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Abstract

In this thesis we deal with qualitative properties of solutions of the semilinear
elliptic problem {

−∆u = f(u) in Ω
u = 0 on ∂Ω,

where Ω ⊆ RN , N ≥ 2 is a smooth domain and f : R→ R is a smooth function.
A classical problem concerns the study of the shape of u related to the one

of the domain. In particular we investigate the number of critical points of u
with respect to the convexity of Ω. Both the cases of positive and sign-changing
solutions are treated.
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Introduction

Let u be a solution of the problem{
−∆u = f(u) in Ω
u = 0 on ∂Ω,

(1)

where f : R → R is smooth and Ω ⊆ RN , N ≥ 2, is a smooth and bounded
domain. A classical problem in the qualitative study of solutions of the preceding
argument concerns the shape of u, which is known to be strongly influenced by
the geometry of the domain Ω and by the nonlinearity f . In particular we are
interested in the number of critical points of u and in the geometry of its superlevel
sets {u > c}, with c ∈ R. Moreover, both positive and sign-changing solutions
will be considered.

Since the literature is very wide it is impossible to give here a complete list
of references, so we mainly focus on the results which are more strictly related
to the rest of the thesis. We refer to Chapter 1 for a more detailed discussion
in the case of positive solutions and to Section 5.1 in Chapter 5 for the sign-
changing ones. Finally we mention the recent surveys [Mag16, Gro21] and the
monograph [Kaw85a].

A first interesting result linking the geometry and the topology of the domain
with the geometry of the solution u can be deduced from the Poincaré-Hopf
Theorem, for instance see [Mil65]. In particular it follows that if u is a positive
solution of (1) with isolated critical points x1, . . . ,xk, then one can prove

k∑
i=1

ind(∇u,xi) = (−1)Nχ(Ω),

where χ(Ω) is the Euler characteristic of Ω (let us point out that the preceding
formula is general and does not depend on the fact that u is a solution of an
elliptic equation). Hence we can see that there are relationships between the
topology of the domain and the number of critical points. Furthermore, it is
natural to ask when the sum reduce to a minimal number of elements. Hence, if
Ω is a contractible domain we have χ(Ω) = 1 and then we can investigate when
k = 1.

Let us also mention that by a classical result in Lusternik-Schnirelmann the-
ory, see for instance [Str08], we get a lower bound on the number of critical points.
Indeed, given a smooth function u : Ω→ R solution of problem(1), then

] {x ∈ Ω | ∇u(x) = 0 } ≥ cat(Ω),

where cat(Ω) is the Lusternik-Schnirelmann category of Ω. Then if the topol-
ogy of Ω is not trivial (for instance if the domain contains holes) we can have
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cat(Ω) ≥ 2. We are not going to treat the case when Ω is not simply connected,
but let us just mention, for example, that a well studied case is the one of convex
rings, we refer to Subsection 1.1.2 for a list of references on this topic, while the
paper [GL20] investigate the case of domains with a small hole.

Let us start by examining the case when u is a positive solution of problem (1)
on a simply connected domain Ω. A first important result has been proved by
Makar-Limanov for the torsion problem, i.e. f ≡ 1. In [ML71], he proves that if
Ω is a smooth, bounded and convex domain in R2, then the solution of the torsion
problem has a unique nondegenerate critical point. Moreover, it is quasiconcave,
i.e. the superlevel sets {u > c} are convex for all c ∈ R.

The same result is true for the first Dirichlet eigenfunction, f(u) = λu, as it
was proved by Brascamp and Lieb [BL76] (se also the paper by Acker, Payne and
Philippin [APP81]).

A very general result on the uniqueness of the critical point of solutions of (1)
can be deduced from the seminal paper [GNN79] by Gidas, Ni and Nirenberg.
Indeed, if f is a Lipschitz continuous function and Ω ⊆ RN is a smooth and
bounded domain which is symmetric with respect to the plane xi = 0 for any
i = 1, . . . , N and convex with respect to any direction x1, . . . , xN , then u has
exactly one critical point and moreover the superlevel sets are star-shaped with
respect to the origin. We point out that it is still an open problem to prove when
u is quasiconcave or not, see the work by Hamel, Nadirashvili and Sire [HNS16].

Some conjectures claim that the symmetry assumptions can be removed. An
interesting contribution in this direction is the result in [CC98] by Cabré and
Chanillo, see Theorem 1.1.9, where the uniqueness of the critical point is proved
for semi-stable solutions in planar domains with strictly positive curvature of the
boundary ∂Ω.

We recall that a solution u of problem (1) is said to be (semi-)stable if the
linearized operator at u is (non negative) positive definite, see Definition 1.1.8.
In Chapter 2, which collects the results from [DRGM21], the theorem is extended
allowing the curvature of the boundary to vanish somewhere, see Theorem 2.1.1.
Furthermore, we also give an alternative proof of the result for strictly positive
curvature.

If ∂Ω contains points with negative (mean) curvature the situation may change
drastically, even if we consider solutions on domains which are not far from being
convex. Indeed, not only the uniqueness of the critical point is lost, but it is not
even possible to have any bound on the number of critical points. In [GG22],
see also Theorem 1.2.1 for the precise steatement, Gladiali and Grossi prove that
there exists a family of bounded domains Ωε in R2 and a solution uε to the torsion
problem in Ωε such that uε has at least k maximum points with k ≥ 2, while
the domain Ωε is star-shaped, locally converges to the convex strip R × (−1, 1),
the curvature of the boundary is positive everywhere except to a portion and its
minimum goes to 0 as ε → 0. It is important to point out that this work also
shows that if we consider a star-shaped domain, then the superlevel sets are not
star-shaped too, in general.

Then the result has been extended to higher dimensions and to stable solutions
of more general nonlinearities in [DRG22a], see Theorem 3.1.1 in Chapter 3. In
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particular the case f = λg where λ > 0, g is smooth and satisfies

g : R→ R is increasing and convex,
g(0) > 0,

is considered.
Then the situation can be completely described for N = 2 as follows: if the

curvature of the boundary of the domain is non negative, then stable solutions
have exactly one critical point, while as soon as the curvature becomes negative
somewhere, then we can find stable solutions with an arbitrary (finite) large
number of critical points.

What happens for N ≥ 3? It is still an open problem to determine if the
(semi-)stable solutions admit exactly one critical point whenever the domain is
convex. Our contribution in this context consists in showing that even if the
(mean) curvature of the boundary ∂Ω is strictly positive everywhere, we can
build a family of domains converging to a convex cylinder such that the solutions
of the torsion problem on them admit an arbitrary large number of critical point.
This is stated in Theorem 3.1.2 and it is still proved in the same paper as before.
We refer to Chapter 3 for all the details.

It is natural to ask if it is still possible to recover uniqueness of the critical
point even in non convex domains. In Chapter 4 we give some of results in this
optic.

First of all we consider the Poisson problem{
−∆u = f(x) in Ω
u = 0 on ∂Ω,

where f : Ω → R is a regular positive function and Ω is a smooth bounded
domain, x ∈ Ω. We find a condition involving both the function f and the
geometry of the domain Ω (the curvature of the boundary) to ensure uniqueness
of the critical point. This is stated in Theorem 4.1.2 which may apply also for
non convex domains.

Then we deal with small perturbations of bounded and convex domains. We
show that if we fix a smooth, bounded and convex domain Ω ⊆ R2, and we con-
sider another domain Ω̃ sufficiently close to it, see Definition 4.1.4, then we have
that semi-stable solutions of problem (1) on Ω̃ admits exactly one critical point,
even if Ω̃ is not convex. We refer to Theorem 4.1.5 for the precise statement.
Note that, as explained before, if we do not assume that the limit domain is
bounded then the result is no longer true.

In the last part of the thesis we deal with the case of sign-changing solutions.
To our knowledge there are no results in the literature. So our starting point
is the classical problem of the second Dirichlet eigenfunction of the Laplacian in
dimension N = 2, that is we consider the following eigenvalue problem{

−∆u = λ2u in Ω
u = 0 on ∂Ω,

where λ2 is the second eigenvalue of the Laplace operator and u a corresponding
eigenfunction. It is known that u change sign exactly once in virtue of the Courant
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Nodal Domain Theorem, see [CH53]. The geometry and location of the nodal line
Λ = {x ∈ Ω : u(x) = 0 } has received a lot of interest. A very famous conjecture
about the nodal line says that Λ musts touch ∂Ω at exactly two points for all
(simply connected) domains: different versions of the conjecture had been stated
by Payne in [Pay67] and by Yau in [Yau82]. The conjecture has been proved in
convex domains by Melas in [Mel92], see also the paper [Ale94] by Alessandrini.
We refer to Section 5.1 for an overview on this problem.

Of course the computation of the number of critical points of the second
eigenfunction is strongly influenced by the geometry of the nodal line. If it is a
closed curve contained in Ω we expect many critical points, otherwise two is the
minimum number.

The first contribution in Chapter 5 is given by Theorem 5.2.2, where we prove
that the second Dirichlet eigenfunction in a convex domain with large eccentricity
has exactly two non degenerate critical points in Ω: a maximum and a minimum.
Let us recall that the eccentricity of a planar domain is defined as

ecc(Ω) = diam(Ω)
inradius(Ω) ,

where inradius(Ω) is the radius of the largest ball contained in Ω. These domains
were considered by Jerison in [Jer95a] and also in collaboration with Grieser
in [GJ96] where the location of the nodal line Λ was characterized.

Finally we also deal with convex perturbation of rectangles, still studied by
Grieser and Jerison in [GJ09]. In this case it is possible to see that the m-th
eigenfunction has exactly m critical points in Ω, see Theorem 5.2.3.

The original contributions of Chapter 5 can be found in the paper [DRG22b].

We conclude this part of the introduction by pointing out that it is clearly
interesting to consider different kind of differential operators in problem (1) and
some works can be found in the literature. Even if not in the interest of this
thesis let us mention that results in the spirit of the ones quoted before had been
proved for more general elliptic operators, for the p-Laplacian operator −∆p and
also for fully nonlinear ones. We refer to the end of Chapter 1 for some references.
The case of non local operators seems to be, at the moment, less explored, see
next section for a short discussion about this topic.

Some open problems

There are still lots of open problem about the geometric properties of solu-
tions of elliptic problems. About future developments strictly connected with
the results described above, it will be interesting to investigate the existence of
geometric conditions on the domain Ω to limit the number of critical points to
avoid phenomena as the ones described in [GG22, DRG22a]. Moreover, another
future direction of research could be to replace stability with semi-stability in the
construction showed in Theorem 3.1.1.

Another problem it would be very interesting to examine concerns the case of
non local operators, and a good starting point could be the fractional Laplacian.
As the author knowledge, very few is known about the number of critical points
and the shape of the level sets of solutions of non local problem, even for the
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simplest cases. Let us focus on the general problem

{
(−∆)su = f(u) in Ω
u = 0 on RN \ Ω,

(2)

for s ∈ (0, 1). We refer to [DNPV12, RO16, ROS14a, SV12, SV13] and the
reference therein, for the theory about fractional spaces and Dirichlet problems
with the fractional Laplacian operator (included existence, regularity etc. etc.).

The case of the torsion problem f ≡ 1 has been faced by Kulczycki in [Kul17]
where he proves, through the Caffarelli-Silvestre extension [CS07], that if Ω is a
planar, smooth, bounded and convex set, then the fractional torsion function is
concave on Ω for s = 1/2.

Then it is natural to ask if it is possible to extend the preceding result and in
particular if the result by Cabré and Chanillo in [CC98] for semi-stable solution
can be extended to the fractional case. Note that in [ROS14b], Ros-Oton and
Serra treat the case of semi-stable solutions of problem (2) extending the theory
for the classical Laplacian (see Appendix A for a short resume of the classical
case). It is important to point out that the non local nature of the operator
could be very hard to overcome. Furthermore, the bad boundary regularity of
the solutions is another fact that has to be taken into account and finally a
fundamental step in the work of Cabré and Chanillo is based on the good behavior
of the nodal lines of solutions of elliptic equation (see [CF85b], for instance), which
can be worse in the fractional case, as shown in [STT20].

Organization of the work

The thesis is organized as follows: in Chapter 1 we give a short survey about
known result on uniqueness of critical point and quasiconcavity of positive solu-
tions of problem (1). The last section of the chapter is devoted to a collection of
counterexamples to the uniqueness of critical point and to quasiconcavity.

In the sequent chapter we deal with Theorem 2.1.1, that is the extension
of Cabré and Chanillo’s theorem from the case of domain with strictly positive
curvature of the boundary of the domain, to the case of non negative curvature.

In Chapter 3 we extend Gladiali and Grossi’s Theorem 1.2.1 in Theorem 3.1.1
and we show that in dimension N ≥ 3 it is not enough to ask for striclty positive
curvature of the boundary to ensure uniqueness of the critical point. This is
Theorem 3.1.2.

The proofs of Theorem 4.1.2 on the Poisson problem and of Theorem 4.1.5
on small perturbation of convex domain can be found in Chapter 4.

Finally, in Chapter 5 we treat the case of sign-changing solutions focusing
on the Dirichlet eigenfunctions. After a short section on known results about
the nodal line conjecture, we state and prove Theorem 5.2.2 and Theorem 5.2.3
about the number of critical points of eigenfunctions in convex domains with
large eccentricity.

The appendix is divided into two parts: in the first one we resume some well
known fact about stability of solutions of elliptic problems, while in the second
one we prove some technical results needed in Chapter 3.
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Notations
We adopt the following notations:

• unless different indication, x := (x1, . . . , xN ) is a point in the euclidean
space RN , with orthonormal base e1, . . . , eN , for N ≥ 1;

• 0 := (0, . . . , 0) ∈ RN denotes the origin of the euclidean space RN ;

• Br(x) denotes the open ball of radius r > 0 and center x ∈ RN ;

• for a given set Ω ⊆ RN we denote its Lebesgue measure as |Ω|, while the
counting measure is denoted with the symbol ];

• if the closure of the set ω is contained in another set Ω we write ω ⊂⊂ Ω;

• we write A4B for the symmetric difference of two sets A and B, i.e.
(A \B) ∪ (B \A);

• for a given function u : Ω ⊆ RN → R, the (possibly weak) partial derivative
with respect to the direction ei will be denoted by uxi or ∂xiu for all i =
1, . . . , N (anologous notation for higher order derivatives);

• if Ω ⊆ RN is a regular enough domain we denote by ν the other normal
unit vector to its boundary ∂Ω, in particular the other normal derivative
will be denoted by uν or ∂νu;

• given a domain Ω ⊆ RN and an elliptic differential operator L we denote
by λk(L,Ω) the k-th eigenvalue of the operator in Ω with zero Dirichlet
boundary conditions.

Finally, for classical results about partial differential equations - such as max-
imum principles, regularity theory and others - we refer, for instance, to the
textbooks [GT01, Eva10, Jos13].
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Chapter 1

On the number of critical
points of positive solutions

For N ≥ 2, let Ω ⊆ RN be a bounded domain. Assume u is a classical solution
of the following problem 

−∆u = f(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(1.1)

where f : R→ R is a given function.
As explained in the Introduction, we are interested in qualitative properties

of the solutions of the preceding problem and in particular we want to examine
the number of critical points of u and the shape of the superlevel sets {u > c},
where c ∈ R. To this end, it is useful to recall the following notions of concavity.

Definition 1.0.1. A function u : Ω→ R is said to be

(i) concave if u(µx1 + (1 − µ)x2) ≤ µu(x1) − (1 − µ)u(x2) for all x1,x2 ∈ Ω
and µ ∈ (0, 1), if the preceding inequality is strict we say that u is strictly
concave,

(ii) α-concave if uα is concave for α ∈ (0, 1) (see [Ken85] for a more general
definition and related properties),

(iii) log-concave if log u is concave,

(iv) quasiconcave if the superlevel sets {u > c} are convex for all c ∈ R.

The following is a trivial, but important, remark.

Remark 1.0.2. 1) If u ∈ C2(Ω), then convexity of u is clearly equivalent to to
the fact that the hessian matrix of u is negative semidefinite everywhere in
Ω. The Hessian of u is negative definite everywhere if and only if u is strictly
concave.

2) It holds
(i) =⇒ (ii) =⇒ (iii) =⇒ (iv),

but the reverse implications are not true in general.

1



2 Chapter 1. On the number of critical points of positive solutions

3) If the superlevel sets {u > c} are star-shaped for all c ∈ R, then uniqueness
of the critical point holds. In particular, quasiconcavity implies uniqueness of
critical point.

4) More generally, given a monotone function h, we have that h-concavity implies
quasiconcavity, where the definition of h-concavity is the trivial generalization
of the previous ones.

It is natural to ask if the superlevel sets {u > c} inherit the geometric proper-
ties of the domain. In particular, if Ω is convex, since it can be clearly seen as the
superlevel set {u > 0}, one can investigate if this convexity property is preserved
for all c > 0, see also [Lio81, Remark 3]. Anyway, proving the preceding property
can be a very hard task and indeed it is not always true, see Section 1.2. Hence,
taking into account that, as pointed out in the previous remark, quasiconcavity
implies uniqueness of the critical point, clearly a weaker property that it is in-
teresting to study is the uniqueness the critical point and its dependence on the
geometry of the domain. That being said, in this chapter, we will mainly focus
on the case where Ω is a convex domain.

The chapter is organized as follows: in the next section we take in considera-
tion positive solutions of problem (1.1) and we give a short survey about results
where uniqueness of the critical point is proved to be true. Then in Section 1.1.1
we describe the technique related to te Concavity Maximum Principle which al-
lows to prove quasicancavity and in particular uniqueness of the critical point. In
the last section we deal with a series of results where it is shown that uniqueness
does not hold or the superlevel sets are not convex.

1.1 Uniqueness of the critical point
The number of critical points of (positive) solutions of problem (1.1) strongly

depends on the geometry and the topology of the domain. The next two theorems
are useful to understand this dependence.

Before stating the first one let us recall that given a smooth vector field V
defined on a neighbourhood of x ∈ RN , which is an isolated zero of V , the index
of V in x is

ind(V,x) := deg (V,Br(x),0) ,

for suitably small r > 0 and where deg denotes the Browner degree (see, for
instance, the classical texts [Llo78, Dei85] as references on topological degree.
The Poincaré-Hopf Theorem can be stated as follows, see [Mil65].

Theorem 1.1.1 (Poincaré-Hopf Theorem). Given a smooth and bounded domain
Ω ⊆ RN , and a smooth vector field V : Ω → RN , assume that x1, . . . ,xk are all
the zeros of V , they are isolated and that V (x) · ν(x) > 0 for all x ∈ ∂Ω. Then
it holds

k∑
i=1

ind(V,xi) = χ(Ω),

where χ(Ω) is the Euler characteristic of Ω.

Hence if u solves problem (1.1) and we set V = ∇u we can easily derive the
following corollary that gives a constraint on the number of critical points which
depends only on the topology of the domain Ω.
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Corollary 1.1.2. Assume u is a positive solution of problem (1.1) and it has k
isolated critical points x1, . . . ,xk. Then

k∑
i=1

ind (∇u,xi) = (−1)Nχ(Ω).

Let us point out that if, for instance, f is analytic, then the critical points of
u are isolated, see Theorem 1.1.11.

The second theorem gives a lower bound on the number of critical points in
terms of the Lusternik-Schnirelmann category of the domain Ω. Let us recall
some basic fact in this theory which are here adapted to our purposes. We refer
for instance to the books [AM07, Str08] for a more general treatment. First of
all the Lusternik-Schnirelmann category of Ω is given by

cat(Ω) := sup { catΩ(K) | K ⊆ Ω is compact } ,

where for all compact sets K ⊆ Ω one has

catΩ(K) := min
{
` ∈ N |K ⊆

⋃̀
i=1

Ai, where Ai are contractible in Ω
}
.

Then we have the following result.

Theorem 1.1.3. Let u be a positive solution of problem (1.1), then

] {x ∈ Ω | ∇u(x) = 0 } ≥ cat(Ω).

In particular, the preceding results tell us that if we want to find solutions
with only one critical point we need to assume the domain Ω is contractible.

Now, we can start with the description of some results about quasiconcavity
and uniqueness of the critical point. One of the first has been obtained for the
torsion problem, i.e. f ≡ 1, by Makar-Limanov.

Theorem 1.1.4 ([ML71]). Let Ω ⊆ R2 be a convex domain and u be a solution
of the torsion problem 

−∆u = 1 in Ω
u > 0 in Ω
u = 0 on ∂Ω.

Then u has a unique critical point, a nondenerate maximum. Moreover, u is
quasiconcave.

See also [Kim06] for the location of the maximum point in convex domains
close to the ball. Quasiconcavity, and more generally 1

2 -concavity, of the torsion
problem is true also in higher dimension, see Remark 1.1.21.

Before going on, for N ≥ 2, let us recall that the mean curvature of the
boundary of Ω is given by

K := 1
N

tr(dν),

where ν is the unit other normal vector field, which is well defined and regular if
the domain is assumed to be regular enough.

Another important case that has been studied is the first Dirichlet eigenfunc-
tion, which it is well known, is the only - up to a multiplicative factor - positive
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one. A first partial result on the convexity of level sets under some symme-
try assumption can be found in Payne’s work [Pay73]. Then the quasiconcavity
has been proved removing the symmetry assumptions by Brascamp and Lieb
in [BL76], but we refer to the work [APP81] by Acker, Payne and Philippin for a
proof which is more familiar with PDEs methods.

Theorem 1.1.5 ([BL76, APP81]). Let Ω be a convex domains and let u be the
first Dirichlet eigenfunction of the Laplacian, i.e. u solves

−∆u = λ1u in Ω
u > 0 in Ω
u = 0 on ∂Ω,

where λ1 := λ1(−∆,Ω) > 0 is the first eigenvalue. Then u has a unique critical
point, a nondenerate maximum. Moreover, u is quasiconcave.

The proof in [APP81] holds only in dimension 2 under the stronger assumption
K > 0 on ∂Ω, but it gives upper and lover bound for the curvature of all level
sets. More precisely, one can prove that the first eigenfunction is log-concave, for
instance see [CS82]. Moreover, in domains with large eccentricity, the localization
of the critical point and a convergence result to a suitable function related to the
geometry of the domain itself can be found in the work [GJ98] by Grieser and
Jerison.

Other interesting estimates about the location of the maxima points both
for the torsion function, both for the first eigenfunction had been proved by
Magnanini and Poggesi in [MP21].

The preceding results give a very good description of the shape of the solution
u provided Ω is a convex set, but they hold for very specific type of f . A first result
for a more general class of nonlinearities f has been proved by Sperb in [Spe75],
under some additional symmetry assumptions.

In this context, that is if we consider domains satisfying some symmetry
assumptions, a very important result is the fundamental theorem by Gidas, Ni
and Nirenberg in [GNN79] which allows to consider very general nonlinearities in
any dimension.

Theorem 1.1.6 ([GNN79]). Let Ω ⊂ RN be a smooth bounded domain which is
symmetric with respect to the plane xi = 0 for any i = 1, . . . , N and convex with
respect to any directions x1, . . . , xN . Suppose that u is a positive solution to (1.1)
where f is a locally Lipschitz function. Then

(i) u is symmetric with respect to x1, . . . , xN ,

(ii) ∂u
∂xi

< 0 for xi > 0 and all i = 1, . . . , N .

As a consequence of the preceding theorem, it easily follows that u admits
exactly one critical point and, moreover, all the superlevel sets are star-shaped.
See also [Kaw83]. In general, as proved in [HNS16], it is not true that {u > c} is
convex for all c ∈ R if Ω si convex, see Theorem 1.2.3 and Remark 1.2.4.

To remove the symmetry assumptions in Theorem 1.1.6 is not an easy task.
In this context, a partial result has been proved by Lions in [Lio81], where the
technique of the the parabolic flow is used. Another result is due to Kennington,
where in particular it is proved that for λ > 0 and 0 < p < 1, if f(u) = λup, the
uniqueness of the critical point hold. See the following theorem.
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Theorem 1.1.7 ([Ken85]). Let Ω ⊆ RN be a smooth, bounded and convex domain
and let u ∈ C2(Ω) ∩ C0(Ω) be a solution of problem (1.1), where f : (0,+∞) →
(0,+∞) satisfies, for some α ∈ (0, 1), the two following conditions

(i) tα−1f(t) is strictly decreasing with respect to t,

(ii) t(3α−1)/αf(t1/α), or equivalently t(1−2α)/αf(t−1/α), is concave with respect to
t, or (1−2α)(1−3α)f(t)+(5α−1)f ′(t)+t2f ′′(t) ≤ 0 for twice differentiable
f.

Then u is α-concave. In particular, if f(t) := λtp for some constant c > 0 and
p ∈ (0, 1), then u is 1−p

2 -concave.

In the same paper more general results can be found. They involve the equa-
tion −∆u = f(x, u) and also some results about large solutions. See also [Kea85]
for related results only in dimension 2.

Finally, a very important result, that was proved by Cabré and Chanillo
in [CC98], allows to avoid all the symmetry assumptions on Ω and to consider
very general f , but it is assumed that u is a semi-stable solution.

Let us recall the following definition of (semi-)stability.

Definition 1.1.8. A function u is a (semi-)stable solution of the problem (1.1)
if the linearized operator at u is positive (nonnegative) definite, i.e. if for all
ϕ ∈ C∞0 (Ω) one has ∫

Ω
|∇ϕ|2 −

∫
Ω
f ′(u)|ϕ|2 > (≥)0,

or equivalently if the first eigenvalue of the linearized operator −∆− f ′(u) in Ω
is positive (nonnegative).

In Appendix A a short resume about stability of solutions can be found.

Theorem 1.1.9 ([CC98]). For N = 2, assume K > 0 on ∂Ω, i.e. the boundary
of Ω has strictly positive curvature everywhere. Suppose f ≥ 0 and that u is a
semi-stable solution to (1.1). Then u has a unique nondegenerate critical point.

Remark 1.1.10. 1) The preceding result was extended allowing ∂Ω to have
points with zero curvature in [DRGM21], see Chapter 2.

2) The theorem does not hold in higher dimension under only the assumption
that the mean curvature of the boundary is strictly positive, see Theorem 3.1.2
and the related discussion. It is an open problem to determine if or if not
(semi-)stable solutions in convex domains admit a unique critical point for
N ≥ 3.

Let us also mention the following result due to Alessandrini and Magnanini
where the authors show that critical points are isolated in dimension 2 and more-
over they give a constraint on the kind of critical points.

Theorem 1.1.11 ([AM92]). Let Ω ⊆ R2, be a smooth, bounded and simply
connected domain and let u be a solution of problem (1.1), where f > 0 is analytic.
Then the critical points of u are isolated and one has

]{maxima of u} − ]{saddle of u} = 1.
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In the remaining part of this section we collect some other result where unique-
ness of the critical point holds true for particular nonlinearities f .

Remark 1.1.12. Before going on let us briefly recall the situation for f(u) = λup,
λ > 0, 0 ≤ p < N+2

N−2 if N ≥ 3 or p ≥ 0 if N = 2. If Ω is convex then

1) p = 0: i.e. the torsion problem. In this case we know the u is 1
2 -concave, see

Remark 1.1.21 below.

2) 0 < p < 1: in this case we know the u is 1−p
2 -concave.

3) p = 1: i.e. the eigenfunction problem. In this case λ = λ1(−∆,Ω) and we
know the u is log-concave.

4) p > 1: much less is known in this case. Some partial results can be found
below. Let us point out that Theorem 1.1.9 can not be applied, since p > 1
implies that the solutions are not semi-stable.

For least energy solutions in the case f(u) = λup with p > 1, Lin proved the
following result.

Theorem 1.1.13 ([Lin94]). Let Ω ⊆ R2 be a smooth, bounded and strictly convex
domain and let u be the least energy solution of

−∆u = up in Ω
u > 0 in Ω
u = 0 on ∂Ω,

with p > 1. Then u−
p−1

2 is convex in Ω. In particular u is quasiconcave and
uniqueness of the critical point holds true.

The case f(u) = λup with p close to the critical value N+2
N−2 has been studied in

a series of paper by Gladiali, Grossi, Molle and Takahashi, where under suitable
assumptions they prove uniqueness of the critical point and star-shapeness or
convexity of the superlevel sets. The results are summarized in the following
theorem.

Theorem 1.1.14 ([GM03, GG04b, GT10]). Let Ω ⊆ RN , with N ≥ 3, be a
smooth, bounded and convex domain and let uε be a solution of

−∆u = λu
N+2
N−2−ε in Ω

u > 0 in Ω
u = 0 on ∂Ω.

Mreover, assume one of the following situation is verified

(i) λ = N(N − 2) and

lim
ε→0

∫
Ω|∇uε|2

(
∫

Ω|uε|2
∗)2/2∗ = S,

where S is the best constant in the Sobolev embedding and 2∗ := 2N/(N−2);

(ii) N ≥ 4 and λ = 1.



1.1. Uniqueness of the critical point 7

Then for ε small enough there exists a unique maximum point xε which is the
only critical point of uε and the superlevels of uε are strictly star-shaped with
respect to xε.

Finally, if (i) is satisfied and if Ω has strictly positive Gauss curvature at
any point of its boundary, then the level sets of uε have strictly positive Gauss
curvature at any point that is not xε. In particular, the superlevel sets are strictly
convex.

Also the case of non stable solutions for Gelfand problem f(u) = λeu, when
λ is close to 0 has been studied by Gladiali, Grossi and Takahashi.

Theorem 1.1.15 ([GG04a, GT10]). Let Ω ⊆ R2, be a smooth, bounded and
convex domain and for λ > 0 let uλ be a solution of{

−∆u = λeu in Ω
u = 0 on ∂Ω,

such that ‖uλ‖L∞(Ω) → +∞ as λ → 0. Then for λ small enough, the maximum
point xλ is the only critical point of uλ and the superlevels of uλ are strictly
star-shaped with respect to xλ.

If ∂Ω has strictly positive curvature at any point, then the level sets of uλ are
strictly convex.

Remark 1.1.16. 1) The paper [GG04a] deals also with the more general prob-
lem 

−∆u = λf(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

where f is positive, increasing, convex and such that

f(0) > 0, lim
s→+∞

f(s)
s

= +∞,

for small values of λ > 0.

2) Finally, we refer also to the works [GG04b, EMG04] for other results involving
f(u) = λup − µu, with λ, µ > 0 and p > 1.

1.1.1 Concavity Maximum Principle

An important tool to prove quasiconcavity and in particular uniqueness of
the critical point is given by the Concavity Maximum Principle. Here we briefly
describe his main features. Before it, we start this section recalling some classical
strategies that can be adopted to prove the convexity of the level sets for solutions
of problem (1.1), following Kawohl’s book [Kaw85a]. Then after the statement of
the Concavity Maximum Principle we show how it can be used to prove 1/2-half
concavity of the solution of the torsion problem in convex domains.

Given a convex domain Ω ⊆ RN , as explained in [Kaw85a], the most common
strategies one can try to prove that the solutions of problem (1.1) are quasiconcave
are the following ones:

1) show that u is concave, or that u is h-concave for a suitable monotone function
h;
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2) show that the principal curvatures of all superlevel sets are non negative, see
for instance [APP81].

For the first case some sub-strategies can be adopted.

a) Parabolic flow: the linear parabolic operator ∂
∂t − ∆ under homogeneous

Dirichlet boundary conditions preserves some concavity properties of initial
datum u0. Studying the asymptotic behavior as t→ +∞ of the solution of the
initial value problem, one can desume properties on the solutions of semilinear
elliptic problems, see for instance [BL76, Lio81, Ken88, LV08].

b) Concavity Maximum Principle: a continuous function v : Ω → R is convex if
and only if

v

(
x1 + x2

2

)
− v(x1) + v(x2)

2 ≤ 0, for all (x1,x2) ∈ Ω× Ω.

One can verify the preceding inequality by means of a suitable maximum
principle. This approach has been first introduced in [Kor83a], then it was
independently exploited in [Kor83b, CS82] and generalized in [Ken85]. See
also [Kaw85a, Kaw85b, Kaw86, GP93].

c) Constant rank theorem: under suitable assumptions if u solves and equation
of the form ∆u = g(u,∇u,∆u) and if the Hessian of u si nonnegative definite,
then it has constant rank. Then a continuation method can be applied, see
for instance [CF85a, KL87, Lin94]

Let us refer to the book [Kaw85a] for the description of other possible tech-
niques and for a more complete list of references.

To describe the main features of the Concavity Maximum Principle, let us
introduce the following definition.

Definition 1.1.17. Let u be defined in Ω where Ω is a bounded and convex
domain in RN . Then for x1,x2 ∈ Ω and µ ∈ [0, 1] the concavity function is given
by

Cu(x1,x2, µ) := u(µx2 + (1− µ)x1)− µu(x2)− (1− µ)u(x1).

Remark 1.1.18. As explained in [Kor83a], the concavity function Cu(x1,x2, µ)
is the difference height, with sign, between the graph of u and the line segment
joining (x1, u(x1)) to (x2, u(x2)), above the point µx2 +(1−µ)x1. In particular,
the function u is convex if and only if Cu ≤ 0 for all x1,x2 ∈ Ω and µ ∈ (0, 1).
Clearly, it is enough to consider µ = 1/2.

The following theorem is a maximum principle for the concavity function. Let
us point out that more general statements can be found in the original papers
and in the book [Kaw85a]. We refer also to the paper [Ken85], by Kennington.

Theorem 1.1.19 (Concavity Maximum Principle). Let Ω ⊆ RN be a bounded
and convex domain and let u ∈ C2(Ω) be a solution of

N∑
ij=1

aij(∇u(x))uij(x)u = b(x, u,∇u),

where for all p ∈ RN the matrix (aij(p))ij is symmetric and positive semidefinite.
Moreover assume that
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(i) b(x, ·, p) is strictly decreasing, for all x ∈ Ω, for all p ∈ RN ,

(ii) b(·, ·, p) is harmonic concave for all p ∈ RN , that is (b(·, ·, p))−1 is convex,
for all p ∈ RN , jointly in the first two arguments.

Then if the maximum of Cu is positive, it is not attained in Ω× Ω× [0, 1].

Remark 1.1.20. A variant of the Concavity Maximum Principle can be proved
also for parabolic equations. See [Kor83b], for instance.

The Concavity Maximum Principle allows to prove log and power concavity
of solutions of some elliptic problems. To show how, a good example can be the
proof of the fact that the torsion function is 1

2 -concave if Ω ⊆ RN is a strictly
convex domain. Here, we sketch the one that can be found in the book [Kaw85a].
Given such a Ω let u solves {

−∆u = 1 in Ω
u = 0 on ∂Ω.

Then, setting v := −
√
u, it is easy to see that v satisfies the following problem

∆v = − 1
v

(
|∇v|2 + 1

2

)
in Ω

v < 0 in Ω
v = 0 on ∂Ω.

Thus, it is immediate to verify that

b : Ω× R× RN −→ R

(x, t, p) 7−→ −1
t

(
|p|2 + 1

2

)
,

satisfies assumptions (i) and (ii) of Theorem 1.1.19. As a consequence, if the
maximum of Cv is positive, then it is not attained in Ω × Ω × [0, 1]. Finally, it
is not difficult to show that the maximum of Cv on ∂(Ω× Ω)× [0, 1] can not be
positive, see [Kaw85a, Lemma 3.12], and then Cv ≤ 0 in Ω × Ω × (0, 1). Hence,
taking into account Remark 1.1.18, we can conclude that v is convex, that is

√
u

is concave in Ω, as claimed.

Remark 1.1.21. We just showed that, as a consequence of the Concavity Max-
imum Principle in Theorem 1.1.19, one can prove 1

2 -concavity of the solution of
the torsion function in convex domains, generalizing Theorem 1.1.4. Note that it
holds in any dimension N ≥ 2. See also Theorem 4.1.1.

In the literature we can find a lot of works where - possibly slightly different
versions of - the Concavity Maximum Principle are used to prove quasiconcavity
of functions. Among them let us quote the following papers by Korevaar [Kor83b],
Caffarelli and Spruck [CS82], Kennington [Ken85] and Kawohl [Kaw85b].

The results apply, for instance, to the Schrödinger eigenvalue problem

−∆u+ V (x)u = λu,

with V convex, λ > 0 and to

−∆u = ug(u),

where g′(u) ≤ 0 and g′(u) + ug′′(u) ≤ 0. A typical example is g(u) = λ − µup
with p, µ > 0.
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1.1.2 Related problems

A related problem that has been extensively studied concerns the case of
convex rings. We say that Ω is a convex ring if

Ω := Ω1 \ Ω2,

where Ω1,Ω2 ⊆ RN are two non empty, bounded and convex domains such that
Ω2 ⊂⊂ Ω1. Hence, given M > 0, it is natural to investigate when u solution of
the semilinear elliptic problem

−∆u = f(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω1

u = M on ∂Ω2,

inherits the geometry of the domain, and in particular when u is quasiconcave.
Clearly here the notion of quasiconcavity has to be slighty modified in {u >
c} ∪ Ω2 is convex for all c ∈ R. For this problem we refer to [Gab57, CS82,
CF85a, Kaw85a, Kor90, DK93, CS03, Sal05, CS06, BLS09, Gre09, HNS16] and
the references therein.

We point out that some result can be found also for different boundary con-
ditions and different differential operators. We list here some references, but we
emphasize that the list does not pretend at all to be exhaustive.

About other boundary conditions we mention [Sak90] for Neumann and Robin
nonlinear problems and still in the Robin case the works [ACH20, CF21] for the
first eigenfunction and the torsion problem. Some result for non homogeneus
Dirichlet boundary conditions can be found in [Ale87, DLT18].

An important work in the case of the p-Laplacian is [Sak87] by Sakaguchi.
Convexity of viscosity solutions for some fully nonlinear elliptic equations has
been established by Alvarez, Lasry and Lions in [ALL97].

1.2 Some counterexamples

In this section we collect some known result where uniqueness of the critical
point does not hold or in general where the geometry of the solution does not
inherit the one of the domain.

Let us start by recalling that in non convex domains we can not expect unique-
ness of the critical point for solutions of problem (1.1) as illustrated by the well
known case of a dumbbell domain. Indeed if we consider Ω to be a domain given
by two disjoint circular disks of radius one linked by a thin tube of width ε, then
if ε is small enough, we have that the solution of the torsion problem has at least
two maxima. A proof of this fact can be found in [Spe75], for instance.

A more interesting and delicate situation concerns the case of domains which
are close to be convex: it can be shown that the number of critical points can
be large as we want. We refer to the following theorem proved by Gladiali and
Grossi in [GG22] for the torsion problem and to Remark 1.2.2. Let us recall that
if Ω is convex then the solution of the torsion problem is quasiconcave and in
particular it has a unique critical point.



1.2. Some counterexamples 11

Figure 1.1: The domain Ωε and in blue the superlevel set {uε > c} in Theo-
rem 1.2.1 for k = 2.

Theorem 1.2.1 ([GG22]). For any k ∈ N, there exists a family of bounded
domains Ωε in R2 and a solution uε to

−∆uε = 1 in Ωε

uε > 0 in Ωε

uε = 0 on ∂Ωε

such that for ε small enough

(i) Ωε is star-shaped with respect to an interior point;

(ii) Ωε locally converges to the strip S := { (x1, x2) ∈ R2 | −1 < x2 < 1 } for
ε→ 0, i.e. for all compact set K ⊆ R2 it holds |K∩(S4Ωε)| → 0 as ε→ 0;

(iii) The curvature of ∂Ωε change sign once and

min
∂Ωε

K→ 0 as ε→ 0;

(iv) for suitable c > 0, the superlevel set {uε > c} is composed by at least k
different connected components, in particular uε has at least k maximum
points, see Figure 1.1.

Remark 1.2.2. 1) As a consequence of this result, we will get that the condition
K ≥ 0 is sharp to get uniqueness of the critical point for convex Ω ⊆ R2, see
Remark 2.1.2 for more details.
Moreover, the preceding theorem shows that as soon as the curvature of the
boundary of Ω is negative, then not only we loose the uniqueness of the critical
point, but also we can find solutions with an arbitrary large (finite) number
of critical points.

2) It is interesting to note that if we consider small perturbations of a given
bounded convex set, then the critical point is unique even in domains with
negative curvature, see Theorem 4.1.5.

3) A similar result has been proved in [DRG22a] for N ≥ 2 and for more general
nonlinearities, see Chapter 3.

As discussed in the preceding section, one may ask if every positive solutions
of (1.1) in a convex domain is quasiconcave: indeed, among the others, this is
the case for f ≡ 1 or f(u) = λ1(−∆,Ω)u. However, the answer is negative and
it was proved by Hamel, Nadirshavili and Sire in the following theorem.
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Theorem 1.2.3 ([HNS16]). In dimension N = 2, there are some smooth bounded
convex domains Ω and some f ∈ C∞([0,+∞)) such that f ≥ 1 and such that the
problem 

−∆u = f(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

admits both a quasiconcave solution v and a solution u which is not quasiconcave.

Remark 1.2.4. 1) The domains of the preceding theorem satisfy the symmetry
assumptions of the Gidas, Ni, Nirenberg’s Theorem 1.1.6 and then both the
solutions admits exactly one critical point.

2) It is an open question if the semi-stability of the solution in a convex domain
is a sufficient condition to have quasiconcavity. Indeed it is not know if the
solution u of the preceding theorem is stable or not.

3) It is then also natural to investigate what happens if the domain is star-shaped.
Are all the superlevel sets of the solutions star-shaped? Also in this case the
answer is negative in general: indeed it is not true for the torsion problem, as
can be easily deduced by Theorem 1.2.1 by Gladiali and Grossi.

We conclude this part by mentioning that in [Kaw94] Kawhol asks if given a
domain Ω which is convex in the x1 direction, then also the superlevel sets of the
first eigenfunctions are convex in the x1 direction. The answer is negative, and
the counterexample has been illustrated by Weth in [Wet11].

Theorem 1.2.5 ([Wet11]). There exist bounded domains Ω ⊆ R2 such that they
are convex in the x1 direction, but the first Dirichlet eigenfunction has superlevel
sets which are not.

Remark 1.2.6. The same conclusion holds true also for the torsion problem,
see [Wet11].



Chapter 2

Convex domains with
vanishing curvature

The chapter is devoted to the extension of Cabré-Chanillo’s Theorem 1.1.9
from the case of domains whose boundaries have strictly positive curvature to
the one where the curvature of ∂Ω is allowed to vanish somewhere.

The results can be found in [DRGM21].

2.1 Main result
In this chapter N = 2. For convenience we write coordinates as (x, y) instead

of (x1, x2). We recall that we are considering classical solutions of
−∆u = f(u) in Ω
u > 0) in Ω
u = 0 on ∂Ω,

(2.1)

where f : (0,+∞)→ R is a smooth nonlinearity. The main result of this chapter
is the following.

Theorem 2.1.1. Assume f(0) ≥ 0 and let Ω ⊆ R2 be a smooth bounded convex
domain whose boundary has nonnegative curvature and such that the subset of
zero-curvature consists of isolated points or segments.
If u is a semi-stable solution of (2.1) then u has a unique critical point x0.
Moreover x0 is a nondegenerate maximum point of u.

We point out that the extension of Theorem 1.1.9 when the curvature of ∂Ω
vanishes somewhere is nontrivial. Indeed the proof in Theorem 1.1.9 does not
work in this case because the vector field Z considered at page 7 in [CC98] is not
well defined as the curvature of ∂Ω vanishes.
Our main idea is to consider the vector field T : Ω→ R2 - already used in [CC98]
- given by

T (q) = (uyy(q)ux(q)− uxy(q)uy(q), uxx(q)uy(q)− uxy(q)ux(q)), (2.2)

for q ∈ Ω. One of the main tool of our proof is to compute the topological degree
deg(T,Ω,0) of T . In particular if the curvature of ∂Ω is positive then we have
that (see Lemma 2.2.2)

deg(T,Ω,0) = 1.

13
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Ω

Figure 2.1: Example of domain for which Theorem 2.1.1 holds.

A deeper analysis of the degree of T concerns the index of the zeros of T . It is
not difficult to see (Lemma 2.2.3) that if T (q) = 0 then either q is a critical point
of u or q is a critical point of the directional derivative

∂u

∂σ
:= uy(q)ux − ux(q)uy.

In Lemma 2.2.5 we will compute the index in both cases. This is one of the
crucial steps of the proof. We remark that this approach provides a quicker proof
of Theorem 1.1.9 because it simplifies the topological approach at pages 6 − 8
in [CC98].
Eventually a careful analysis of the critical points of ∂u

∂σ on ∂Ω and of the nodal
lines of ∂u∂σ in Ω ends the proof,

Remark 2.1.2. We stress that our result is sharp in the sense that, as proved
in [GG22], it is possible to construct a bounded domain Ω ⊆ R2 and a function
u verifying {

−∆u = 1 in Ω
u = 0 on ∂Ω,

such that u admits an arbitrarily large number of critical points. Here ∂Ω admits
points with negative curvature but close to 0 as we want and Ω locally converges
to a convex domain, see Theorem 1.2.1 for the precise statement.

The rest of the chapter is organized as follows: in Section 2.2 we recall some
preliminary results, basically proved in [CC98], and prove the main properties of
the vector field T . In Section 2.3 we prove Theorem 2.1.1.

2.2 Preliminary results

Let Ω ⊆ R2 be a smooth bounded domain and let u be a solution to (2.1)
where f ∈ C1,α(R+,R+) with α ∈ (0, 1]. Recall that u ∈ C3(Ω) by the standard
regularity theory.

As in [CC98], we introduce the following notation: for every θ ∈ [0, 2π) we
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write eθ = (cos θ, sin θ) and we set

uθ := cos θ ux + sin θ uy = ∂u

∂eθ
,

Nθ := { p ∈ Ω | uθ(p) = 0 } ,
Mθ := { p ∈ Nθ | ∇uθ(p) = 0 } .

Moreover, if the set {u > c } is smooth then the curvature of tis boundary is
given by

K := −
uyyu

2
x − 2uxyuxuy + uxxu

2
y

|∇u|3
.

The following result tells us that the nodal sets of a semi-stable solution
of (2.1) are smooth curves without self intersection and every critical point of u
is nondegenerate.

Proposition 2.2.1. Let Ω ⊆ R2 be a smooth bounded convex domain whose
boundary has nonnegative curvature and such that the curvature vanishes only
at isolated points. Assume that f(0) ≥ 0. If u is a semi-stable solution of (2.1)
then for every θ ∈ [0, 2π), the nodal set Nθ is a smooth curve in Ω without self-
intersection which hits ∂Ω at the two end points of Nθ. Moreover in any critical
point of u the Hessian has rank 2.

Proof. The proof is given in [CC98] in the case of positive curvature. For reader’s
convenience first we report the key steps of the proof in [CC98] and next we add
the case of zero curvature at isolated points of the boundary.

For any θ ∈ [0, 2π) we have that

i) around any p ∈ (Nθ ∩ Ω) \Mθ the nodal set Nθ is a smooth curve;

ii) if p ∈ Mθ ∩ Ω, then Nθ consists of at least two smooth curves intersecting
transversally at p (here the proof uses a result in [CF85b]);

iii) there is no nonempty domain H ⊆ Ω such that ∂H ⊆ Nθ (where the bound-
ary of H is considered as a subset of R2);

iv) if pi ∈ Nθ ∩ ∂Ω by the implicit function theorem one has that around pi, Nθ

is a smooth curve intersecting ∂Ω transversally in pi;

v) if Nθ ∩ ∂Ω = {p1, p2} then Mθ = ∅ and any critical point of u verifies that
Hessu(p) has rank 2.

We stress that all the above properties hold for semi-stable solutions u in any
domain Ω.

Now we consider the case where the curvature of the boundary vanishes at
isolated points. By the compactness of ∂Ω and the smoothness of u we have that
the curvature K vanishes only at finitely many points of ∂Ω.

Assume K(p1) = 0 and K(p2) > 0. If there exists ρ > 0 such that Nθ∩Bρ(p1)∩
Ω = ∅ then the nodal curve Nθ starting from p2 has to enclose a nonempty domain
H ⊆ Ω with ∂H ⊆ Nθ, but this yields to a contradiction. OtherwiseNθ consists of
at least one curve starting from p1 and disjoint from ∂Ω (sinceNθ∩∂Ω = {p1, p2}).
If there are more then one curve this implies again that there exists a subdomain
H as before and this is a contradiction. Hence as in [CC98], around p1 we have
that Nθ is a smooth curve intersecting ∂Ω in p1.
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If K(p1) = K(p2) = 0 we can argue similarly to get that around each pi, Nθ

is a smooth curve intersecting ∂Ω in pi, for i = 1, 2. Note that if there exists
ρ > 0 such that Nθ ∩ Bρ(p1) ∩ Ω = Nθ ∩ Bρ(p2) ∩ Ω = ∅ then, since Nθ ∩ Ω
is nonempty by the fact that there exists at least a critical point of u in Ω, the
nodal set enclose again a domain as before.

The remaining claims of the proposition follow arguing as in [CC98].

For u solution of (2.1), consider the map T : Ω→ R2 given by

T (q) = (uyy(q)ux(q)− uxy(q)uy(q), uxx(q)uy(q)− uxy(q)ux(q)).

Since u ∈ C3(Ω), T is of class C1. In next lemmata we state some important
properties of the vector field T .

Lemma 2.2.2. Let D ⊆ Ω be a smooth convex domain such that ∂D has positive
curvature. Then deg(D,T,0) = 1.

Proof. Let p = (xp, yp) ∈ Ω and consider the homotopy

H : [0, 1]× Ω→ R2

(t, q) 7→ tT (q) + (1− t)(q − p).

H is an admissible homotopy, i.e. H
(
t, (x, y)

)
6= 0 for any t ∈ [0, 1] and (x, y) ∈

∂Ω. Otherwise, there would exist τ ∈ [0, 1] and q = (x, y) ∈ ∂Ω such that
H(τ, q) = 0, i.e.{

τ(uyy(q)ux(q)− uxy(q)uy(q)) = (τ − 1)(x− xp)
τ(uxx(q)uy(q)− uxy(q)ux(q)) = (τ − 1)(y − yp).

(2.3)

Then, multiplying the first equation by ux(q), the second by uy(q) and summing
we get

τ(uyy(q)u2
x(q)− 2uxy(q)ux(q)uy(q) + uxx(q)u2

y(q))
= (τ − 1)[(x− xp)ux(q) + (y − yp)uy(q)],

and writing ν = (νx, νy) for the unit normal exterior vector at q, it follows

− τK(q)|∇u(q)|3 = (τ − 1)uν(q)[(x− xp)νx + (y − yp)νy]. (2.4)

Since Ω is strictly star-shaped with respect to the point p we have (x− xp)νx +
(y − yp)νy > 0. Since K(q) > 0 and uν(q) < 0 by (2.4) we get τ = 0 and thanks
to (2.3) this yields to q = p which is clearly a contradiction.

Then H is an admissible homotopy and so we conclude

deg(Ω, T,0) = deg(Ω, Id− p,0) = 1.

Lemma 2.2.3. If q ∈ Ω is such that T (q) = 0 then either

q is a critical point for u,

or
there exists θ ∈ [0, 2π) such that q ∈Mθ.
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Proof. Of course if q is a critical point for u then T (q) = 0. So suppose that
q is not a critical point for u and consider θ ∈ [0, 2π) such that (cos θ, sin θ) =(

uy(q)√
u2
x(q)+u2

y(q)
,− ux(q)√

u2
x(q)+u2

y(q)

)
. Then it is straightforward to verify that

uθ = cos θux + sin θuy

satisfies uθ(q) = 0 and ∇uθ(q) = 0. Hence q ∈Mθ.

Remark 2.2.4. We point out that if q ∈Mθ then up to a rotation we can assume
that

ux(q) = uxx(q) = uxy(q) = 0. (2.5)

From now if q is an isolated zero of the vector field T , let us recall that
ind(T, q) = deg

(
T,Br(q),0

)
, for some r > 0 small enough.

Lemma 2.2.5. Let q ∈ Ω be such that T (q) = 0. Then we have that

(i) if q is a nondegenerate critical point for u, then ind(T, q) = 1;

(ii) if q ∈ Mθ for some θ ∈ [0, 2π) and it is a nondegenerate critical point for
uθ then ind(T, q) = −1.

Proof. One has

JacT =
(
uxxuyy − u2

xy + uxuxyy − uyuxxy uxuyyy − uyuxyy
uyuxxx − uxuxxy uxxuyy − u2

xy + uyuxxy − uxuxyy

)
.

If q is a critical point for u we have

det JacT (q) = (det Hessu(q))2,

and since it is nondegenerate we get that ind(T, q) = 1.
On the other hand if q ∈Mθ by Remark 2.2.4 we have that (2.5) holds and then

det JacT (q) = −u2
y(q)(u2

xxy(q)− uxxx(q)uxyy(q))
= −u2

y(q)(u2
xxy(q) + u2

xxx(q)),

where the last equality follows differentiating (2.1). Finally the nondegeneracy
of q for ∇uθ gives that u2

xxy(q) + u2
xxx(q) 6= 0 and the claim follows.

As remarked in the introduction, the previous lemma gives a simplified proof
of Cabré-Chanillo’s result.

Proof of Theorem 1.1.9. By Proposition 2.2.1 we have that Mθ = ∅ for any
θ ∈ [0, 2π). Hence if T (q) = 0 then q is a critical point of u. Moreover it is
nondegenerate, otherwise u ∈Mθ for some θ ∈ [0, 2π).

Finally by Lemma 2.2.2 and Lemma 2.2.5 we have

1 = deg(T,Ω,0) =
∑

q such that ∇u = 0
ind(T, q) = ]{critical points of u},

which gives the claim.
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Corollary 2.2.6. Let D ⊆ Ω be such that Mθ ∩ D = ∅ for all θ ∈ [0, 2π) and
0 6∈ T (∂D). If deg(D,T,0) = 1, then u has exactly one critical point in D which
is a maximum with negative definite Hessian.

Proof. Considering that Mθ ∩D = ∅ for all θ ∈ [0, 2π) implies that the Hessian
of u has maximal rank in every critical point in D, the proof easily follows from
Remark 2.2.4 and Lemma 2.2.5.

We end this section by proving a technical result which will be useful later.
The proof is essentially the one in [Maj].

Lemma 2.2.7. Let Ω ⊆ { (x, y) ∈ R2 | y < 0 } be a bounded smooth domain such
that ∂Ω is tangent to the x-axis at 0. Let F ∈ C2(Ω,R) with

F (0) = Fx(0) = Fy(0) = Fxy(0) = 0, Fxx(0) < 0, and Fyy(0) > 0.

Then there exist δ, η > 0 and two functions Y1 ∈ C1([−δ, 0], [−η, 0]) and Y2 ∈
C1([0, δ], [−η, 0]) such that

(i) Y1(0) = Y2(0) = 0,

(ii) Y ′1(0) =
√
−Fxx(0)
Fyy(0) , Y

′
2(0) = −

√
−Fxx(0)
Fyy(0) ,

(iii) F (x, y) = 0 if and only if y = Y1(x) for x ∈ [−δ, 0] and y = Y2(x) for
x ∈ [0, δ].

Proof. Since Fxx(0) < 0 and Fyy(0) > 0, there exists η > 0 such that

Fxx(x, y) < 0 and Fyy(x, y) > 0, for (x, y) ∈ Ω ∩ [−η, η]× [−η, 0].

From now on we work with (x, y) ∈ Ω ∩ [−η, η] × [−η, 0]. Since Fx(0) = 0 and
Fxx(0) < 0 it follows that

F (x, y) < 0, for (x, y) ∈ ∂Ω with 0 < |x| ≤ η′,

where 0 < η′ ≤ η. Moreover, by the strictly convexity of the function

y 7→ F (x, y), for x fixed,

and the fact that Fy(0) = 0, one has

F (0, y) > 0, for y 6= 0.

In particular F (0,−η′) > 0 and by continuity F (x,−η′) > 0 for −δ < x < δ,
where 0 < δ ≤ η′. Now, for −δ < x ≤ 0 the function

y 7→ F (x, y),

is such that

F (x, y) < 0, for (x, y) ∈ ∂Ω F (x,−η′) > 0, Fyy(x, ·) > 0,

and since y > −η′ then there exists a unique yx ∈ (y,−η′) such that F (x, yx) = 0;
furthermore, since Fyy(x, y) > 0, one has Fy(x, yx) < 0. Then the zero set of F
is given by a continuous function Y1 : [−δ, 0] → [−η, 0] (where the continuity
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in 0 holds since we can choose η arbitrarily small). From the implicit function
theorem we have Y1 ∈ C0([−δ, 0]) ∩ C1([−δ, 0)) with

Fx(x, Y1(x)) + Fy(x, Y1(x))Y ′1(x) = 0, for x 6= 0. (2.6)

Moreover, from

F (x, y) = 1
2(Fxx(0) + o(1))x2 + 1

2(Fyy(0) + o(1))y2, (2.7)

we deduce that (x, Y1(x)) belongs to a cone around the line y = −Fxx(0)
Fyy(0)x and it

is differentiable at 0 with Y ′1(0) =
√
−Fxx(0)
Fyy(0) . Indeed, for y = Y1(x) in (2.7) we

obtain
Y1(x)2 = − Fxx(0)

Fyy(0) + o(1)x
2 + x2

Fyy(0) + o(1)o(1),

then

Y1(x) =
(√
−Fxx(0)
Fyy(0) + o(1)

)
x, (2.8)

and for x→ 0 we get the claim. Moreover, we have

Fx(x, y) = Fxx(0)x+ o(x+ y),
Fy(x, y) = Fyy(0)y + o(x+ y),

and then from (2.6) and (2.8) it follows

Y ′1(x) = −Fx(x, Y1(x))
Fy(x, Y1(x))

= − Fxx(0)x+ o(x) + o(Y1(x))
Fyy(0)Y1(x) + o(x) + o(Y1(x))

= − Fxx(0) + o(1)

Fyy(0)
√
−Fxx(0)
Fyy(0) + o(1)

=
√
−Fxx(0)
Fyy(0) + o(1) for x→ 0,

that is Y1 ∈ C1([−δ, 0]). For 0 ≤ x < δ we can argue analogously.

Remark 2.2.8. A similar result can be proved for interior points of the domain,
see [Maj].

2.3 Proof of Theorem 2.1.1

In this section we prove the main results of the chapter. First of all we fix
the assumptions on the domain Ω.

(HΩ) Ω is a convex domain such that the curvature is zero at a single point of
its boundary and positive elsewhere. Up to a rotation and a translation we
assume Ω ⊆ { (x, y) ∈ R2 | y < 0 } such that ∂Ω is tangent to the x-axis in
0, which is the only point where the curvature is zero.
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Theorem 2.3.1. Suppose that Ω satisfies (HΩ). If u is a semi-stable solution
of (2.1) then u has a unique critical point x0. Moreover x0 is the maximum of u
and it has negative definite Hessian.

To prove the theorem, we need the following auxiliary lemma.

Lemma 2.3.2. Suppose that Ω satisfies (HΩ), u is a semi-stable solution of (2.1)
and uxy(0) = 0. Then Ky(0) < 0.

Proof. From assumption K(0) = 0 and from ux(0) = 0 we easily get that uxx(0) =
0. It follows that

Ky(0) = −
uxxy(0)u2

y(0)
|∇u|3

.

We claim that
uxxy(0) > 0, (2.9)

which ends the proof since uy(0) = uν(0) < 0 by the Hopf boundary lemma. In
order to prove (2.9) we divide the proof in four steps.

Step 1: uxxy(0) 6= 0.
Since uy(0) 6= 0, by the implicit function theorem we get that near the origin
one has u(x, y) = 0 if and only if y = ϕ(x), for some function ϕ. In particular,
by the assumptions on the boundary of Ω, we have ϕ(0) = ϕ′(0) = ϕ′′(0) =
ϕ′′′(0) = 0 and differentiating u(x, ϕ(x)) = 0 we deduce uxxx(0) = 0. Moreover,
differentiating (2.1), we get that also uxyy(0) = 0. If uxxy(0) = 0, then the Taylor
expansion of ux in a neighborhood of 0 becomes

ux(x, y) = homogeneous harmonic polynomial of order three +O
(
(x2 + y2)2),

This means that locally N0 = {ux = 0 } consists of at least three branches of
curves and at least two must be entering in Ω, a contradiction with Proposi-
tion 2.2.1.

Step 2: parametrization of N0 near the origin.
Let F (x, y) = ux(x, y) with (x, y) ∈ Ω, then up to a rotation and eventually
changing sign one has

F (0) = Fx(0) = Fy(0) = Fxy(0) = 0, −Fxx(0) = Fyy(0) > 0.

Then we can apply Lemma 2.2.7 and taking into account (2.8) and the fact that
ux = 0 consist in exactly one branch entering in Ω from 0, the nodal curve N0
can be parametrized as

C =
{
x = g(t)
y = t

t ∈ [−δ, 0],

for some δ > 0 and g(t) = o(t).
Step 3: uxx

(
g(t), t

)
≤ 0 for t close to 0.

Let (x, y) ∈ ∂Ω close to 0 with x < 0 and (g(y), y) ∈ C. Since x < 0, ux(x, y) > 0
for x ≤ x < g(y) and ux(g(y), y) = 0 we derive that uxx(g(y), y) ≤ 0.

Step 4: end of the proof.
Set H(t) := uxx

(
g(t), t

)
for t ∈ [−δ, 0]. By the previous step we have that

H(t) ≤ 0 and by the assumptions on Ω one has H(0) = 0. Hence

H ′(0) ≥ 0.
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Figure 2.2: The construction of Case 2 in the proof of Theorem 2.3.1

Finally, H ′(t) = uxxx
(
g(t), t

)
g′(t) + uxxy

(
g(t), t

)
and so 0 ≤ H ′(0) = uxxy

(
0)

which gives the claim thanks to Step 1.

We can now conclude the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. As remarked we have ux(0) = uxx(0) = 0 and uy(0) <
0. We now distinguish the two cases. according to whether uxy(0) vanishes or
not.

Case 1: uxy(0) 6= 0.
Similarly as in the proof of Lemma 2.2.2 we consider the map T : Ω→ R2 defined
in (2.2) and the homotopy

H : [0, 1]× Ω→ R2

(t, q) 7→ tT (q) + (1− t)(q − p),

for some p = (xp, yp) ∈ Ω. Let us show that H is an admissible homotopy.
Otherwise there would exist τ ∈ [0, 1] and q = (x, y) ∈ ∂Ω such that (2.3)
and (2.4) hold. Then we deduce K(q) = 0 and τ = 1, which thanks to the first
equation of (2.3) yields to −uy(0)uxy(0) = 0: a contradiction. Then H is an
admissible homotopy and so

deg(Ω, T,0) = deg(Ω, Id− p,0) = 1.

The claim follows from Corollary 2.2.6.

Case 2: uxy(0) = 0.
This case is more delicate because T (0) = 0 and since 0 ∈ ∂Ω the degree of T is
not well defined. For this reason we introduce Ωε := Ω\Dε where Dε is contained
in a ball of radius ε > 0 centered in the origin and it is chosen in such a way that

|∇u| 6= 0, in Dε ∩ Ω, (2.10)
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and
Ωε is star-shaped with respect to some p = (xp, yp), (2.11)

(such an ε exists by the Hopf boundary lemma). Now, consider again the map
T ∈ C1(Ωε,R2). In this way the degree of T is well defined and if the homotopy

Hε : [0, 1]× Ωε → R2 (2.12)
(t, q) 7→ tT (q) + (1− t)(q − p), (2.13)

is admissible then we deduce

deg(Ωε, T,0) = 1.

Assume, by contradiction, that the homotopy Hε is not admissible. Hence, there
exist τε ∈ [0, 1] and qε = (xε, yε) ∈ ∂Ωε such that Hε(τε, qε) = 0, i.e.{

τε(uyy(qε)ux(qε)− uxy(qε)uy(qε)) = (τε − 1)(xε − xp)
τε(uxx(qε)uy(qε)− uxy(qε)ux(qε)) = (τε − 1)(yε − yp).

(2.14)

Proceeding as in the previous step we get

− τεK(qε)|∇u(qε|3 = (τε − 1)[(xε − xp)ux(qε) + (yε − yp)uy(qε)]. (2.15)

Since for all q = (x, y) ∈ ∂Ω, writing again ν = (νx, νy) for the unit normal
exterior vector in q, we have

(x− xp)ux(q) + (y − yp)uy(q) = uν(q)[(x− xp)νx + (y − yp)νy] < 0,

by continuity it follows that (xε−xp)ux(qε)+(yε−yp)uy(qε) < 0 for all qε ∈ ∂Ωε.
Since K > 0 on ∂Ω \ {0}, from (2.15) it follows that qε ∈ ∂Dε ∩Ω and K(qε) ≤ 0.
Then the vertical line x = xε hits ∂Ω in a unique point (xε, y(xε)), with y(xε) >
yε. Since K(xε, y(xε)) ≥ 0, there exists pε ∈ Dε ∩Ω such that Ky(pε) ≥ 0 and for
ε→ 0 we have Ky(0) ≥ 0, but this is in contradiction with Lemma 2.3.2.

Since deg(Ωε, T,0) = 1 it is possible to apply Corollary 2.2.6 to get that
there exists exactly one critical point in Ωε (a maximum with negative definite
Hessian). Moreover by the assumptions on ε that there are no critical points in
Bε ∩ Ω and the claim follows.

We now treat domains where the curvature vanishes at a segment of its bound-
ary.

Theorem 2.3.3. Let Ω ⊆ { (x, y) ∈ R2 | y < 0 } be a smooth open bounded, con-
vex domain, whose boundary has nonnegative curvature and such that the zero
curvature set is an interval Γ on the x-axis. If u is a semi-stable solution of (2.1)
then u has a unique critical point x0. Moreover x0 is the maximum of u and it
has negative definite Hessian.

Proof. We want to argue as in Proposition 2.2.1 to show that for every θ ∈
(0, π) ∩ (π, 2π), the nodal set Nθ is a smooth curve in Ω homeomorphic to the
closed interval [0, 1] (without self-intersection) which intersects ∂Ω at the two end
points of Nθ and Mθ = ∅.
First we recall that there exists a unique point p ∈ ∂Ω \ Γ such that ux(p) = 0
and in a neighborhood of p, N0 is a smooth curve that intesects ∂Ω transversally
at p.
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Next we claim that there exists at least a point ξ ∈ Γ such that around that
point N0 consists exactly of 2 branches of curves: the first is Γ while the second
intersects ∂Ω at ξ. Indeed if there exists ε > 0 such that Ω∩N0∩(R×(−ε, 0]) = ∅
then the nodal curve N0 starting from p has to enclose a nonempty domainH ⊆ Ω
with ∂H ⊆ N0, but this yields a contradiction by Proposition 2.2.1. Analogously
we get that we cannot have more than one branch of N0 exiting at ξ, otherwise
we create again such a domain H ⊆ Ω.

Finally we have the uniqueness of ξ ∈ Γ such that N0 consists of one curve
starting from ξ and disjoint from ∂Ω. Indeed if there exists another point η ∈ Γ
with the same property we can argue as before to get the existence of H ⊆ Ω
which yields a contradiction.

So we have proved that N0 is the union of two smooth curves in Ω: one
is the subset of the boundary Γ and the other is homeomorphic to the closed
interval [0, 1] (without self-intersection) and intersects ∂Ω at the two end points.
They intersect each other only in the point ξ. Moreover we have Mθ = ∅ and
in any critical point q ∈ Ω of u the Hessian has rank 2 (same argument of
Proposition 2.2.1).

Up to a translation we can assume ξ = 0. We point out that for all q ∈ Γ, by
the Hopf boundary lemma and K = 0, there holds

ux = 0, uxx = 0, uy < 0.

Moreover, if q 6= 0 one has uxy 6= 0 otherwise, locally, ux is an harmonic polyno-
mial of degree at least 2 and this implies that there exists a branch of N0 entering
in Ω, a contradiction with the uniqueness of the point ξ = 0 with this property.

As in the proof of Case 2 of Theorem 2.3.1, let ε > 0 such that (2.10) and (2.11)
are verified. Furthermore, if the homotopy defined in (2.12) - (2.13) is not admis-
sible, then (2.14) and (2.15) still hold for some τε ∈ [0, 1] and qε = (xε, yε) ∈ ∂Ωε.

Let us prove that uxxy(0) > 0 (this implies that Ky(0) = −u2
y(0)uxxy(0)
|∇u|3 < 0).

Indeed, since uxy 6= 0 on Γ \ {0} we have uxy > 0 on { (x, y) ∈ Γ | x < 0 } and
uxy < 0 on { (x, y) ∈ Γ | x > 0 }. It follows uxxy(0) ≥ 0, but if equality holds we
can argue as in the proof of Lemma 2.3.2 to get a contradiction.

Next we can repeat the same argument as in Case 2 of the proof of Theo-
rem 2.3.1 getting that the homotopy is admissible and deg(Ωε, T,0) = 1. Finally
we apply Corollary 2.2.6 to conclude as in the proof of Theorem 2.3.1.

Remark 2.3.4. We observe that if ∂Ω contains more then one component home-
omorphic to an interval, then they are in a finite number: I1, . . . , Im. Moreover,
since the domain is convex, they are parallel at most at pairs. Then also in this
case it is possible to prove that for every θ ∈ [0, 2π), the nodal set Nθ is a smooth
curve in Ω homeomorphic to the closed interval [0, 1] (without self-intersection)
which intersects ∂Ω at the two end points of Nθ and in any critical point q ∈ Ω
of u the Hessian has rank 2.

Finally the proof of Theorem 2.1.1 easy follows.

Proof of Theorem 2.1.1. Let K := { p ∈ ∂Ω | K(p) = 0, uνt(p) = 0 } where ν is
the normal exterior unit vector and t the tangent one. Then define

Ωε := Ω \
⋃
q∈K

Dε(q),
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where Dε(q) is contained in a ball of radius ε > 0 centered at q and they are
chosen in such a way that

Dε(q1) ∩Dε(q2) = ∅, for all q1, q2 ∈ K,
Ωε is star-shaped with respect to some p,

|∇u| 6= 0, in
⋃
q∈K

Dε(q) ∩ Ω.

The proof follows arguing as in the preceding theorems.



Chapter 3

Stable solutions in bounded
strip-like domains

The aim of this chapter is twofold: first we want to extend Gladiali and
Grossi’s Theorem 1.2.1 to more general nonlinearities and to any dimension. On
the other hand we want to investigate the role of the curvature of ∂Ω in higher
dimensions. In particular we prove that there exists a family of domains close
to be convex and whose boundary has positive mean curvature, such that the
solution of the torsion problem admits at least k critical points, with k ∈ N
arbitrarily large.

The results of this chapter can be found in [DRG22a].

3.1 Main results
We consider the following problem

−∆u = g(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω

(3.1)

where Ω is a smooth bounded domain in RN , N ≥ 2 and g is a smooth nonlin-
earity.

Concerning the generalization of Gladiali and Grossi’s Theorem 1.2.1 to more
general nonlinearities, let us assume that the nonlinearity has the form g := λf
where λ > 0, f is smooth and satisfies

f : R→ R is increasing and convex, (3.2)

f(0) > 0. (3.3)
In this setting it is well known that there exists λ∗(Ω) > 0 such that for all
λ ∈ (0, λ∗(Ω)) the problem 

−∆u = λf(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω

(3.4)

admits a positive stable solution. We refer to Appendix A for a very short
overview on stability of solutions.

25
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Finally, let us denote by S the strip S := { (x, y) ∈ RN × R | −1 < y < 1 }, for
N ≥ 1. Our first result claims that, if f satisfies (3.2) and (3.3), then there exists
a family of bounded smooth domains Ωε “close” to the strip S and a solution uε
to problem (3.4) with k maximum points, k ≥ 2. The precise statement follows.

Theorem 3.1.1. Assume that f satisfies (3.2) and (3.3). Then for any λ ∈
(0, λ∗(−1, 1)) and for all k ∈ N there exists a family of smooth and bounded
domains Ωε ⊆ RN+1 such that

(i) Ωε is star-shaped with respect to the origin and symmetric with respect to
the hyperplanes xj = 0 for j = 1, . . . , N and y = 0;

(ii) Ωε locally converges to the strip S for ε → 0, i.e. for all compact sets
K ⊆ RN+1 it holds |K ∩ (S4Ωε)| → 0 as ε→ 0;

(iii) λ∗(Ωε) ≥ λ∗(−1, 1) for ε small enough;

(iv) if uε is the stable solution of problem (3.4) in Ωε for some 0 < λ < λ∗(Ωε),
then uε has at least k maximum points.

Let us give an idea of Theorem 3.1.1. The assumptions on f imply that there
exists a stable solution u0 of the following ODE

−u′′ = λf(u) in (−1, 1)
u > 0 in (−1, 1)
u(±1) = 0.

Next, for a small σ > 0 let uσ be an appropriate extension of u0 to a slightly
larger interval (−1 − σ, 1 + σ) and denote by ϕ : RN+1 → R a suitable solution
of the following PDE

−∆v = λf ′(uσ(y))v, in RN × (−1− σ, 1 + σ) . (3.5)

Of course (3.5) can be solved using the classical separation of variables method.
Our domain Ωε will be the connected component of {uσ + εϕ > 0 } containing

the origin and the solution uε the stable solution to (3.4) with Ω = Ωε. Finally
we show that uε is close to u0 + εϕ on the compact sets of Ωε and, since it will
be proved that this last function admits k nondegenerate critical points then (iv)
follows.

We point out that it is possible to prove a slight more general result for
problem (3.1) without assuming (3.3), see Remark 3.2.10.

It is important to remark that our construction only works for stable solu-
tions to (3.1). Indeed, even for the case of the first eigenfunction of the Laplacian
(where the first eigenvalue of the linearized problem is zero), we are not able
to construct a domain Ωε as in Theorem 3.1.1. This will be discussed in Re-
mark 3.2.11. We do not know if in this case there exists a pair (Ωε, uε) as in
Theorem 3.1.1.

Next let us discuss the role of the curvature of ∂Ω for solutions to (3.1) in
higher dimensions. We will focus on the particular case of the torsion problem,
i.e. g ≡ 1 in (3.1). By Makar-Limanov’s Theorem 1.1.4, if N = 2 and the
curvature of ∂Ω is positive then the solution u admits exactly one critical point
(see Chapter 2 if the curvature vanishes somewhere). So a couple of questions
naturally arise:
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Figure 3.1: The domain Ωε in Theorem 3.1.2 for N = 2 and k = 2.

if N ≥ 3 what is the positive curvature of the boundary a sufficient condition
on ∂Ω to ensures the uniqueness of the critical point for the torsion problem?
What about (semi-)stable solutions for more general nonlinearities?

In the second part of this chapter we give a contribution to these questions
showing that the answer to the first one is negative and that the positive mean
curvature of ∂Ω is not the correct extension to higher dimensions.

Indeed, for any k ≥ 2, we will construct a domain Ωε ⊆ RN with N ≥ 3 and
positive mean curvature of the boundary, close to a convex one and a solution uε
of the torsion problem in Ωε such that uε has at least k critical points. Actually
we suspect that the correct condition which implies the uniqueness of the critical
point for (semi-)stable solutions is that all principal curvatures have to be positive.
However we have no result to support this idea.

The construction of the pair (Ωε, uε) is similar to the one in Theorem 3.1.1,
but Ωε turns out to be a suitable perturbation of the infinite cylinder C :=
{ (x, y) ∈ R× RN | |y|2 < 1 }, for N ≥ 2. The result is the following.

Theorem 3.1.2. Let N ≥ 2. For any k ∈ N there exists a family of smooth and
bounded domains Ωε ⊆ RN+1 and smooth positive functions uε : Ωε → R such
that

(i) Ωε is star-shaped with respect to an interior point;

(ii) Ωε locally converges to the cylinder C for ε → 0, i.e. for all compact sets
K ⊆ RN+1 it holds |K ∩ (C4Ωε)| → 0 as ε→ 0;

(iii) the mean curvature of ∂Ωε is positive;

(iv) uε solves the torsion problem{
−∆u = 1 in Ωε

u = 0 on ∂Ωε;

(v) uε has at least k nondegenerate maximum points.

As in Theorem 3.1.1 we have that uε = u0 + εϕ where u0 = 1
2N
(
1− |y|2

)
is a solution of the torsion problem in the unit ball in RN and ϕ turns to be a
harmonic function in the whole RN+1.
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Then we take Ωε as in Theorem 3.1.1, while our solution will directly be
uε = u0+εϕ. Since the set Ωε turns out to be a small perturbation of the cylinder
C, which boundary has positive mean curvature, then (iii) of Theorem 3.1.2
follows. Note that, unlike as in Theorem 3.1.1, here the pair (Ωε, uε) is explicitly
computed.

The chapter is organized as follows: the next section is devoted to the proof
of Theorem 3.1.1, while Theorem 3.1.2 will be proved in Section 3.3. The de-
tailed proof of some claims in Section 3.2 and Section 3.3 can be found in the
Appendix B.

3.2 Proof of Theorem 3.1.1
In this section we take x = (x1, . . . , xN ) ∈ RN and y ∈ R and we assume the

hypothesis of Theorem 3.1.1. The proof works as follows: we first construct a
suitable domain Ωε which verifies the claim of Theorem 3.1.1 and next we prove
that the stable solution of problem (3.4) satisfies the claim (iv) in Theorem 3.1.1.

The first step in the construction of the domain Ωε is to introduce a solution
u0 of the 1-dimensional problem

−u′′ = λf(u) in (−1, 1)
u > 0 in (−1, 1)
u(±1) = 0.

(3.6)

By the assumption on f such a solution exists and by elementary argument
it can be extended to verify

−u′′ = λf(u) in (−1− σ, 1 + σ)
u > 0 in (−1, 1)
u(±1) = 0
u < 0 in [−1− σ,−1) ∪ (1, 1 + σ]

for σ > 0 and small. We denote by uσ this extension, and let us point out that
uσ = u0 in (−1, 1).

Since u0 is a stable solution we have that the first eigenvalue of the linearized
operator

− d2

dy2 − λf
′(u0(y)), (3.7)

in (−1, 1) with Dirichlet boundary conditions is strictly positive. Then, up to
choose a smaller σ, also the first eigenvalue of (3.7) in (−1− σ, 1 + σ) is strictly
positive. We denote it by µ0.

Next ingredient in the construction of Ωε involves a solution of a suitable
linearized problem in the strip RN × (−1−σ, 1 +σ). To do this we need to study
the following ODE.

Lemma 3.2.1. For µ ∈ (0, µ0) there exists a solution ωµ of the ordinary equation{
−ω′′ − λf ′(uσ(y))ω = µω in (−1− σ, 1 + σ)
ωµ(0) = 1

such that
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(i) ωµ > 0 in [−1− σ, 1 + σ],

(ii) ωµ is symmetric with respect to 0,

(iii) yω′µ(y) < 0 for all y 6= 0.

Proof. Fix µ ∈ (0, µσ) and let ω be the solution of{
−ω′′ − λf ′(uσ(y))ω = µω in (−1− σ, 1 + σ)
ω(±(1 + σ)) = 1.

Since µ < µσ, by the maximum principle we know that ω > 0 in (−1− σ, 1 + σ).
Taking into account the symmetry of uσ and the maximum principle we get that
ω(y) = ω(−y) and then (ii) follows.

Moreover, from f ′ ≥ 0 we deduce ω′′ < 0 in [−1− σ, 1 + σ] and then 0 turns
out to be a maximum point. The strictly concavity of ω tells also that ω′(y) < 0
for y > 0 and, together to the symmetry of the function, this yields (iii). To
conclude the proof set ωµ = ω/ω(0).

3.2.1 Construction of the domain Ωε

Now, for some n = n(k) ∈ N, let µ1, . . . , µn ∈ R be such that
µ0
4 > µ1 > · · · > µn > 0, (3.8)

and for i = 1, . . . , n

ωi(y) := ωµi(y), y ∈ (−1− σ, 1 + σ),

the function given by Lemma 3.2.1. From now on, we consider σ fixed.
Given (t, y) ∈ R× (−1− σ, 1 + σ), we define

ϕ̃(t, y) :=
n∑
i=1

αi cosh(√µit)ωi(y),

for some αi ∈ R which will be fixed later. A straightforward computation shows
that ϕ̃ is a solution of the linearized problem

−∆v = λf ′(uσ(y))v, in R× (−1− σ, 1 + σ) .

We set α1 = −1 while we choose α2, . . . , αn in such a way that the function
ϕ̃(t, 0) = ∑n

i=1 αi cosh(√µit) has k nondegenerate maximum points t1, . . . , tk. We
point out that it is always possible to do this, see Lemma B.1 in the Appendix
for the details. Finally, for (x1, . . . , xN , y) ∈ RN × (−1− σ, 1 + σ) we define

ϕ(x1, . . . , xN , y) :=
N∑
j=1

ϕ̃(xj , y) =
N∑
j=1

n∑
i=1

αi cosh(√µixj)ωi(y) (3.9)

which solves

−∆v = λf ′(uσ(y))v, in RN × (−1− σ, 1 + σ) .

We point out that, for ε small enough,

u0(0) + εϕ(0, . . . , 0, 0) > 0,
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and we denote by

Ωε the connected component of {uσ + εϕ > 0 } containing the origin.

The following lemma proves some properties of the set Ωε. The proof fol-
lows [GG22].

Lemma 3.2.2. The set Ωε satisfies the following properties.

(i) Ωε ⊆ Rε for ε small enough, with Rε := [−Mε,Mε]N × [−1− η, 1 + η] where

Mε := 1
√
µ1

log
(

3 ‖u0‖L∞(−1−η,1+η)
εω1(1 + η)

)
,

and η ∈ (0, σ) as small as we want.

(ii) Ωε ⊇ [t1, tk]N × {0}.

(iii) Let (xε, yε) ∈ ∂Ωε for ε small enough. Then, if |xε| ≤ C we have

yε = ±1 + o(1), (3.10)

and if |xε| → +∞ we have

N∑
j=1

cosh(√µ1x
ε
j) = u0(yε)

εω1(yε)(1 + o(1)). (3.11)

In particular Ωε locally converges to the strip S = RN × (−1, 1) for ε→ 0.

(iv) Ωε is symmetric with respect to the hyperplanes xj = 0 for j = 1, . . . , N and
y = 0. Moreover, it is a smooth and star-shaped domain with respect to the
origin for ε small enough.

Proof. In order to prove (i) we show that u0 + εϕ < 0 on ∂Rε. First let us
consider the case where x = (x1, . . . , xN ) ∈ [−Mε,Mε]N is such that xj = ±Mε

for some j = 1, . . . , N and y ∈ [−1− η, 1 + η]. Hence, recalling (3.9), one has

u0(y) + εϕ(x, y) ≤ ‖u0‖L∞(−1−η,1+η) − ε
3 ‖u0‖L∞(−1−η,1+η)

ε
(1 + o(1))

≤ −‖u0‖L∞(−1−η,1+η) < 0,

as ε→ 0.
Next let (x, y) ∈ { (x, y) ∈ RN+1 | x ∈ [−Mε,Mε]N , y = ±(1 + η) } and observe
that since ωi > 0 for y ∈ [−1− η, 1 + η] for all i = 1, . . . , n and α1 = −1 we get

sup
RN×[−1−η,1+η]

ϕ = C ∈ R.

Finally, we have

u(x, y) ≤ u0(±(1 + η)) + Cε <
u0(±(1 + η))

2 < 0,

for ε small enough. Then (i) follows.



3.2. Proof of Theorem 3.1.1 31

Concerning (ii), if ε satisfies

εN max
t∈[t1,tk]

[
n∑
i=1

αi cosh(√µit)
]−

<
u0(0)

2 ,

where [ · ]− denotes the negative part, then we get

u0 + εϕ ≥ u0 − εϕ− >
u0(0)

2 ,

and so [t1, tk]N × {0} ⊆ Ωε.
To prove (iii) note that from u(xε, yε) = 0 on ∂Ωε we have

u0(yε) = −εϕ(xε, yε).
If |xε| ≤ C then ϕ is uniformly bounded with respect to ε→ 0 and then u0(yε)→
0 which yields to yε → ±1.
On the other hand, if |xε| → +∞ we have (recall that α1 = −1)

− u0(yε) = −ε
N∑
j=1

cosh(√µ1x
ε
j)ω1(yε)(1 + o(1)), (3.12)

which gives (3.11). Moreover, since the right hand side of equation (3.12) is
strictly negative we get u0(yε) > 0 that implies |yε| ≤ 1.

The symmetry properties of the domain immediately follow from the ones of
ϕ and uσ. To show the star-shapeness with respect to the origin, it is enough to
prove that there exists α > 0 such that

y∂yuσ(y) + ε
N∑
j=1

xj∂xjϕ(x, y) + εy∂yϕ(x, y) ≤ −α < 0, for all (x, y) ∈ ∂Ωε.

Since uσ solves (3.6) we have that
y∂yuσ(y) < 0, in Rε \ { y = 0 } .

If (xε, yε) ∈ ∂Ωε is such that |xε| ≤ C as ε→ 0, then from (3.10) follows
yε∂yuσ(yε) = ±∂yu0(±1)(1 + o(1)) = ∂yu0(1)(1 + o(1)) < 0.

In this case, since the derivatives of ϕ are uniformly bounded with respect to ε,
it easily follows

y∂yu0(yε) + ε
N∑
j=1

xεj∂xjϕ(xε, yε) + εy∂yϕ(xε, yε) = ∂yu0(1)(1 + o(1)) +O(ε)

≤ 1
2∂yu0(1) < 0,

for ε small enough.
On the other hand, if |xε| → +∞, let {j1, . . . , jm} ⊆ {1, . . . , N} be such that
|xj | → +∞ if and only if j = jh for some h = 1, . . . ,m. Then one gets

yε∂yu0(yε) + ε
N∑
j=1

xεj∂xjϕ(xε, yε) + εyε∂yϕ(xε, yε)

=yε∂yu0(yε)+ε
N∑
j=1

n∑
i=1
αi
(√

µix
ε
j sinh(√µixεj)ωi(yε)+cosh(√µixεj)yε∂yωi(yε)

)

≤ yε∂yu0(yε)− ε

2

m∑
h=1

√
µ1x

ε
jh

sinh(√µ1x
ε
jh

)ω1(yε)
(
(1 + o(1)

)
. (3.13)
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For h = 1, . . . ,m we have that −xjh sinh(√µ1xjh) ≤ − cosh(√µ1xjh) and then

−
m∑
h=1

xεjh sinh(√µ1x
ε
jh

)
(
(1 + o(1)

)
≤ −

m∑
h=1

cosh(√µ1x
ε
jh

)
(
(1 + o(1)

)
= −

N∑
j=1

cosh(√µ1x
ε
j)
(
(1 + o(1)

)
.

So we have that (3.13) becomes

yε∂yu0(yε) + ε
N∑
j=1

xεj∂xjϕ(xε, yε) + εyε∂yϕ(xε, yε)

≤ yε∂yu0(yε)− ε

2
√
µ1ω1(yε)

N∑
j=1

cosh(√µ1x
ε
j)(1 + o(1))

(3.11)
≤ yε∂yu0(yε)−

√
µ1
2 u0(yε)(1 + o(1))

≤ yε∂yu0(yε)−
√
µ1
4 u0(yε),

and if yε∂yu0(yε)−
√
µ1
4 u0(yε) → 0, since both terms are nonpositive, then they

both go to 0. This implies yε → 0 in the first term, and yε → 1 in the second
one, a contradiction.

Hence yε∂yu0(yε)−
√
µ1
4 u0(yε) ≤ −α̃. Finally, for

α = min
{
−1

2∂yu0(1), α̃
}
,

we have the claim.
Of course y∂yu0(y) + ε

∑N
j=1 xj∂xjϕ(x, y) + εy∂yϕ(x, y) 6= 0 on ∂Ωε implies

that ∂Ωε is a smooth set.

Next lemma tells us that the function u0 + εϕ has many critical points.

Lemma 3.2.3. The function u0 + εϕ has at least k different nondegenerate local
maxima in Ωε for ε small enough.

Proof. Set U = u0 + εϕ and let t1 < · · · < tk be local, nondegenerate maxima for
ϕ̃(t, 0) = ∑n

i=1 αi cosh(√µit). Then a straightforward computation gives

∇U(tm, . . . , tm, 0) = 0.

Next, observing that ∂yyu0(0) = −λf(u0(0)) < 0 we have

∂yyU(tm, . . . , tm, 0) = ∂yyu0(0) + ε
N∑
j=1

k∑
i=1

αi cosh(√µitm)∂yyωi(0)

< −λ2 f(u0(0)) < 0, (3.14)
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for ε small enough and for all m = 1, . . . , k. Finally in (tm, . . . , tm, 0) one has

∂xjxjU = ε
k∑
i=1

αiµi cosh(√µitm) < 0,

∂x`xjU = 0, for all ` 6= j,

∂xjyU = ε
k∑
i=1

αi
√
µi sinh(√µitm)∂yωi(0) = 0,

which, together to (3.14) show us that the Hessian matrix of U is negative definite
in (tm, . . . , tm, 0) for all m = 1, . . . , k and the proof is complete.

Now we prove that problem (3.4) admits a stable solution in the domain Ωε

for the values of λ we are considering.

Lemma 3.2.4. For ε small enough, it holds

λ∗(Ωε) ≥ λ∗(−1, 1).

Proof. Let us write λ∗ = λ∗(−1, 1) for simplicity. For η > 0 small enough we
have

λ∗η = λ∗(−1− η, 1 + η) = λ∗

(1 + η)2 > λ,

and by u∗η the solution of
−u′′ = λ∗ηf(u) in (−1− η, 1 + η)
u > 0 in (−1− η, 1 + η)
u(±(1 + η)) = 0.

Now, let ε so small that Ωε ⊆ RN × (−1− η, 1− η), then u∗η is a supersolution of
problem 

−u′′ = λ∗ηf(u) in Ωε

u > 0 in Ωε

u = 0 on ∂Ωε

that is −∆u∗η ≥ λ∗ηf(u∗η) in Ωε and u∗η ≥ 0 on ∂Ωε (here we follows the notations
in [Ban80]). Then [Ban80, Theorem 4.7] ensures that λ∗(Ωε) ≥ λ∗η > λ.

Finally, for ε > 0, we define

uε as a stable solution of problem (3.4) in Ωε. (3.15)

3.2.2 Properties of the function uε

Before stating the main properties of the solution uε we compute the eigen-
values of a related operator. The proof uses the classical separation of variables.

Lemma 3.2.5. Denote by µ1,σ(R) the first eigenvalue of the operator −∆ −
λf ′(uσ(y)) in the rectangle

R :=
N∏
j

(aj , bj)× (−1− σ, 1 + σ),
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with u|∂R = 0, where aj < bj for all j = 1, . . . , N . Then

µ1,σ(R) = µσ +
N∑
j=1

(
π

bj − aj

)2

> µσ.

Proof. Fix µ ∈ R and let Aj and B be positive solutions of{
A′′j (t) = cjAj(t) in (aj , bj)
Aj(aj) = Aj(bj) = 0

(3.16)

and{
−B′′(y)− (λf ′ (uσ(y)) + µ)B(y) = ∑N

j=1 cjB(y) in (−1− σ, 1 + σ)
B(±(1 + σ)) = 0

(3.17)
for some cj ∈ R. We have that the solution of (3.16) is given by

Aj(t) = α sin
(√
−cj(t− aj)

)
,

with α ∈ R and

cj = −
(

π

bj − aj

)2

< 0,

and from (3.17) it follows
N∑
j=1

cj + µ = µσ.

Finally, since

v(x, y) = B(y)
N∏
j

Aj(xj),

solves {
−∆v − λf ′(uσ(y))v = µv in R
v = 0 on ∂R

and v > 0 we conclude that

µ1,σ(R) = µ = µσ −
N∑
j=1

cj = µσ +
N∑
j=1

(
π

bj − aj

)2

> µσ.

Remark 3.2.6. From (i) of Lemma 3.2.2 and the previous lemma, one has that
the first eigenvalue of the operator −∆ − λf ′(uσ(y)) with Dirichlet boundary
conditions in Ωε is strictly positive.

The rest of the section is devoted to show that the solution uε defined in (3.15)
is close to u0 + εϕ as ε→ 0. By Lemma 3.2.3 then (iv) of Theorem 3.1.1 follows.

Let us start with the following bound for uε.

Lemma 3.2.7. There exists a function h : (0,+∞)→ (0,+∞) such that h(ε)→
0 for ε→ 0 and uε − u0 ≤ h(ε) in Ωε uniformly with respect to (x, y) ∈ Ωε.
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Proof. For η > 0, let uη be the stable solution of
−u′′ = λf(u) in (−1− η, 1 + η)
u > 0 in (−1− η, 1 + η)
u(±(1 + η)) = 0.

For ε small enough such that Ωε ⊆ RN × (−1 − η, 1 + η), from the convexity of
f we have{

−∆(uε − uη) = λ (f(uε)− f(uη)) ≤ λf ′(uε)(uε − uη) in Ωε

uε − uη < 0 on ∂Ωε

and then from the stability of uε we can apply the maximum principle to deduce
uε ≤ uη in Ωε. For (x, y) ∈ Ωε, by the maximum principle applied to uη − u0 we
get

uε(x, y)− u0(y) ≤ uη(y)− u0(y) ≤ max(uη − u0)|y=±(1+η) = −u0(1 + η).

Next let us define the function h(ε) as follows: for any ε > 0 let η(ε) be the
smallest positive number such that Ωε ⊆ RN × (−1 − η(ε), 1 + η(ε)). By the
properties of Ωε we have that η(ε)→ 0 as ε→ 0. Finally, as ε→ 0

h(ε) = −u0
(
1 + η(ε)

)
→ 0,

which gives the claim.

Next lemma gives a first approximation of the closeness of uε to u0 + εϕ. It
will be improved later.

Lemma 3.2.8. Given ψε := uε−uσ−εϕ
ε one has 0 ≤ ψε < ψ̄ in Ωε for ε small

enough, where

ψ̄(x, y) :=
N∑
j=1

n∑
i=1
|αi| (ωi(y)− Ci) cosh(√µixj),

with 0 < Ci < inf
(−1−η,1+η)

ωi for all i = 1, . . . , k and 0 < η < σ small, fixed.

Proof. Using the convexity of f we have

−∆ψε − λf ′(uσ)ψε ≥ 0.

Moreover, ψε = 0 on ∂Ωε and taking into account Remark 3.2.6 we can apply the
maximum principle to get ψε > 0 in Ωε.

Again from the convexity of f we have

−∆ψε − λf ′(uε)ψε ≤ λ
(
f ′(uε)− f ′(uσ)

)
ϕ

= λ
N∑
j=1

n∑
i=1

αi
(
f ′(uε)− f ′(uσ)

)
cosh(√µixj)ωi(y). (3.18)

From the definition of Ci it holds ψ̄ > 0 on Ωε. Furthermore, in Ωε we have that
ψ̄ verifies

−∆ψ̄ =
N∑
j=1

n∑
i=1
|αi|

(
λf ′(uσ)ωi(y) + µiCi

)
cosh(√µixj),
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and then

−∆ψ̄ − λf ′(uε)ψ̄

=
N∑
j=1

n∑
i=1
|αi|

[
λ
(
f ′(uσ)− f ′(uε)

)
ωi(y) + (λf ′(uε) + µi)Ci

]
cosh(√µixj).

(3.19)

Moreover
f ′(uε)− f ′(uσ) = f ′′ (tεuε + (1− tε)uσ) (uε − uσ),

with tε = tε(x, y) ∈ (0, 1).
From Lemma 3.2.7 we have uε−u0 ≤ h(ε) with h > 0 and h→ 0 as ε→ 0. Since
f ′′ is positive and tεuε+ (1− tε)uσ is bounded uniformly with respect to ε we get

λ
(
f ′(uε)− f ′(u0)

)
≤ Ch(ε),

for some C > 0. Finally from (3.18) and (3.19) we deduce that

−∆(ψε − ψ̄)− λf ′(uε)(ψε − ψ̄)

≤
N∑
j=1

n∑
i=1

[
(|αi|+ αi)λ(f ′(uε)− f ′(u0))ωi(y)− |αi|(λf ′(uε) + µi)Ci

]
cosh(√µixj)

≤
N∑
j=1

n∑
i=1

[
(|αi|+ αi)Ch(ε)− |αi|(λf ′(uε) + µi)Ci︸ ︷︷ ︸

≤−|αi|µiCi

]
cosh(√µixj) ≤ 0,

for ε small enough, which gives{
−∆(ψε − ψ̄)− λf ′(uε)(ψε − ψ̄) ≤ 0 in Ωε

ψε − ψ̄ < 0 on ∂Ωε

and the maximum principle provides ψε − ψ̄ < 0 in Ωε.

Next lemma gives us the final estimate. Here it will be crucial to choose the
coefficients µi as in (3.8).

Lemma 3.2.9. Let
Ψε := uε − u0 − εϕ

ε2 .

Then in every K ⊂⊂ Ωε one has |Ψε| ≤ C, for some C = C(K) > 0 and ε small
enough.

Proof. Let us denote by C any positive constant which does not depend on ε.
Consider the function F (ε) = f(u0 + εϕ + ε2Ψε). Then for ε small there exists
tε = tε(x, y) ∈ (0, 1) such that

f(uε) = F (ε) = f(u0) + εf ′(u0)ϕ+ ε2

2 f
′′(u0)ϕ2 + ε2f ′(u0)Ψε+

+ ε3

6 f
′′′(u0 + tεεϕ+ t2εε

2Ψε)(ϕ+ 2tεεΨε)2+

+ ε3f ′′(u0 + tεεϕ+ t2εε
2Ψε)(ϕ+ 2tεεΨε)Ψε. (3.20)
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From the previous lemma we have that 0 ≤ εΨε ≤ ψ̄ ≤ C
∑N
j=1 cosh(√µ1xj).

From Lemma 3.2.2, |xj | ≤ C log(1/ε) for all j = 1, . . . , N and then∣∣∣u0 + tεεϕ+ t2εε
2Ψε

∣∣∣ ≤ C, in Ωε.

In Ωε, taking into account (3.20), we have the following inequality

f(uε)− f(u0)− εf ′(u0)ϕ ≤ Cε2
(
ϕ2 + ε(ϕ+ 2ψ̄)2 + (ϕ+ 2ψ̄)ψ̄

)
+ ε2f ′(u0)Ψε

≤ C∞
λ
ε2

N∑
j=1

cosh(2√µ1xj) + ε2f ′(u0)Ψε,

for some C∞ > 0, that implies

−∆Ψε − λf ′(u0)Ψε ≤ C∞
N∑
j=1

cosh(2√µ1xj). (3.21)

Fix µ∞ = 4µ1. Note that µ∞ < µ0 thanks to (3.8). Then taking into account
Lemma 3.2.1 set ω∞ = ωµ∞ and for (x, y) ∈ RN × (1− σ, 1 + σ) consider

ψ∞(x, y) = C∞
c∞µ∞

N∑
j=1

(ω∞(y)− c∞) cosh(√µ∞xj),

where 0 < c∞ < inf
(−1−σ,1+σ)

ω∞.

Clearly ψ∞ > 0 in Ωε and ψ∞ satisfies the following inequality

−∆ψ∞ − λf ′(u0)ψ∞ = C∞
c∞µ∞

N∑
j=1

c∞
(
µ∞ + λf ′(u0)

)
cosh(√µ∞xj)

≥ C∞
N∑
j=1

cosh(2√µ1xj),

which together to (3.21) gives{
−∆(Ψε − ψ∞)− λf ′(u0)(Ψε − ψ∞) ≤ 0 in Ωε

Ψε − ψ∞ < 0 on ∂Ωε

and again the maximum principle provides Ψε − ψ∞ < 0 in Ωε. For C(K) =
maxK ψ∞ the proof is complete.

3.2.3 Proof of Theorem 3.1.1

Proof. We have that (i) and (ii) follow by (iv) and (iii) of Lemma 3.2.2 respec-
tively. The proof of (iii) is given in Lemma 3.2.4.

Let us prove (iv). By Lemma 3.2.3 we have that u0 + εϕ admits k strict
maxima points. Fix a compact set K ⊂⊂ Ωε containing such points. On the
other hand Lemma 3.2.9 implies uε = u0 + εϕ + O(ε2) in K and so the claim
follows.
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Remark 3.2.10. We can prove a little more general version of Theorem 3.1.1:
indeed assumption (3.3) can be dropped and we can simply ask that there exists
u0 stable solution of 

−u′′ = g(u) in (−1, 1)
u > 0 in (−1, 1)
u(±1) = 0.

Finally we build Ωε as before and then ask for the existence of a stable solution
uε of problem (3.1) in Ωε.

Remark 3.2.11. Let us show that the assumption that uε is a stable solution
is crucial in our construction. To do this let us assume N = 1 for simplicity and
consider f(t) = λ1t, where λ1 is the first eigenvalue of the Dirichlet problem. In
this case the first eigenvalue of the linearized problem at the first eigenfunction
is 0. Let us see that it is not possible to construct a domain Ωε as in the previous
section. Indeed if we argue as before we have that u0(y) = cos

(
π
2 y
)
is the solution

of 
−u′′ = π2

4 u in (−1, 1)
u > 0 in (−1, 1)
u(±1) = 0.

Now, for n ∈ N, αi ∈ R (again with α1 = −1) and µi > 0 for i = 1, . . . , n, we
have that

ϕ(x, y) =
n∑
i=1

αi cosh(√µix) cos
(√

π2/4 + µiy

)
,

solves the linearized problem, i.e.

−∆ϕ = π2

4 ϕ in R2,

As for the general case we observe that u0(0) + εϕ(0, 0) > 0 for ε small enough
and then we set Ωε = {u0 + εϕ > 0 }. Now for any µ1 > 0 set

ȳ =
π
2√

π2/4 + µ1
∈ (0, 1),

and then we can find δ > 0 sufficiently small such that if ε is small enough it
holds

R× { y = ȳ + δ } ⊆ Ωε,

showing that the domain Ωε is not bounded. This shows that our construction
fails.

3.3 The torsion problem: proof of Theorem 3.1.2
In this section we take x ∈ R and y = (y1, . . . , yN ) ∈ RN and we assume

the hypothesis of Theorem 3.1.2. We build a solution uε of the torsion problem
(g(u) ≡ constant) with k maximum points in a domain Ωε whose boundary has
positive mean curvature. Here the domain Ωε and the function uε are similar to
the ones defined in Section 3.2.

Let us start by introducing the following function uε : RN+1 → R, given by

uε(x, y) := u0(y) + εϕ(x, y) x ∈ R, y ∈ RN ,
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where

u0(y) := 1
2

N∑
j=1

(
1− y2

j

)
= 1

2
(
N − |y|2

)
,

which solves {
−∆u = N in C
u = 0 on ∂C

in the cylinder C = {(x, y) ∈ RN+1||y|2 < N}. Finally ϕ is a harmonic function
in the whole RN+1 defined by

ϕ(x, y) :=
N∑
j=1

v(x, yj),

where v(t, s) := <(Fk(t+ is)), for t, s ∈ R with

Fk(t+ is) := −
k∏
`=1

[(t− t` + is)(t+ t` + is)]

= −
k∏
`=1

(
t2 − s2 − t2` + 2its

)
, for 0 < t1 < · · · < tk,

and <( · ) stands for the real part of a complex function. Note that v is symmetric
with respect to both {t = 0} and {s = 0} and it can be written as

v(t, s) = −
2k∑
h=0

ahPh(t, s), (3.22)

where Ph is a harmonic polynomial of degree h, a2k = 1 and

P2k(t, s) =
k∑
`=0

b`t
2k−2`s2`, b0 = bk = 1. (3.23)

Resuming, we have that for x ∈ R and y ∈ RN

uε(x, y) = u0(y) + εϕ(x, y)

= 1
2
(
N − |y|2

)
+ ε

N∑
j=1

v(x, yj)

= 1
2

N∑
j=1

(
1− y2

j

)
− ε

N∑
j=1

2k∑
h=0

ahPh(x, yj).

Since Fk : C → C is holomorphic, it easily follows that ϕ is harmonic and then
uε satisfies −∆uε = N . Finally, we point out that ∂yiyjuε = 0 for all i 6= j.

3.3.1 Preliminary results

In this section we show some properties of the function uε and of the domain
Ωε that we are going to define.

As in Section 3.2 we point out that

uε(0, 0, . . . , 0) = N

2 + ε
N∑
j=1

v(0, 0) ≥ N

4 > 0,
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for ε small enough and we denote by Ωε the connected component of the superlevel
set {u0 + εϕ > 0 } containing the origin.

The following lemma proves some properties of the set Ωε.

Lemma 3.3.1. The set Ωε satisfies the following properties.

(i) Ωε ⊆ Cε for ε small enough, where

Cε :=
{

(x, y) ∈ RN+1
∣∣∣ x ∈ (−Mε,Mε), |y|2 < N(1 + η)2

}
,

for some 0 < η < 1, and Mε := ε−
1

2k .

(ii) Ωε ⊇ [−tk, tk]× {0}N .

(iii) Let (xε, yε) ∈ ∂Ωε. If |yε| → 0 then we have

|xε| = (2ε)−
1

2k (1 + o(1))→ +∞. (3.24)

On the other hand, if |xε| ≤ C, then

|yε|2 → N.

(iv) Ωε is symmetric with respect to the hyperplanes x = 0 and yj = 0 for
j = 1, . . . , N . Moreover, it is a smooth and star-shaped domain with respect
to the origin for ε small enough.

Proof. To prove (i) we firstly show that

uε ≤ −1/2, on
{

(x, y) ∈ RN+1
∣∣∣ x = ±Mε, |y|2 < N(1 + η)2

}
, (3.25)

for ε small enough. Indeed by (3.23) we get

εP2k(±Mε, s) = ε
k∑
`=0

b`
(
ε−

1
2k
)2k−2`

s2` = 1 + o(1), as ε→ 0,

uniformly with respect to |s| <
√
N(1 + η). Similarly we have

εPh(±Mε, s) = o(1), for all 0 ≤ h ≤ 2k − 1.

Finally, for x = ±Mε and |y|2 ≤ N(1 + η)2 we have

uε(x, y) ≤ N

2 + ε
N∑
j=1

v(±Mε, yj)(1 + o(1)) = N

2 −N + o(1) ≤ −1
2 .

On the other hand by (3.22) and since a2k = 1 we get

sup
t∈R

max
s∈[−

√
N(1+η),

√
N(1+η)]

v(t, s) = C ∈ R.

Then for all (x, y) ∈ Cε with |y|2 = N(1 + η)2 we obtain

uε(x, y) = −N2 η
2 −Nη + ε

N∑
j=1

v(x, yj) < −
N

2 η
2 < 0,
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for ε small enough which together to (3.25) proves (i).
Concerning (ii), we know that the origin belongs to Ωε and since uε is con-

tinuous, then Ωε is an open and connected set. Finally if ε satisfies

ε <
u0(0, . . . , 0)

maxx∈[−tk,tk](−ϕ(x, 0, . . . , 0)) ,

then [−tk, tk]× {0}N ⊆ Ωε.
In order to prove (iii), let (xε, yε) ∈ ∂Ωε. Then one has

1
2
(
N − |yε|2

)
= −ε

N∑
j=1

v(xε, yεj ). (3.26)

If |xε| ≤ C, v(xε, yεj ) is bounded and then we easily get |yε|2 → N .
Then we can assume |xε| → +∞. In particular, for all j = 1, . . . , N , it holds

v(xε, yεj ) = −(xε)2k(1 + o(1)) and from (3.26) we get

(xε)2k = 1
2

(
1− |y

ε|2

N

)
ε−1(1 + o(1)) = 1

2ε
−1(1 + o(1)),

and in particular (3.24) holds.
The symmetry properties of the domain immediately follow from the ones of

uε. Then to finish the proof it is enough to prove that there exists α > 0 such
that

x∂xuε +
N∑
j=1

yj∂yjuε ≤ −α < 0, for all (x, y) ∈ ∂Ωε.

We have

x∂xuε +
N∑
j=1

yj∂yjuε = −
N∑
j=1

y2
j + ε

N∑
j=1

(xvt(x, yj) + yjvs(x, yj)) .

On the other hand since uε(x, y) = 0 on ∂Ωε we have
N∑
j=1

y2
j = N + 2ε

N∑
j=1

v(x, yj),

and then

x∂xuε +
N∑
j=1

yj∂yjuε = −N + ε
N∑
j=1

(
xvt(x, yj) + yjvs(x, yj)− 2v(x, yj)

)
.

Since we have that

tvt(t, s) + svs(t, s)− 2v(t, s) = −
2k∑
h=0

ah (t∂tPh(t, s) + s∂sPh(t, s)− 2Ph(t, s))

= −
2k∑
h=0

(h− 2)ahPh(t, s)→ −∞,

for |t| → +∞ uniformly with respect to |s| <
√
N(1 + η), it follows

sup
(t,s)∈R×[−

√
N(1+η),

√
N(1+η)]

tvt(t, s) + svs(t, s)− 2v(t, s) = d < +∞,
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and then
N∑
j=1

(xvt(x, yj) + yjvs(x, yj)− 2v(x, yj)) ≤ Nd < +∞.

Finally

sup
∂Ωε

x∂xuε +
N∑
j=1

yj∂yjuε

 ≤ −N + o(1) ≤ −N2 ,

for ε small enough. Of course x∂xuε+∑N
j=1 yj∂yjuε 6= 0 on ∂Ωε implies that ∂Ωε

is a smooth hypersurface.

Remark 3.3.2. In particular from (iii) of Lemma 3.3.1 we deduce that Ωε locally
converges to the cylinder C = { (x, y) ∈ RN+1 | |y|2 < N }.

Equation (3.24) will be useful in the computation of the curvature of ∂Ωε in
next subsection.
Lemma 3.3.3. The function uε has at least k different nondegenerate local max-
ima in Ωε for ε small enough.

Proof. The proof is similar to the one of Lemma 3.2.3.
For

q(t) = < (Fk(t+ i0)) = −
k∏
`=1

(t− t`)(t+ t`) = v(t, 0),

we have q(t) = 0 if and only if t = ±t` for some ` = 1, . . . , k and q(t) → −∞ as
|t| → +∞. Now assume k even, the case k odd follows by minor changes. Then
there exist t̄` ∈ (t2`+1, t2`+2) with ` = 0, . . . , k/2 such that

q′(t̄`) = 0, and q′′(t̄`) < 0 for all ` = 0, . . . , k/2,

see also Lemma B.2.
Moreover, from the definition of v, since every time a power of s appears then

it is an even power, we get that ∂sv(t, 0) = ∂tsv(t, 0) = 0 for all t ∈ R. Then a
straightforward computation gives

∇uε(t̄`, 0, . . . , 0) = 0.

Next, for all j = 1, . . . , N and for all ` = 0, . . . , k/2, we have

∂yjyjuε(t̄`, 0, . . . , 0) = −1 + ε∂ssv(t̄`, 0) < 0, (3.27)

for ε small enough. Finally in (t̄`, 0, . . . , 0) one has

∂xxuε = εNq′′(t̄`, 0) < 0,
∂yiyjuε = 0, for all i 6= j,

∂xyjuε = ε∂tsv(t̄`, 0) = 0,

which, together to (3.27), shows us that the Hessian matrix of uε is negative
definite in (t̄`, 0, . . . , 0) for all ` = 0, . . . , k/2 and the proof is complete since uε is
even in the x variable.

Remark 3.3.4. We point out that Ωε is not convex. Indeed, we know from
Lemma 3.3.1 that the domain is symmetric with respect to {x = 0} and {yj = 0}
for all j = 1, . . . , N and by the well known result by [GNN79], see Theorem 1.1.6,
the domain cannot be convex otherwise every solution of problem (3.1) has exactly
one critical point in contradiction with Lemma 3.3.3.
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3.3.2 Curvature of the domain

In this section we prove that the domain Ωε previously defined has positive
mean curvature.

Let us start by a technical lemma that gives us an explicit formula to compute
the mean curvature for manifolds which are preimage of a regular value of real
functions. The proof is postponed to the Appendix.
Lemma 3.3.5. Let Σ = F−1(0), for some F ∈ C2(R × RN ,R). Assume 0 is a
regular value for F and Fyiyj = 0 for all i 6= j. Then the mean curvature of Σ is
given by

K = − 1
N |∇F |3

 N∑
j=1

(
F 2
xFyjyj − 2FxFyjFxyj + F 2

yjFxx
)

+
N∑
j=1

F 2
yj

N∑
`=1
`6=j

Fy`y`

 .
Finally, we are able to compute the mean curvature of the boundary of the

domain.
Lemma 3.3.6. The mean curvature of the boundary of Ωε is strictly positive
everywhere.
Proof. We will apply the previous lemma to F (x, y) = uε(x, y). Note that ∇uε 6=
0 on ∂Ωε from (iv) of Lemma 3.3.1. Let (xε, yε) ∈ ∂Ωε and from the asymptotic
behavior of the derivatives of v(t, y) for t→∞ we have

vt = −2kt2k−1(1 + o(1)), vs = ckt
2k−2s(1 + o(1)),

vtt = −2k(2k − 1)t2k−2(1 + o(1)), vts = c′kt
2k−3s(1 + o(1)),

vss = ckt
2k−2(1 + o(1)),

and from the estimate |xε| ≤ ε−
1

2k we get that for all j = 1, . . . , N the following
quantities

εvt(xε, yεj ), εvs(xε, yεj ), εvtt(xε, yεj ), εvts(xε, yεj ), εvss(xε, yεj ),
go to 0 as ε→ 0.

Then we proceed by considering the cases |yε| 6→ 0 and |yε| → 0.
Case |yε| 6→ 0.

We point out that for ε small enough there exists j ∈ { 1, . . . , N } such that
∂yjuε 6= 0, otherwise |yε| → 0. Then from Lemma 3.3.5 we have

K = −−(N − 1)|yε|2(1 + o(1))
N (|yε|2(1 + o(1)))

3
2

= N − 1
N |yε|

(1 + o(1)) > 0.

Note that the assumption N ≥ 2 is crucial. Indeed if N = 1 the curvature changes
sign, see [GG22].

Case |yε| → 0.
In this case, by (3.24) we have that xε → +∞ and for all j = 1, . . . , N fixed
∂yjuε = o(1). Recalling (3.24) again, the following estimates hold true

(∂yjuε)2∂xxuε = o(ε1− 2k−2
2k ) = o(ε

1
k ),

∂xuε∂yjuε∂xyjuε = o
(
ε1− 2k−1

2k ε1− 2k−3
2k
)

= o(ε
2
k ) = o(ε

1
k ),

(∂xuε)2∂yjyjuε = −
(
−2Nkε(xε)2k−1

)2
(1 + o(1))

= −2
1
kN2k2ε

1
k (1 + o(1)).
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This yields

(∂yjuε)2∂xxuε − 2∂xuε∂yjuε∂xyjuε + (∂xuε)2∂yjyjuε = −2
1
kN2k2ε

1
k (1 + o(1)).

(3.28)
Moreover by similar computations

N∑
j=1

(∂yjuε)2
N∑
ι=1
ι6=j

∂yιyιuε = −(N − 1)(1 + o(1))
N∑
j=1

(∂yjuε)2 ≤ 0. (3.29)

Finally, we can apply Lemma 3.3.5, and putting together (3.28) and (3.29) we
have

−N |∇uε|3K ≤
N∑
j=1

(
(∂yjuε)2∂xxuε − 2∂xuε∂yjuε∂xyjuε + (∂xuε)2∂yjyjuε

)
= −2

1
kN3k2ε

1
k (1 + o(1)) < 0,

that is K > 0.

3.3.3 Proof of Theorem 3.1.2

Proof. Up to a dilatation of the domain, the claims follow from Lemma 3.3.1,
Lemma 3.3.3 and Lemma 3.3.6 considering uε/N .

Remark 3.3.7. It is also possible to treat the case x = (x1, . . . , xM ) ∈ RM , with
M > 1, in such a way that the domain Ωε grows in M directions. The proof
works replacing the function uε by the following one

ũε(x, y) := 1
2

N∑
j=1

(
1− y2

j

)
+ ε

M∑
i=1

N∑
j=1

v(xi, yj).

The computations are very similar to the case M = 1. It is not difficult to
generalize Lemma 3.3.5 taking into account that ∂xixhuε = 0 for all i 6= h.



Chapter 4

Uniqueness of critical point in
non convex domains

In this short chapter we want to show that sometimes it is possible to recover
uniqueness of critical point for solutions of elliptic equations even in non convex
domains and without symmetry assumptions. To this end we first work on the
Poisson problem and then also on the nonlinear problem −∆u = f(u).

The results had been obtained in collaboration with Luca Battaglia and Mas-
simo Grossi.

4.1 Main results

Let Ω ⊆ R2 be a smooth and bounded domain and consider the following
problem 

−∆u = f ((x, y), u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

where f : Ω× R→ R is a smooth function. Here and in the rest of the chapter,
the generic point of R2 is denoted using coordinates (x, y) instead of (x1, x2).

All the uniqueness of the critical point results quoted in the preceding chap-
ters hold in convex domain and it is known that, in general, we can not expect
uniqueness of the critical point in non convex domains, see Section 1.2. Then
it is natural to ask whether it is possible to recover the uniqueness in (possibly)
non convex domain, under suitable assumptions.

In the first part of this chapter we examine the Poisson problem

{
−∆u = f(x, y) in Ω
u = 0 on ∂Ω,

(4.1)

where f : Ω→ R is a smooth positive function and Ω ⊆ R2 is a smooth, bounded
and simply connected domain. Let us recall that for the Poisson problem it is
possible to prove uniqueness of the critical point in convex domain, under suitable
assumption on the function f as showed by Kennington, see next theorem.

45
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Theorem 4.1.1 ([Ken85]). Let Ω ⊆ RN be a bounded and convex domain and
let u ∈ C2(Ω) ∩ C0(Ω) satisfy{

−∆u = f(x) in Ω
u = 0 on ∂Ω,

where f : Ω → (0,+∞) is β-concave Then u is β
1+2β -concave. Moreover, if f is

constant, then u is 1
2 -concave.

We have the following result.

Theorem 4.1.2. Assume f > 0 in Ω and

∆(log f) = 0, in Ω, (4.2)

and
1
2
∂f

∂ν
+ Kf ≥ 0, on ∂Ω, (4.3)

where ν is the outnormal unit vector to ∂Ω and K = tr(dν)/N is its curvature.
If u is the solution of problem (4.1), then it has a unique nondegenerate critical
point (x0, y0) ∈ Ω.

Remark 4.1.3. 1) Theorem 4.1.2 holds even if Ω is not convex. For instance,
if we consider f(x, y) := e2x, then equation (4.2) is trivially satisfied while
equation (4.3) is satisfied if Ω is such that

νx ≥ −K, on ∂Ω, (4.4)

where we write ν := (νx, νy). This condition can be verified by non convex
domains Ω, see Figure 4.1.

2) Let us also point out that we can not drop assumption (4.2) or (4.3), other-
wise we can loose the uniqueness of the critical point: see Remark 4.2.4 and
Remark 4.2.5 for the details.

3) The preceding theorem can be seen as a generalization of Makar-Limanov’s
Theorem 1.1.4 for the torsion problem. Indeed, for f ≡ 1 and Ω convex it is
easy to see that assumptions (4.2) and (4.3) are trivially satisfied.

The proof of the theorem works as follows: we firstly show that under assump-
tions (4.2) and (4.3) we can construct a conformal map T from Ω to a bounded
and convex subsets of C and such that |T ′|2 is exactly f , see Proposition 4.2.1.
From this we can find a one to one correspondence between the critical points of
u and the ones of the solution of the torsion problem on the image T (Ω). Hence,
the claim follows thanks to Makar-Limanov’s Theorem 1.1.4.

In the second part of the chapter, we came back to the nonlinear problem
−∆u = f(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(4.5)

where Ω is still a smooth bounded and convex domain in R2 and f : R→ R is a
smooth nonlinearity.
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Ω

Figure 4.1: Example of domain which satisfies (4.4).

We are interested in investigating the number of critical points of solutions of
the preceding problem when Ω is close to be a convex domain.

We recall that Theorem 1.1.9 and Theorem 2.1.1 imply that if Ω is convex
then a semi-stable solution of (4.5) admits exactly one critical point which turns
out to be nondegenerate. Then we can ask what happens if we consider domains
which are (possibly) non convex, but close to a convex one.

First of all let us recall that for a convex domain Ω ⊆ RN , with 0 ∈ Ω
and with no empty interior, up to a dilatation, we can find a Lipschitz function
χΩ : SN−1 → (0 +∞) such that

Ω =
{
tP ((1 + χΩ(P ))

∣∣∣ P ∈ SN−1, t ∈ [0, 1)
}
,

furthermore, if we assume Ω to be of class Ck then χΩ ∈ Ck(SN−1).
Hence let us give the following definition of convergence of a family of smooth

sets to a smooth and convex one.
Definition 4.1.4. Given a bounded and convex set Ω ⊆ RN of class Ck and with
no empty interior, we say that the family (Ωε)ε ⊆ RN of bounded sets of class
Ck converges to the convex set Ω for ε→ 0 - and we write Ωε → Ω for ε→ 0 - if
there exists a family of functions (χΩε)ε ⊆ Ck(SN−1) such that

Ωε =
{
tP ((1 + χΩε(P ))

∣∣∣ P ∈ SN−1, t ∈ [0, 1)
}
,

and
‖χΩε − χΩ‖Ck(SN−1) → 0, as ε→ 0.

Now, let us fix a smooth and convex domain Ω ⊆ R2, with 0 ∈ Ω and we
consider a family of domains Ωε that are smooth and such that Ωε → Ω for ε→ 0,
at least in C4 sense, according to the preceding definition.

The following result holds true.
Theorem 4.1.5. Let uε be a semi-stable solution the following problem

−∆uε = f(uε) in Ωε

uε > 0 in Ωε

uε = 0 on ∂Ωε,

(4.6)

with f(0) ≥ 0 and assume that ‖uε‖L∞(Ωε) ≤ C for some C > 0. Then uε has a
unique nondegenerate critical point pε ∈ Ωε. Moreover pε → pc where pc ∈ Ω is
the unique critical point of a semi-stable solution u of problem (4.5) in Ω.
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Remark 4.1.6. 1) Let us point out that if the limit domain is convex, but un-
bounded, then the preceding result does not hold. Indeed, it is possible to
build a family of domains which converges to the strip S = R × (−1, 1) and
such that the corresponding solutions have an arbitrary large (finite) number
of critical points. See Theorem 1.2.1 and Theorem 3.1.1.

2) Let us point out that the hypothesis that ‖uε‖L∞(Ωε) is uniformly bounded is
always satisfied if, for instance, we assume that the nonlinearity has the form
f(u) = λg(u), g is smooth and satisfies (3.2) and (3.3), that are

g : R→ R is increasing and convex,
g(0) > 0,

and λ ∈ (0, λ∗(Ω)), as in Chapter 3. See Remark 4.3.1 for the details.

To prove Theorem 4.1.5 we show that uε converges to u, the solution of
probem (4.5) in Ω, and then the claim can be deduced by Theorem 2.1.1.

The chapter is organized as follows: in the next section we prove Theo-
rem 4.1.2, and we conclude it by showing that if at least one between (4.2)
and (4.3) does not hold, then Theorem 4.1.2 may fail. In Section 4.3 we prove
Theorem 4.1.5.

4.2 The Poisson problem

In this section we prove Theorem 4.1.2. Up to the end of the section we
identify R2 with C and we write z := x+ iy.

Assume f : Ω→ R be positive and such that assumptions (4.2) and (4.3) are
satisfied. Then the following proposition holds true.

Proposition 4.2.1. There exist a holomorphic function T : Ω→ C such that

(i) |T ′|2 = f in Ω,

(ii) T (Ω) is bounded and convex,

(iii) there exist a holomorphic function τ : T (Ω)→ C such that τ = T−1.

Proof. Without loss of generality, we can assume 0 ∈ Ω. Since log f is harmonic
in Ω by (4.2) and Ω is simply connected, we can find a holomorphic function
w : Ω→ R such that

<(w) = 1
2 log f.

Moreover, since f > 0 in Ω, w is holomorphic up to the boundary of Ω. Hence,
also the function t := ew is holomorphic in Ω and if we decompose it by modulus
and principal argument we have

t = |t|eiΘ.

Finally
1
2 log f = <(w) = < (log t) = <

(
log(|t|eiΘ)

)
= log|t|,
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which yields to
|t|2 = f. (4.7)

Then, since Ω is simply connected and t is holomorphic, we can define T as the
primitive of t such that T (0) = 0. Clearly T is holomorphic and (4.7) implies
|T ′|2 = f , proving (i).

To prove (ii) note that since T is continuous up to the boundary of Ω we have
that |T | is bounded and then T (Ω) is. To show the second claim we recall that
the curvature K̃ of the boundary of T (Ω), in ζ ∈ ∂T (Ω) is given by (see [Nee97,
equation (23) pag. 234])

K̃(ζ) = 1
|T ′(z)|

(
=
(t(z)T ′′(z)

T ′(z)

)
+ K(z)

)
, (4.8)

where z ∈ ∂Ω satisifes T (z) = ζ and t(z) is the unit tangent vector to ∂Ω in z.
Here, since Ω is simply connected we have that its boundary ∂Ω is a Jordan curve
and we assume it is orientated is such a way that the winding number satisfies

W∂Ω(z) := 1
2πi

∫
∂Ω

dz
z− z =

{
1 if z ∈ Ω
0 if z ∈ C \ Ω.

Thanks to this convention the unit tangent vector t is uniquely determined by
the orientation of ∂Ω. If we write T := h+ ig we have

T ′ = hx − ihy, and T ′′ = hxx − ihxy,

and then, writing t = xt + iyt, one has

=
(tT ′′

T ′

)
= =

(
(xt + iyt)(hxx − ihxy)

hx − ihy

)

= =
(
xthxx + ythxy + i(−xthxy + ythxx)

hx − ihy

)

= xt(hyhxx − hxhxy) + yt(hyhxy + hxhxx)
h2
x + h2

y

= yt(hxhxx + hyhxy)− xt(hxhxy + hyhyy)
h2
x + h2

y

. (4.9)

Taking into account

∂xf = ∂x(h2
x + h2

y) = 2hxhxx + 2hyhxy,
∂yf = ∂y(h2

x + h2
y) = 2hxhxy + 2hyhyy,

equation (4.9) becomes

=
(tT ′′

T ′

)
= ytfx − xtfy

2f = ν · ∇f
2f ,

where ν = (yt,−xt). Finally, the previous equation and (4.8) imply

|T ′|K̃ = =
(tT ′′

T ′

)
+ K = fν + 2Kf

2f ≥ 0,

where the last inequality holds true by (4.3). Then K̃ ≥ 0 and T (Ω) is convex.
Since T is proper, T ′ 6= 0 and T (Ω) is simply connected, [Gor72, Theorem

B] tells us that T is invertible. Finally, the inverse is holomorphic by the Open
Mapping Theorem and (iii) follows.
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Remark 4.2.2. In particular T is a conformal map, indeed |T ′|2 = f > 0 in Ω
and then Ω and T (Ω) are conformally equivalent.

Remark 4.2.3. The function T can be written in a more explicit way by setting

T ′(z) = t(x+ iy) := 1
t(0)

f

(
x+ iy

2 ,
y − ix

2

)
.

See [Sha04, equation (4.3)].

We can now prove Theorem 4.1.2.

Proof of Theorem 4.1.2. Let us denote Λ := T (Ω) with coordinates ζ := ξ + iη
and set

v(ξ, η) := u(τ(ξ, η)),

where we recall that τ = T−1. If we write τ := ϕ+ iψ we have

∂ξv = uxϕξ + uyψξ,

∂ηv = uxϕη + uyψη,

and

∂ξξv = uxxϕ
2
ξ + 2uxyϕξψξ + uyyψ

2
ξ + uxϕξξ + uyψξξ,

∂ηηv = uxxϕ
2
η + 2uxyϕηψη + uyyψ

2
η + uxϕηη + uyψηη.

Hence by the Cauchy-Riemann equations one has

∆v = uxx|∇ϕ|2 + 2uxy∇ϕ∇ψ + uyy|∇ψ|2 + ux∆ϕ+ uy∆ψ = ∆u|τ ′|2 = −f |τ ′|2,

and then by (i) of Proposition 4.2.1 we get

−∆v = f |T ′|−2 = 1,

that is v is the solution of the torsion problem in Λ, i.e.{
−∆v = 1 in Λ
v = 0 on ∂Λ.

Thank to Theorem 1.1.4, v has a unique nondegenerate critical point (ξ0, η0) ∈ Λ
and then (x0, y0) := τ(ξ0, η0) ∈ Ω is the unique critical point of u. To show the
nondegeneracy of (x0, y0), since ux(x0, y0) = uy(x0, y0) = 0 one has

∂ξξv(τ(ξ0, η0)) = uxxϕ
2
ξ + 2uxyϕξψξ + uyyψ

2
ξ ,

∂ξηv(τ(ξ0, η0)) = uxxϕξϕη + uxy(ϕξψη + ϕηψξ) + uyyψξψη,

∂ηηv(τ(ξ0, η0)) = uxxϕ
2
η + 2uxyϕηψη + uyyψ

2
η.

Then

∂ξξv∂ηηv = u2
xxϕ

2
ξϕ

2
η + 2uxxuxyϕ2

ξϕηψη + uxxuyyϕ
2
ξψ

2
η+

+ 2uxxuxyϕξϕ2
ηψξ + 4u2

xyϕξϕηψξψη + 2uxyuyyϕξψξψ2
η+

+ uxxuyyϕ
2
ηψ

2
ξ + 2uxyuyyϕηψ2

ξψη + u2
yyψ

2
ξψ

2
η,
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and

(∂ξηv)2= u2
xxϕ

2
ξϕ

2
η + u2

xy(ϕξψη + ϕηψξ)2 + u2
yyψ

2
ξψ

2
η + 2uxxuyyϕξϕηψξψη+

+2uxxuxyϕ2
ξϕηψη + 2uxxuxyϕξϕ2

ηψξ + 2uxyuyyϕξψξψ2
η + 2uxyuyyϕηψ2

ξψη.

Finally we have that

vξξvηη − v2
ξη = (uxxuyy − u2

xy)(ϕξψη − ϕηψξ)2,

and since (ξ0, η0) is nondegenerate, the same holds true for (x0, y0).

4.2.1 Final remarks

We conclude this section by showing that if at least one between (4.2) and (4.3)
does not hold, then Theorem 4.1.2 may fail.

Remark 4.2.4. If f > 0 in Ω, satisfies (4.2), but does not satisfy (4.3) then the
solution of the Poisson problem (4.1) can have more than one critical point.

Indeed in Theorem 1.2.1 it is shown that for any δ > 0, there exists a star-
shaped domain Ω := Ω(δ) such that the solution of the torsion problem, i.e.
f ≡ 1, admits at least two critical points. Moreover one has K|∂Ω ≥ −δ and it is
negative somewhere. Then f > 0 in Ω, (4.2) is satisfied but (4.3) is not.

Remark 4.2.5. If f > 0 in Ω, satisfies (4.3), but does not satisfy (4.2) then the
solution of the Poisson problem (4.1) can have more than one critical point.

Indeed, as a consequence of [EPW06, Theorem 1.1], one has that if p > 1 is
large enough there exists a solution u of the following Hénon problem

−∆u = (x2 + y2)α|u|p in B
u > 0 in B
u = 0 on ∂B,

with α > 0, B := B1(0), and there exist q1, q2 ∈ B such that

max
B\
⋃2
i=1 B2δ(qi)

u ≤
√
e

4 , and sup
Bδ(qi)

u ≥
√
e

2 , i = 1, 2,

for some 0 < δ < dist(q1,q2)
4 . Then let v be the solution of the torsion problem in

B with Dirichlet boundary conditions and set

uε := u+ εv, 0 < ε <

√
e

4 ‖v‖∞
,

which solves 
−∆uε = fε(x, y) in B
uε > 0 in B
uε = 0 on ∂B,

with fε(x, y) := (x2 + y2)α|u|p + ε > 0 in Ω. Then u = 0 on ∂Ω implies

1
2
∂fε
∂ν

+ Kfε = 0 + ε > 0, on ∂Ω,
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that is (4.3) is satisfied. Moreover, it is easy to see that uε admits at least one
critical point in Bδ(qi) for i = 1, 2.

Now let q ∈ Bδ(q1) \ {0} be a critical point for u such that u(q) ≥
√
e

2 . Then
one has

fε(q)2∆ log fε(q)
= fε(q)∆fε(q)− |∇fε(q)|2

= −p|q|6α|u(q)|3p−1 + 4εα2|q|2(α−1)|u(q)|p − εp|q|4α|u(q)|2p−1 < 0,

for ε small enough and then (4.2) is not satisfied.

4.3 The nonlinear problem

In this section we prove Theorem 4.1.5. Hence, let Ω be a fixed bounded and
convex domain in R2, Ωε the family of smooth domains converging to Ω as ε→ 0
and uε the solution of problem (4.6), as in Theorem 4.1.5.

Proof of Theorem 4.1.5. Since Ω is convex we know that if u is a semi-stable
solution of problem (4.5) in Ω, then it admits a unique nondegenerate critical
point, we denote it by pc. Hence, it is enough to show that for all multiindices
α, with |α| ≤ 2 it holds

sup
Ωε∩Ω

∣∣Dα(uε − u)∣∣→ 0, for ε→ 0. (4.10)

Indeed, if pε ∈ Ωε is a critical point for uε, then pε → pc as ε → 0, and it is
a nondenerate maximum thanks to (4.10). Then uniqueness follows from to the
convergence to Pc and the nondegeneracy.

We prove (4.10) through several steps.

Step 1: there exists C > 0 such that ‖uε‖H2(Ωε) ≤ C.
From classical regularity theory one has

‖uε‖Hm+2(Ωε) ≤ C(Ωε)
(
‖f(uε)‖Hm(Ωε) + ‖uε‖L2(Ωε)

)
,

but from the convergence of Ωε to Ω one can see that C(Ωε) does not really
depend on ε. Then for m = 0 using the assumption ‖uε‖L∞(Ωε) ≤ C we get the
desired claim.

Step 2: uε ⇀ u in H1(Ωρ), where u is a semi-stable solution of problem (4.5)
in Ω and Ωρ := { (x, y) ∈ R2 | (xρ ,

y
ρ) ∈ Ω }.

First of all from the convergence of Ωε to Ω we can find ρ > 1 such that Ωε ⊆ Ωρ.
Since Ωε are smooth we can consider uε defined in Ωρ by means of zero extension
outside Ωε and with a little abuse of notation we still denote such an extension
by uε. Then from the previous step we have uε ⇀ u in H1(Ωρ). Then it is easy
to see that by means of the dominated convergence theorem it holds∫

Ω
∇u∇ϕ =

∫
Ω
f(u)ϕ, for all ϕ ∈ C∞0 (Ω),
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and u = 0 on ∂Ω in trace sense. Finally for any ξ ∈ C∞0 (Ω) again the dominated
convergence theorem gives∫

Ω
|∇ξ|2 −

∫
Ω
f ′(u)ξ2 = lim

ε→0

∫
Ω
|∇ξ|2 −

∫
Ω
f ′(uε)ξ2 ≥ 0.

Hence we proved that u is a stable solution of problem (4.5) in Ω.

Step 3: end of the proof
From the convergence of Ωε to Ω we can find r > 0 and q1, . . . , qk ∈ ∂Ω such that

∂Ω ⊆
k⋃
i=1

Br(qi), and ∂Ωε ⊆
k⋃
i=1

Br(qi),

Ω ∩B2r(qi) = { (x, y) ∈ B2r(qi) | y > Γi(x) } ,
Ωε ∩B2r(qi) = { (x, y) ∈ B2r(qi) | y > Γi(x) + γiε(x) } ,

where the last two relations hold up to a rotation and where Γ1, . . . ,Γk, γ1
ε , . . . , γ

k
ε

are smooth functions such that

γiε → 0 in C4, for all i = 1, . . . , k.

Now, let us fix i = 1: up to a translation we can assume q1 = 0 and consider

ūε(x, y) := uε(x, y + γε(x)), for all (x, y) ∈ Ω ∩B2r,

where we omitted the apex i and B2r := B2r(0). Then one has ūε = 0 on ∂Ω∩B2r
and since γε → 0 in C2 it holds

sup
Ωε∩Ω∩B2r

∣∣Dα(uε − ūε)∣∣→ 0, for ε→ 0,

for all multiindices α, with |α| ≤ 2. Moreover, we have{
−∆(u− ūε) = hε in Ω ∩B2r

u− ūε = 0 on ∂Ω ∩B2r,

where

hε := f(u)− f(ūε)− 2∂xyuε|(x,y+γε(x))γ̇ε − ∂yyuε|(x,y+γε(x))γ̇
2
ε − ∂yuε|(x,y+γε(x))γ̈ε.

For m ∈ N, by means of the mean value theorem and taking into account that
u, uε and in turn ūε are uniformly bounded, we have |f(u)− f(ūε)| ≤ C|u− ūε|,
then

‖hε‖Hm(Ω∩B2r) ≤ C
(
‖u− ūε‖Hm(Ω∩B2r) + ‖uε‖Hm+2(Ωε) ‖γε‖Cm+2)

)
.

Iterating the argument in Step 1 and we can find C > 0 such that ‖uε‖Hm+2(Ωε) ≤
C and

‖u− ūε‖L2(Ω∩B2r) ≤ ‖u− uε‖L2(Ω∩B2r) +C ‖ūε − uε‖L∞(Ω∩B2r) → 0, for ε→ 0,

thanks to the compact embedding of H1(Ωρ) in L2(Ωρ). Then classical boundary
regularity theory gives ‖u− ūε‖C2(Ω∩Br) → 0 for ε→ 0 and in turn

sup
Ωε∩Ω∩Br

∣∣Dα(uε − u)∣∣→ 0, for ε→ 0,

for all multiindices α, with |α| ≤ 2. To complete the proof of (4.10) it is enough
to repeat the argument for all i = 1, . . . , k and use interior regularity estimates
taking into account that |−∆(u− uε)| ≤ C|u− uε|, for some C > 0.
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Remark 4.3.1. Here we show that if we assume that the nonlinearity has the
form f(u) = λg(u), g is smooth and satisfies (3.2) and (3.3), that are

g : R→ R is increasing and convex,
g(0) > 0,

and λ ∈ (0, λ∗(Ω)), then there exists C > 0 such that ‖uε‖L∞(Ωε) ≤ C.
First of all note that, since Ωε → Ω then λ∗(Ωε)→ λ∗(Ω) and then λ < λ∗(Ωε)

for ε small enough.
Remember that from the convergence of Ωε to Ω we can find ρ > 1 such that

Ωε ⊆ Ωρ = { (x, y) ∈ R2 | (x/ρ, y/ρ) ∈ Ω }. Moreover under this set of assump-
tions one has λ∗(Ωρ) > λ for ε small enough. Hence if we consider the stable
solution uρ of (4.5) in Ωρ - using the convexity of f - we have{

−∆(uε − uρ) = λ (f(uε)− f(uρ)) ≤ λf ′(uε)(uε − uρ) in Ωε

uε − uρ ≤ 0 on ∂Ωε

and then from the stability of uε we can apply the maximum principle to deduce
uε ≤ uρ ≤ ‖uρ‖L∞(Ωρ) in Ωε.



Chapter 5

Sign-changing solutions: the
Dirichlet eigenfunctions

In this chapter we are interested in the study of the number of critical points
in the case of sign-changing solutions. Since to our knowledge there are no results
in the literature, let us focus on the k-th Dirichlet eigenfunction. In particular,
for m ∈ N, let uk be the solution of{

−∆uk = λkuk in Ω
uk = 0 on ∂Ω,

with λk := λk(−∆,Ω) > 0 be the corresponding eigenvalue. A fundamental result
is the Courant Nodal Domain Theorem, see [CH53], which tells us that uk has at
most k nodal domains. In particular, since the only eigenfunctions that does not
change sign is the first one, it follows that u2 has exactly two nodal domains. In
this chapter we are going to prove that the second eigenfunction has exactly two
critical points in planar convex domains with large eccentricity. Moreover, if we
restrict our attention to a smaller class of domains we are able to establish the
exact number of critical point for all the eigenfunctions.

We start the chapter recalling some known results about the nodal line con-
jecture for the second eigenfunction, then we state and prove our main theorems
which can be found in [DRG22b].

5.1 The nodal line conjecture of the second eigenfunc-
tion

From now up to the end of this chapter we fix N = 2, unless different indica-
tion. Here we focus on the second eigenfunction, i.e.{

−∆u2 = λ2u2 in Ω
u2 = 0 on ∂Ω,

(5.1)

where Ω ⊆ R2 is a given domain.
A first interesting topic concerns the nodal line of the second eigenfunction u2.

It was conjectured that the nodal line Λ := {x ∈ Ω | u2(x) = 0 } of the second
eigenfunction in planar domains touches the boundary ∂Ω at exactly two points.
In [Pay67] it was conjectured that it happens in any bounded domain, while

55
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in [Yau82] we find the conjecture only for convex domains. Finally in [HOHON97]
- after disproving the claim in non simply connected domains, see Theorem 5.1.7
- the authors conjecture that it happens in all bounded planar simply connected
domains.

Remark 5.1.1. If you are able to prove the conjecture, we strongly recommend
you to read [Ale20, Section 6].

Remark 5.1.2. As pointed out in [Ple56], in the case of Neumann boundary
conditions one has Λ∩ ∂Ω 6= ∅ for any bounded and smooth domain Ω ⊆ RN for
all N ≥ 2: indeed it is an easy consequence of the fact that the second Neumann
eigenvalue is smaller then the first Dirichlet one.

We start by recalling a results by Payne where under suitable symmetry
assumptions on the domain Ω the nodal line conjecture is proved.

Theorem 5.1.3 ([Pay73]). Let Ω be bounded, convex in x1 and symmetric about
the x2 axis. Then u2 cannot have an interior closed nodal curve.

After this, the conjecture has been showed to be true also by Lin, see [Lin87],
and Pütter, see [Pü90]. In both cases different symmetry assumptions are still
needed.

In the paper [Lin87], the author also prove that in convex planar domains the
multiplicity of the second eigenvalue is at most two.

Later on, another interesting result has been proved by Jerison in [Jer91],
where the author considers convex domain without symmetry assumptions, but
with large eccentricity, see Definition 5.2.1. We refer to Section 5.2, for other
results for this kind of domains.

The nodal line conjecture was finally proved for convex domains by Melas
under regularity assumptions on the boundary ∂Ω.

Theorem 5.1.4 ([Mel92]). Let Ω be a bounded convex domain with C∞ boundary.
Then the nodal line Λ of any second eigenfunctions u2 must intersect the boundary
∂Ω at exactly two points.

Remark 5.1.5. The smoothness assumption of the boundary can be dropped.
The improved theorem was proved by Alessandrini in [Ale94]

A generalization of Theorem 5.1.3 to any dimension and to higher eigenfunc-
tion can be found in Damascelli [Dam00].

Theorem 5.1.6 ([Dam00]). Let Ω ⊆ RN , N ≥ 2, be a bounded domain. If Ω is
convex and symmetric with respect to m orthogonal directions, 1 ≤ m ≤ N , and

Λuk := {x ∈ Ω | uk(x) = 0 },

is the nodal set of the eigenfunction uk, then Λuk ∩ ∂Ω 6= ∅, for 2 ≤ k ≤ m+ 1.

If Ω ⊆ RN , with N ≥ 2, then the nodal set of the second eigenfunction
touches the boundary provided that the domain is convex and the eccentricity
is large enough. This has been proved by Jerison in [Jer95c] and no symmetry
assumptions are required.

It is also possible to prove the nodal line conjecture in some particular cases
of non convex domains. For instance, it has been proved by Freitas and Krejčiřík
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in [FK08] for, possibly non convex, thin tubes. If the section of the tube is small
enough then the conjecture holds. We refer to the original paper for the precise
statements.

Moreover, under small perturbations of rectangles one can recover the validity
of the nodal line conjecture as showed in [BCM21].

Finally, different symmetry assumptions could guarantee the validity of the
nodal line conjecture also for concave or not simply connected domains, for in-
stance see [YG13, Kiw18].

5.1.1 Counterexamples to the nodal line conjecture

We conclude this section by reporting some cases in which the nodal line
conjecture does not hold.

First of all, the nodal line conjecture does not hold for general Schrödinger
operators. Indeed, in the paper [LN88], Lin and Ni proved that it is possible to
find a potential V : B1 → R such that for all N ≥ 2 all the second eigenfunctions
of −∆ + V (x) in B1 with zero Dirichlet boundary data are radially symmetric.
In particular the nodal line conjecture fails.

The nodal line Λ can be closed in non convex, not simply connected domains.
The following result by Hoffmann-Ostenhof, Hoffmann-Ostenhof and Nadirashvili
disprove the nodal line conjecture as stated by Payne in [Pay67].

Theorem 5.1.7 ([HOHON97]). Let 0 < R1 < R2 be such that

λ1(−∆, BR1) < λ1(−∆, BR2 \BR1) < λ2(−∆, BR1).

For n ∈ N and 0 < ε < π/n let

Ωn,ε := BR1 ∪BR2 \BR1 ∪
n−1⋃
j=1

{
x ∈ R2

∣∣∣∣ ρ = R1, θ ∈
(2πj
n
− ε, 2πj

n
+ ε

) }
,

where x1 = ρ cos θ and x2 = ρ sin θ, see Figure 5.1. Then there exists n0 ∈ N
such that for n ≥ n0 and sufficiently small ε = ε(n) the second eigenfunctions u2
in Ωn,ε has closed nodal line. That is Λ ∩ ∂Ωn,ε = ∅.

The preceding results was generalized to N ≥ 2 by Fournais [Fou01], see
also [Ken13]. Clearly, it would be interesting to understand what is the smallest
number of boundary components such that the nodal line is a closed one contained
in the domain. In [DGSH21] it is shown that this number is at most 7, but the
authors make no claim it is optimal.

Counterexamples to the nodal line conjecture can be found for Robin bound-
ary conditions.

Theorem 5.1.8 ([Ken11]). Fix M,β > 0. There exists a bounded, connected
domain Ω with Lipschitz boundary such that |Ω| = M and the second Robin
eigenfunction, i.e. v2 solution of the problem{

−∆v = λ2v in Ω
∂v2
∂ν + βv = 0 on ∂Ω,

is simple and satisfies
{x ∈ Ω | v2(x) < 0 } ⊂⊂ Ω.

In particular the nodal line does not touch the boundary of the domain.
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Figure 5.1: The domain Ωn,ε in Theorem 5.1.7 with n = 6.

If the domain Ω is unbounded the nodal line Λ does not touch the boundary
∂Ω in general, even if the symmetry assumptions of Theorem 5.1.3 are satisfied,
see the results by Freitas and Krejčiřík in [FK07].

Finally, on manifolds the nodal line conjecture fails in general, even for Robin
boundary condition as showed by Freitas in [Fre02].

5.2 Large eccentricity domains: main results
In case of planar convex domains with large eccentricity it is possible to have

more information about the nodal line. Here we follow the works of Jerison and
Grieser and Jerison. From now up to the end of the chapter, the generic point of
R2 will be denoted in coordinate with (x, y).

Let us recall the definition of eccentricity.
Definition 5.2.1. The eccentricity of a bounded domain Ω is given by

ecc(Ω) := diam(Ω)
inradius(Ω) ,

where
inradius(Ω) := max{r > 0|Br(x) ⊆ Ω, for some x ∈ Ω},

is the inradius of the domain.
Convex domains with large eccentricity were considered by Jerison in [Jer95a]

and Grieser-Jerison in [GJ96] where the location of the nodal line Λ was char-
acterized. In order to state their result we need to normalize the domain Ω in
an appropriate way. First let us rotate Ω so that its projection on the y-axis has
the shortest possible length, and then dilate so that this projection has length
1. Denote by M the length of the projection of Ω on the x-axis. Then M ≥ 1,
and M is essentially the diameter of Ω, see Figure 5.4. Moreover, since the in-
radius is close to 1, we have that also the eccentricity of the domain has order
M . From now we denote by ΩM a domain satisfying the previous properties and
accordingly by uM a solution to (5.1) in Ω = ΩM with ΛM its nodal line.

Note that in this setting the domain ΩM , as M grows, is close to the strip
{ (x, y) ∈ R2 : 0 < y < 1 } (in a suitable way).

In [Jer95a], Jerison studies such a class of domains and gives an estimate of
the first two eigenvalues showing that they can be compared to the ones of the
associated ordinary operator

− d2

dx2 + π2

h(x)2 ,
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with Dirichlet boundary conditions on the projection of Ω on the x-axis and where
h denotes the cross section of Ω. Furthermore, he proves that if x̄ ∈ R is the
zero of the second eigenfunction of the Schrödinger operator −d2/dx2 +π2/h(x)2,
then the nodal line Λ lies in Ω ∩ (x̄−K, x̄+K)× R for some fixed K > 0.

This last result has ben improved in the subsequent work [GJ96] by Grieser
and Jerison itself.

Theorem 5.2.1 ([GJ96]). There is an absolute constat C such that the width of
the nodal line ΛM is at most C/M . In other words, up to translate ΩM , one has

(x, y) ∈ ΛM =⇒ |x| < C

M
.

This result is our starting point to compute the number of critical points of
uM in ΩM . Indeed, since as the eccentricity of the domain grows the nodal line
becomes close to a straight line, this implies that the nodal domains are not so
far from being convex and then we can expect to have exactly one critical point
for any of them. We have the following theorem.

Theorem 5.2.2. For M large enough, the second eigenfunction uM has exactly
two critical points PM , QM ∈ ΩM . Moreover PM (say) is a nondegenerate max-
imum point while QM is a nondegenerate minimum. Finally |PM |, |QM | → +∞
as M → +∞.

−20 0
20 0

0.5

1−20

0

20

x

y

Figure 5.2: A graph of uM for M large.

The theorem says that if the eccentricity of the domain is big enough (let us
recall it has the same order ofM), then we are able to compute the exact number
of the critical points of the second eigenfunction. Moreover, the distance between
the critical points and the nodal line becomes larger and larger as the eccentricity
goes to infinity.

The proof of the previous theorem is splitted in two parts. In the first one
we deduce, up to a suitable normalization, the convergence on compact sets of
the eigenfuction uM to the “limit” function u∞(x, y) = A0x sin(πy) where A0 is a
nonzero constant. This will be done combining some results in [GJ96] and [GJ09].
We stress that the choice of the normalization of the eigenfunction uM is not a
trivial issue, as already discussed in [Jer95a] and [GJ96].
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The second part of the proof involves a topological argument: similarly to Chap-
ter 2,we introduce the vector field T : ΩM ∩

{
x > 1

2

}
→ R2

T (q) = (uyy(q)ux(q)− uxy(q)uy(q), uxx(q)uy(q)− uxy(q)ux(q)),

q ∈ ΩM ∩
{
x> 1

2

}
, which allows to “count” the critical points of uM . It will

be proved that the vector field T is homotopic to the map I − (x0, y0) with
(x0, y0) ∈ ΩM ∩{x > 1

2 } (the same will be done in ΩM ∩{x < −1
2 }). This result

will give the uniqueness and nondegeneracy of the critical point of uM in the set
where uM > 0 and uM < 0 respectively.
All these computations strongly use the convexity of the domain ΩM and the
convergence of uM to u∞. We stress that, although this convergence is only on
compact sets, it will be enough to handle the computations in all the set ΩM .

In the second part of the chapter we deal with a particular class of convex
domains not included in the previous section, which are perturbation of rectangles
converging to the strip. This family of domains has been studied in [GJ09]
where Grieser and Jerison give a full asymptotic expansion for the k-th Dirichlet
eigenvalue and for the associated eigenfunction (see Theorem 5.4.1 below).

Let ϕ : [0, 1]→ [0,∞) be a Lipschitz and concave function and forM ∈ [0,∞)
set

RM :=
{

(x, y) ∈ R2
∣∣∣ 0 < y < 1, −ϕ(y) < x < M

}
, (5.2)

see Figure 5.3.

x

y
RM

M

−ϕ

Figure 5.3: The domain RM .

Let uk,M ∈ C∞(RM ) be the k-th Dirichlet eigenfunction in RM which solves

{
−∆uk,M = λk,Muk,M in RM
uk,M = 0 on ∂RM .

where λk,M := λk(−∆,RM ) is the k-th eigenvalue. In next theorem we prove the
existence of exactly k critical points for uk,M in RM .

Theorem 5.2.3. For M large enough, uk,M has exactly k nondegenerate critical
points in the set RM . Moreover all of them are maxima and minima.

Unlike Theorem 5.2.2, the proof of Theorem 5.2.3 is much easier and it
strongly follows by the estimates proved in [GJ09].

The rest of the chapter is organized as follows: in the next section we prove
Theorem 5.2.2, while in Section 5.4 we investigate the eigenfunctions on convex
perturbations of long rectangles, proving Theorem 5.2.3.
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1

x

y

ΩM

M

Figure 5.4: The set ΩM .

5.3 Proof of Theorem 5.2.2
In this section we prove Theorem 5.2.2. To this end, in the next subsection

we recall some notations and some results for the second eigenfunction on convex
domain with large eccentricity from the papers of Jerison and Grieser, Jerison
and in the next one we extrapolate the local convergence of uM to u∞ (see
Proposition 5.3.4). Subsection 5.3.3 is devoted to the topological argument where
we perform the computations involving the vector field T and we finally prove
Theorem 5.2.2.

5.3.1 Preliminary results

Here we collect some results proved in [Jer95a, GJ96] (see also [Jer95b] for an
overview of the problem). As we pointed out in Section 5.2, let us rotate ΩM so
that its projection on the y-axis has the shortest possible length, then dilate so
that this projection has length 1. Denote by M the length of the projection of
the domain on the x-axis, then M ≥ 1, see Figure 5.4. Hence, we write

ΩM =
{

(x, y) ∈ R2
∣∣∣ f1,M (x) < y < f2,M (x), x ∈ (aM , bM )

}
,

where bM − aM = M , 0 ≤ f1,M ≤ f2,M ≤ 1, and the height function of ΩM is
hM := f2,M − f1,M . We require that

f1,M → 0 and f2,M → 1 in C∞loc(R) as M → +∞.

By the convexity of ΩM we have that f ′′1,M ≤ 0 and f ′′2,M ≥ 0. Our assumptions
imply that the set ΩM “converges” to the strip

Ω∞ :=
{

(x, y) ∈ R2
∣∣∣ 0 < y < 1

}
,

(here we prefer to denote the strip by Ω∞ and not by S to underline the conver-
gence of ΩM to it). More precisely we have that for all compact sets K ⊆ R2 one
has |(ΩM4Ω∞) ∩K| → 0. As expalined in Section 5.2 we know that the nodal
line

ΛM := { (x, y) ∈ ΩM | uM (x, y) = 0 },

is close to the straight line {x = 0}, up to a translation (see Theorem 5.2.1 in the
section above). Finally let uM ∈ C∞(ΩM ) be the solution of{

−∆u = λ2,Mu in ΩM

u = 0 on ∂ΩM ,
(5.3)
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wehre λ2,M := λ2(−∆,ΩM ). Moreover, for all (x0, y0) ∈ ΛM ∩ΩM we can assume
that uM (x0 + 1, y0) > 0 and uM (x0 − 1, y0) < 0, that is uM > 0 on the right of
the nodal line and uM is negative on the left.

Finally, let LM be the length of the longest interval ILM ⊆ (aM , bM ) such
that

hM (x) = f2,M − f1,M ≥ 1− 1
L2
M

, in ILM .

The number LM is related to the length of the rectangle contained in ΩM with
lowest first eigenvalue and it satisfies the following bounds (see [GJ96, Jer95b])

M1/3 ≤ LM ≤M. (5.4)

For future convenience, we introduce for n ∈ R the sets

Ωn
M := { (x, y) ∈ ΩM | −n < x < n } ,

and
Ωn
∞ :=

{
(x, y) ∈ R2

∣∣∣ −n < x < n, 0 < y < 1
}
,

where we remember that Ω∞ = R×(0, 1) is the infinite strip of height 1. Since 0 ≤
f1,M ≤ f2,M ≤ 1, we have that the continuous embedding H1

0 (ΩM ) ↪→ H1
0 (Ω∞)

holds true by means of zero extension outside ΩM .
An important step to deduce good estimates for the eigenfunction uM is to

choose a correct normalization. So let us define ûM as

ûM := LM
uM
||uM ||∞

.

With a little abuse of notation, in the following we will set

ûM = uM .

From the results in [GJ96] we will deduce the following lemma.

Lemma 5.3.1. There exists a positive constant C independent of M , such that

|uM (x, y)| ≤ C(1 + |x|), for all (x, y) ∈ ΩM , (5.5)

and
|uM (±1, 1/2)| ≥ 1

C
. (5.6)

Proof. The first estimate (5.5) is proved in [GJ96, Theorem 4].
To prove (5.6), still recalling [GJ96], define the following function

ũM (x, y) := ψM (x)
√

2
hM (x) sin

(
π
y − f1,M (x)
hM (x)

)
,

where

ψM (x) :=
√

2
hM (x)

∫ f2,M (x)

f1,M (x)
sin
(
π
y − f1,M (x)
hM (x)

)
uM (x, y) dy.

Note that ũM (x, y)∼
√

2 sin(πy)ψM (x) and ψM (x)∼
√

2
∫ 1
0 sin(πy)uM (x, y) dy if

x is bounded. Finally, let vM := uM − ũM .
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Now, let C > 0 be any positive constant independent fromM which may vary
in the rest of the proof and recall the following estimates. [GJ96, Equation (26)]
tells us

|ψM (x)| ≥ C|x|, −2 < x < 2,

and [GJ96, Lemma 5] gives for all (x, y) ∈ Ω2
M

|vM (x, y)|

≤
√

2
hM (x) sin

(
π
y − f1,M (x)
hM (x)

)(
1+|x|

∣∣∣∣∣log
(√

2
hM (x) sin

(
π
y − f1,M (x)
hM (x)

))∣∣∣∣∣
)
L−3
M

≤ C

L3
M

.

Hence for (x, y) ∈ Ω2
M one has

|uM (x, y)| = |ũM (x, y) + vM (x, y)|

≥
∣∣∣∣∣ψM (x)

√
2

hM (x) sin
(
π
y − f1,M (x)
hM (x)

)∣∣∣∣∣− |vM (x, y)|

≥ |ψM (x)| sin
(
π
y − f1,M (x)
hM (x)

)
− C

L3
M

≥ C|x| sin
(
π
y − f1,M (x)
hM (x)

)
− C

L3
M

.

Finally, since for M → +∞ from (5.4) also LM → +∞, one has (±1, (f1,M (1) +
f2,M (1))/2)→ (±1, 1/2), and then we have

|uM (±1, 1/2)| = |uM (±1, (f1,M (1) + f2,M (1))/2)|+ o(1)

≥ C|±1|(1 + o(1)) ≥ C

2 .

Remark 5.3.2. From (5.5) one has

‖uM‖L∞(Ωn∞) ≤ C(1 + k), for all n ∈ N. (5.7)

The following lemma follows by the standard elliptic regularity theory.

Lemma 5.3.3. For m ∈ N, f ∈ Hm(Ωn+1
M ), let u ∈ H1(Ωn+1

M ) be a weak solution
of {

−∆u = f in Ωn+1
M

u = 0 on ∂Ωn+1
M \ {x = ±(n+ 1) } .

Then for δ ∈ (0, 1) it holds

u ∈ Hm+2(Ωn+δ
M ),

with the estimate

‖u‖Hm+2(Ωn+δ
M ) ≤ C

(
‖f‖Hm(Ωn+1

M ) + ‖u‖L2(Ωn+1
M )

)
,

for some C > 0 independent from M .

We point out that the independence from M follows from the convergence of
ΩM to Ω∞.
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5.3.2 The asymptotic behavior of uM

In this section we study the limiting behavior of the solution uM on compact
sets. In particular, uM converges to a function which is a solution in the whole
strip Ω∞.

Proposition 5.3.4. Up to renormalize uM , we have that for all multiindices α,
with |α| ≤ 2 and fixed n ∈ N, it holds

sup
ΩM∩{−n≤x≤n}

∣∣Dα(uM −A0x sin(πy)
)∣∣ = o(1), for M → +∞, (5.8)

for some suitable constant A0 6= 0.

The proof of the previous proposition is a consequence of the next two lem-
mata.

Lemma 5.3.5. We have that there exists u∞ : Ω∞ → R such that for all multi-
indices α, with |α| ≤ 2 and fixed n ∈ N, up to subsequences, one has

sup
ΩM∩{−n≤x≤n}

∣∣Dα(uM − u∞)∣∣ = o(1), for M → +∞,

and u∞ solves {
−∆u∞ = π2u∞ in Ω∞
u∞ = 0 for y = 0, 1.

Proof. In the proof of the lemma, convergence will be understood up to subse-
quences.

Fix n ∈ N. From (5.7) and Lemma 5.3.3 we have

‖uM‖
H2
(

Ω
n+ 1

2
∞

) ≤ C(n),

for some C(n) > 0 and so there exists un∞ ∈ H1
(

Ωn+ 1
2∞

)
such that

uM ⇀ un∞ weakly in H1
(

Ωn+ 1
2∞

)
.

Let us show that in Ωn+ 1
2∞ we have that −∆un∞ = π2un∞ in weak sense. Indeed,

for all ϕ ∈ C∞0
(

Ωn+ 1
2∞

)
one has

∫
Ω
n+ 1

2
∞

∇un∞∇ϕ =
∫

Ω
n+ 1

2
∞

(∇un∞∇ϕ+ un∞ϕ)−
∫

Ω
n+ 1

2
∞

un∞ϕ

= lim
M

∫
Ω
n+ 1

2
∞

(∇uM∇ϕ+ uMϕ)− lim
M

∫
Ω
n+ 1

2
∞

uMϕ

= lim
M

∫
Ω
n+ 1

2
∞

∇uM∇ϕ

= lim
M
λ2,M

∫
Ω
n+ 1

2
∞

uMϕ

= π2
∫

Ω
n+ 1

2
∞

un∞ϕ.
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Moreover, it is not difficult to see that

un∞ = 0, on ∂Ωn+ 1
2∞ \ {x = ±(n+ 1

2) } ,

and by Lemma 5.3.3 we obtain that un∞ ∈ C∞
(

Ωn+ 1
3∞

)
.

By (5.6) we deduce that un∞ 6≡ 0 in Ωn
∞, and from the assumptions on the

nodal lines of uM one has un∞(0, y) = 0 for all y ∈ (0, 1) .
Next we show the C2 convergence up to the boundary of Ωn

M . Let us start
by fixing a point (x, 0) with −n < x < n. From the assumption on ΩM we can
define the set

B(M) := ΩM ∩Br(x, 0) = { (x, y) ∈ Br(x, 0) | y > f1,M (x) } ,

for some r > 0 suitably small. Then, from the standard regularity theory we
deduce that

‖uM − un∞‖C2(B1/2(M)) → 0, for M → +∞.

where B1/2(M) := ΩM ∩ Br/2(x, 0). To show C2 convergence in the whole Ωn
∞

it is enough to cover the segments (−n, n)× {0} and (−n, n)× {1} with finitely
many balls.
Thus we have proved that for all n ∈ N we can find a function un∞ ∈ C∞(Ωn

∞)
such that uM → un∞ in C2(Ωn

∞) and un∞ solves{
−∆un∞ = π2un∞ in Ωn

∞
un∞ = 0 for y = 0, 1.

By uniqueness of the limit we have un+1
∞ = un∞ in Ωn

∞, and this allows us to define
a C2 function in the whole strip Ω∞ given by

u∞(x, y) := un∞(x, y), for (x, y) ∈ Ωn
∞,

which is a solution of {
−∆u∞ = π2u∞ in Ω∞
u∞ = 0 for y = 0, 1.

Moreover, from the corresponding properties of un∞, note that u∞(0, y) = 0 for
all y ∈ (0, 1) and |u∞(±1, 1/2)| > 0.

To conclude the proof of Proposition 5.3.4 we must prove that u∞(x, y) =
A0x sin(πy) for some A0 > 0. This is a consequence of the next lemma.

Lemma 5.3.6. The functions u(x, y) = Ax sin(πy) are the unique solutions of
the problem 

−∆u = π2u in Ω∞
u(0, y) = 0 for any y ∈ [0, 1]
u(x, 0) = u(x, 1) = 0 for any x ∈ R
|u(x, y)| ≤ C(1 + |x|) for some constant C > 0,

(5.9)

for any A ∈ R.
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Proof. Here we follow [GJ09, Lemma 6]. Let u(x, y) be a solution to (5.9). Then
for each fixed x its Fourier series is given by

u(x, y) =
∞∑
j=1

Aj(x) sin(jπy),

where
Aj(x) := 2

∫ 1

0
u(x, t) sin(jπt) dt, (5.10)

that is A1(x) = c1x+ d1 and

Aj(x) = cje
−
√
j2−1πx + dje

√
j2−1πx, for j ≥ 2,

with cj , dj ∈ R for all j ≥ 1, see [GJ09, Lemma 6] for more details.
Then we evaluate (5.10) for x = 0 and taking into account that u(0, y) = 0

for all y ∈ [0, 1] we have

d1 = A1(0) = 2
∫ 1

0
u(0, y) sin(πy) dy = 0,

and
cj + dj = Aj(0) = 2

∫ 1

0
u(0, y) sin(jπy) dy = 0, (5.11)

for j ≥ 2.
By the definition of Aj(x) and since u has growth at most linear we have that

dj = 0 for all j ≥ 2. Hence (5.11) implies cj = 0 for all j ≥ 2 and then

u(x, y) =
∞∑
j=1

Aj(x) sin(jπy) = A1(x) sin(πy)

= (c1x+ d1) sin(πy) = c1x sin(πy),

and the claim follows.

Now we are in the position to give the proof of Proposition 5.3.4.

Proof of Proposition 5.3.4. By Lemma 5.3.5 uM converges up to a subsequence
to u∞, let us show that u∞(x, y) = A0x sin(πy). First we observe that from
inequality (5.5) in Lemma 5.3.1 we know that u∞ has growth at most linear for
x → ±∞. Hence Lemma 5.3.6 applies and so u∞(x, y) = Ax sin(πy). Finally
A = A0 = u∞(1, 1/2) > 0. To conclude the proof we need to show that, up to
renormalize some uM the convergence holds for the whole sequence. By contra-
diction, assume that we can find a subsequence (uM`

)` ⊆ (uM )M not converging
to u∞ and C > 0 such that

‖uM`
−A0x sin(πy)‖L∞(ΩM`∩{−n<x<n})

≥ C.

Now, we can apply Lemma 5.3.5, and in turn Lemma 5.3.6, to the sequence
(uM`

)` to find that, up to subsequences

‖uM`
−A1x sin(πy)‖L∞(ΩM`∩{−n<x<n})

→ 0, for `→ +∞,

for some A1 > 0. Hence, up to multiply uM`
by A0/A1 we get uM`

→ u∞, a
contradiction.
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Remark 5.3.7. A consequence of (5.8) is that ∇u 6= 0 in ΩM ∩ {−1 < x < 1}.
Note also that by the previous lemmata it is possible to deduce that in ΛM ∩
∂ΩM there are two nondegenerate saddle points. Indeed, from Theorem 5.2.1
the nodal line is contained in ΩM ∩ {−1 < x < 1} and [Lin87, Lemma 1.2]
tells us that the two points in ΛM ∩ ∂ΩM are critical points. Moreover, setting
ΛM ∩ ∂ΩM = { q1, q2 } we have q1 = (o(1), 1 + o(1)) and q2 = (o(1), o(1)) and
then from Proposition 5.3.4, writing qi := (xqi , yqi), we get for i = 1, 2

∂xxuM (qi) = ∂xx (A0x sin(πyqi)) + o(1) = 0 + o(1) = o(1),

and similarly one has

∂xyuM (qi) =∂xy (A0x sin(πyqi)) + o(1)
=A0π cos(πyqi) + o(1) =(−1)iA0π + o(1),

∂yyuM (qi) =∂yy (A0xqi sin(πyqi)) + o(1) =−A0π
2xqi sin(πyqi) + o(1) =o(1).

This yields to
det HessuM (qi) = o(1)− ((−1)iA0π)2 < 0,

and the claim follows.

5.3.3 The topological argument

Up to the end of this section let us write u instead of uM for brevity. Let us
use the notations from Section 2.2.

Let us point out that uθ clearly solves −∆uθ = λ2,Muθ in ΩM . Moreover,
if the set {u > c } is smooth then we recall that the curvature of its bounday is
given by

K = −
uyyu

2
x − 2uxyuxuy + uxxu

2
y

|∇u|3
.

Consider
Ω′M := { (x, y) ∈ ΩM | x > 1/2 } .

In the next proposition we recall some properties of the sets Mθ and Nθ in Ω′M .

Proposition 5.3.8. We have that for every θ ∈ [0, π),

(i) around any p ∈ (Nθ ∩ Ω′M ) \Mθ the nodal set Nθ is a smooth curve;

(ii) if p ∈Mθ ∩Ω′M , then Nθ consists of at least two smooth curves intersecting
transversally at p;

(iii) the monotonicity property of Dirichlet eigenvalues with respect to the do-
main implies that there is no nonempty domain H ⊆ Ω′M such that ∂H ⊆ Nθ

(where the boundary of H is considered as a subset of R2);

(iv) if p ∈
(
Nθ ∩ ∂(Ω′M ∩ ΩM )

)
\Mθ by the implicit function theorem one has

that around p, Nθ is a smooth curve intersecting ∂Ω′M transversally in p.

Proof. See [CC98].

The following result tells us that for each θ ∈ [0, π) the nodal sets of uθ is a
smooth curve without self intersection and every critical point of u is nondegen-
erate.
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Proposition 5.3.9. For M large enough and for every θ ∈ [0, π), the nodal set
Nθ of the partial derivative uθ is a smooth curve in Ω′M without self-intersection
which hits ∂Ω′M exactly at two points. Moreover at any critical point of u in Ω′M
the Hessian matrix has rank 2.

Proof. The proof uses Proposition 5.3.8 jointly with Proposition 5.3.4.
From the previous points, if we prove that

a) Mθ = ∅ on Nθ ∩ ∂Ω′M ,
and
b) Nθ ∩ ∂Ω′M = {p1, p2},
we have the claim. Indeed if a) and b) hold then we cannot have self-intersections
of Nθ otherwise (iii) of Proposition 5.3.8 fails. So Mθ = ∅ and this fact jointly
with (i) of Proposition 5.3.8 gives the smoothness of Nθ in Ω′M . In order to prove
a) and b) we will show that the following scenario holds:

• If θ is far away from 0 and π then Nθ intersect ∂Ω′M exactly at two points,
one of them belonging to ∂ΩM and the other on the straight line x = 1

2 .

• If θ is close to 0 and π then Nθ intersect ∂Ω′M exactly at two points, both
belonging to the straight line x = 1

2 .

• In both cases Nθ intersect ∂Ω′M transversely.

Now let us consider the two different situations.

Case 1: a) and b) hold for θ far away from 0 and π.
From the assumptions on ΩM and taking into account that the curvature K is
positive, there exist δi := δi(M) > 0, with δi → 0 as M → +∞, for i = 1, 2, such
that for θ ∈ (δ1(M), π − δ2(M)) there exists a unique p1 on ∂ΩM with x > 1/2
such that the tangent vector of ∂Ω′M at p1 is parallel to eθ.

It follows that p1 ∈ Nθ and from K > 0 we get p1 6∈Mθ. Indeed

uθθ(p1) = utt(p1) = K(p1)uν(p1) 6= 0,

where t denotes the unit tangent normal vector, ν the unit exterior vector and
uν(p1) 6= 0 by the Hopf boundary lemma. Hence p ∈

(
Nθ∩∂(Ω′M ∩ΩM )

)
\Mθ and

(iv) of Proposition 5.3.8 implies that Nθ is a smooth curve intersecting ∂(Ω′M ∩
ΩM ) transversely in p1.

Next let us show that for θ ∈ (δ1(M), π − δ2(M)) and p = (1/2, y) we have
that Nθ is a singleton. Taking into account (5.8), one has

0 = uθ = cos θ∂xu+ sin θ∂yu
= cos θ∂x (A0x sin(πy)) + sin θ∂y (A0x sin(πy)) + o(1)

= A0 cos θ sin (πy) +A0
π

2 sin θ cos (πy) + o(1),

if and only if
cot θ = −π2 cot(πy)(1 + o(1)),

which tells us that, for M sufficiently large, there exists exactly one point p2 =
(1/2, yθ) such that uθ(p2) = 0. Uniqueness of p2 follows from C1 convergence of uθ
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given by Proposition 5.3.4. Moreover similar computations show that p2 6∈ Mθ,
indeed

∂xuθ = cos θ∂xxu+ sin θ∂xyu
= cos θ∂xx (A0x sin(πy)) + sin θ∂xy (A0x sin(πy)) + o(1)
= A0π sin θ cos (πy) + o(1) 6= 0,

for y 6= 1/2 + o(1). If y = 1/2 + o(1) one has

∂yuθ = A0π cos θ cos (πy)−A0
π2

2 sin θ sin(πy) + o(1)

= −A0
π2

2 sin θ + o(1) 6= 0.

So Nθ ∩ ∂Ω′M = {p1, p2} and pi 6∈ Mθ for i = 1, 2; hence a) and b) hold for
θ ∈ (δ1(M), π − δ2(M)).

Case 2: a) and b) hold for θ close to 0 and π.
According to the notations of the previous case let us consider θ ∈ [0, δ1(M)) ∪
(π − δ2(M), π). So in this case either θ → 0 or θ → π as M → +∞.

Note that here we have that Nθ ∩ ∂ΩM ∩ ∂Ω′M = ∅ and then we only have to
study what happens on the straight line x = 1

2 . Moreover, Remark 5.3.7 implies
the existence of at least a critical point in Ω′M and then Nθ ∩ Ω′M 6= ∅. Since
there are no intersections of Nθ with ΩM ∩ ∂Ω′M then necessarily Nθ intersects
the straight line x = 1

2 , otherwise ∂Nθ is a closed curve contained in Ω′M , a
contradiction with iii) in Proposition 5.3.8.

Next let us study the intersection of Nθ with x = 1
2 . Recalling that u(x, y) ∼

A0x sin(πy) we get that uθ(1/2, y) = 0 if and only if

0 = uθ(1/2, y) = A0 cos θ︸ ︷︷ ︸
→±1

sin(πy) + A0
2 sin θ︸ ︷︷ ︸

=o(1)

cos(πy) + o(1),

that implies
sin (πy) + o(1) = 0,

and hence we have two solutions y1 = o(1) and y2 = 1 + o(1). Observe that
the last equation admits exactly two solution by the C1 convergence of uθ to
∂θ (A0x sin(πy)).
Finally let us show that both points p1 =

(
1
2 , y1

)
and p2 =

(
1
2 , y2

)
do not belong

to Mθ. Indeed, for M large enough

∂yuθ(p1) = A0
2 π + o(1) 6= 0 and ∂yuθ(p2) = −A0

2 π + o(1) 6= 0,

which shows that p1, p2 /∈ Mθ and as before the implicit function theorem tells
us that if x = 1/2 the nodal set Nθ is a smooth curve intersecting transversely
the line {x = 1/2} at p1 and p2. This ends the Case 2.

Hence we proved a) and b) for all θ ∈ [0, π).

Finally at any critical point of u we have that the Hessian matrix is nonde-
generate otherwise we deduce that there exists θ such that Mθ 6= ∅ contradicting
a).
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As in Chapter 2, for u solution of (5.3), consider the vector field T : Ω′M → R2

given by

T (q) := (uyy(q)ux(q)− uxy(q)uy(q), uxx(q)uy(q)− uxy(q)ux(q)), q ∈ Ω′M .

By the smoothness of u we have that T is of class C1. T satisfies the same
properties proved in Section 2.2 and in particular Corollary 2.2.6 holds true.
Next we prove the uniqueness of critical point in Ω′M .

Proposition 5.3.10. For M large enough uM has exactly one critical point in
the set Ω′M . In particular it is a nondegenerate maximum point.

Proof. We want to apply Corollary 2.2.6. First of all note that T 6= 0 on ∂Ω′M .
Indeed, in ∂Ω′M ∩ ∂ΩM , T = 0 implies

−|∇u|3K = uyyu
2
x − 2uxyuxuy + uxxu

2
y

= ux (uyyux − uxyuy) + uy (uxxuxy − uxyux) = 0,

a contradiction with the Hopf boundary lemma and the assumption K > 0 on
∂ΩM .
On the other hand, for p = (1/2, y), using (5.8), we have

uxuyy − uyuxy = ∂x (A0x sin(πy)) ∂yy (A0x sin(πy)) +
− ∂y (A0x sin(πy)) ∂xy (A0x sin(πy)) + o(1)

= −A
2
0π

2

2 (1 + o(1)), (5.12)

and then T 6= 0.
So the degree of T is well defined and if for p0 :=

(
1, 1

2

)
the homotopy

H : [0, 1]× Ω′M → R2

(t, q) 7→ tT (q) + (1− t)(q − p0),

is admissible then we deduce

deg(Ω′M , T,0) = deg(Ω′M , I − p0,0) = 1,

Assume, by contradiction, that the homotopy H is not admissible. Hence, there
exist τ ∈ [0, 1] and q := (xq, yq) ∈ ∂Ω′M such that H(τ, q) = 0, i.e.{

τ(uyy(q)ux(q)− uxy(q)uy(q)) = (τ − 1)(xq − 1)
τ(uxx(q)uy(q)− uxy(q)ux(q)) = (τ − 1)(yq − 1/2).

(5.13)

Then, multiplying the first equation by ux(q), the second by uy(q) and summing
we get

− τK(q)|∇u(q)|3 = (τ − 1)[(xq − 1)ux(q) + (yq − 1/2)uy(q)]. (5.14)

We want to show that (5.14) leads to a contradiction. First assume that q ∈
∂Ω′M ∩ ∂ΩM .

For (x, y) ∈ ∂Ω′M ∩ ∂ΩM denote by ν = (νx, νy) the unit normal exterior
vector at q (consider ν as the exterior normal to ∂ΩM if xq = 1/2). Using that
Ω′M is star-shaped with respect to p0 and the Hopf boundary lemma we have

(xq − 1)ux(q) + (yq − 1/2)uy(q) = uν(q)[(xq − 1)νx + (yq − 1/2)νy] < 0.
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Since K > 0 on ∂Ω′M ∩ ∂ΩM , from (5.14) we get a contradiction. It follows that
q 6∈ ∂Ω′M ∩ ∂ΩM and then q = (1/2, yq). From (5.12) and the first line of (5.13)
we get

−A
2
0π

2

2 τ(1 + o(1)) = (τ − 1)(1/2− 1) = 1− τ
2 ,

again a contradiction.
So deg(Ω′M , T,0) = 1 and by Corollary 2.2.6 we get that there exists exactly

one critical point in Ω′M : a maximum with negative definite Hessian.

Similarly we can prove the following proposition.

Proposition 5.3.11. For M big enough, uM has exactly one critical point in
the set {(x, y) ∈ ΩM |x < −1/2}. In particular, it is a nondegenerate minimum
point.

Finally the proof of Theorem 5.2.2 easily follows.

Proof of Theorem 5.2.2. The proof follows from Remark 5.3.7, Proposition 5.3.10
and Proposition 5.3.11. Observe that by the local convergence of uM to the
function u∞(x, y) = A0x sin(πy) we get that |PM |, |QM | → +∞.

5.4 Convex perturbations of rectangles: proof of The-
orem 5.2.3

In this section we prove Theorem 5.2.3. We start recalling the asymptotic
expansion of uk,M given in [GJ09].

Theorem 5.4.1 ([GJ09, Theorem 1]). There is a number a := a(ϕ)∈ [0,maxϕ]
such that for each k ∈ N the k-th Dirichlet eigenvalue of RM , see (5.2), satisfies

λk,M = π2 + k2π2

(M + a(ϕ))2 +O(M−5), M → +∞.

In particular, the eigenvalues λ1,M , . . . , λk,M of RM are simple for M sufficiently
large. The suitably rescaled eigenfunction uk,M satisfies, for all multiindices α,

sup
x>3 logM

0<y<1

|Dα (uk,M (x, y)− vk(x, y))| = O(M−3), (5.15)

where
vk(x, y) := sin

(
kπ

x+ a(ϕ)
M + a(ϕ)

)
sin (πy) ,

and
sup

x≤3 logM
0<y<1

|uk,M (x, y)| = O(M−1 logM).

We prove Theorem 5.2.3 for k = 2, the general case is a simple generalization
as will be clear from the proof, see also Remark 5.4.3. We write uM = u2,M and
v = v2 for brevity.
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For future convenience let us set

xM := 1
2(M + a)− a,

x+
M := 1

4(M + a)− a,

x−M := 3
4(M + a)− a,

x′M := 1
12(M + a)− a.

Proposition 5.4.2. For M big enough, the eigenfunction uM has exactly one
nondegenerate maximum point and one nondegenerate minimum point in the set
RM ∩ {x > 3 logM}.

Proof. From (5.15) easily follows that uM has a maximum point close to (x+
M , 1/2)

and a minimum point close to (x−M , 1/2). To show that they are the only ones
and are nondegenerate, let p := (xp, yp) ∈ RM ∩{x > 3 logM} be a critical point
for uM .

Then (5.15) implies that there exist a continuous and decreasing function
h : (0,+∞) → (0,+∞) such that limM→+∞ h(M) = 0 and one of the following
occurs

p ∈ Bh(M)(x+
M , 1/2), (5.16)

p ∈ Bh(M)(x−M , 1/2), (5.17)
p ∈ Bh(M)(xM , 0) ∩ ΩM , (5.18)
p ∈ Bh(M)(xM , 1) ∩ ΩM , (5.19)
p ∈ Bh(M)(N, 0) ∩ ΩM , (5.20)
p ∈ Bh(M)(N, 1) ∩ ΩM . (5.21)

Assume (5.16), then from (5.15) one has

∂xxuM (p) = ∂xxv(p) +O(M−3)

= − 4π2

(M + a)2 sin(π/2) sin(π/2)(1 + o(1)) = − 4π2

(M + a)2 (1 + o(1)),

and similarly

∂xyuM (p) = o(M−1) and ∂yyuM (p) = −π2(1 + o(1)).

Hence p is a nondegenerate maximum point. Moreover, we can find r > 0 inde-
pendent from M such that the following homotopy

H : [0, 1]×Br(x+
M , 1/2)→ R2

(t, q) 7→ t∇uM (q) + (1− t)∇v(q),

is admissible for M big enough. Then

deg(Br(x+
M , 1/2),∇uM ,0) = deg(Br(x+

M , 1/2),∇v,0) = 1,

shows that there is exactly one critical point satisfying (5.16). If we assume (5.17),
by similar computations, we obtain the existence of exactly one nondegenerate
minimum point in Bh(M)(x−M , 1/2).
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Now assume (5.18) i.e. p ∈ Bh(M)(xM , 0)∩RM . Then the same computation
as before tell us that p is a nondegenerate saddle point, indeed one has

∂xxuM (p) = o(M−2), ∂xyuM (p) = − 2π2

M + a
(1 + o(1)), ∂yyuM (p) = o(1).

(5.22)
Now, if ΛM := {(x, y) ∈ RM |uM (x, y) = 0} is the nodal line of uM , let pM :=
(x̃M , 0) ∈ ∂RM ∩ΛM . Since RM is convex we know from [Ale94, Theorem 1] that
ΛM intersects ∂RM transversally at pM . In particular ∂yuM (pM ) = 0 and then
pM is a critical point for u and (5.22) shows that it is a nondegenerate saddle
point. Since both p and pM are nondegenerate we can find g(M) ∈ (0, h(M))
such that p ∈ Bh(M)(xM , 0) \ Bg(M)(xM , 0), and for r > 0 suitably small and M
big enough, since in every critical point in ωM := Br(xM , 0) \Bg(M)(xM , 0)∩ΩM

one has

det HessuM = −
(

2π2

M + a

)2

(1 + o(1)) < 0,

thanks to (5.22), and since at least p belongs to ωM it follows deg(ωM ,∇uM ,0)≤
−1 and then

−1 ≥ deg(ωM ,∇uM ,0) = deg(ωM ,∇v,0) = 0,

a contradiction.
The same argument shows that (5.19), (5.20) and (5.21) cannot occur and

the proof is complete.

Remark 5.4.3. In case k > 2, [Ale94, Theorem 1] still ensures that the nodal
lines intersect the boundary ∂RM transversally at 2k different points

Proposition 5.4.4. For M big enough, uM has no critical points in the set

R′M :=
{

(x, y) ∈ RM
∣∣ x < x′M

}
.

Proof. Let us point out that, from the estimate (5.15) and since x′M < xM , it
follows uM > 0 in R′M . By the domain monotonicity for Dirichlet eigenvalues
one has λ1(R′M ) > λ2,M and then the operator −∆−λ2,M satisfies the maximum
principle in R′M . From (5.15) one has for all y ∈ (0, 1)

∂xuM (x′M , y) = 2π
M + a

cos(π/6) sin (πy) (1 + o(1)) ≥ 0.

Therefore, ∂xuM ≥ 0 on ∂R′M and then the maximum principle gives ∂xuM > 0
on R′M .

Proof of Theorem 5.2.3. The proof is an obvious consequence of Proposition 5.4.2
and Proposition 5.4.4.





Appendix A

Stable solutions

In this Appendix we recall some well known result about stability of solutions
for semilinear elliptic problems. For further details we refer - for instance - to
the papers [CR75, MP80], to the books [Ban80, Dup11], and to the references
therein.

We consider the following problem
−∆u = g(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , N ≥ 1 and g is a smooth nonlin-
earity.

Let us recall recall Definition 1.1.8: a function u is a (semi-)stable solution
of the preceding problem if the linearized operator at u is positive (nonnegative)
definite, i.e. if for all ϕ ∈ C∞0 (Ω) one has∫

Ω
|∇ϕ|2 −

∫
Ω
g′(u)|ϕ|2 > (≥)0,

or equivalently if the first eigenvalue of the linearized operator −∆ − g′(u) in Ω
is positive (non negative).

If we write G(u) :=
∫ u

0 g(t) dt, then the energy functional associated to the
preceding problem is

E(u) :=
∫

Ω
|∇u|2 dx−

∫
Ω
G(u) dx,

for u ∈ H1
0 (Ω), and it is known that the solutions are its critical points, that is

they solve

0 = E′(u) = d
dsE(u+ sϕ)|s=0 =

∫
Ω
|∇u|2 −

∫
Ω
g(u)ϕ, for all ϕ ∈ C∞0 (Ω).

Then looking at the stability of the solutions corresponds to study the sign of the
second variation of the energy functional

E′′(u) = d2

ds2E(u+ sϕ)|s=0 =
∫

Ω
|∇ϕ|2 −

∫
Ω
g′(u)|ϕ|2, for all ϕ ∈ C∞0 (Ω),

and hence u is a (semi-)stable solution if and only if the second variation is
positive (non negative).

75
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We now focus on the particular case g := λf where f is smooth and satisfies

f : R→ R is increasing and convex,
f(0) > 0,

that is we are interested in the following problem
−∆u = λf(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(A.1)

and λ ∈ R is positive. Typical examples of functions f satisfying the preceding
assumptions are f(u) = eu and f(u) = (1 + u)p, for p > 1.

Theorem A.1. There exists λ∗ := λ∗(Ω) > 0 such that for all λ ∈ (0, λ∗),
problem (A.1) admits a minimal solution uλ, furthermore it is a classical solution
and it is stable. On the other hand, for all λ > λ∗ problem (A.1) admits no
solution, neither in weak sense.

Proposition A.1. The following properties holds true:

(i) for λ ∈ (0, λ∗), the stable solution uλ is unique;

(ii) the function
λ 7→ uλ

is increasing and smooth;

(iii) for λ = λ∗, the function

u∗(x) = lim
λ→λ∗

uλ(x),

solves problem (A.1), at least in a weak sense.

The preceding results can be stated in a more general settings, but we just
focused on the particular case treated in the thesis.

Remark A.1. Existence and uniqueness of non stable solution of problem (A.1)
for λ ∈ (0, λ∗) and boundedness of the extremal solution are problems which are
not in the interest of this appendix. We just recall that very different situations
may occur, in particular depending on the dimension N .



Appendix B

Technical lemmata

Here we prove some technical results needed in Chapter 3. Let us start by
showing that there exist coefficients αi ∈ R such that the function introduced in
subsection 3.2.1

F (t) =
n∑
i=1

αi cosh(√µit),

admits k nondegenerate maxima points.

Lemma B.1. For k ∈ N fixed, there exists n = n(k) ∈ N and α1, . . . , αn ∈ R
such that the function

F (t) =
n∑
i=1

αi cosh(√µit),

admits k nondegenerate maxima points for α1 = −1.

Proof. Let 1 < τ1 < · · · < τk . For some n = n(k) ∈ N consider a polynomial
P (t) = ∑n

j=1 ajt
j such that

an = −1
P ′(τi) = 0, for all i = 1, . . . , k,
P ′′(τi) < 0, for all i = 1, . . . , k.

Let 0 < t1 < · · · < tk be such that cosh(ti) = τi for all i = 1, . . . , k and define
h(t) = P (cosh(t)). Then we have

h′(ti) = 0, h′′(ti) < 0,

that is t1, . . . , tk are nondegenerate maximum points for h. Up to a constant,
from the binomial formula it is easy to see that for all m ∈ N

(cosh(t))m =
m∑
`=1

c(m, `) cosh(`t),

for suitable c(m, `) > 0, with c(m,m) = 1. Finally, for δ = µ0
8n the function

F (t) =
n∑
j=1

aj

j∑
`=1

c(j, `) cosh(δ`t),

is the function we were looking for. We point out that from the choice of δ, (3.8)
is satisfied.
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Now we prove that the critical points of the function

q(t) = −
k∏
`=1

(t2 − t2k), with k ∈ N, k ≥ 2 and 0 < t1 < · · · < tk,

are nondegenerate.

Lemma B.2. Let q(t) = −∏k
`=1(t2−t2k) with k ∈ N, k ≥ 2 and 0 < t1 < · · · < tk.

Then the critical points of q are nondegenerate.

Proof. Let k > 2 (the case k = 2 is left to the reader). A straightforward
computation shows that q′(0) = 0 and q′′(0) 6= 0. Now let τ 6= 0 be such that
q′(τ) = 0. Of course q(τ) 6= 0 and

0 = q′(τ) = −2τ
k∑
`=1

k∏
h=1
h6=`

(τ2 − t2h),

Finally, one has

q′′(τ) = −4τ2
k∑
`=1

k∑
h=1
h6=`

k∏
m=1
m6=`
m 6=h

(τ2 − t2m)

= −4τ2
k∑
`=1

1
(τ2 − t2` )

k∑
h=1
h6=`

k∏
m=1
m 6=h

(τ2 − t2m)

= −4τ2
k∑
`=1

1
(τ2 − t2` )


k∑

h=1

k∏
m=1
m 6=h

(τ2 − t2m)

︸ ︷︷ ︸
=0 since q′(τ)=0

−
k∏

m=1
m6=`

(τ2 − t2m)


= 4τ2

k∑
`=1

1
(τ2 − t2` )

k∏
m=1
m 6=`

(τ2 − t2m)

= −4τ2q(τ)
k∑
`=1

1
(τ2 − t2` )2 6= 0.

We conclude with the proof of Lemma 3.3.5 from Section 3.3, that is the
formula for the mean curvature of Σ = F−1(0), where F ∈ C2(R×RN ,R), 0 is a
regular value for F and Fyiyj = 0 for all i 6= j.

Proof of Lemma 3.3.5 . Let Φ = 1
|∇F | and consider the normal field

N = −Φ · (Fx, Fy1 , . . . , FyN ).

Then the mean curvature of Σ is given by

K(p) = 1
N

tr(dNp).
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Taking into account that

Φx = −Φ3

FxFxx +
N∑
j=1

FyjFxyj

 ,
Φyj = −Φ3

(
FxFxyj + FyjFyjyj

)
,

one has

−tr(dNp) = Φ∆F + ΦxFx +
N∑
j=1

ΦyjFyj

= Φ3

|∇F |2
Fxx +

N∑
j=1

Fyjyj

−
FxFxx +

N∑
j=1

FyjFxyj

Fx
−

N∑
j=1

(
FxFxyj + FyjFyjyj

)
Fyj



= Φ3

 N∑
j=1

(
F 2
xFyjyj − 2FxFyjFxyj + F 2

yjFxx
)

+
N∑
j=1

F 2
yj

N∑
`=1
` 6=j

Fy`y`


which yields the claim.
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