Bchain,
leaving only the critical operations to blockchain.

5.2.6 Conclusions

In this work we propose Druber, a fully distributed parcel delivery service based
on a federated fleet of coordinated drones. With Druber, the delivery of a parcel is
performed by several drones, with intermediate pit stops for battery replacement or
drone-to-drone parcel handovers. The use of a federated fleet guarantees a quickly
deployable, highly scalable, and inexpensive architecture. However, the approach
poses a number of issues to create a trustable service. In this direction, Druber
leverages blockchain features to develop and control the entire delivery chain. Our
evaluation shows the impressive advantage of our framework with respect to existing
ground based services in terms of service cost and delivery time for light weight
parcels.
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5.3 Optimal deployment in crowd sensing for plant dis-
ease diagnosis in developing countries

The world population is estimated to grow and reach about 10 billions in 2050,
significantly raising the demand for food [27]. Encouraging attention to the problem,
the United Nations included the zero hunger goal [176] in their list of the 17 key
challenges towards sustainable development. In most of the developing countries
the poor availability of skilled personnel and supporting infrastructures make crop
fields particularly vulnerable to the outbreak of plant diseases, due to spreading
viruses and fungi, or to adverse environmental conditions, such as drought. In these
countries new approaches are needed to mitigate the effects of climate changes and
of spreading plant diseases, to produce sustainable food and eventually meet the
UN zero hunger goal.

There are 550 million farms in the world and 83% are small, less than 2 hectares,
family farms with little or no access to knowledge on increasing productivity. To
face the lack of sufficient skilled personnel, government or agencies appoint expert
people, with knowledge on plant diseases and treatments, called ‘extension workers’,
to provide farmers with crop disease diagnosis. Unfortunately, extension workers
are often not enough for the whole rural region. For example in our test-bed in
Western Kenya, the numeric ratio between extension workers and farmers is about
1 : 5000 [177], while a much higher number, about 1 : 400, is needed to bring
significant changes [178]. For several economical and political reasons it is difficult
to change these numbers.

This brings about the need for smart technologies and tools that support the
production of high-quality food. Agriculture is one of the fields in which the
employment of IoT technology [179,180], combined with crowd-sensing, may have
a substantial impact. In this direction, the mobile application PlantVillage Nuru
("Nuru" means "light" in Swahili), provides an invaluable tool for early detection of
plant diseases [181,182]. Nuru analyzes plant images and uses a machine learning
engine based on deep neural networks, which recognizes potential health issues.
Nuru endowed smartphones can therefore be seen as key sensing components of a
crowd-sensing framework where sensed data are collectively shared by the farmers.

However, most of the local farmers are too poor to afford a smartphone. These
devices are typically provided by government agencies or by charity institutions,
in a limited amount. A network of drones could easily cover much of the farms
within few hours, requiring no human intervention with an expected lower cost from
government agencies. However PlantVillage Nuru application is currently available
only on smartphones, and the regions of interest have poor internet connectivity,
resulting in a complex deployment. Therefore we consider only smartphones in our
work, and we leave the use of drones as a future improvement (Section 5.3.6).

We propose a crowd-sensing framework, in which we hand out smartphones to
some ’lead’ farmers, who are in charge of providing the fundamental sensing activities
of the framework. For the farmers, the opportunity to obtain a free smartphone
constitutes an incentive [183,184] to participate in the activities.

This framework is beneficial for two reasons. First, in the short term, the
extensive use of the application provides farmers with the necessary information and
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instructions to address upcoming issues in their plantations. This is of interest to
individual farmers as well as to entire regions, where farmers individually addressing
local plant issues, eventually stop the spread of harmful diseases which could
compromise the crop yield and food production of the region. A broader perspective
of crop status enables thus early discovery of diseases and prompt intervention for
their treatment. Second, in a longer term, through the frequent use of the application,
local farmers learn to recognize most plant diseases by themselves and treat them
accordingly.

However, to ensure practical and widespread use of the proposed framework, we
need to address several issues. A key problem is the minimization of the number
of smartphones needed to ensure sufficient coverage of the farms of a region. Cost
minimization, in fact, encourages investments from local governments and charities.
Reduced deployment costs also enable the use of the proposed framework in wider
areas, ensuring broader circulation of knowledge on plant diseases and on ways to
increase productivity. Jointly with the described system sizing problem, we need
to determine the most suitable farmers to receive the Nuru smartphone, and take
the ’lead’ role of their neighborhood. The lead farmer selection and related task
assignment decisions must take account of farm locations and of the heterogeneous
mobility patterns of people within the region.

To the best of our knowledge, ours is the first work to address this unique problem
in the challenging scenario of developing countries, which requires ad-hoc problem
formulations and specifically tailored solutions.

We propose two analytical models to minimize the number of required smart-
phones while providing sufficient geographical coverage, under the constraints posed
by the environment, taking account of the limited controllability of the actions of
participating farmers. Considering the high computational requirements of these
models, we consider a hierarchical approach which splits the original problem into
several smaller instances, when possible. Moreover, we contribute a greedy approach
which trades off efficiency and scalability. We study the performance of the proposed
solutions through extensive simulations. We compare our solutions with previously
adopted approaches as well as with variants of state of the art solutions which con-
sider similar problem formulations but in different contexts. Furthermore, we apply
the proposed solutions in a real test-bed implementation in Western Kenya, in the
Busia region, where crop loss due to untreated (or incorrectly treated) diseases was
measured at a rate of about 40% (globally), with several zones with even 70− 100%
of loss [185,186].

We show how, thanks to the optimized deployment, the crowd-sensing frame-
work ensures accuracy, responsiveness and cost, significantly outperforming current
solutions where lead farmers are instead selected on the basis of people reputation
or political motivations.

The major contributions of this work are the following:

• We introduce a crowd-sensing framework based on the use of mobile smart-
phones endowed with the application Nuru, to recognize plant health issues
through image analysis;
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Figure 5.7. System Overview.

• We formulate the problem of joint device deployment and task assignment as
an ILP. In addition, we propose a technique for a hierarchical reduction of the
original problem instance into smaller ones;

• Considering the hardness of the deployment models, we propose a greedy
approach to trade-off efficiency and scalability;

• We analytically study the proposed solutions, and evaluate their performance
through simulations, against state of the art solutions to device deployment
problems related to other application contexts;

• We show an implementation of the crowd-sensing framework in a real case test
bed in Kenya, demonstrating practical applicability of the framework and its
improvements with respect to currently adopted solutions.

5.3.1 System Overview

We propose the mobile crowd-sensing framework described in Fig 5.7. Through
this framework, farmers actively use their smartphones to participate in the sensing
operations and produce an updated view of the status of their crop field. The
system is based on the components and agents described as follows. The farmers
(a), endowed with Nuru capable smartphones, move along the crop fields located in
the area of interest, performing the necessary sensing activity; the farmers use their
devices to communicate with an online processing center (b) for information sharing,
application updates, and to participate in social activities through the PlantVillage
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social network (c). This social network allows farmers’ communications and mu-
tual feedbacks. Moreover, we observed that the farmers consider the PlantVillage
social network as a way to gain social reputation and prestige, incentivizing their
participation in the framework. The crowd-sensing framework also requires the
participation of a crew of plant pathologists (d) for Q/A and labeling of disease
images; the presence of these human experts is necessary for providing training
sets and updating the machine learning system (e). Through the machine learning
system the mobile application Nuru is able to successfully recognize plant diseases
and suggests appropriate countermeasures.

The application Nuru has a twofold purpose. On the one hand, it identifies
plants and related diseases providing diagnosis and suggesting countermeasures in
the interest of individual farmers; on the other hand, it provides data for the system
to reconstruct a global view of the fields within a region. Collected data are sent to
the processing center as soon as connectivity is available. Upon reception of new
data, the machine learning system is updated, as is the global view of the region
crop fields. In this manner, the crowd-sensing framework provides health monitoring
at a large scale, detecting the outbreak of new diseases and their spread throughout
a region. The continuous update of the status of multiple crop fields in a region is
essential to agencies and government entities to be able to design global campaigns
to combat the spread of crop diseases at a region scale.

Figure 5.8. Farmer with phone examining cassava plant.

Nuru Smartphones

The proposed crowd-sensing framework utilizes basic smartphones as its key sensing
devices. Notice that, while all smartphones are typically endowed with several types
of sensors, being designed for low income countries, Nuru only requires a camera to
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capture and process crop field images and monitor the crop health status. Figure
5.8 shows a farmer using the digital assistant to diagnose a plant of Cassava. The
application allows farmers to access the four key functionalities of the framework
shown in the app main menu in Figure 5.9. The farmers can: (1) participate into
a farmer social network, in which they can ask questions to their peers; (2) chat
with human expert plant pathologists; (3) access the plant database in the knowledge
library; (4) and use the AI digital assistant for immediate diagnosis. The AI digital
assistant is the main feature offered by the Nuru app. It is based on a Convolutional
Neural Network (CNN) to detect and recognize possible diseases. In its current
Tensorflow implementation [187], it is trained with a dataset of 2,400 cassava leaf
photos, to successfully recognize 3 different diseases and 2 types of pest damage
nutrition deficiency of cassava plants with about 70% accuracy for pronounced
symptoms [188]. Further details on the AI implementation are available at [189,190].
Figure 5.10 shows the diagnose mode of the application, in which a farmer is asked
to point the phone camera at a cassava plant to identify possible diseases. Figure
5.11 shows the diagnosis results for an infected cassava plant, with a box around
each leaf labeled with the predicted pathology.

To ensure successful image recognition in the face of possibly poor image quality,
the model uses 8 seconds of video to have several redundant frames. In addition, the
application provides farmers with a feedback on the quality of the captured images
and may ask for additional shots if quality is insufficient. The effectiveness of the
app was tested with low cost devices including the Samsung Galaxy S5 and the
Tecno Camon CA6S [191,192]. In our experimental setting, the combined approach
of using redundant frames and repeated shots based on interactions with farmers,
always produced images of good enough quality for the AI assistant to work.

As it was mainly built for developing countries, where smartphones are usually
low cost and internet connection is not always available, the application works also
when it is offline and image upload to the processing center can be postponed until
internet connectivity becomes available.

For this reason, Nuru stores most of the data in the smartphone local storage,
and compresses them to save space and reduce the future upload time.

Notifications and Feedback to farmers

The system uses the collected data to provide the farmers with information related
to the status of their field as well as to region wide spreading diseases.
The outcome of the application analysis is used by local personnel and researchers to
take appropriate countermeasures (e.g., to suggest specific medicines or pesticides)
to heal diseases and boost crop productivity. The application also provides feedback
charts, such as the one of Figure 5.12, representing the kilograms of dry mass per
hectare during the last months. Furthermore, by evaluating the status of nearby
farms the framework lets the lead farmers assess the necessities of other farmers and
plan to provide assistance.
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PlantVillage Nuru - Snapshots.

Figure 5.9. Main menu. Figure 5.10. Diagnose
mode.

Figure 5.11. Diagnose re-
sult.

Incentives

We consider a participatory crowd-sensing framework where farmers use their smart-
phones to monitor their own crop field. In addition, lead farmers endowed with
Nuru smartphones also travel around the neighbor farms to visit, help, and collect
data related to a wider area. To encourage the user participation we considered
several incentives.

Farmers participate enthusiastically in the crowd-sensing activities thanks to the
following incentives:

• the possibility to diagnose diseases in their own plantations, thus preventing
losses, providing healthy crops and better production;

• the free access to a crew of plant pathology experts and to the knowledge
library;

• the possibility to help the neighbour farmers who do not own a Nuru smart-
phone;

• the access to the Nuru social network, in which farmers can interact, ask for
help and share photos, which is gradually being seen as a way to gain social
status, reputation and prestige among peers.

Moreover, the specific mechanism used to deliver smartphones to the farmer popu-
lation, is also seen with great interest by the potential lead farmers. In fact, since
the catchment area of the framework is mainly constituted by developing countries,
smartphones are often given to farmers for free, or in exchange of their commitment



5.3 Optimal deployment in crowd sensing for plant disease diagnosis in
developing countries 138

Figure 5.12. Framework feedback to farmers.

to participate in the framework activities. Therefore, another considerable incentive
for farmers to participate in the crowd-sensing activities is the possibility to receive
a free mobile device, with free internet connectivity.

Smartphone deployment

In developing countries farmers cannot usually afford the purchase of a smartphone
and internet services. A small number of them receive these devices from their
country governments with the intent of fostering digital education and consequently
the use of digital services. Unfortunately, not all the farmers can be included in the
country digitalization campaign. For example, for our test-bed in the Busia region,
Kenya, the purchase of smartphones has been funded by the University of Penn
State. Complimentary smartphones were handed out to 27 farmers in exchange of
their participation in the test-bed activities.

To reduce the number of required smartphones, we used a Farmer-to-Farmer
(F2F) collaboration model, similar to the one proposed in [193] where only some
farmers (namely lead farmers) have access to the smartphones. These lead farmers
help neighbor farmers by periodically visiting them, inspecting their crop fields,
sensing and collecting data with their smartphones. The selection of lead farmers
from the population plays a key role in the crowd-sensing framework. In fact, the
adoption of an other than optimal deployment may result in zones with too many
smartphones, i.e. where sensing is redundantly performed, while other areas, located
too far away from their nearest lead-farmer home location, may be left uncovered.

We propose an optimized deployment of Nuru devices. Our approach produces a
balanced distribution of Nuru smartphones over the region, reducing unnecessary
redundancy. Moreover, it also assigns the minimum number of smartphones to
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guarantee the required monitoring activity, resulting in a cost reduction to encourage
governmental institutions to fund the system.

More specifically, we propose two analytical models, and a Greedy algorithm,
to minimize the number of required smartphones while providing the necessary
geographical coverage.

5.3.2 Smartphone Deployment and Monitoring Task Assignment

In table 5.2 we summarize the model notation. We recall that a lead farmer is a
farmer endowed with the Nuru smartphone, who actively participates in the crowd-
sensing activities, travelling around the region to visit neighbor farms, to provide
auxiliary monitoring service to those farmers who do not have direct access to the
framework, hereafter referred to as basic farmers. As Nuru smartphones are given to
lead farmers, in the following we will interchangeably refer to the device deployment
problem with the name of smartphone deployment or of lead farmer selection.

We propose an optimization model in which lead farmer selection and monitoring
task assignment are addressed jointly. In fact, lead farmers must be selected so
that they can provide monitoring service to a subset of farms close to their home
locations, within distance and workload constraints.

We study two analytical models to guide decision making in terms of: minimum
number of Nuru smartphones to deploy within the AoI, lead farmers selection, basic
to lead farmer assignment, and lead farmer workload scheduling. These models
enable a moderate cost deployment of the crowd-sensing framework while ensuring
the required monitoring coverage and crop field inspection rate.

Notation Description
AoI Area of Interest
Fi the i-th farm
F set of farms
ki required number of visits per farm i, per week
L potential lead farmers
`i i-th potential lead farmer
Mi maximum weekly workload of a lead farmer `i
wij workload of `i to inspect Fj
cij cost of assigning farm Fj to lead farmer `i
hi cost of selecting lead farmer `i
yi farmer deployment decision
xij assignment decision of farm Fj to lead farmer `i
dij distance between `i and farm Fj
v average speed of a lead farmer
τj inspection time requirement at farm Fj ∈ F
bi maximum workload for a single inspection trip of `i

Table 5.2. Notation table

Let us consider an Area of Interest (AoI) including a number of farms. For
simplicity we assume that the AoI is partitioned into a set F of disjoint farms Fi.
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While the ultimate goal of the system is to ensure a yield increase of a given
percentage (currently envisioned in terms of about 30%), we acknowledge that too
many factors contribute to a complete mathematical formulation of this objective.
Nevertheless we empirically recognized that a frequent enough activity of farm
inspection, disease recognition and treatment, always translates into a rapid yield
increase.

For this reason we require each farm Fi to be inspected with a guaranteed
minimum frequency, hereby denoted with ki, which typically depends on the scenario
being considered. Notice that, while the observation period can be set to any time
interval that is meaningful for the application, we consider the values of ki as per
week figures, ∀Fi ∈ F . We discuss the tuning of this and other parameters in
Sections 5.3.2 and 5.3.3.

We assume to have a set L of candidate lead farmers. Potentially every farmer
can become a lead farmer if selected, endowed with a smartphone, and appropriately
instructed. We assume that in order to turn a candidate lead farmer `i ∈ L into an
actual lead farmer, the system incurs a cost hi (e.g. the smartphone cost or training
cost). In theory, we may have as many lead farmers as basic ones, therefore we have
|L| = |F|. Due to the objective of cost minimization, only the necessary lead farmers
will be selected from the set L.

The workload of a lead farmer is limited in time and space as follows. We
consider a maximum lead farmer workload Mi, expressed as an upper bound on the
frequency of visits of a lead farmer to neighbor farms, per week. We also consider
an upper bound bi to the maximum workload for a single inspection trip performed
by farmer `i if selected as leader. Assuming also that, the visit of a farm j lasts
about τj minutes, and that the lead farmer `i moves (walks) at speed vi, the setting
of bi and Mi translates into an upper bound on the maximum distance that can be
traversed by `i.

In details, consider the set L = {`1, . . . , `|F|} of potential lead farmers. We
assume that lead farmers have a home position in the AoI, such that we can denote
with dij the geographical distance between lead farmer `i ∈ L and farm Fj ∈ F . We
also denote with τj the inspection time required for a visit to farm Fj . Therefore, a
lead farmer `i can only visit the farms j for which 2·dij

vi
+ τj ≤ bi, namely the farms

that can be reached within a round trip time, including inspection time, lower than
or equal to bi (i.e., the upper-bound on the single trip workload).

We hereby formulate the two optimization models.
The first model, namely Lead Farmer Selection and Trajectory Planning Problem

(LF-STPP), selects the lead farmers and decides the optimal trips to visit the nearby
basic farmers. The second model, called Lead Farmer Selection Problem (LF-SP), is
a simpler problem which only selects lead farmers and their associated basic farmers,
but do not determine lead farmers’ trips along the region as in the first model. In
fact, LF-SP assumes a simplified route assignment according to which a lead farmer
inspects the assigned farms one by one with a round trip back to her/his home
location, in a star shaped route. This model does not enable any trip optimization
but is not computationally intensive.

Figure 5.15 gives an example of the two models. The scenario in Figure 5.13
shows a solution to LF-STPP: the lead-farmer (0) visits the basic-farmers (1) and
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Figure 5.13. LF-STPP solution Figure 5.14. LF-SP solution

Figure 5.15. Lead farmer to neighbors path.

(2) in two consecutive trips; then it starts another trip to the basic-farmers (3) and
(4), which are visited in the same optimized trip.

Figure 5.14, instead, shows the solution to LF-SP for the same instance. Dif-
ferently from the previous solution, the lead-farmer (0) visits the basic-farmers (3),
returns to her/his farm and then starts another trip to the basic-farmer (4). Even if
LF-SP does not produce optimal routes (i.e., it wastes some of the time devoted by
the lead farmer to the framework), its computational complexity is lower than the
one of LF-STPP. Such a formulation also has several benefits and different fields of
application, as discussed in 5.3.2.

Lead-Farmers Selection and Trajectory Planning

The first model, namely the Lead Farmer Selection and Trajectory Planning Problem
(LF-STPP), selects the lead-farmers and assigns them a task scheduling in the
form of optimized trips, potentially including several visits to some basic farmers
within the same trip, when possible. It achieves the minimum cost of lead farmer
selection, under the hard requirement that every farm Fj is inspected with guaranteed
minimum frequency of kj by a selected lead farmer. Such a minimum cost translates
into a minimum number of selected lead farmers, if the individual cost of lead farmers
is uniform, i.e., if hi = h,∀`i ∈ L.

We introduce the decision variables of the problem as follows. We denote with
yi ∈ {0, 1} the decision to select (yi = 1) lead farmer `i or not (yi = 0), for
i = 1, . . . , |L|. Let w ∈ [0,W] be the index associated to the inspection paths of a
lead-farmer, with W equal to the maximum allowed number of weekly trips W . We
then define xfij(w) ∈ {0, 1}, with i 6= j for all `f ∈ L, Fi, Fj ∈ F and w ∈ W, the
decision variable, to let the lead-farmer f move from farm i to farm j, exploring
them in a sequence (xfij(w) = 1) or not (xfij(w) = 0) in the w-th trip.

Notice that, the correct value of W can be determined according to the values of
the maximum weekly workload and inspection time of farms, or we can set W = |F|.
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We recall that, given any two different farms Fi, Fj ∈ F , dij is the distance
that a lead-farmer needs to traverse to move from Fi to Fj , and τj is the necessary
time to inspect the farm Fj . We model the time consumption of a lead-farmer `f
along its path as the sum of the terms related to inspected farms and travelled
distance. Therefore we model the time expenditure of `f to move from farm Fi to a
different farm Fj , and visit farm Fj , as ωfij ,

dij
vf

+ τj where vf is the average speed
of lead-farmer `f . We set ωfif , dij

vf
to exclude the lead-farmer’s home farm from

the cost of a trip. Notice that the appropriate setting of these weight parameters
allows to model different lead-farmers’ capabilities. We introduce cfij as the cost of
travelling from farm Fi to farm Fj for the lead farmer `f . This parameter may keep
account of travel costs such as reward to the lead farmers or fuel cost.

The objective function of the model can be expressed as follows:

min
∑
`f∈L

hfyf +
∑

i,j∈F ,`f∈L,w∈W,i 6=j
cfij · x

f
ij(w), (5.1)

which minimizes the cost of lead farmer selection and the lead-farmers’ cost for the
travels.

To guarantee that a basic farmer can be visited only by a lead-farmer, we
introduce the following constraint:

∑
i,j∈F ,i 6=j,w∈|W|

xfij(w)
|W| · |F|2

≤ yf , ∀`f ∈ L (5.2)

We also impose that each farm j be visited exactly kj times by the same lead-
farmer, unless she/he is a lead farmer:∑

i∈F ,`f∈L,i 6=j,w∈|W|
xfij(w) = kj · (1− yj),∀j ∈ F (5.3)

This constraint also prevents a same farm from being visited by multiple lead farmers.
We require that a lead farmer performs cyclic paths and prevent the formation

of inefficient sub-cycles or unrealistic disconnected cycles in the solution by using
the MZT technique [56] with auxiliary integer variables zfi (w) ∈ {1, . . . , |F|}. These
variables are used to give an order to the all visited nodes, excluding the lead farmer
home. To this purpose we introduce the constraints described in the following
Equations 5.4 and 5.5:∑

i∈F ,i 6=j
xfij(w) =

∑
i∈F ,i 6=j

xfji(w), ∀j ∈ F , `f ∈ L, w ∈ |W| (5.4)

zfj (w)− zfi (w) ≥ xfij(w) + |F| · (xfij(w)− 1)
∀i, j ∈ F , `f ∈ L, i 6= j, ∀w ∈ |W|

(5.5)

Then, we consider a capacity constraint to guarantee that a single trip does not
exceed the upper bound on the maximum per trip cost bf , for each lead farmer
`f ∈ L (this is meant to prevent too long uninterrupted routes in a single trip). This
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constraint also ensures that a lead farmer is not associated with farms too far away
from her/him, in terms of travel time:∑

i,j∈F ,i 6=j
ωfi,j · x

f
ij(w) ≤ bf , ∀`f ∈ L, ∀w ∈ |W| (5.6)

Finally, we introduce the constraint of Equation (5.7) to guarantee that the total
weekly workload of a lead farmer f does not exceed her/his availability Mf . Notice
that Mf can be lower than bf · |W| (e.g., a farmer may have a daily/trip availability
of 4-hours but may not want to work more than 12 hours in a week):∑

i,j∈F ,w∈W,i 6=j
ωfi,j · x

f
ij(w) ≤Mf · yj ,∀`f ∈ L (5.7)

When employed, the constraint of Equation (5.7) along with Equation (5.3) makes
Equation (5.2) unnecessary as (5.2) is always implied by them.

The overall model is defined in Problem 5.1. Notice that, the problem generalizes
the (metric) uncapacitated facility location problem [194], which can be expressed
by Equations 5.1, 5.2 and 5.3, and removing the other constraints. Such a problem
is known to be NP-hard as it also generalizes the set cover problem1.

min
∑

`f∈L
hfyf +

∑
i,j∈F,`f∈L,w∈W,i 6=j

cfij · x
f
ij(w) (a)

s.t.∑
i,j∈F,i 6=j,w∈|W|

x
f
ij

(w)
|W|·|F|2 ≤ yf , ∀`f ∈ L (b)∑

i∈F,`f∈L,i 6=j,w∈|W|
xfij(w) = kj · (1− yj), ∀j ∈ F (c)∑

i∈F,i 6=j x
f
ij(w) =

∑
i∈F,i 6=j x

f
ji(w),

∀j ∈ F , `f ∈ L, w ∈ |W| (d)
zfj (w)− zfi (w) ≥ xfij(w) + |F| · (xfij(w)− 1)

∀i, j ∈ F , `f ∈ L, i 6= j, ∀w ∈ |W| (e)∑
i,j∈F,i 6=j ω

f
i,j · x

f
ij(w) ≤ bf , ∀`f ∈ L, ∀w ∈ |W| (f)∑

i,j∈F,w∈W,i 6=j ω
f
i,j · x

f
ij(w) ≤Mf · yj , ∀`f ∈ L (g)

yf ∈ {0, 1} (h)
xfij(w) ∈ {0, 1} (i)
zfi (w) ∈ {1, . . . , |F|} (l)

Problem 5.1. LF-STPP - Lead Farmer Selection and Trajectory Planning problem

Lead farmer selection, a simplified problem

The second model, namely the Lead Farmer Selection Problem (LF-SP), selects a set
of lead-farmers and assigns them a set of basic-farmers, without calculating paths,
under the assumption that a lead farmer performs a unique visit to each basic farmer
for each trip.

Notice that, this model is a special case of the previous Problem (5.1). When
the lead farmers can visit only a basic farmer for each trip, the two models produce
the same solution. This simplification may be justified, for example, when the lead
farmers need to carry some load to basic farms, e.g. water, and must return to their

1A dual fitting algorithm is known to provide a 2-approximation to this formulation [194].
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home location before making another visit. Furthermore, this simplified problem
may be meaningful when a lead farmer trip limit bf does not allow the consecutive
visit of any two basic farmers in a single trip (e.g. bf < cfi + τi + cij + τj + cjf ,
∀j, i, f ∈ F).

In these scenarios, the use of the second model, i.e. LF-SP, is preferable to the
one of Problem 5.1, thanks to its simplicity and lower processing time requirements
with respect to the generalized model.

While both problem formulations are NP-hard, we observe that LF-SP is still
solvable in a reasonable processing time for medium instances of the problem. With
about 100 farms, a Gurobi based solver [30] may find the optimal solution within few
minutes. In contrast, due to the use of the MZT [56] constraints, the formulation
of Problem 5.1, i.e. of LF-STPP, is particularly challenging in terms of processing
time. For a limited scenario with only 60 farms, using a high performance computing
architecture, namely a Lenovo X3550 M5, with 2 CPUs Intel(R) XEON(R) E5-2650
@ 2.20GHz with 16 cores each and 80 GB RAM [68], we experienced a computation
time of dozens of hours.

The LF-SP problem can be formulated using the following decision variables:
yi ∈ {0, 1} represents the decision to select (yi = 1) lead farmer `i or not (yi = 0),
for i = 1, . . . , |L|; and xij ∈ {0, 1}, for all `i ∈ L and Fj ∈ F is the variable that
determines the assignment of farm Fj to the lead farmer `i (xij = 1) or not (xij = 0).
We introduce cij as the cost of assigning farm Fj to lead farmer `i.

The objective function of the problem is expressed as follows:

min
∑
`i∈L

hi · yi +
∑

`i∈L, Fj∈F ,i 6=j
cij · xij . (5.8)

which minimizes the deployment cost of lead farmers and their basic-farmers assign-
ment cost.

The feasible set of solutions to the optimization of Equation (5.8) is determined
by the following constraints. The first constraint imposes that each farm be assigned
to one and only one lead farmer, if not to his-/herself in case of a lead farmer:∑

`i∈L,i 6=j
xij = 1− yj , ∀Fj ∈ F . (5.9)

Second, an additional constraint requires that farms be only assigned to selected
(actually deployed) lead farmers:∑

j∈F ,j 6=i

xij
|F|
≤ yi,∀`i ∈ L. (5.10)

This constraint ensures that if lead farmer `i is not selected, it is not assigned to
farm Fj for inspection. The constraint is valid for any farm `i ∈ L.

Notice that this problem is also NP-hard as the equations (5.8), (5.9), and
(5.10) alone, give the formulation of the (metric) uncapacitated facility location
problem [194], which is known to be NP-hard.

We now consider the capacity constraint, by expressing the maximum allowed
weekly workload of a lead farmer in terms of time spent for inspections and travels
to farm. We recall that the maximum weekly load of each farmer `i is Mi, the
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maximum trip load is bi, and that we denote with τj the visit requirement of farm
Fj . The capacity constraints take account of both the round trip time, from the
lead farmer location to a farm and back, which, assuming a constant speed v, can
roughly be assumed proportional to (2dij/v) and the inspection time τj .

Therefore, we denote with wij the workload of a single visit of `i to farm Fj :
wij , 2dij/vi + τj . The lead farmer weekly capacity constraint can be modelled as
follows: ∑

Fj∈F ,j 6=i
wij · kj · xij ≤Mi · yi, ∀`i ∈ L. (5.11)

As for the previous Problem 5.1, the value kj is the number of required visits for
a week for the farm j. In this equation it is used as a multiplier for the cost of a
single lead-farmer visit and, thus, it is taken in account into the lead-farmer weekly
workload.

Notice that the constraint of Equation (5.11) along with the Equation (5.9)
makes Equation (5.10) unnecessary as Equation (5.10) is always implied by them.

Finally, we keep account of the maximum trip time constraint bi, by allowing
each farm to be assigned to only lead farmers with an inspection cost lower than bi.
Such a requirement implies:

wij · xij ≤ bi · yi, ∀`i ∈ L, ∀j ∈ F , j 6= i. (5.12)

The optimization problem is then a Bounded Distance, Capacitated Facility
Location Problem, formally defined in Problem 5.2.

min
∑

`i∈L
hi · yi +

∑
`i∈L, Fj∈F,i 6=j

cij · xij (a)
s.t.∑

`i∈L,i 6=j
xij = 1− yj ,∀Fj ∈ F (b)∑

j∈F,j 6=i xij/|F| ≤ yi, ∀`i ∈ L (c)∑
Fj∈F,j 6=i

wij · kj · xij ≤Mi · yi, ∀`i ∈ L (d)
wij · xij ≤ bi · yi, ∀`i ∈ L, ∀j ∈ F , j 6= i (e)
xij , yi ∈ {0, 1}, ∀`i ∈ L, Fj ∈ F (f)

Problem 5.2. LF-SP - Lead Farmer Selection Problem.

Model tuning

The proposed deployment models require several parameters (as shown in table 5.2)
to be tuned before we can use them to configure the crowd-sensing framework. For
example, assuming to work with weekly workloads, we need to know the position of
farmer Fi, the required number of visit ki, the maximum weekly workload Mi for a
lead farmer, the mobility of farmers, expressed in terms of average speed v, and the
inspection time requirement at each farm τj .

While the farmers’ positions must be collected by human personnel, or using
geographical data and images, the other parameters can be estimated using previous
data (e.g. from similar scenarios) or by submitting forms to the farmers before
deploying the system.
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In the section 5.3.3 we discuss and present some collected data on the farmers
behavior, that we used to tune the system and the models during our tests, and can
be useful for future system deployments.

Reduction of the problem instance

Considering the NP-hardness of LF-STPP and LF-SP, we discuss a hierarchical
approach, namely the Split Algorithm, which follows the divide and conquer paradigm
by breaking down the input problem, when possible, into smaller sub-problems.
These sub-problems may be individually solved by any model to build an optimal
solution.

Algorithm 8: Split Algorithm
input : vertex set V , candidate lead farmers L, opt. model ξ, par∗
output :An assignment of lead farmers and tasks. ;

1 solution = ∅;
2 G = (V, ∅);
3 for i, j ∈ V do
4 if ξ = trajectory opt then
5 for f ∈ L, f 6= j do
6 w0 = ωff,i if f 6= i else 0;
7 if w0 + ωfi,j + ωfj,f ≤ bf then
8 G.add_edge((i, j));
9 else

10 if i ∈ L ∧ ωi,j ≤ bi then
11 G.add_edge((i, j));
12 G = connected_components(G);
13 for G′ ∈ G do
14 farmers F = V (G′);
15 solution = solution ∪ ξ(F ,L, par∗)
16 return solution

The algorithm considers the vertex set V = F , and builds a graph representing
the problem instance by considering only edges that represent feasible tasks: i.e.,
the edge (i, j) is considered only if a candidate lead farmer can travel and visit the
farmer j, starting from the location of farmer i, according to the required workload
and farmer availability. The algorithm then computes the connected components of
graph G, which represent the simpler sub-problems; solves them by using the same
optimization model of the original problem, but applied to the single connected
components; finally, it computes the global solution by merging the solutions of
the sub-problems. Notice that, the notation par∗ in the input represents the set
of all parameters defining the optimization model (e.g., the selection cost hi or the
assignment costs cij).
The split phase is polynomial in the number of farmers (|F|), while the optimization
model for the reduced instances (connected components found by the Split Algorithm)
may require an exponential number of iterations. By construction, no tasks may
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exist between two components (i.e., farmers are too far away), and therefore the sub-
problems can be solved independently leading to the optimal solution. In Theorem
5.3.1 we formally state this property and the algorithm optimality.

Theorem 5.3.1. The solution of the Split Algorithm applied to the optimization
model LF-STPP [LF-SP] is optimal.

Proof. Let us assume that the solution s found by the Split Algorithm is not optimal
for the original problem LF-STPP [LF-SP]. This means there exists an optimal
solution s∗ of the original problem LF-STPP [LF-SP] which utilizes assignment edges
that are not included in any unique connected component of the graph constructed
by the Split Algorithm. This implies that in s∗ there must be a lead farmer f
belonging to a component C, which is given the task to visit some farmer i in a
different connected component C ′. Nevertheless, this is only possible if the visit of f
to i requires a workload lower than bf . In details, for the problem LF-STPP, it must
be ωff,i +ωfi,f ≤ bf [for the problem LF-SP, it must be ωf,i ≤ bf ]. Nevertheless if this
were true, the Split Algorithm would have included f and i in the same connected
component, which contradicts the initial hypothesis.

A Greedy Algorithm

Despite the simplifications introduced with the LF-SP formulation and the hier-
archical approach provided by the Split Algorithm, the proposed problems are
still NP-hard and cannot be solved in reasonable time if the problem instance is
particularly large.

For this reason, we propose a greedy approach for the LF-SP, which runs in
polynomial time, to be adopted for large problem instances. The greedy approach
has very small computational requirements and, as we experimentally show in Section
5.3.4, performs close to the optimal solution in all the considered operational settings
of our experiments.

The Greedy Algorithm iteratively assigns smartphones (i.e., selects lead-farmers),
and related tasks, in a greedy manner. It starts by selecting the farmers having lower

Algorithm 9: Greedy Lead-Farmer Deployment
input : farmers F , candidate lead farmers L, par∗
output :Lead farmers Lsol and tasks Tsol assignment.

1 Lsol= ∅, Tsol= ∅;
2 while |F| > 0 do
3 Λ = {(f, t, R) | f ∈ L : f /∈ Lsol, (t, R) ∈ sub_routine(f,F)};
4 (f∗, t∗, R∗) = arg min(f,t,R)∈Λ(hf +R)/|t|;
5 Lsol = Lsol ∪ f∗;
6 Tsol = Tsol ∪ t∗;
7 F = {j | j ∈ F s.t. @(f, j) ∈ t∗ ∧ j 6= f∗};
8 for (i, j) ∈ Tsol do
9 if j ∈ Lsol then Tsol = Tsol \ (i, j) ;

10 return Lsol, Tsol
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Algorithm 10: Greedy sub_routine
input : farmer f , un-assigned farmers F , par∗
output :An assignment of tasks t and its cost c, for the farmers f .

1 t = ∅; //tasks ;
2 ωt = 0; //tasks workload ;
3 R = 0; //tasks obj cost ;
4 while ∃j ∈ F s.t. ωf,j ≤ bf ∧ ωf,j + ωt ≤Mf do
5 F = {j | ωf,j ≤ bf ∧ ωf,j + ωt ≤Mf} j∗ = arg minj∈F cfj ;
6 F = F \ j∗;
7 t = t ∪ {(f, j∗)} ;
8 R = R+ cfj ;
9 return t, R

cost, calculated as in Equation 5.8, divided by the number of basic-farms connected.
The algorithm selects new lead-farmers until all the basic farmers are covered. Finally,
it iteratively removes redundant visits to lead-farmers. The algorithm is therefore
polynomial in the number of farmers |F|.

5.3.3 Crowd-sensing framework - A Real-Field Application

In this section we describe and evaluate the proposed framework in a real testbed in
Kenya. We also provide useful real-field data for parameter tuning of the deployment
models.

Busia testbed

We developed our testbed in Kenya, in the Busia region, at the beginning of 2018.
We deployed the mobile crowd-sensing framework to test the mobile application,
collect preliminary results and data, and validate the applicability of the proposed
approach in a real case study.

We handed out 27 smartphones to the local charities in Busia. On their turn,
the charities gave the smartphones to lead farmers selected on the sole basis of local
people recognition and elections.

Figure 5.16 shows a snapshot of the crowd-sensing framework after 9 months of
operation. The white circles with a red cross represent the lead farmer positions
while the small blank points are sensing operations performed by lead farmers. When
the point is green, or when a blue or violet area is around the blank points, a disease
was detected. These points prove that the deployed framework is actually able to
collect data around the region: thanks to the incentives described in Section 5.3.1,
lead farmers have been actively participating in the system since their election, and
have been continuously collecting measurements in their neighborhood.

Figure 5.17 shows two neighbor Cassava fields: the crop on the left is owned
by a lead farmer while the one on the right belongs to a non collaborative farmer,
which is not visited by any of the lead farmers. The figure shows how the two farms,
which are adjacent to each other, present huge differences in productivity: while the
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Figure 5.16. Snapshot of crowd-sensing framework after 9 months of operation.

lead farmer is able to visibly increase the field production, the other farmer still has
poor yield.

In fact, the lead farmer, who had access to disease related notification, was
able to detect infected plants and remove them. In the long run, the lead farmer
eventually understood which plants are healthy for new seeding. It is worth to
mention that, we show two close fields instead of the same field before and after
the framework deployment, because there are many time-dependent factors (e.g.
the number of rainy and sunny days) which can influence the crops and bias the
evaluation.

Deployment data

Figure 5.16 shows how a deployment performed by charities, without any specific
indications, results ineffective: some areas have high lead-farmer density (i.e. at the
top of the map) while others have too few lead farmers to be able to completely
carry on the sensing tasks in their proximity (i.e. at the bottom left of the map).

Thus, through the analysis of the performance of the existing crowd-sensing
framework and by speaking with farmers, we collected the necessary information to
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Figure 5.17. Cassava crop w/ and w/o framework.

perform our problem parameter tuning, and optimize the selection of lead farmers
and their task allocation.

Table 5.3, shows the data collected considering the behavior of lead farmers in
terms of time devoted to the framework, availability to move from farm to farm,
and mobility characteristics. To collect these data, we considered 24 lead farmers
in our initial test-bed (according to the charity, non-optimal configuration). The
24 farmers periodically visited their neighbor farms to sense data according to the
mobile crowd-sensing model. The table reports the average, median and maximum
traveled distance for each visit and the number of distinct visited neighbors farmers,
per month, in 9 months of analysis. In summary, the average distance travelled by
lead farmers to visit nearby farms is about 2km and they usually visit around 6
neighbors per month. The overall average speed for farmers (removing car and bus
trips) is about 3m/s, the inspection time is typically around 1 hours.

It is worth to note that, these measures are still dependent on the current
deployment: for example a lead farmer can have only one close neighbor at a
distance of 5km while another can have several neighbors in 100m.

We use the average values of all the above measures to set our model parameters
for an optimized lead farmer selection and task assignment (subset of farms assigned
to a lead farmer for monitoring).

Considering the collected data, we assume a monthly workload for each lead
farmer with at least one visit for each neighbor. We empirically evaluated that about
1 visit to each farm, per month, is sufficient to ensure the efficacy of the intervention.
Therefore we roughly set kv to 1/ month. We evaluated that lead farmers accept to
work at most 4 hours for a single trip, including the inspection time, i.e. set to an
average of 1 hour per visit. We set the maximum workload to 15 hours for month.
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Table 5.3. Lead Farmers Data

Distance to basic farmersLead Farmer avg (m) Median (m) Max (m)
Visited
farmers

Farmer 1 603.96 527.81 1,145.80 12
Farmer 2 4,193.47 4,111.48 4,759.88 3
Farmer 3 422.69 530.02 612.68 7
Farmer 4 225.40 225.40 121.71 2
Farmer 5 235.41 265.52 337.90 5
Farmer 6 822.92 407.58 2,055.84 17
Farmer 7 290.26 290.26 309.58 2
Farmer 8 256.43 242.58 314.46 5
Farmer 9 397.73 407.52 449.66 4
Farmer 10 5,514.52 5,514.52 5,718.29 2
Farmer 11 714.07 818.26 1,115.99 8
Farmer 12 365.18 426.46 482.13 4
Farmer 13 1,862.52 454.93 4,146.51 5
Farmer 14 536.80 670.85 1,137.00 7
Farmer 15 729.33 729.33 792.92 2
Farmer 16 166.884 95.2305 437 4
Farmer 17 232.67 237.50 372.96 9
Farmer 18 220.86 220.86 267.40 2
Farmer 19 1345.75 1389.5 2514.85 6
Farmer 20 763.12 763.12 1,333.59 2
Farmer 21 1,850.12 1,422.83 7,173.16 13
Farmer 22 395.19 405.62 645.96 9
Farmer 23 1,282.38 1,282.38 2,433.65 2
Farmer 24 312.66 301.32 466.82 9
Total 989 905 1631 6

Finally, we consider a lead farmer deployment cost of 100$, which is just the price
of the Nuru smartphone, i.e. Tecno Camon CA6S [192].

5.3.4 Deployment Models - Performance Evaluation

We now evaluate the proposed deployment solutions in two different settings: simu-
lations and real field experiments. Simulations have the goal of investigating the
performance of deployment models under a wide spectrum of operative settings,
while experiments are performed in a real case scenario, constituted by our test-bed
in Kenya. In both settings we use the Gurobi Optimizer [30] to solve the deployment
problem.
For the purpose of showing the device deployments that are obtained through the
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different proposed models, we initially consider a small scenario, with 23 farms in
a small area (see Fig. 5.22). In particular, Figure 5.19 shows that the solution
of LF-STPP (5.1) requires fewer lead farmers (namely, only 3 lead farmers) than
the solution of LF-SP (5.2), shown in Figure 5.20 (which instead selects 4 lead
farmers). Figure 5.21 shows the greedy approach which, in the same setting, selects
5 lead farmers. We recall that the approach provided by LF-STPP lets lead farmers
perform multiple visits in a single trip. This allows the lead farmers to spare some
of their time. When the constraints on traversed distance and daily workload allow
so, the lead farmers can use this time to perform multiple visits in their trips. Hence
the solutions of LF-STPP uses lead farmer time more efficiently than the approach
of LF-SP.

Figure 5.18. Initial AoI. Figure 5.19. LF-STPP model solution.

Figure 5.20. LF-SP model solution. Figure 5.21. Greedy Algorithm solu-
tion.

Figure 5.22. Examples of deployment models.

Simulations

In simulation scenarios, where not otherwise stated, we consider a large area, i.e.,
140km2, with several random uniformly distributed farms. We use a Random
deployment model as a benchmark, which is meant to reflect the currently adopted
approach, where lead farmers are chosen by elections or because of their prestige in
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the community, with no correlation to their position in the region, nor any attention
to the actual efficiency of their role in the system.

Figure 5.23. Number of selected lead-
farmers at varying number of farms

Figure 5.24. Traveled distance by lead-
farmers at varying number of farms

Figure 5.25. Computation times (sec-
onds)

Figure 5.26. Number of selected lead-
farmers at varying number of farms

We set the farmer constraints, and the visit parameters, according to the data
collected in the real-field in Busia (Section 5.3.3), in a monthly setting. We run
around 30 simulations for each case, and the error bars indicate the standard devia-
tion of the plotted values.
Figure 5.23 shows the number of lead-farmers employed by the models by increasing
the number of farms. The LF-STPP solution has the lowest number of lead farmers,
which is always around 10% of the farmers in the area, while the LF-SP solution uses
around 15% more lead-farmers. Finally, the Greedy solution, despite its simplicity,
has performance close to the LF-SP optimal, while all the algorithms perform better
than the Random deployment. Notice that, the Random performance diverges by
increasing the complexity of the scenario, which is also evident in Figure 5.26, where
we consider a larger scale experiment.
The performance of the framework is further investigated in Figure 5.24, which shows
the total distance traveled by the farmers. If the crowd-sensing system provides
rewards for the tasks, this metrics may reflect the cost for each solution. The
LF-STPP has still the best performance, also in terms of travelled distance, despite
the fact that it uses fewer lead farmers. This is mostly due to a better design of the
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lead farmers’ routes for LF-STPP.
The improvement of the LF-STPP is at the expense of a higher computation time.
We underline that for large problem instances, computation time may become pro-
hibitive, thus justifying the resort to a simplified model such as the LF-SP or to the
Greedy Algorithm. Figure 5.25 shows the significant computation time (in seconds)
required by LF-STPP, even with only 60 farms, with respect to other solutions.
The computation time of this plot is calculated executing the Split Algorithm
approach, which significantly reduces the processing time with respect to the corre-
sponding original problem formulation (i.e., between 2x to 10x in our simulations).
In general, the improvement is more than proportional with respect to the number
of sub-problems of the Split Algorithm, as the required computation time increases
exponentially with the size of the problems.

Figure 5.27. Traveled distance by lead-
farmers at varying number of farms

Figure 5.28. Computation times (sec-
onds)

We now investigate the performance of the proposed solutions for larger problem
settings, with up to 300 farms. Due to the huge computation time of LF-STPP we do
not consider it in these scenarios. Figure 5.26 shows the required lead farmers when
varying the number of farms. Results confirm the algorithm performance trends: LF-
SP has the best performance, followed by the Greedy and by the Random deployment
model. In particular, the figure shows how the performance diverges when the
number of farms grows. Figure 5.27 shows a similar rank among the algorithms
also when the considered performance metric is the total distance traveled by lead
farmers. Despite the larger number of farmers used by the Greedy and Random
approach, the LF-SP approach ensures a lower traversed distance thanks to a smarter
association of lead farmers to basic ones.
Finally, Figure 5.28 shows the computation time of the three solutions. The LF-SP
model has the highest computation time, with around 2.5 hours of computation for
300 farms, while the other solutions have negligible computation time. In conclusion,
our set of simulations demonstrates that LF-SP is the most efficient deployment
model. The Greedy model also has a good performance (close to the LF-SP solution),
with a much lower computation time, which make it a promising solution for very
large problem settings.
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Heuristic Comparison

We extend our performance studies to larger problem settings, considering up to
900 farms. Considering these settings, we evaluate our heuristic in comparison with
solutions to similar problems in the domain of mobile device deployment. We recall
that our problem shows unique characteristics, being it related to humans actively
using the deployed devices, and adopted in developing country scenarios, with poor
network infrastructure, and poor road conditions. However, we did our best to
position our work in the broader context of device deployment studies. We consider
a similar deployment problem for mobile robots, namely the mobile sensor sweep
coverage problem, where a given number of targets must be monitored by mobile
robots to periodically collect data. By logically mapping lead farmers to mobile
robots, and farms to targets, we compare our work to CSWEEP [195], a mobile
robot deployment algorithm that minimizes the number of robots needed to achieve
the required monitoring frequency of targets (i.e., their sweep period). Other related
works, also mentioned in Section 5.3.5, show some similarities to ours, but address
different objectives and are not directly comparable.

Figure 5.29. Number of selected
lead-farmers at varying number of
farms.

Figure 5.30. Traveled distance by
lead-farmers at varying number of
farms.

CSWEEP may be used in our application context to guide decisions related
to lead farmer election and their task assignments. It computes a set of tours by
partitioning a global tour including all the targets. We configure CSWEEP to take
account of the heterogeneous constraints and requirements of the different farmers,
and we let it partition the global tour accordingly.

Figures 5.29 and 5.30 show the algorithm performance. Notice that, due to
the considerable computation time of LF-STPP and LF-SP we do not propose
their application in a large scenarios although they perform better than the greedy
approach both in terms of number of deployed devices and of traversed distance.

Figure 5.29 shows the number of required lead farmers, under a varying number of
farms. The results show that Greedy always has the best performance. In particular,
with 900 farmers Greedy uses only about 70 smartphones while CSWEEP requires
120 smartphones (∼ 70% more than Greedy), and Random needs 155 smartphones
(∼ 120% more than Greedy). The figure also shows how the performance diverges
when the number of farms grows.
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Figure 5.30 also shows the superiority of Greedy with respect to CSWEEP in
terms of total distance traversed by lead farmers. In particular, the figure shows
that although CSWEEP requires a higher number of lead farmers than Greedy, the
total traversed distance under CSWEEP is higher than with Greedy mostly due to
an inefficient global tour partitioning and task assignment, which does not allow to
use the full potential of the lead farmers.

Real-field experiments

Figure 5.35 considers a comparison among the discussed approaches when applied
to our real test-bed scenario, in the Busia region, in Kenya. For this scenario we
compare LF-STPP, LF-SP and Greedy, to the original device deployment provided
by the charity management, based on local lead farmer elections. The experiments
show how the two optimization models can effectively reduce the number of necessary
smartphone devices while providing the same or better coverage and load balancing
among lead farmers. The initial device deployment performed according to the
charity management, and the related task assignment, are shown in Figure 5.31. The
charity deployment requires 27 smartphones, at a cost of 100 each. Figure 5.32 shows
the deployment and task assignment optimization, according to LF-STPP. Such a
solution reduces the number of devices from 27 to 14, with an overall reduction of
48%, while achieving a more uniform coverage and meeting the workload constraints
imposed by the farmers. Figure 5.33 shows the optimization according to the solution
to the simplified model LF-SP. The model is able to actually reduce the number of
needed smartphones from 27 to 17, with a cost reduction of around 37% with respect
to the charity approach, showing a small cost increase with respect to LF-STPP.
Finally, Figure 5.34 shows the deployment according to the Greedy Algorithm, which
performs close to LF-SP. In this case, the number of needed smartphone decreases
to 18, with 33% of reduction in cost.

Figure 5.31. Previous deployment. Figure 5.32. LF-STPP model solu-
tion.
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Figure 5.33. LF-SP model solution. Figure 5.34. Greedy Algorithm solu-
tion.

Figure 5.35. Busia region lead-farmer assignment.

It is worth to mention that the optimization proposed for the test-bed imple-
mentation, namely the LF-STPP solution, significantly reduces deployment costs
with respect to a best-effort, election based, device deployment scheme. Despite
the lower number of sensing devices being used, we observed an improvement in
crop production due to the more uniform deployment of the framework and a better
load balancing among the lead farmers. While the improvement brought by the
optimization models is moderate in an area where the crowd-sensing framework was
already in use before the re-configuration, we underline that such a re-configuration
permits the use of the otherwise unused extra devices in larger areas, extending the
application of the framework to currently uncovered regions.

We also underline that cost reduction is very critical for deploying the described
crowd-sensing framework in new regions where the smartphones must be financed
by government entities of by charity associations.

In fact, in developing countries, with poor funding availability, it is fundamental
to be able to extend the use of the framework to entire regions, minimizing the cost
per region, and maximizing the extent of the served area. Finally, it is worth noting
that the models give a reliable and unbiased tool for selecting the most suitable
lead farmer selection and monitoring task assignment, which is relevant to ensure
uniform service coverage and quality over the area of interest.

5.3.5 Related Work

Mobile crowd-sensing frameworks With the rising of IoT, smartphones and
mobile sensors, several works have been devoted to mobile crowd-sensing frameworks
in different domains [196,197]. Nevertheless, in agriculture and food domain only few
works have been proposed, despite the high number of challenges due to increasing
demand of food and climate changes.
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J. Mohite et al. proposed a Rural Participatory Sensing (RuPS) framework
for crop monitoring, in which farmers collect data about plant diseases [198]. The
proposed crowd-sensing framework presents a reward mechanism to stimulate partic-
ipation, and uses collected data, which are validated by experts, to analyze possible
epidemics and eventually providing alerts to the farmers. In a subsequent work, P.
Singh et al. [199] introduce a crowd-sensing system to provide consulting and help
farmers in diagnosing plant diseases with the aid of experts. The system, using data
collected from the farmers, helps experts to reduce possible diseases, with a limited
number of interactions with the farmers for providing help. Unlike ours, these works
do not provide direct feedback to farmers as we do through the Nuru application. In
the cited works, the proposed smartphone applications are not able to immediately
identify diseases offline, but they can only collect data or ask for expert advice. As
they cannot work offline, and rely on the continuous availability of expert advisors,
the proposed approaches have limited chances of applicability in developing countries,
due to the poor internet connectivity, and limited infrastructure available.

A first solution for scenarios with scarce connectivity is proposed by P. Gupta
et al. in [200]. They propose a Rural Agriculture Participatory Sensing with delay
tolerant networks to allow seamless stream of data from farmers to the experts and
improve crops health. They especially address developing countries in which network
connectivity is extremely poor. They propose a multi-hop communication where
a farmer acts as relay node to provide and extend device communication range.
However, the farmers are often too far from each other to connect in a multi-hop
network. Finally, in [201] Z. Jiajin et al. propose a social network sensor platform
to provide precision agriculture and several services to farmers. Sensors are placed
in the crop to collect relevant data (e.g. temperature, humidity and so on). The
farmers using the smartphones and the Bluetooth technology can recover data from
sensors and participate in the sensing framework.

Incentive Mechanisms As mobile crowd-sensing systems often include incentives
mechanisms to stimulate users participation [183,184,202] and improve the quality
of collected data [202–204], we now discuss some related proposals.
X. Fang et al. propose two incentive mechanisms based on rewards [202]. The first
one provides a fixed reward (shared by all the users), while the second one offer a
payment to users providing service. These approaches can be adopted to pay and
encourage lead farmers to visit their neighborhood, if required.
To improve sensing and data quality, H. Jin et al. study Quality of Information
(QoI) aware incentive mechanisms [204]. As QoI is highly related to poor sensor
quality, noise, or lack in sensor calibration, different users may have different data
quality/resolution, asking for proportional rewards. They propose a system that
jointly considers different prices (incentives), and QoI of the user, to collect quality
data at a reasonable price. Also H. Jin et al. propose a novel incentive mechanism,
named Theseus, which improves data and sensing quality [205]. In this case, the
proposed system offers payments to incentivize high-effort sensing from workers.
As in real field the sensed data may be unreliable and noisy, the participants can
improve data quality by increasing their effort on sensing (e.g., using more often the
phone on sunny days/hours). A more sophisticated mechanism is proposed by X.
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Tian et al. in [203]. The authors propose an online pricing mechanism to purchase
high-quality data, coming from participants in an online manner. The proposed
mechanism determines how much the system should pay for new data, considering
both the limited budget and the expected quality level. The authors also investigate
budget minimization for a fixed required quality level.

The aforementioned solutions help mobile crowd-sensing framework to collect data
with higher quality and encourage participants. If needed (e.g., with heterogeneous
private devices, or in case of no collaborative farmers) they can be integrated in
our framework. Notice that, the deployment models have already the possibility to
specify participant costs and participant-to-task costs.

Deployment Models The device deployment problem is common to many ap-
plication fields, where mobile devices enable a service over an area of interest, and
each device executes different tasks in a geographically distributed manner. We refer
the reader to the work in [206] for a survey on task assignment in crowd sensing
frameworks. There is also a large body of work addressing the device deployment
and task assignment for mobile sensors and mobile robots [18,37,195,207]. Some
of these works can be adapted to our scenario with proper modifications meant
to tackle the specific characteristics of crowd sensing in developing countries, such
as specific patterns of human mobility, heterogeneity in the definition of people
constraints, lack of infrastructure, and need to minimize costs. Few works consider
the problem of patrolling a set of target points under visit frequency constraints.
Gao et al. in [207] consider the sweep coverage problem, where mobile sensors are
deployed to periodically cover a set of targets, in a given region. They find a set of
disjoint tours for each mobile sensor to continuously monitor the targets. While this
approach can be used to assign smartphones and tasks to lead farmers, it considers
a different objective function, and does not aim at minimizing the number of mobile
monitoring devices (i.e., smartphones handed over to lead farmers) as we do in our
work.

A closer problem was studied in the work by Li et al. [195] which minimizes
the number of mobile sensors to cover all the targets within their visit frequency
constraints (i.e., the sweep period). In section 5.3.4 we adopt this approach for
our performance evaluation. In order to have fair comparisons, we consider a
variant of this approach which takes account of the heterogeneous and limited farmer
capabilities.

We note that, although we did our best to seek the most related problems in
the literature, our problem is novel and presents some unique characteristics which
require a specifically suited solution. We recall that, despite the existing works for
mobile sensors and mobile robots show some resemblance to ours, our deployment
model considers human participants and their interactions. In our scenario, mobility
is only partially controllable, mostly in an indirect manner, through incentives; users
are highly heterogeneous, in term of speed, time availability, capabilities and also
mutual interactions. The same infrastructure, with poor network connectivity and
road conditions, poses limitations to users’ movements which are uncommon in
other domains. In conclusion, despite some similarities with problems defined in
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other domains, the unique challenge tackled in this work requires ad-hoc problem
formulations and related solutions.

5.3.6 Conclusions and Future Work

In this work we show how smart technologies and tools may support agriculture
and the production of high quality food, especially in developing countries. In fact,
in these countries, the poor availability of skilled personnel (plant pathologists,
agronomists) and the lack of supporting infrastructure (road, internet connectivity)
make crop fields particularly vulnerable to the outbreak of plant diseases.

We propose a crowd-sensing framework, in which we hand out smartphones to
some lead farmers, who are in charge of providing the fundamental sensing activities
of the framework. Smartphones are endowed with the Nuru application, which
detects plant diseases at early stages, and constitutes the key component of the
crowd sensing framework, when introduced at large scale in the farmer population.
As devices are typically provided in a limited amount by government agencies
or by charity institutions, to make the system operational we address the device
deployment problem, according to which a limited number of cheap smartphones is
handed-out for free to farmers both as a mobile sensing device, and as an incentive to
encourage participation. We propose two analytical models to minimize the number
of required smartphones while providing sufficient geographical coverage. We also
study a greedy algorithm which trades off efficiency and scalability. We evaluate
the proposed solutions through simulations and real experiments (e.g., a testbed in
the Busia region in Kenya), showing that the proposed solutions outperform the
previously adopted ones in terms of monitoring accuracy, coverage completeness and
homogeneity, with lower cost, almost halving the number of required monitoring
devices.

In a future work, we envision the use of networks of drones to substitute smart-
phones, towards an autonomous sensing framework. Drones have the key advantage
of wireless networking and mobility in the same device, which makes them ideal
to move fast between farms and offload data. Moreover, drones require little to no
human control, while smartphones are traveled by a farmers which can partially
cooperate and reach only close farms. We expect a massive improvement in the
performance. In terms of cost (a single drone is expected to replace more than 30-40
smartphones) and in terms of performance (a drone can visit several farms in few
hours and prioritize critical areas).
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Chapter 6

Conclusion

In this thesis we studied applications and related solutions for networks of aerial
drones, to bring them closer to the adoption in real scenarios. To this end we
explicitly considered the unique characteristics of drones, such as the limited battery
lifetime and communication capabilities, in the design of our solutions.

In chapter 2 we addressed the problem of trajectory planning in safety-critical
scenarios and we proposed several solutions that take in account the drones’ physical
constraints, i.e., limited energy and capabilities. We introduced a multi-trip MILP
formulation to optimize the trajectories, considering battery recharging/replacement
and data offloading at the depot. We provided a constant factor approximation algo-
rithm as well as a novel genetic-based algorithm. By means of extensive simulations
we demonstrated how our solutions outperform existing state-of-art work. Finally,
we studied the algorithms’ applicability in a real test-bed.

In chapter 3 we exploited the communication capabilities of drones in the
design of path planning algorithms. We first considered the connected early-target
inspection problem: drones must monitor a set of targets while being connected
to the depot to offload the collected data. We demonstrated the performance of
our solution in providing fresh data to the base station with the respect to existing
solution, in both simulations and real-field experiments. Then, we considered the
communication capabilities as means for the drones to share their local observations
of the environment, and coordinate during the exploration. We considered an
unknown environment and we proposed a virtual-force based approach to let drones
autonomously inspect the area of interest under uncertainty. Through simulations
and real-field experiments we validated our proposal and we show that it discovers
new events 30− 40% faster than existing algorithms.

In chapter 4 we discussed the challenges of guaranteeing stable and reliable
multi-hop communication during the exploration of an area of interest, due to the
fast and unconstrained mobility of drones. Therefore, we developed a new solution
for packet routing in the challenging domain of FANETs. We exploited the device
controllable mobility to facilitate network routing, and we demonstrated superior
performance to existing routing algorithms.

Finally, we investigate three novel applications of UAVs networks, in the context
of post-disaster management, parcel delivery and food safety and security.
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