
Received 11 September 2024, accepted 22 October 2024, date of publication 30 October 2024, date of current version 11 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3488204

Adversarial Attacks Against Binary
Similarity Systems
GIANLUCA CAPOZZI , DANIELE CONO D’ELIA , GIUSEPPE ANTONIO DI LUNA ,
AND LEONARDO QUERZONI
Department of Computer, Control, and Management Engineering Antonio Ruberti, Sapienza University of Rome, 00185 Rome, Italy

Corresponding author: Gianluca Capozzi (capozzi@diag.uniroma1.it)

This work was supported in part by the Ministero dell’ Università e della Ricerca (MUR) National Recovery and Resilience Plan funded by
the European Union–NextGenerationEU through the Project SEcurity and RIghts In the CyberSpace (SERICS) under Grant PE00000014
and through the project Rome Technopole under Grant ECS00000024, in part by Sapienza Ateneo under Project RM1221816C1760BF and
Project AR1221816C754C33, and in part by the Amazon Web Services (AWS) Cloud Credit Program.

ABSTRACT Binary analysis has become essential for software inspection and security assessment. As the
number of software-driven devices grows, research is shifting towards autonomous solutions using deep
learning models. In this context, a hot topic is the binary similarity problem, which involves determining
whether two assembly functions originate from the same source code. However, it is unclear how deep
learningmodels for binary similarity behave in an adversarial context. In this paper, we study the resilience of
binary similarity models against adversarial examples, showing that they are susceptible to both targeted and
untargeted (w.r.t. similarity goals) attacks performed by black-box and white-box attackers. We extensively
test three state-of-the-art binary similarity solutions against (i) a black-box greedy attack that we enrich
with a new search heuristic, terming it Spatial Greedy, and (ii) a white-box attack in which we repurpose
a gradient-guided strategy used in attacks to image classifiers. Interestingly, the target models are more
susceptible to black-box attacks than white-box ones, exhibiting greater resilience in the case of targeted
attacks.

INDEX TERMS Adversarial attacks, binary analysis, binary code models, binary similarity, black-box
attacks, greedy, white-box attacks.

I. INTRODUCTION
An interesting problem that currently is a hot topic in the
security and software engineering research communities [1],
[2], [3], is the binary similarity problem. That is, to determine
if two functions in assembly code are compiled from the same
source code [4]: if so, the two functions are said similar. This
problem is far from trivial: it is well-known that different
compilers and optimization levels radically change the shape
of the generated assembly code.

Binary similarity has many applications, including pla-
giarism detection, malware detection and classification,
and vulnerability detection [5], [6], [7]. It can also be
a valid aid for a reverse engineer as it helps with the
identification of functions taken fromwell-known libraries or
open-source software. Recent research [4] shows that

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish .

techniques for binary similarity generalize, as they are
able to find similarities between semantically similar
functions.

We can distinguish binary similarity solutions between the
ones that use deep neural networks (DNNs), like [4], [8], and
[9], and the ones that do not, like [1] and [10]. Nearly all of
the most recent works rely on DNNs, which offer in practice
state-of-the-art performance while being computationally
inexpensive. This aspect is particularly apparent when
compared with solutions that build on symbolic execution or
other computationally intensive techniques.

A drawback of DNN-based solutions is their sensitivity
to adversarial attacks [11] where an adversary crafts
an innocuously looking instance with the purpose of
misleading the target neural network model. Successful
adversarial attacks are well-documented for DNNs that
process, for example, images [12], [13], [14], audio and video
samples [15], and text [16].

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 161247

https://orcid.org/0009-0007-0452-6471
https://orcid.org/0000-0003-4358-976X
https://orcid.org/0000-0002-7150-0972
https://orcid.org/0000-0002-2767-0501

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

In spite of the wealth of works identifying similar functions
with ever improving accuracy, we found that an extensive
study on the resilience of (DNN-based) binary similarity
solutions against adversarial attacks is missing. Indeed,
we believe binary similarity systems are an attractive target
for an adversary. As examples, an attacker: (1) may hide a
malicious function inside a firmware by making it similar to
a benign white-listed function, as similarly done in malware
misclassification attacks [17]; (2) may make a plagiarized
function dissimilar to the original one, analogously to source
code authorship attribution attacks [18]; or, we envision, (3)
may replace a function—entirely or partially, as in forward
porting of bugs [19]—with an old version known to have a
vulnerability and make the result dissimilar from the latter.

In this context, we can define an attack targeted when
the goal is to make a rogue function be the most similar
to a target, as with example (1). Conversely, an attack is
untargeted when the goal is to make a rogue function the
most dissimilar from its original self, as with examples (2)
and (3). In both scenarios, the adversarial instance has to
preserve the semantics (i.e., execution behavior) of the rogue
function as in the original.

In this paper, we aim to close this gap by proposing and
evaluating techniques for targeted and untargeted attacks
using both black-box (where adversaries have access to the
similarity model without knowing its internals) and white-
box (where they know also its internals) methods.

For the black-box scenario, we adopt a greedy optimizer to
modify a function by inserting a single assembly instruction
to its body at each optimization step. Where applicable,
we consider an enhanced gray-box [17] variant that, lever-
aging limited knowledge of the model, chooses only between
instructions that the model treats as distinct.

We then enrich the greedy optimizer with a novel
black-box search heuristic, where we transform the discrete
space of assembly instructions into a continuous space using
a technique based on instruction embeddings [20]. We call
this enhanced black-box attack Spatial Greedy. When using
our heuristic, the black-box attack is on par or outperforms
the gray-box greedy attack, without requiring any knowledge
of the model. For the white-box scenario, we repurpose
a method for adversarial attacks on images that relies on
gradient descent [21] and use it to drive instruction insertion
decisions.

We test our techniques against three binary similarity
systems—Gemini [9], GMN [22], and SAFE [4]—focusing
on three research questions: (RQ1) determining whether the
target models are more robust against targeted or untargeted
attacks; (RQ2) assessing whether the target models exhibit
greater resilience to black-box or white-box approaches;
and (RQ3) exploring how target models influence the
effectiveness of our attacks. Our results indicate that all the
three models are inherently more vulnerable to untargeted
attacks. In the targeted scenario, the best attack technique
mislead the target models in 31.6% of instances for Gemini,

59.68% for GMN, and 60.68% for SAFE. However, in the
untargeted scenario, these percentages increased to 53.89%
for Gemini, 93.81% for GMN, and 90.62% for SAFE. Our
analysis shows that all target models are more resilient to
our white-box procedure; we believe this is largely due to the
inherent challenges of conducting gradient-based attacks on
models that use discrete representations.

A. CONTRIBUTIONS
This paper proposes the following contributions:

• we propose to study the problem of adversarial attacks
against binary similarity systems, identifying targeted
and untargeted attack opportunities;

• we investigate black-box attacks against DNN-based
binary similarity systems, exploring an instruction
insertion technique based on a greedy optimizer. Where
applicable, we enhance it in a gray-box fashion for effi-
ciency, using partial knowledge of the model sensitivity
to instruction types;

• we propose Spatial Greedy, a fully black-box attack
that matches or outperforms gray-box greedy by using
a novel search heuristic for guiding the choice of the
candidates’ instructions used during the attack;

• we investigate white-box attacks against DNN-based
binary similarity systems, exploring a gradient-guided
search strategy for inserting instructions;

• we conduct an extensive experimental evaluation of our
techniques in different attack scenarios against three
systems backed by largely different models and with
high performance in recent studies [23].

II. RELATED WORKS
In this section, we first discuss loosely related approaches for
attacking image classifiers and natural language processing
(NLP) models; then, we describe attacks against source code
models. Finally, we discuss prominent attacks against models
for binary code analysis.

A. ATTACKS TO IMAGE CLASSIFIERS AND NLP MODELS
Historically, the first adversarial attacks targeted image
classifiers. The crucial point for these attacks is to insert
inside a clean image instance a perturbation that should not
be visible to the human eye while being able to fool the target
model, as first pointed out by [12] and [13].
Most of the attacks modify the original instances using

gradient-guided methods. In particular, when computing an
adversarial example, they keep the weights constant while
altering the starting input in the direction of the gradient that
mimizes (or maximizes, depending on whether the attack
is targeted or untargeted) the loss function of the attacked
model. The FGSM attack [13] explicitly implements this
technique. Other attacks, such as the Carlini-Wagner [14]
one, generate a noise that is subject to Lp-norm constraints
to preserve similarity to original objects.

161248 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

As observed in Section III-B, adversarial examples genera-
tion is possibly easier in the image domain than in the textual
one, due to the continuous representation of the original
objects. In the NLP domain, the inputs are discrete objects,
a fact that prevents any direct application of gradient-guided
methods for adversarial examples generation. Ideally, check
perturbations to fool deep models for language analysis
should be grammatically correct and semantically coherent
with the original instance.

One of the earliest methodologies for attacking NLP
models is presented in [16]. The authors propose attacks to
mislead deep learning-based reading comprehension systems
by inserting perturbations in the form of new sentences inside
a paragraph, so as to confuse the target model while maintain-
ing intact the original correct answer. The attacks proposed
in [24] and [25] focus on finding replacement strategies
for words composing the input sequence. Intuitively, valid
substitutes should be searched through synonyms; however,
this strategy could fall short in considering the context
surrounding the word to substitute. Works like [26] and [27]
further investigate this idea using BERT-based models for
identifying accurate word replacements.

B. ATTACKS AGAINST MODELS FOR SOURCE CODE
ANALYSIS
This section covers some prominent attacks against models
that work on source code.

The general white-box attack of [28] iteratively substitutes
a target variable name in all of its occurrences with
an alternative name until a misclassification occurs. The
attack against plagiarism detection from [18] uses genetic
programming to augment a program with code lines picked
from a pool and validated for program equivalence by
checking that an optimizer compiler removes them. The
attack against clone detectors from [29] combines several
semantics-preserving perturbations of source code using
different optimization heuristic strategies.

We highlight that these approaches have limited applicabil-
ity in the binary similarity scenario, as their perturbationsmay
not survive compilation (e.g., variable renaming) or result
in marginal differences in compiled code (e.g., turning a
while-loop into a for-loop).

C. ATTACKS AGAINST MODELS FOR BINARY CODE
ANALYSIS
We complete our review of related works by covering
research on evading ML-based models for analysis of binary
code.

1) ATTACKS AGAINST MALWARE DETECTORS
Attacks such as [30] and [31] to malware detectors based
on convolutional neural networks add perturbations in a new
non-executable section appended to a Windows PE binary.
Both use gradient-guided methods for choosing single-byte
perturbations to mislead the model in classifying the whole

binary. We emphasize that binary similarity systems analyze
executable code, meaning these attacks are ineffective in our
scenario.

Pierazzi et al. [17] explore transplanting binary code
gadgets into a malicious Android program to avoid detection.
The attack follows a gradient-guided search strategy based on
a greedy optimization. In the initialization phase, they mine
from benign binaries code gadgets that modify features that
the classifier uses to compute its classification score. In the
attack phase, they pick the gadgets that can mostly contribute
to the (mis)classification of the currently analyzed malware
sample; they insert gadgets in order of decreasing negative
contribution, repeating the procedure until misclassification
occurs. To preserve program semantics, gadgets are injected
into never-executed code portions. Differently from our main
contribution, their attack is only applicable in a targeted
white-box scenario.

Lucas et al. [32] target malware classifiers analyzing
raw bytes. They propose a functionality-preserving iterative
procedure viable for both black-box and white-box attackers.
At every iteration, the attack determines a set of applicable
perturbations for every function in the binary and applies a
randomly selected one (following a hill-climbing approach
in the black-box scenario or using the gradient in the white-
box one). Done via binary rewriting, the perturbations are
local and include instruction reordering, register renaming,
and replacing instructions with equivalent ones of identical
length. The results show that these perturbations can be
effective even against (ML-based) commercial antivirus
products, leading the authors to advocate for augmenting
such systems with provisions that do not rely on ML.
In the context of binary similarity, though, we note that
these perturbations would have limited efficacy if done on
a specific pair of functions: for example, both instruction
reordering and register renaming would go completely
unnoticed by Gemini and GMN (Section VIII-A and VIII-B).
Furthermore, since [32] is mainly designed for models that
classify binary programs, it is not directly applicable in our
scenario, where the output of the model is a real value
representing the distance between the two inputs.

MAB-Malware [33] is a reinforcement learning-based
approach for generating adversarial examples against PEmal-
ware classifiers in a black-box context. Adversarial examples
are generated through a multi-armed bandit (MAB) model
that has to keep the sample in a single, non-evasive state
when selecting actions while learning reward probabilities.
The goal of the optimization strategy is to maximize the
total reward. The set of applicable perturbations (which
can be considered as actions) are standard PE manipulation
techniques from prior works: header manipulation, section
insertion and manipulation (e.g., adding trailing byte), and
in-place randomization of an instruction sequence (i.e.,
replacing it with a semantically equivalent one). Each action
is associated with a specific content—a payload—added
to the malware when the action is selected. An extensive
evaluation is conducted on two popular ML-based classifiers

VOLUME 12, 2024 161249

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

and three commercial antivirus products. As outlined for
other works, our scenario does not allow for the application
of this approach for two primary reasons. Firstly, this attack
is specifically designed to target classifiers. Secondly, many
of the proposed transformations are ineffective when applied
to binary similarity systems.

2) ATTACKS AGAINST BINARY SIMILARITY MODELS
Concurrently to our work, a publicly available technical
report proposes FuncFooler [34] as a black-box algorithm
for attempting untargeted attacks against ranking systems
(i.e., top-k most similar functions) based on binary similarity.
The key idea behind the attack is to insert instructions
likely to push the source function below the top results
returned by the search engine. Insertion points are fixed:
specifically, CFG nodes that dominate the exit points of
a function. The algorithm picks the instructions directly
from those functions with the least similarity in the pool
under analysis, then it compensates for their side effects
through additional insertions. Differently from their goal
to attack binary similarity-based ranking systems, our goal
is to directly attack the similarity function implemented
by the target model; additionally, differently from their
black-box approach designed only for untargeted attacks,
we propose methodologies for assessing the robustness of
the considered systems against both targeted and untargeted
attacks, extending the evaluation to white-box attacks.

III. BACKGROUND
In this section, we provide background knowledge for
adversarial attacks against models for code analysis. Then,
we introduce a categorization of semantics-preserving pertur-
bations for binary functions.

A. ADVERSARIAL KNOWLEDGE
We can describe a deep learning model through different
aspects: training data, layers architecture, loss function, and
weights parameters. Having complete or partial knowledge
about such elements can facilitate an attack from a compu-
tational point of view. According to seminal works in the
area [17], [35], we can distinguish between:

• white-box attacks, where the attacker has perfect knowl-
edge of the target model, including all the dimensions
mentioned before. These type of attacks are realistic
when the adversary has direct access to the model (e.g.,
an open-source malware classifier);

• gray-box attacks, where the attacker has partial knowl-
edge of the target model. For example, they have
knowledge about feature representation (e.g., categories
of features relevant for feature extraction);

• black-box attacks: the attacker has zero knowledge of
the target model. Specifically, the attacker is only aware
of the task the model was designed for and has a rough
idea of what potential perturbations to apply to cause
some feature changes [35].

Different attack types may suit different scenarios best.
A white-box attack, for example, could be attempted on
an open-source malware classifier. Conversely, a black-
box attack would suit also a model hosted on a remote
server to interrogate, as with a commercial cloud-based
antivirus.

FIGURE 1. A feature mapping function maps problem-space objects into
feature vectors. The two boxed binary functions implement similar
functionalities and are mapped to two points close in the feature
space.

B. INVERSE FEATURE MAPPING PROBLEM
In the following, we refer to the input domain as problem
space and to all its instances as problem-space objects.

Deep learning models can manipulate only continuous
problem-space objects. When inputs have a discrete rep-
resentation, a first phase must map them into continuous
instances. The phase usually relies on a feature mapping
function (Figure 1) whose outputs are feature vectors. The set
of all possible feature vectors is known as the feature space.

Traditional white-box attacks against deep learningmodels
solve an optimization problem in the feature space by
minimizing an objective function in the direction fol-
lowing its negative gradient [21]. When the optimization
ends, they obtain a feature vector that corresponds to a
problem-space object representing the generated adversarial
example.

Unfortunately, given a feature vector, it is not always
possible to obtain its problem-space representation. This
issue is called the inverse feature mapping problem [17].
For code models, the feature mapping function is neither

invertible nor differentiable. Therefore, one cannot under-
stand how to modify an original problem-space object to
obtain the given feature vector. In particular, the attacker
has to employ approximation techniques that create a
feasible problem-space object from a feature vector. Ulti-
mately, mounting an attack requires a manipulation of a
problem-space object via perturbations guided by either
gradient-space attacks (as in the white-box case above) or
‘‘gradient-free’’ optimization techniques (as with black-box
attacks). We discuss perturbations specific to our context
next.

161250 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

FIGURE 2. Taxonomy of semantics-preserving perturbations suitable for
the proposed attacks. Acronyms are spelled out in the body of the paper.

C. SEMANTICS-PRESERVING PERTURBATIONS OF
PROBLEM-SPACE OBJECTS
In this section, we discuss how to modify problem-space
objects in the specific case of binary code models working
on functions. To this end, we review and extend perturbations
from prior works [17], [32], [33], identifying those suitable
for adversarial manipulation of functions.

For our purpose, we seek to modify an original binary
function f into an adversarial binary example fadv that
preserves the semantics of f ; intuitively, this restricts the
set of available perturbations for the adversary. We report
a taxonomy of possible semantics-preserving perturbations
in Figure 2, dividing them according to how they affect the
binary layout of the function’s control-flow graph (CFG).

FIGURE 3. Examples of semantics-preserving perturbations that do not
alter the binary CFG layout. We modify the assembly snippet in (a) by
applying, in turn, (b) Instruction Reordering, (c) Semantics-Preserving
Rewriting, and (d) Register Renaming. Altered instructions are in red.

Among CFG-preserving perturbations, we identify:

• (IR) Instruction Reordering: reorder independent
instructions in the function;

• (SPR) Semantics-Preserving Rewriting: substitute a
sequence of instructions with a semantically equivalent
sequence;

• (DSL) Modify the Data-Section Layout: modify the
memory layout of the .data section and update all the
global memory offsets referenced by instructions;

• (RR)Register Renaming: change all the occurrences of
a register as instruction operand with a register currently
not in use or swap the use of two registers.

Figure 3 shows examples of their application. As for
perturbations that affect the (binary-level) CFG layout,
we can identify the ones that involve adding or deleting nodes:

• (DBA)DeadBranchAddition: add dead code in a basic
block guarded by an always-false branch;

• (NS) Node Split: split a basic block without altering the
semantics of its instructions (e.g., the original block will
jump to the one introduced with the split);

• (NM) Node Merge: merge two basic blocks when
semantics can be preserved. For example, by using
predicated execution to linearize branch-dependent
assignments as conditional mov instructions [36].

And the ones that leave the graph structure unaltered:

• (CP) Complement Predicates: change the predicate of
a conditional branch and the branch instruction with
their negated version;

• (IBR) Independent Blocks Reordering: change the
order in which independent basic blocks appear in the
binary representation of the function.

IV. THREAT MODEL AND PROBLEM DEFINITION
In this section, we define our threat model together with the
problem of attacking binary similarity models.

A. THREAT MODEL
The focus of this work is to create adversarial instances
that attack a model at inference time (i.e., we do not
investigate attacks at training time). Following the description
provided in Section III-A, we consider two different attack
scenarios: respectively, a black-box and a white-box one.
In the first case, the adversary has no knowledge of the target
binary similarity model; nevertheless, we assume they can
perform an unlimited number of queries to observe the output
produced by themodel. In the second case, we assume that the
attacker has perfect knowledge of the target binary similarity
model.

B. PROBLEM DEFINITION
Let sim be a similarity function that takes as input two
functions, f1 and f2, and returns a real number, the similarity
score between them, in [0, 1].
We define two binary functions to be semantically equiv-

alent if they are two implementations of the same abstract
functionality. We assume that there exists an adversary that
wants to attack the similarity function. The adversary can
mount two different kind of attacks:
• Targeted attack. Given two binary functions, f1 (identi-
fied as source) and f2 (identified as target), the adversary
wants to find a binary function fadv semantically
equivalent to f1 such that: sim(fadv, f2) ≥ τt, where τt is a

VOLUME 12, 2024 161251

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

FIGURE 4. Overall workflow of the black-box ε-greedy perturbation-selection strategy in the targeted scenario.

FIGURE 5. Toy example describing how the source function f1 is modified during the various steps of our Spatial Greedy attack. We first identify the set
of available positions and initialize the candidates’ set CAND (a). Then, we enumerate all the possible perturbations (b) and choose one according to the
ε-greedy strategy while updating CAND according to the Spatial Greedy heuristic (c). This process (d) is repeated until a successful adversarial example is
generated or we reach a maximum number of iterations.

success threshold1 chosen by the attacker depending on
the victim at hand.

• Untargeted attack. Given a binary function f1, the
adversary goal consists of finding a binary function fadv
semantically equivalent to f1 such that: sim(f1, fadv) ≤
τu. The threshold τu is the analogous of the previous case
for the untargeted attack scenario.

Loosely speaking, in case of targeted attack, the attacker
wants to create an adversarial example that is as similar as
possible to a specific function, as in the example scenario (1)
presented in Section I. In case of untargeted attack, the goal
of the attacker consists of creating an adversarial example that

1Although fadv and f2 are similar for the model, they are not semantically
equivalent: this is precisely the purpose of an attack that wants to fool the
model to consider them as such, while they are not.

is as dissimilar as possible from its original version, as in the
example scenarios (2) and (3) also from Section I.

C. PERTURBATION SELECTION
Given a binary function f1, our attack consists in applying to
it perturbations that do not alter its semantics.

To study the feasibility of our approach, we choose dead
branch addition (DBA) among the suitable perturbations
outlined in Section III-C. We find DBA adequate for this
study for two reasons: it is sufficiently expressive so as to
affect heterogeneousmodels (whichmay not hold for others2)
and its implementation complexity for an attacker is fairly

2For example, basic block-local transformations such as IR and RR
would have limited efficacy on models that study an individual block for
its instruction types and counts or other coarse-grained abstractions. This is
the case with Gemini and GMN that we attack in this paper.

161252 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

limited. Nonetheless, other choices remain possible, as we
will further discuss in Section XIII.

At each application, our embodiment of DBA inserts in the
binary code of f1 one or more instructions in a new or existing
basic block guarded by a branch that is never taken at runtime
(i.e., we use an always-false branch predicate).

Such a perturbation can be done at compilation time
or on an existing binary function instance. For our study,
we apply DBA during compilation by adding placeholder
blocks as inline assembly, which eases the generation of
many adversarial examples from a single attacker-controlled
code. State-of-the-art binary rewriting techniques would
work analogously over already-compiled source functions.

We currently do not attempt to conceal the nature of our
branch predicates for preprocessing robustness, which [17]
discusses as something that attackers should be wary of to
mount stronger attacks. We believe off-the-shelf obfuscations
(e.g., opaque predicates, mixed boolean-arithmetic expres-
sions) or more complex perturbation choices may improve
our approach in this respect. Nevertheless, our main goal was
to investigate its feasibility in the first place.

V. BLACK-BOX ATTACK: SOLUTION OVERVIEW
In this section, we describe our black-box attack. We first
introduce our baseline (named Greedy), highlighting its
limitations. We then move to our main contribution in the
black-box scenario (named Spatial Greedy). Figure 4 depicts
a general overview of our black-box approach.

A. GREEDY
The baseline black-box approach we consider for attacking
binary function similarity models consists of an iterative
perturbation-selection rule that follows a greedy optimization
strategy. Starting from the original sample f1, we iter-
atively apply perturbations T1,T2, . . . ,Tk selected from
a set of available ones, generating a series of instances
fadv1 , fadv2 , . . . , fadvk . This procedure ends upon generating
an example fadv meeting the desired similarity threshold,
otherwise the attack fails after δ̄ completed iterations.

For instantiating Greedy using DBA, we reason on a set of
positions BLK for inserting dead branches in function f1 and a
set of instructions CAND, which we call the set of candidates.
Each perturbation consists of a ⟨bl,in⟩ pair made of the
branch bl ∈ BLK and an instruction in ∈ CAND to check
insert in the dead code block guarded by bl.

The naive perturbation-selection rule (i.e., greedy) at each
step selects the perturbation that, in case of targeted attack,
locally maximizes the relative increase of the objective
function. Conversely, for an untargeted attack, the optimizer
selects the perturbation that locally maximizes the relative
decrease of the objective function.

This approach, however, may be prone to finding local
optima. To avoid this problem, we choose as our Greedy base-
line an ε-greedy perturbation-selection rule. Here, we select
with a small probability ε a suboptimal perturbation instead

of the one that the standard greedy strategy picks, and with
probability 1− ε the one representing the local optimum.
In case of targeted attack, the objective function is the

similarity between fadv and the target function f2 (formally,
sim(fadv, f2)) while it is the negative of the similarity between
fadv and the original function in case of untargeted attack
(formally, −sim(f1, fadv)). In the following, we only discuss
the maximization strategy followed by targeted attacks;
mutatis mutandis, the same rationale holds for untargeted
attacks.

1) LIMITATIONS OF THE COMPLETE ENUMERATION
STRATEGY
At each step, Greedy enumerates all the applicable pertur-
bations computing the marginal increase of the objective
function, thus resulting in selecting an instruction in by
enumerating all the possible instructions of the considered set
of candidates CAND for each position bl ∈ BLK.
Unfortunately, the Instruction Set Architecture (ISA) of a

modern CPU may consist of a large number of instructions.
To give an example, consider the x86-64 ISA: according
to [37], it has 981 unique mnemonics and a total of
3,684 instruction variants (without counting register operand
choices for them). Therefore, it would be unfeasible to have
a CAND set that covers all possible instructions of an ISA.

This means that the size of CAND must be limited. One
possibility is to use hand-picked instructions. However, this
approach has two problems. Such a set could not cover
all the possible behaviors of the ISA, missing fundamental
aspects (for example, leaving vector instructions uncovered);
furthermore, this effort has to be redone for a new ISA. There
is also a more subtle pitfall: a set of candidates fixed in
advance could include instructions that the specific binary
similarity model under attack deems as not significant.

On specific models, it may still be possible to use a
small set of candidates profitably, enabling a gray-box
attack strategy for Greedy. In particular, one can restrict the
set of instructions to the ones that effectively impact the
features extracted by the attacked model (which obviously
requires knowledge of the features it uses; hence, the gray-
box characterization). In such cases, this strategy is equivalent
to the black-box Greedy attack that picks from all the
instructions in the ISA, but computationally much more
efficient.

B. SPATIAL GREEDY
In this section, we extend the baseline approach by intro-
ducing a fully black-box search heuristic. To differentiate
between the baseline solution and the heuristic-enhanced one,
we name the latter Spatial Greedy.

When using this heuristic, the black-box attack overcomes
all the limitations discussed for Greedy using an adaptive
procedure that dynamically updates the set of candidates
according to a feedback from the model under attack without
requiring any knowledge of it.

VOLUME 12, 2024 161253

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

FIGURE 6. Dynamic update of the set of candidates. The mov instruction
is the greedy action for the current iteration and is mapped to the blue
point in the instruction embedding space. The set of candidates is
updated selecting c/k neighbours of the considered top-k perturbation
(represented in red), c − c/k instructions among the closest neighbours
of the remaining top-k greedy perturbations, and rN random instructions.

In Spatial Greedy, we extend the ε-greedy perturbation-
selection strategy by adaptively updating the set of candidates
that we use at each iteration. Using instructions embedding
techniques, we transform each instruction in ∈ CAND into
a vector of real values. This creates vectors that partially
preserve the semantics of the original instructions.

Chua et al. [38] showed that such vectors may be grouped
by instruction semantics, creating a notion of proximity
between instructions: for example, vectors representing
arithmetic instructions are in a cluster, vectors representing
branches in another, and so on.

Here, at each step, we populate a portion of the set of
candidates by selecting the instructions that are close, in the
embedding metric space, to instructions that have shown a
good impact on the objective function. The remaining portion
of the set is composed of random instructions. We discuss our
choices for instruction embedding techniques and dynamic
candidates selection in the following.

In the experimental section, for the black-box realm,
wewill compare Spatial Greedy against the Greedy approach,
opting for the computationally efficient gray-box flavor of
Greedy when allowed by the specific model under study.

1) INSTRUCTION EMBEDDING SPACE
We embed assembly instructions into numeric vectors using
an instruction embedding model [20]. Given such a model
M and a set I of assembly instructions, we map each i ∈ I
to a vector of real values i⃗ ∈ Rn, using M . The model is
such that, for two instructions having similar semantics, the
embeddings it produces will be close in the metric space.

2) DYNAMIC SELECTION OF THE SET OF CANDIDATES
The process for updating the set of candidates for each
iteration of the ε-greedy perturbation-selection procedure
represents the focal point of Spatial Greedy.

Algorithm 1 Spatial Greedy procedure (targeted case)
Input: source function f1, target function f2, similarity threshold τt, max
number of dead branches B, max number of instructions to be inserted δ̄, max
number of instructions to be tested N , max number of random instructions r ,
max number of neighbours c, probability of selecting a random perturbation
ε.
Output: adversarial sample fadv.
Definitions:
• The function getPositions(f1,B) identifies B positions inside f1 where

it is possible to insert dead branches.
• The function getRandomInstructions(N) samples uniformlyN instruc-

tions from the entire ISA.
• The operator ⊕ indicates the insertion into a function of a certain

instruction into a specific block.
• The function selectGreedy(·) takes as input a vector of pairs
⟨⟨bl,in⟩, currSim⟩ and returns the ⟨bl,in⟩ perturbation associated
to the maximum currSim value.

• The function selectRandom(·) takes as input a vector of pairs
⟨⟨bl,in⟩, currSim⟩ and returns a perturbation uniformly sampled.

• The function getTopK(·,K) takes as input a vector of pairs
⟨⟨bl,in⟩, currSim⟩ and returns the instructions associated to the top-
K greedy actions.

• The function updateInstructions(·, r, c) takes as input a vector of
instructions and returns a vector containing c of their neighbours and
r instructions sampled uniformly at random.

1: fadv ← f1
2: instr ← 0
3: BLK← getPositions(f1,B)
4: CAND← getRandomInstructions(N)

a

5: sim← sim(fadv, f2)
6: while sim ≤ τt AND instr < δ̄ do
7: iterSim← sim
8: iterBlock ← ⟨⟩
9: testedPerts← []
10: for ⟨bl,in⟩ ∈ BLK× CAND do
11: f adv ← fadv ⊕ ⟨bl,in⟩
12: currSim← sim(f adv, f2)
13: testedPerts.append(⟨⟨bl,in⟩, currSim⟩)

b

14: prob← uniform(0, 1)
15: if prob < ε then
16: iterPert, iterSim← selectGreedy(testedPerts)
17: else
18: iterPert, iterSim← selectRandom(testedPerts)
19: fadv ← fadv ⊕ iterPert
20: elected ← getTopK(testedPerts,K)
21: CAND← updateInstructions(elected, r, c)

c

22: sim← iterSim
23: instr ← instr + 1

d

24: return fadv

Let N be the size of the set of candidates CAND. Initially,
we fill it with N random instructions. Then, at each iteration
of the ε-greedy procedure, we update CAND by replacing
the current instructions with rN random instructions, where
r ∈ [0, 1), and c instructions we select among the closest
neighbors of the instructions composing the top-k greedy
actions of the last iteration.

In case of a targeted attack, the top-k greedy perturbations
are the k perturbations that, at the end of the last iteration,
achieved the highest increase of the objective function.
To keep the size of the set stable at valueN , we take the closest
c/k neighbors of each top-k action.3

The rationale of having r random and c selected
instructions is seeking a balance between exploration and

3We also apply rounding so that we can work with integer numbers.

161254 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

exploitation. With the random instructions, we randomly
sample the solution space to escape from a possibly local
optimum found for the objective function. With the selected
instructions, we exploit the part of the space that in the past
has brought the best solutions. Figure 6 provides a pictorial
representation of the update procedure.

We present the complete description of Spatial Greedy
in case of targeted attack in Algorithm 1 together with a
simplified execution example in Figure 5. The first step (a)
consists in identifying the positions BLK where to introduce
dead branches (function getPositions(f1,B) at line 3) and
initializing the set of candidates CAND with N random
instructions (function getRandomInstructions(N) at line 4).
Then, during the iterative procedure (d), we first enumerate
all the possible perturbations (b). Then (c), we apply the
perturbation-selection rule according to the value of ε, and
we get the top-k greedy perturbations (line 20) as depicted in
Figure 6. Finally, we update the set of candidates (line 21).

VI. WHITE-BOX ATTACK: SOLUTION OVERVIEW
As pointed out in Section III-A, in a white-box scenario the
attacker has a perfect knowledge of the target deep learning
model, including its loss function and gradients. We discuss
next how we can build on them to mount an attack.

A. GRADIENT-GUIDED CODE ADDITION METHOD
White-box adversarial attacks have been largely investigated
against image classifiers by the literature, resulting in
valuable effectiveness [13]. Our attack strategy for binary
similarity derives from the design pattern of the PGD
attack [21], which iteratively targets image classifiers.
We call our proposed white-box attack Gradient-guided

Code Addition Method (GCAM). It consists in applying a set
of perturbations using a gradient-guided strategy. In the case
of a targeted attack, our goal is to minimize the loss function
of the attacked model on the given input while keeping
the perturbation size small and respecting the semantics-
preserving constraint. We achieve this by using the Lp-norm
as soft constraint. On the other hand, for an untargeted attack,
we aim to maximize the loss function while also keeping the
size of the perturbation small.

Because of the inverse feature mapping problem, gradient
optimization-based approaches cannot be directly applied
in our context (Section III-B). We need a further (hard)
constraint that acts on the feature-space representation of
the input binary function. This constraint strictly depends on
the target model: we will further investigate its definition
in Section VIII. In the following, we focus on the loss
minimization strategy argued for targeted attacks. As before,
we can easily adapt the same concepts to the untargeted case.

We can describe a DNN-based model for binary similarity
as the concatenation of the two functions λ and simv.
In particular, λ is the function that maps a problem-space
object to a feature vector (i.e., the feature mapping function
discussed in Section III-B), while simv is the neural network
computing the similarity given the feature vectors.

Given two binary functions f1 and f2, we aim to find a
perturbation δ that minimizes the loss function of simv, which
corresponds to maximize simv(λ(f1)) + δ, λ(f2)). To do so,
we use an iterative strategy where, during each iteration,
we solve the following optimization problem:

minL(simv(λ(f1)+ δ, λ(f2)), θ)+ ϵ||δ||p, (1)

where L is the loss function, θ are the weights of the target
model, and ϵ is a coefficient in [0,∞).

We randomly initialize the perturbation δ and then update
it at each iteration by a quantity given by the negative gradient
of the loss function L. The vector δ has several components
equal to zero and it is crafted so that it modifies only the
(dead) instructions in the added blocks. The exact procedure
depends on the target model: we return to this aspect in
Section VIII.
Notice that the procedure above allows us to find a

perturbation in the feature space, while our final goal is to
find a problem-space perturbation to modify the function f1.
Therefore, we derive from the perturbation δ a problem-space
perturbation δp. The exact technique is specific to the model
we are attacking, as we further discuss in Section VIII.

The common idea behind all technique instances is to find
the problem-space perturbation δp whose representation in
the feature space is the closest to δ. Essentially, we use a
rounding-based inverse strategy to solve the inverse feature
mapping problem that accounts to rounding the feature space
vector to the closest vector that corresponds to an object
in the problem space. The generated adversarial example is
fadv = f1 + δp. As for the black-box scenario, the process
ends whenever we reach a maximum number of iterations or
the desired threshold for the similarity value.

VII. COMPARISON BETWEEN THE ATTACKS
In this section, we present a more direct comparison between
the three proposed attack methodologies.

We summarize in Table 1 the key differences according to
four interesting aspects: attacker’s knowledge, perturbation
type, usage of the candidates’ set, and usage of an additional
instruction embedding model.

From a technical perspective, GCAM is a white-box attack
that assumes an attacker having a complete knowledge of the
target model’s internals. Contrarily, both Spatial Greedy and
Greedy are black-box approaches, meaning that they can be
easily adapted to attack any binary similarity model, without
having any prior knowledge. This distinction according to
the attacker’s knowledge underlines a more subtle difference
among the approaches; indeed, while the two black-box
attacks operate in the problem space producing valid adver-
sarial examples, GCAM initially produces perturbations in
the feature space, which must then be converted into problem
space objects using a rounding process.

Looking at more practical aspects, both Greedy and Spatial
Greedy depend on the concept of candidates’ set, while
GCAM leverages the internals of the target model to guide
the choice of the instructions to insert into the function

VOLUME 12, 2024 161255

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

TABLE 1. Comparison and underlying principles of the three attack techniques.

FIGURE 7. GCAM attack against Gemini. Once obtained the initial CFG of the function f1, we initialize an
empty dead branch in one of the available positions (a). In particular, each node is represented as a feature
vector v , which is the linear combination of three embedding vectors corresponding to three different
categories of instructions (green block). We then iteratively apply the gradient descent to modify the
coefficients nj associated to the instruction vectors (b), obtaining a vector of non-integer values. Finally,
we round the obtained coefficients to the closest integer values (c) and, (d), we insert into the dead branch as
many instructions belonging to the class j as specified by the coefficient nj .

according to the objective function. Specifically, GCAM can
potentially utilize the entire set of instructions encountered
by the target model during training, while the black-box
methods are constrained to a predetermined set of instructions
that can be tested during each iteration. As highlighted in
Section V-A1, the usage of a manually-crafted candidates’ set
represents themain weakness of the Greedy procedure, which
we addressed with the Spatial Greedy heuristic proposing an
adaptive set based on the usage of instruction embeddings.

Finally, when considering Spatial Greedy, it is important
to note that one should train from scratch an instruction
embedding model to effectively apply the embedding based
search heuristic. However, we remark that the model has to be
trained only once and then it can be reused for all the attacks
against binary for a certain ISA.

VIII. TARGET SYSTEMS
In this section, we illustrate the three models we attacked:
Gemini [9], GMN [22], and SAFE [4].

We selected the models by conducting a literature
review [23] to identify plausible candidates. We then ana-
lyzed the characteristics of existing binary similarity systems,
choosing models that are fundamentally different from one

another. This approach allows us to test the generality of our
solution. Specifically, the three models we selected can be
distinguished by the following features:
• NN architecture: Both Gemini and GMN are
GNN-based models while SAFE is a RNN-based one.

• Input representation: Both Gemini and GMN repre-
sent functions through their CFGs while SAFE uses the
linear disassembly.

• Feature mapping process: Both Gemini and GMN use
manual features from the CFGnodes, while SAFE learns
features using an instruction embedding model.

In the following, we provide an overview of the internal
workings of the models and then discuss specific provisions
for the Greedy (Section V-A) and GCAM (Section VI)
attacks. Notably, Spatial Greedy needs no adaptations.

A. GEMINI
Gemini [9] represents functions in the problem space through
their Attributed Control Flow Graph (ACFG). An ACFG is a
control flow graphwhere each basic block consists of a vector
of manual features (i.e., node embeddings).

The focal point of this approach consists of a graph
neural network (GNN) based on the Structure2vec [39]model

161256 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

that converts the ACFG into an embedding vector, obtained
by aggregating the embedding vectors of individual ACFG
nodes. The similarity score for two functions is given by the
cosine similarity of their ACFG embedding vectors.

1) GREEDY ATTACK
Each ACFG node contributes a vector of 8 manually selected
features. Five of these features depend on the characteristics
of the instructions in the node, while the others on the graph
topology. The model distinguishes instructions from an ISA
only for how they contribute to these 5 features. This enables
a gray-box variant of our Greedy attack: we measure the
robustness of Gemini using a set of candidates CAND of
only five instructions, carefully selected for covering the five
features. Later in the paper, we use this variant as the baseline
approach for a comparison with Spatial Greedy.

2) GCAM ATTACK
As described in the previous section, some of the components
of a node feature vector v depend on the instructions inside the
corresponding basic block. As Gemini maps all possible ISA
instructions into 5 features, we can associate each instruction
with a deterministic modification of v represented as a vector
u. We select five categories of instructions and for each
category cj we compute the modification uj that will be
applied to the feature vector v. We selected the categories so
as to cover the aforementioned features.

When we introduce in the block an instruction belonging
to category cj, we add its corresponding uj modification to
the feature vector v. Therefore, inserting instructions inside
the block modifies the feature vector v by adding to it a
linear combination vector

∑
j njuj, where nj is the number

of instructions of category cj added. Our perturbation δ acts
on the feature vector of the function only in the components
corresponding to the added dead branches, by modifying the
coefficients of the linear combination above.

Since negative coefficients are meaningless, we avoid
them by adding to the optimization problem appropriate
constraints. Moreover, we solve the optimization problem
without forcing the components of δ to be integers, as this
would create an integer programming problem. Therefore,
at the end of the iterative optimization process, we get our
problem-space perturbation δp by rounding to the closest
positive integer value each component of δ. It is immediate
to obtain from δp the problem-space perturbation to insert
in our binary function f1. Indeed, in each dead block,
we must add as many instructions belonging to a category
as the corresponding coefficient in δp. We report a simplified
example of the GCAM procedure against Gemini in Figure 7.

B. GMN
Graph Matching Network (GMN) [22] computes the sim-
ilarity between two graph structures. When functions are
represented through their CFGs, GMN offers state-of-the-art
performance for the binary similarity problem [22], [23].

Differently from solutions based on standard GNNs (e.g.,
Gemini), which compare embeddings built separately for
each graph, GMN computes the distance between two graphs
as it attempts to match them. In particular, while in a standard
GNN the embedding vector for a node captures properties of
its neighborhood only, GMN also accounts for the similarity
with nodes from the other graph.

1) GREEDY ATTACK
Similarly to the case of Gemini, each node of the graph
consists of a vector of manually-engineered features. In par-
ticular, each node is a bag of 200 elements, each of
which represents a class of assembly instructions, grouped
according to their mnemonics. The authors do not specify
why they only consider these mnemonics among all the
available ones in the x86-64 ISA. Analogously to Gemini,
when testing the robustness of this model against the Greedy
approach we devise a gray-box variant by considering a
set of candidates CAND of 200 instructions, each of which
belonging to one and only one of the considered classes.

2) GCAM ATTACK
Our white-box attack operates analogously to what we
presented in Section VIII-A2 and illustrated in Figure 7.
Similarly to the Gemini case, each dead branch adds a node
to the CFG while the feature mapping function transforms
each CFG node into a feature vector. The feature vector is a
bag of the instructions contained in the node, where assembly
instructions are divided into one of 200 categories using the
mnemonics.

C. SAFE
SAFE [4] is an embedding-based similarity model. It rep-
resents functions in the problem space as sequences of
assembly instructions. It first converts assembly instructions
into continuous vectors using an instruction embedding
model based on the word2vec [20] word embedding tech-
nique. Then, it supplies such vectors to a bidirectional
self-attentive recurrent neural network (RNN), obtaining an
embedding vector for the function. The similarity between
two functions is the cosine similarity of their embedding
vectors.

1) GREEDY ATTACK
The Greedy attack against SAFE follows the black-box
approach described in Section V-A. Since SAFE does not use
manually engineered features, we cannot select a restricted
set of instructions that generates all vectors of the feature
space for a gray-box variant. We test its resilience against
the Greedy approach considering a carefully designed list
of candidates CAND composed of random and hand-picked
instructions, meaning that the baseline is a black-box attack.

2) GCAM ATTACK
In the feature space, we represent a binary function as
a sequence of instruction embeddings belonging to a

VOLUME 12, 2024 161257

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

FIGURE 8. GCAM attack against SAFE. Once obtained the initial linear
disassembly of the function f1, we map each instruction to its embedding
(a) using the embedding matrix em, obtaining the feature space
representation of f1. Then, we initialize the perturbation by inserting into
the feature space representation of f1 the embedding vector adv
associated to a real instruction (b) uniformly sampled from the
embeddings in em. We then iteratively modify adv by applying the
gradient descent (c). Finally, we approximate the obtained adv vector to
the closest embedding in em (d) and we insert its corresponding
instruction into f1 (e).

predefined metric space. The perturbation δ is a sequence
of real-valued vectors initialized with embeddings of real
random instructions; each dead block contains four of
such vectors. In the optimization process, we modify each
embedding ij ∈ δ by a small quantity given by the negative
gradient of the loss function L. In other words, every time
we optimize the objective function, we alter each ij ∈ δ

by moving it in the negative direction identified through the
gradient.

Since during optimization we modify instruction embed-
dings in terms of their single components, we have no
guarantee that the obtained vectors are embeddings of
real instructions. For this reason, after the optimization
process, we compute the problem-space perturbation δp by
approximating, at each iteration, the vectors in δ to the closest
embeddings in the space of real instruction embeddings.
At this point, it is straightforward to obtain from the
approximated perturbation δp the instructions that should be
added to the binary function f1; indeed, each vector in δp
corresponds to the embedding of a real instruction that will be
inserted into the function f1. We report a simplified example
of the GCAM procedure against SAFE in Figure 8.

IX. DATASETS AND IMPLEMENTATION
In this section, we discuss the evaluation datasets
and the corpus for training the embedding model of
Spatial Greedy.

A. ATTACK DATASET
We test our approaches by considering pairs of binary
functions randomly extracted from 6 open-source projects

written in C language: binutils, curl, gsl, libconfig, libhttp,
and openssl. We compile the programs for an x86-64
architecture using the gcc 9.2.1 compiler with -O0 opti-
mization level on Ubuntu 20.04. We filter out all functions
with less than six instructions. As a result, we obtain a
dataset of code representative of real-world software, with
source programs used in the evaluation or training of binary
similarity solutions (e.g., [4], [8], [9], [23]), and that could
be potential targets for the exemplary scenarios outlined in
Section I.
To evaluate the robustness of the three target models

against our proposed approaches, we used a dataset made
of 500 pairs of binary functions sampled from the general
dataset. The dataset, which we call Targ, consists of pairs
of random functions. In its construction, a function cannot
be considered more than once as a source function but may
appear multiple times as a target. The functions within a
pair differ at most by 1345 instructions, and on average by
135.27 instructions.

In the untargeted scenario, source and target functions
have to coincide. For these attacks, we use the dataset Untarg
composed by the 500 functions used as source in the Targ
dataset. Being pairs made of identical functions, they are
trivially balanced for instructions and CFG nodes.

B. DATASET USED FOR SPATIAL GREEDY
As described in Section V-B1, in Spatial Greedy we use
an instruction embedding model to induce a metric space
over assembly instructions. We opt for word2vec [20]; the
reader may wonder whether this choice may unfairly favor
Spatial Greedy when attacking SAFE, which uses word2vec
in its initial instruction embedding stage. We conducted
additional experiments for SAFE using two other models,
GloVe [40] and fastText [41]. The three models perform
almost identically in targeted attacks, while in untargeted
ones fastText occasionally outperforms the others by a small
margin. For the sake of generality, in the paper evaluation we
will report and discuss results for word2vec only. For each
of the considered models, we use the following parameters
during training: embedding size 100, window size 8, word
frequency 8 and learning rate 0.05. We train these models
using assembly instructions as tokens. We use as training set
a corpus of 23,181,478 assembly instructions, extracted from
291,688 binary functions collected by compiling various
system libraries with the same setup of the previous section.

One aspect worth emphasizing is that Spatial Greedy
uses embeddings unrelated to the binary similarity model
being targeted. We trained the Spatial Greedy embedding
model using distinct dataset and parameters compared
to SAFE, whereas neither GMN nor Gemini incorporate
a layer that converts a single instruction into a feature
vector. Spatial Greedy relies on embeddings to enhance the
instruction insertion process during the attack by clustering
the instruction space, independently of the underlying model
being attacked.

161258 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

C. IMPLEMENTATION DETAILS
We implement our attacks in Python in about 3100 LOC.
In the hope to foster research in the area, we make the code
available upon request to fellow researchers.

An aspect that is worth mentioning for the black-box
attacks involves the application of the perturbation ⟨bl,in⟩
chosen at each iteration. Modifying the binary representation
of the function every time incurs costs (recompilation in our
case; binary rewriting in alternative implementations) that we
may avoid through a simulation. In particular, we directly
modify the data structures that the target models use for
feature mapping when parsing the binary, simulating the
presence of newly inserted instructions. The authors imple-
mented these models in tensorflow or pytorch, which allows
us to keep our modifications rather limited. In preliminary
experiments, we have verified that the similarity values from
our simulation are comparable with those we would have
obtained by recompiling the modified functions output by
our attacks. Finally, to avoid recalculating the adversarial
examples for various thresholds, we selected two fixed values
for our optimizer to satisfy: τt = 0.96 for the targeted case
and τu = 0.50 for the untargeted one. For the evaluation in
Section X, we consider the adversarial examples generated
by inserting the perturbations obtained at the end of the
simulation process into the corresponding functions and
compiling them into object files.

Finally, we want to highlight that each black-box iteration
could be considered as a single query to the target model.
This is possible because we are querying the model in batch
mode, giving it in input a set of functions that are processed
together. This implies that when setting a maximum number
of iterations, we are implicitly limiting the number of queries
that the attacker can perform, following the approaches
adopted in [42] and [43].

X. EVALUATION
In this section, we evaluate our attacks and investigate the
following research questions:

RQ1: Are the three target models more robust against
targeted or untargeted attacks?
RQ2: Are the three target models more robust against
black-box or white-box approaches?
RQ3:What is the impact of feature extracting method-
ologies and model architectures on the performance
and the behaviour of our attacks?

Performance Metrics: Our main evaluation metric is the
Attack success rate (A-rate), that is the percentage of
adversarial samples that successfully mislead the target
model. We complement our investigation by collecting a set
of support metrics to gain qualitative and quantitative insights
into the attacking process:

• Modification size (M-size): number of inserted inline
assembly instructions;

• Average Similarity (A-sim): obtained final similarity
values;

• Normalized Increment (N-inc): similarity increments
normalized with respect to the initial value; only used
for targeted attacks;

• Normalized Decrement (N-dec): similarity decrements
normalizedwith respect to the initial value; only used for
untargeted attacks.

Support metrics are computed over the set of samples that
successfully mislead the model (according to the success
conditions outlined in Section X-A).
As an example, let us consider a targeted attack against

three pairs of functions with initial similarities 0.40, 0.50, and
0.60. After the attack we reach final similarities that are 0.75,
0.88, and 0.94, by inserting respectively 4, 7, and 12 inline
assembly instructions. We deem an attack as successful if the
final similarity is above τt = 0.80 (the reason will be clear
in the next section). In this example, we have an A-rate of
66.66%, a M-size of 9.5, an A-sim of 0.91, and a N-inc of
0.81.
The N-inc is the average of the formula below over the

samples that successfully mislead the model:

final similarity−initial similarity
1−initial similarity

(2)

The denominator for the fraction above is the maximum
possible increment for the analyzed pair: we use it to
normalize the obtained increment. Intuitively, the value of this
metric is relatedwith the initial similarities of the successfully
attacked pair. Consider a targeted attack where a pair exhibits
a final similarity of 0.80. When the normalized increment is
0.7, their initial similarity is 0.33 (from Equation 2); when the
normalized increment is 0.3, we have amuch higher 0.7 initial
similarity.

The comparison between A-sim and the success threshold
gives us insights on the ability of the attack to reach high
similarity values. In the aforementioned example, the A-sim
value of 0.91 shows that when the attack is able to exceed
the success threshold, it has actually an easy time to bring the
similarity around the value of 0.91.
Evaluation Outline:We test our black-box and white-bock

attacks against each target model in both the targeted and the
untargeted scenario. As discussed in Section IX-A, we use
dataset Targ for the former and dataset Untarg for the latter.

A. SETUP
In this section, we describe the attack parameters selected for
our experimental evaluation.
Successful Attacks:
An attack is successful depending on the similarity value

between the adversarial example and the target function. For
a targeted attack, the similarity score has to be increased
during the attack until it trespasses a success threshold τt. For
an untargeted attack, this score, which is initially 1, has to
decrease until it is below a success threshold τu. Operatively,
the values of such thresholds are determined by the way

VOLUME 12, 2024 161259

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

TABLE 2. Evaluation metrics with τt = 0.80 relative to the black-box attacks against the three target models in the targeted scenario. Spatial Greedy (SG)
is evaluated using parameters ε = 0.1 and r = 0.75. Greedy (G) is evaluated using ε = 0.1. G* is the gray-box version of Greedy: when such a version is
available (Section VIII), we show it instead of G. When examining G against SAFE, a set of candidates of size 400 is considered.

the similarity score is used in practice. In our experimental
evaluation, we choose the thresholds as follows. We compute
the similarity scores that our attacked systems give over a
set of similar pairs and over a set of dissimilar pairs. For the
first set, the average score is 0.79 with a standard deviation of
0.15. For the second set, these values are respectively 0.37 and
0.17. We thus opted for a success threshold τu = 0.5 for
untargeted attacks and τt = 0.8 for targeted ones. Both τu and
τt are within one standard deviation distant from the average
similarity value measured for the relevant set for the attack.
For the charts, we plot τu ∈ [0.46, 0.62] and τt ∈ [0.74, 0.88].
To fully understand the performance of the attacks, we also

measure the amount of function pairs in a dataset already
meeting a given threshold. For the targeted scenario, we plot it
as a line labeled C0. As our readers can see (Figure 9), their
contribution is marginal: hence, we do not discuss them in
the remainder of the evaluation. For the untargeted scenario,
no such pair can exist by construction.
Black-box Attacks: To evaluate the effectiveness of Spatial

Greedy against the black-box baseline Greedy, we select
a maximum perturbation size δ̄ (namely, the number of
inserted instructions) and a number of dead branches B in
four settings: C1 (δ̄ = 15, B = 5), C2 (δ̄ = 30, B = 10),
C3 (δ̄ = 45, B = 15), and C4 (δ̄ = 60, B = 20).
We set ε = 0.1 in all greedy attacks. For Spatial

Greedy and black-box Greedy, we test two sizes for the
set of candidates: 110 and 400. For Greedy, we pick
110 instructions manually and then randomly add others for a
total of 400; for Spatial Greedy, we recall that the selection is
dynamic (Section V-B2). The larger size brought consistently
better results in both attacks, hence we present results only
for it. Finally, for Spatial Greedy, we use c = 10 and
r ∈ {0.25, 0.50, 0.75}, with r = 0.75 being themost effective
choice in our tests (thus, the only one presented next). For
the gray-box Greedy embodiments for Gemini and GMN,
we refer to Section VIII-A1 and VIII-B1, respectively.
White-box Attack: We evaluate GCAM considering four

different values for the number B of dead branches inserted:
C1 (B = 5), C2 (B = 10), C3 (B = 15), and C4 (B = 20).
For each model, we use the number of iterations that brings
the attack to convergence.

FIGURE 9. (a) Black-box targeted attack with Spatial Greedy against the
three target models while varying the success threshold τt ∈ [0.74, 0.88],
and settings C0 to C4. We use a set of candidates of 400 instructions,
ε = 0.1, and r = 0.75. (b) White-box targeted attack against the three
target models while varying the success threshold τt ∈ [0.74, 0.88] and
settings C0 to C4. Left: GCAM attack with 20k iterations against GEMINI.
Center: GCAM attack with 1k iterations against GMN. Right: GCAM attack
with 1k iterations against SAFE.

B. COMPLETE ATTACK RESULTS
This section provides complete results for our black-box and
white-box attacks on the three target models. For brevity,
we focus only on Spatial Greedy when discussing black-box
targeted and untargeted attacks, leaving out the results for the
baseline Greedy. The twowill see a detailed comparison later,
with Spatial Greedy emerging as generally superior.

1) BLACK-BOX TARGETED ATTACK
Considering an attacker with black-box knowledge in a
targeted scenario, the three target models show a similar
behavior against Spatial Greedy.

The attack success rateA-rate is positively correlated with
the number B of dead branches and the maximum number δ̄

of instructions introduced in the adversarial example. Fixing
at τt = 0.80 the success threshold for the attack, we have
an A-rate that on Gemini goes from 15.77% (setting C1) up
to 27.54% (setting C4). The other target models follow this

161260 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

TABLE 3. Evaluation metrics with τu = 0.50 relative to the black-box attacks against the three target models in the untargeted scenario. Spatial Greedy
(SG) is evaluated using parameters ε = 0.1 and r = 0.75. Greedy (G) is evaluated using ε = 0.1. Similarly to Table 2, G* is the gray-box version of Greedy
where applicable. When examining G against SAFE, a set of candidates of size 400 is considered.

behavior, as the A-rate for GMN goes from 31.13% up to
59.68%, and from 37.13% up to 60.68% for SAFE. This trend
holds for other success thresholds as visible in Figure 9. From
these results, it is evident that the higher the values of the two
parameters, the lower the robustness of the attacked models.
Table 2 presents a complete overview of the results.

The other metrics confirm the relationship between the
parameters B and δ̄ and the effectiveness of our attack. In par-
ticular, when increasing the perturbation size, as highlighted
by the modification size M-size metric, both A-sim and
the normalized increment N-inc increase, suggesting that
incrementing the perturbation size is always beneficial.

2) BLACK-BOX UNTARGETED ATTACK
Considering an attacker with black-box knowledge in a
untargeted scenario, all the three target models are vulnerable
to Spatial Greedy, with different robustness.

The observations highlighted in Section X-B1 also hold
in this scenario. Incrementing B and δ̄ is beneficial for the
attacker. As visible in Figure 10 and in Table 3, the attack
success rate A-rate for τu = 0.50 in setting C1 is 22.95% for
Gemini, 65.87% for GMN, and 56.49% for SAFE. Themetric
increases across settings, peaking at 53.89% for Gemini,
91.62% for GMN, and 90.62% for SAFE in setting C4.

Table 3 also reports the results for modification size
metric M-size. In this case, we can see the effectiveness of
Spatial Greedy as a small number of inserted instructions is
needed against each of the considered target models. Indeed,
considering setting C4, which is the one that modifies the
function most, the M-size at τu = 0.50 is 11.35 for Gemini,
4.14 for GMN, and 7.64 for SAFE.

3) WHITE-BOX TARGETED ATTACK
With an attacker with white-box knowledge in a targeted
scenario, the three target models show different behaviors.
Table 4 presents a complete overview of the results.
Both Gemini and SAFE show a higher robustness to our

GCAM attack if compared to GMN.
As visible in Figure 9, when attacking Gemini and SAFE,

there is a positive correlation between the number B of
locations (i.e., dead branches) where to insert instructions

FIGURE 10. (a) Black-box untargeted attack with Spatial Greedy against
the three target models while varying the success threshold
τu ∈ [0.46, 0.62], and the settings C1, C2, C3, and C4. We use a set of
candidates of 400 instructions, ε = 0.1, and r = 0.75. (b) White-box
untargeted attack against the three target models while varying the
success threshold τu ∈ [0.46, 0.62], and the settings C1, C2, C3, and C4.
Left: GCAM attack with 40k iterations against GEMINI. Center: GCAM
attack with 1k iterations against GMN. Right: GCAM attack with 1k
iterations against SAFE.

and the attack success rate A-rate. When considering setting
C1, the A-rate for τt = 0.80 is 24.35% for Gemini, and
11.57% for SAFE; moving to C4, it increases up to 31.60%
for Gemini, and 21.76% for SAFE. On the contrary, GMN
does not show a monotonic A-rate increase for an increasing
B value, as the peak A-rate is 38.32% in setting C2.

We now discuss the modification size M-size metric:
fixing τt = 0.80 and considering the setting where A-rate
peaks, we measure anM-size value of 38.90 for SAFE (C4),
133.84 for Gemini (C4), and 350.50 for GMN (C2): SAFE
is the model that sees the insertion of fewer instructions.
This is not surprising: due to the feature-space representation
of SAFE, the embeddings we alter in the attack for it
(Section VIII-C2) refer to a number of instructions that
is fixed.

4) WHITE-BOX UNTARGETED ATTACK
Figure 10 and Table 5 report the results for our attacks with
white-box knowledge in the untargeted scenario.

VOLUME 12, 2024 161261

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

TABLE 4. Evaluation metrics with τt = 0.80 for the white-box targeted attack against the three target models. The GCAM attack is executed up to 20k
iterations for Gemini and up to 1k for GMN and SAFE.

TABLE 5. Evaluation metrics with τu = 0.50 for the white-box untargeted attack against the three target models. The GCAM attack is executed up to 20k
iterations for Gemini and up to 1k for GMN and SAFE.

Gemini looks more robust than the other models: for
example, fixing τu = 0.50, we measure the highest attack
success rate A-rate as 39.52% in the C4 setting. On the
contrary, for the same τu, the highest A-rate for SAFE is
88.42% (setting C3) and 84.63% for GMN (setting C4).
The general trend of having a positive correlation of B and

the A-rate is still observable (with a sharp increase of the
A-rate from setting C1 to C2). The M-size shows that
SAFE is the most fragile model in terms of instructions
to add, as they are much fewer than with the other two
models.

5) GREEDY VS. SPATIAL GREEDY
We now compare the performance of Spatial Greedy against
the Greedy baseline, until now left out of our discussions for
brevity. Figure 11 shows the results for a targeted attack on
the Targ. Additional data points are available in Table 2.
We discuss Gemini and GMNfirst. We recall that we could

exploit their feature extraction process to reduce the size of
the set of candidates, devising a gray-box Greedy procedure.
Spatial Greedy is instead always black-box.

Considering the A-rate at τt = 0.80, Spatial Greedy
always outperform the gray-box baseline, except for setting
C4 on Gemini (although the two perform similarly: 27.94%
for Greedy and 27.56% for Spatial Greedy). Looking at the
other metrics, we can see that our black-box approach based
on instructions embeddings is almost on par or improves on
the results provided by the gray-box baseline.

Moving to SAFE, we recall that only a black-box Greedy
is feasible. Considering the A-rate, we can notice that
increasing both δ̄ andB produces amore noticeable difference
between the baseline technique and Spatial Greedy. In theC1
setting, the A-rate at τt = 0.80 is 34.33% for Greedy and

FIGURE 11. Greedy and Spatial Greedy targeted attacks against the three
models while varying the success threshold τt ∈ [0.74, 0.88], considering
the setting C4. For both, we consider ε = 0.1 and |CAND| = 400. For
Spatial Greedy, we also set r = 0.75.

37.13% for Spatial Greedy; then, it increases up to 56.89%
for Greedy and 60.68% for Spatial Greedy when considering
the C4 scenario.

The other metrics confirm this behavior. Considering the
average similarity A-sim, regardless of the chosen δ̄ and B
from the setting, we observe that adversarial pairs generated
through Spatial Greedy present a final average similarity that
is higher than the one relative to the pairs generated using
the baseline solution. The effectiveness of Spatial Greedy is

161262 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

further confirmed by the normalized incrementN-incmetric;
at a comparison of the results, the impact of the candidates
selected using Spatial Greedy is more consistent if compared
to the one of the candidates selected using the baseline
approach. We omit a discussion of the untargeted case for
brevity.

Comparing Spatial Greedy with Greedy, we measure on
the Targ dataset an average A-rate increase of 2.27 and a
decreased M-size by 0.46 instructions across all configu-
rations and models. When considering the Untarg, Spatial
Greedy sees an average A-rate increase of 1.75, whereas the
average M-size is smaller by 0.16 instructions. We report
detailed results in Table 6.
Restricted Set Experiments: Finally, we perform a further

experiment between the black-box version of Greedy and
Spatial Greedy, considering a candidates’ set of smaller size;
in particular, we consider a set of 50 instructions which,
in the case of Greedy, is a subset of the one considered
for the previously detailed experiments. Our hypothesis
is that the smaller the size of the candidates’ set the higher
the difference in terms of A-rate in favour of Spatial Greedy.
We highlight that we applied the black-box version of Greedy
also when targeting Gemini and GMN. In the following,
we refer to the results obtained in the targeted case when
considering the C4 scenario.
When targeting SAFE, there is a significant difference,

with an A-rate of 30.74% for Greedy and 49.70% for Spatial
Greedy. A similar trend is seen with Gemini, where Greedy
shows an A-rate of 9.58% compared to 25.55% for Spatial
Greedy, and with GMN, where Greedy’s A-rate is 37.13%
versus 49% for Spatial Greedy.

Takeaway: Spatial Greedy is typically superior, and
always at least comparable, to a Greedy attack even
when an efficient gray-box Greedy variant is possible.
The results suggest that our dynamic update of the set
of candidates, done at each iteration of the optimiza-
tion procedure, can lead to the identification of new
portions of the instruction space (and, consequently,
a new subset of the ISA) that can positively influence
the attack results. Finally, the smaller the size of the
candidates’ set the higher the effectiveness of Spatial
Greedy compared to Greedy.

C. RQ1: TARGETED VS. UNTARGETED ATTACKS
From the previous sections, the attentive reader may have
noticed that all our approaches are much more effective in
an untargeted scenario for all models and proposed metrics.
When looking at the A-rate for all thresholds of sim-

ilarities, the three target models are less robust against
untargeted attacks (rather than targeted ones) regardless of the
adversarial knowledge. For the best attack among black-box
and white-box configurations, in the targeted scenario, the
peak A-rate at τt = 0.80 is 27.54% for Gemini, 59.68% for
GMN, and 60.68% for SAFE. For the untargeted scenario, the

peak A-rate at τu = 0.50 is 53.89% for Gemini, 91.62% for
GMN, and 90.62% for SAFE.

The number of instructions M-size needed for generat-
ing valid adversarial examples further confirms the weak
resilience of the target models to untargeted attacks. When
considering the worst setting according to M-size (i.e., C4),
while we need only few instructions for untargeted attacks
at τu = 0.50 (i.e., 11.35 for Gemini, 4.14 for GMN, and
7.64 for SAFE), we need a significantly higher number of
added instructions for targeted attacks (i.e., 51.85 for Gemini,
40.99 for GMN, and 40.31 for SAFE) at τt = 0.80.

Takeaway: On all the attacked models, both targeted
and untargeted attacks are feasible, especially using
Spatial Greedy (see also RQ2). Their resilience
against untargeted attacks is significantly lower.

D. RQ2: BLACK-BOX VS. WHITE-BOX ATTACKS
An interesting finding from our tests is that the white-box
strategy does not always outperform the black-box one.

Figure 12 depicts a comparison in the targeted scenario
between Spatial Greedy and GCAM for the attack success
rate A-rate, average similarity A-sim, and normalized
increment N-inc metrics. The figure shows how different
values of the success attack threshold τt can influence the
considered metrics. On GMN and SAFE, Spatial Greedy is

FIGURE 12. Black-box and white-box targeted attacks against the three
models while varying the success threshold τt ∈ [0.74, 0.88]. In the
black-box scenario, all the results refer to the Spatial Greedy approach
(ε = 0.1, r = 0.75, and |CAND| = 400). In the white-box scenario, the
results for Gemini are for a GCAM attack with 20k iterations while the
ones for SAFE and GMN are for a GCAM attack with 1k iterations.
We consider all approaches in their most effective parameter choice,
being it always setting C4 except for the GCAM attack against GMN, for
which we consider setting C2.

VOLUME 12, 2024 161263

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

TABLE 6. Difference between SG and G for the A-rate and M-size in the four settings C1-C4, averaged on the three models. Where applicable, we consider
the gray-box version of Greedy.

more effective than GCAM, resulting in significantly higher
A-rate values, while the two perform similarly on Gemini.

Interestingly, in contrast with the evaluation based on the
A-rate metric, both the A-sim and N-inc values highlight a
coherent behavior among the three target models. Generally,
adversarial examples generated using Spatial Greedy exhibit
a higher A-sim value than the white-box ones (considering
τt = 0.80, we have 0.86 vs. 0.86 for Gemini, 0.93 vs. 0.84 for
GMN, and 0.92 vs. 0.85 for SAFE). Looking at N-inc,
we face a completely reversed situation; the metric is better
in the adversarial samples generated using GCAM (0.62 for
Gemini, 0.79 for GMN, and 0.71 for SAFE) compared to
those from Spatial Greedy (0.27 for Gemini, 0.79 for GMN,
and 0.55 for SAFE). These two observations lead us to the
hypothesis that the black-box attack is more effective against
pairs of binary functions that exhibit high initial similarity
values and can potentially reach a high final similarity. On the
other side, GCAM is particularly effective against pairs that
are very dissimilar at the beginning.

For the untargeted scenario, our results (Tables 3 and 5)
for theA-ratemetric considering τu = 0.50 show that Spatial
Greedy has a slight advantage on GCAM. For Spatial Greedy,
we have best-setting values of 53.89% for Gemini, 91.62%
for GMN, and 90.62% for SAFE; for GCAM, we have
39.52% for Gemini, 84.63% for GMN, and 88.42% for
SAFE.

In our experiments, GCAM performed worse than the
black-box strategy, which may look puzzling since theo-
retically a white-box attack should be more potent than a
black-box one. We believe this behavior is due to the inverse
feature mapping problem. Hence, we conducted a GCAM
attack exclusively in the feature space by eliminating all
constraints needed to identify a valid potential sample in the
problem space (i.e., non-negativity of coefficients for Gemini
and GMN, rounding to genuine instruction embeddings for
SAFE). As a result, GCAM achieved an A-rate between
92.90% and 99.81% in targeted scenarios and between
97.01% and 100% in untargeted ones.

Takeaway: In our tests, the Spatial Greedy black-box
attack is on par or beats the white-box GCAM
attack based on a rounding inverse strategy. Further
investigation is needed to confirm if this result
will hold for more refined inverse feature mapping
techniques and when attacking other models.

E. RQ3: IMPACT OF FEATURES EXTRACTION AND
ARCHITECTURES ON ATTACKS
As detailed in Section VIII, we can distinguish the target
models according to three aspects (NN architecture, input
representation, and feature mapping process). Here, we are
interested in investigating whether these aspects can influ-
ence the performance of our attacks or not.

In the targeted black-box scenario (Figure 9 and Table 2),
SAFE and GMN are the weakest among the three considered
models, as the peak attack success rate A-rate at τt = 0.80 is
60.68% for SAFE, 59.68% for GMN, and 27.54% for Gemini
(C4 setting). These results highlight that our attack is sensible
to some aspects of the target model, in particular to the feature
mapping process and the DNN architecture employed by
the considered models. To assess this insight, we conduct
different analyses to check whether our Spatial Greedy
attack is exploiting some hidden aspects of the considered
models to guide the update of the candidates’ set. First,
we check whether or not there exists a correlation between
the number of initial instructions composing the function
f1 and the obtained final similarity value. This analysis is
particularly interesting for SAFE, as this model computes the
similarity between two functions by only considering their
first 150 instructions; the results of this study are reported
in Figure 13. From the plots it is visible that there exists
a negative correlation between the final similarity and the
initial number of instructions composing the function we
are modifying, also confirmed by the Pearson’s r correlation
coefficient highlighting that this negative correlation is
almost moderate for SAFE (with r = −0.38) while it is
weak for both Gemini and GMN (with r = −0.25 and
r = −0.22 respectively). These results confirm that when
Spatial Greedy modifies a function that is initially small
(particularly composed by less than 150 instructions), then
our adversarial example and the function f2 are more likely
to have a final similarity value near 1 when targeting SAFE
rather then the two other models.

Then, since both Gemini and GMN implements a feature
mapping function which deeply looks at the particular assem-
bly instructions composing the single blocks, we conduct
a further analysis to assess whether or not the instructions
inserted by Spatial Greedy trigger the features required by
the two considered models. In particular, for each inserted
instruction, we check whether or not it is mapped over the
features considered by the two models and, for each adver-
sarial example, we calculate the percentage of instructions

161264 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

FIGURE 13. Correlation between initial number of instructions of the function f1 and the similarity between
the generated adversarial example fadv and the target function f2. The considered adversarial examples are
generated in the targeted scenario, using our Spatial Greedy approach (ε = 0.1, r = 0.75, and |CAND| = 400)
in setting C4. We also reported an equal number of samples randomly drawn from a uniform distribution.

satisfying this condition. In the targeted black-box scenario
using Spatial Greedy, we find that on average, 90.83% of
the inserted instructions for Gemini and 100% for GMN are
mapped to the considered features.

To verify how the particular architecture implemented
by the model affects the performance of Spatial Greedy,
we checked how the instructions inserted by our procedure
are distributed across the various dead branches. Our
hypothesis is that when targeting GNN-based models (as
Gemini and GMN), our attack should span the inserted
instructions across the various dead branches; on the contrary,
the position of the block should not influence the choice of the
attack when targeting a RNN as SAFE. For all the considered
models, the block where our attack inserts the majority of the
instructions for each adversarial example is the one closest
to beginning of the function. However, while this is evident
for GMN and SAFE (where the first block contains most
of the inserted instruction in 313 and 205 of the considered
examples respectively), in Gemini the inserted instructions
are more uniformly distributed across the various dead
branches. We report the complete distribution in Figure 14.
To further validate these results, we calculated the entropy
of the generated adversarial examples, resulting in values
of 2.94 for Gemini, 2.77 for GMN, and 2.68 for SAFE.
Higher entropy suggests a more uniform distribution of
inserted instructions across dead branches, while lower values
indicate concentration in specific blocks. These entropy
values reinforce our previous conclusions. We highlight that
these results are partially coherent with our initial hypothesis;
indeed, the first block is the closest to the prologue of the
function, which plays a key role for both SAFE and GMN.
Indeed, asmentioned in [44], SAFE primarily targets function
prologues, which explains why our attack inserts most
instructions into the first block, as it is closest to the function
prologue; For GMN, since prologue instructions typically
follow specific compiler patterns, the nodes containing these
instructions are likely to match, prompting Spatial Greedy to
insert most instructions into the dead branches closest to the
prologue.

The smallM-size results in the untargeted scenario prevent
us to obtain meaningful results when running these analyses
in this context, so we decided to not report the obtained
results.

For the white-box attack, we believe that the different
levels of robustness among the considered models are mainly
due to their feature mapping processes. As mentioned
in Section X-D, we evaluated a variant of the GCAM
attack solely in the feature space, removing all constraints
necessary for producing adversarial examples valid in the
problem space. For both Gemini and GMN, we removed
the non-negativity constraint of coefficients, and for SAFE,
we eliminated the rounding to real instruction embeddings
constraint. In theC4 targeted scenario, the unconstrained ver-
sion of GCAM increases the A-rate of the standard GCAM
on Gemini from 31.60% to 96%, on GMN from 35.33%
to 99.81%, and on SAFE from 21.76% to 92.90%. This
demonstrates that the performance of our attack is primarily
influenced by the feature mapping method rather than the
specific model architectures. The results on the untargeted
scenario confirm this hypothesis, as the unbounded GCAM
reaches anA-rate near 100% for both GMN and SAFE, while
a value of 97.01% against Gemini.

Take away: When considering the black-box sce-
nario, the particular architecture seems to influence
the position where the instructions are inserted.
In general, the particular feature mapping process
adopted by the models seems playing a crucial role
in the choice of the instructions.
In the white-box scenario, the feature mapping
processes adopted by the models prevent in reaching
optimal A-rate results.

XI. MIRAI CASE STUDY
We complement our evaluation with a case study examining
our attacks in the context of disguising functions from
malware.

VOLUME 12, 2024 161265

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

FIGURE 14. Distribution of the blocks where, for each adversarial example (successful or not), our Spatial
Greedy attack inserts most of the instructions. The considered adversarial examples are generated in the
targeted scenario, using our Spatial Greedy approach (ε = 0.1, r = 0.75, and |CAND| = 400) in setting C4.

FIGURE 15. Experiments on the three models subject of black-box and
white-box attackers in the targeted scenario, on the Mirai dataset for a
different success threshold τt ∈ (0.74, 0.88) in setting C4. In case of
black-box attacker, we test the Spatial Greedy approach against the
target models with ε = 0.1, r = 0.75, |CAND| = 400. In case of white-box
attacker, we test GCAM attack with 20k iterations against GEMINI, with 1k
iterations against GMN, and with 1k iterations against SAFE.

We consider the code base from a famous leak of the Mirai
malware, compiling it gcc 9.2.1 with -O0 optimization level
on Ubuntu 20.04. After filtering out all functions with less
than six instructions, we obtain a set of 63 functions.We build
distinct datasets for the targeted and untargeted case. For the
former, we pair malicious Mirai functions with benign ones
from the Targ dataset from the main evaluation. For the latter,
each of the 63 functions is paired with itself.

Figure 15 reports on our targeted attacks, comparing
Greedy, Spatial Greedy, and the white-box GCAM for the
metrics ofA-rate,A-sim andN-inc. For brevity, we focus on
the performant C4 configuration from the main evaluation.

FIGURE 16. Resilience of the three models to black-box and white-box
attackers in the untargeted scenario, on the Mirai dataset for a different
success threshold τu ∈ [0.46, 0.62], considering the setting C4. In case of
black-box attacker, we test the Spatial Greedy approach against the
target models with ε = 0.1, r = 0.75, |CAND| = 400. In case of white-box
attacker, we test GCAM attack with 20k iterations against GEMINI, with 1k
iterations against GMN, and with 1k iterations against SAFE.

For the A-rate, when attacking GMN and SAFE, Spatial
Greedy has an edge on both Greedy and GCAM, with the
latter performing markedly worse than the two black-box
ones. With Gemini, Spatial Greedy and Greedy perform
similarly, with both resulting below GCAM. This behaviour
is consistent with the main evaluation results (cf. Figure 12).

In more detail, with GMN, the average increase of
A-rate for Spatial Greedy over Greedy is 3.73 (max.
of 6.27 at τt = 0.74, min. of 2.27 at τt = 0.88). With SAFE,
this increase is 3.81 (max. of 6.35 at τt = 0.74; min. of zero
at τt = 0.8). With Gemini, GCAM is the best attack with an
average 7.94 increase over Spatial Greedy (max. of 9.52% at
τt = 0.74; min. of 6.35% at τt = 0.88). SAFE remains the
easiest model to attack also on this dataset.

Regarding A-sim and N-inc, Spatial Greedy and Greedy
perform similarly on GMN and SAFE, whereas on Gemini
Spatial Greedy is slightly worse than Greedy for A-sim at
lower thresholds. The relative performance of GCAM vs. the
black-box attacks resembles the trends discussed in the main
evaluation (cf. Figure 12).

Figure 16 reports on the experiments we conducted for the
untargeted scenario.We note that Spatial Greedy outperforms
the other attacks on SAFE (with the exception of GCAM
when τu =0.46) and performs analogously to them on the

161266 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

other two models. Compared to the main evaluation results,
targeted attacks haveworse performance than untargeted ones
also on this dataset. Moreover, successful untargeted attacks
continue to require fewer instructions: in particular, across
all models, a successful black-box targeted attack needs on
average 42.63 instructions, whereas the untargeted one adds
on average 5.27 instructions.

XII. PRACTICAL IMPACTS AND POSSIBLE
COUNTERMEASURES
In this section we discuss the practical impacts of our paper
and possible countermeasures.

A. PRACTICAL IMPACTS
The findings in Section X-B reveal that the evaluated
binary similarity systems are susceptible to both targeted
and untargeted attacks, though their resilience differs. These
systems show higher robustness against targeted attacks,
with an average A-rate of 49.43%, whereas the average
A-rate for untargeted attacks is 79.44%. From a practical
perspective, as detailed in Section I we can consider the three
main uses cases of binary similarity systems: vulnerability
detection, plagiarism detection, and malware detection. The
results in the untargeted scenario imply that when having an
attacker that is trying to substitute a function with an older,
vulnerable version or make a plagiarized function dissimilar
to the original one, then they succeed in nearly 80% of
cases. This suggests that current binary similarity models are
unfit for tasks such as vulnerability detection or authorship
identification when used in a context that could be subject to
adversarial attacks (as example, but not limited to, when used
in security sensitive scenarios). To remark on this our results
in Section XI practically show that, when an attacker creates
a new variant of a malicious function without targeting any
specific benign function, then the models fail in recognising
it as similar to any known malicious sample in nearly 78%
of the cases. In contrast, the considered models show greater
resistance when the attacker is trying to create a variant of
its input matching a specific target function. This implies
that the considered models are more resistant when facing an
attacker trying to make a malicious function closely resemble
a specific whitelisted function rather than when the attacker
is hiding the malevolent function. However, it is important
to note that even in this scenario, as reported in Section XI,
an attacker can bypass the binary similarity detection system
in more than half of the cases.

B. COUNTERMESURES
Given these results, even though our primary focus has been
on the attack side, it is important to investigate potential
defensive strategies.

A typical approach consists of using a classifier as detector
to distinguish between clean examples and adversarial ones.
In our context, one could use an anomaly detection model
to check whether the input function’s code follows common

patterns of compiler-generated code or not, using models for
checking compiler provenance [45], [46].

Adversarial training [13], [47] is the standard solution
for increasing the robustness of an already trained model;
however, while it could improve the robustness against our
methodologies, there is no guarantee that the retrainedmodels
would be robust against zero-day attacks. To overcome these
limitations, techniques based on randomized defenses [48]
could be considered. In particular [48] proposes a method-
ology to increase the robustness of DNN classifiers against
adversarial examples by introducing random noise inside
the input representation during both training and inference.
While originally designed for the computer vision scenario,
this method has been adapted to the malware classification
domain, by randomly substituting [49] and deleting [50] bytes
from the input sample. However, the applicability of these
approaches in the binary similarity domain has not been
studied yet andmust focus onmanipulating directly assembly
instructions or CFG nodes.

A more promising approach consists of analyzing only
a subset of the instructions from the input functions; the
rationale is that this could thwart the attack by partially
destroying the pattern of instructions introduced by the
adversary. Similarly to [51], one could learn the function
representation by focusing only on some random portions of
the input. A more refined approach could consist of filtering
out instructions using techniques such as data-flow analysis
and micro-trace execution, to concentrate solely on the ones
with the highest semantic importance. However, one has to
keep in mind that refined analyses at the pre-processing stage
could introduce significant delays that would partially nullify
the speed advantages of using DNNs solutions over symbolic
execution ones.

Finally, one could use an ensemble of all the target models
combined with a majority voting approach to determine the
final similarity. As discussed in the evaluation, the various
attacked models respond differently to our attacks. This
suggests that an ensemble model could be a feasible defense.

XIII. LIMITATIONS AND FUTURE WORKS
In this paper, we have seen how adding dead code is a natural
and effective way to realize appreciable perturbations for a
selection of heterogeneous binary similarity systems.

In Section IV-C, we acknowledged how, in the face of
defenders that pre-process code with static analysis, our
implementation would be limited from having the inserted
dead blocks guarded by non-obfuscated branch predicates.
Furthermore, we highlight that all the approaches we
propose consist of inserting into dead branches sequences of
instructions that do not present any data-dependency, which
make them easier to detect.

Our experiments suggest that, depending on the charac-
teristics of a given model and pair of functions, the success
of an attack may be affected by factors like the initial
difference in code size and CFG topology, among others.
In this respect, it could be interesting to explore how to

VOLUME 12, 2024 161267

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

alternate our dead-branch addition perturbation, for example,
with the insertion of dead fragments within existing blocks.

We believe both limitations could be addressed in future
work with implementation effort, whereas the main goal of
this paper was to show that adversarial attacks against binary
similarity systems are a concrete possibility. To enhance our
attacks, we could explore more complex patching imple-
mentation strategies based on binary rewriting or a modified
compiler back-end. Such studies may then include also
other performant similarity systems, such as Asm2Vec [8] or
jTrans [52].

XIV. CONCLUSION
We presented the first study on the resilience of code models
for binary similarity to black-box and white-box adversarial
attacks, covering targeted and untargeted scenarios. Our tests
highlight that current state-of-the-art solutions in the field
(Gemini, GMN, and SAFE) are not robust to adversarial
attacks crafted for misleading binary similarity models. Fur-
thermore, their resilience against untargeted attacks appears
significantly lower in our tests. Our black-box Spatial Greedy
technique also shows that an instruction-selection strategy
guided by a dynamic exploration of the entire ISA is more
effective than using a fixed set of instructions. We hope to
encourage follow-up studies by the community to improve
the robustness and performance of these systems.

ACKNOWLEDGMENT
This work has been carried out while Gianluca Capozzi
was enrolled in the Italian National Doctorate on Artificial
Intelligence run by Sapienza University of Rome.

REFERENCES
[1] T. Dullien and R. Rolles, ‘‘Graph-based comparison of executable objects

(English version),’’ in Proc. Symp. sur la sécurité des Technol. de
l’information et des Commun. (SSTIC), 2005, vol. 5, no. 1, p. 3.

[2] W.M. Khoo, A.Mycroft, and R. Anderson, ‘‘Rendezvous: A search engine
for binary code,’’ in Proc. 10th Work. Conf. Mining Softw. Repositories
(MSR), May 2013, pp. 329–338.

[3] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, ‘‘SIGMA: A semantic
integrated graph matching approach for identifying reused functions in
binary code,’’ Digit. Invest., vol. 12, pp. S61–S71, Mar. 2015.

[4] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Baldoni,
‘‘Function representations for binary similarity,’’ IEEE Trans. Dependable
Secure Comput., vol. 19, no. 4, pp. 2259–2273, Jul. 2022.

[5] Y. David, N. Partush, and E. Yahav, ‘‘Statistical similarity of binaries,’’
in Proc. 37th ACM SIGPLAN Conf. Program. Lang. Design Implement.,
Jun. 2016, pp. 266–280.

[6] Y. David, N. Partush, and E. Yahav, ‘‘Similarity of binaries through re-
optimization,’’ in Proc. 38th ACM SIGPLAN Conf. Program. Lang. Design
Implement., Jun. 2017, pp. 79–94.

[7] M. Egele, M. Woo, P. Chapman, and D. Brumley, ‘‘Blanket execution:
Dynamic similarity testing for program binaries and components,’’ inProc.
23rd USENIX Secur. Symp. (SEC), 2014, pp. 303–317.

[8] S. H. H. Ding, B. C. M. Fung, and P. Charland, ‘‘Asm2 Vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 472–489.

[9] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ‘‘Neural
network-based graph embedding for cross-platform binary code similarity
detection,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 363–376.

[10] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, ‘‘Leveraging
semantic signatures for bug search in binary programs,’’ in Proc. 30th
Annu. Comput. Secur. Appl. Conf. (ACSAC), 2014, pp. 406–415.

[11] X. Yuan, P. He, Q. Zhu, and X. Li, ‘‘Adversarial examples: Attacks
and defenses for deep learning,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2805–2824, Sep. 2019.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ 2013,
arXiv:1312.6199.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ 2014, arXiv:1412.6572.

[14] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neural
networks,’’ inProc. IEEE Symp. Secur. Privacy (SP),May 2017, pp. 39–57.

[15] J. Li, S. Qu, X. Li, J. Szurley, J. Z. Kolter, and F. Metze, ‘‘Adversarial
music: Real world audio adversary against wake-word detection system,’’
in Proc. 32nd Annu. Conf. Neural Inf. Process. Syst. (NeurIPS), 2019,
pp. 11908–11918.

[16] R. Jia and P. Liang, ‘‘Adversarial examples for evaluating reading
comprehension systems,’’ in Proc. 22nd Conf. Empirical Methods Natural
Lang. Process. (EMNLP), 2017, pp. 2021–2031.

[17] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, ‘‘Intriguing
properties of adversarial ml attacks in the problem space,’’ in Proc. 41st
IEEE Symp. Secur. Privacy (SP), 2020, pp. 1332–1349.

[18] B. Devore-McDonald and E. D. Berger, ‘‘Mossad: Defeating software
plagiarism detection,’’ in Proc. ACM Program. Lang. (OOPSLA), vol. 4,
Jun. 2020, pp. 1–28.

[19] A. Hazimeh, A. Herrera, and M. Payer, ‘‘Magma: A ground-truth fuzzing
benchmark,’’ in Proc. ACMMeas. Anal. Comput. Syst., 2020, vol. 4, no. 3,
pp. 1–29.

[20] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in
Proc. 27th Annu. Conf. Neural Inf. Process. Syst. (NeurIPS), 2013,
pp. 3111–3119.

[21] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
‘‘Towards deep learning models resistant to adversarial attacks,’’ 2017,
arXiv:1706.06083.

[22] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, ‘‘Graph matching
networks for learning the similarity of graph structured objects,’’ in Proc.
Int. Conf. Mach. Learn., 2019, pp. 3835–3845.

[23] A.Marcelli,M.Graziano, X. Ugarte-Pedrero, Y. Fratantonio,M.Mansouri,
and D. Balzarotti, ‘‘How machine learning is solving the binary function
similarity problem,’’ in Proc. 31st USENIX Secur. Symp. (SEC), 2022,
pp. 2099–2116.

[24] N. Mrkšic, D. Ó Séaghdha, B. Thomson, M. Gašic, L. M. Rojas-Barahona,
P.-H. Su, D. Vandyke, T.-H. Wen, and S. Young, ‘‘Counter-fitting word
vectors to linguistic constraints,’’ in Proc. Conf. North Amer. Chapter
Assoc. Comput. Linguistics: Human Lang. Technol., 2016, pp. 142–148.

[25] S. Ren, Y. Deng, K. He, and W. Che, ‘‘Generating natural language
adversarial examples through probability weighted word saliency,’’
in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics, 2019,
pp. 1085–1097.

[26] D. Li, Y. Zhang, H. Peng, L. Chen, C. Brockett, M.-T. Sun, and B.
Dolan, ‘‘Contextualized perturbation for textual adversarial attack,’’ in
Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics: Human
Lang. Technol., 2021, pp. 5053–5069.

[27] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, ‘‘BERT-ATTACK: Adversarial
attack against BERT using BERT,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process. (EMNLP), 2020, pp. 6193–6202.

[28] N. Yefet, U. Alon, and E. Yahav, ‘‘Adversarial examples for models
of code,’’ in Proc. ACM Program. Lang. (OOPSLA), vol. 4, Jun. 2020,
pp. 1–30.

[29] W. Zhang, S. Guo, H. Zhang, Y. Sui, Y. Xue, and Y. Xu, ‘‘Challenging
machine learning-based clone detectors via semantic-preserving code
transformations,’’ IEEE Trans. Softw. Eng., vol. 49, no. 5, pp. 3052–3070,
May 2023.

[30] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert,
and F. Roli, ‘‘Adversarial malware binaries: Evading deep learning for
malware detection in executables,’’ inProc. 26th Eur. Signal Process. Conf.
(EUSIPCO), Sep. 2018, pp. 533–537.

[31] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet,
‘‘Adversarial examples on discrete sequences for beating whole-binary
malware detection,’’ 2018, arXiv:1802.04528.

161268 VOLUME 12, 2024

G. Capozzi et al.: Adversarial Attacks Against Binary Similarity Systems

[32] K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shintre, ‘‘Malware
makeover: Breaking ML-based static analysis by modifying executable
bytes,’’ in Proc. 16th ACM Asia Conf. Comput. Commun. Secur.
(AsiaCCS), 2021, pp. 744–758.

[33] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, ‘‘MAB-
malware: A reinforcement learning framework for blackbox generation of
adversarial malware,’’ in Proc. 17th ACM Asia Conf. Comput. Commun.
Secur. (AsiaCCS), 2022, pp. 990–1003.

[34] L. Jia, B. Tang, C. Wu, Z. Wang, Z. Jiang, Y. Lai, Y. Kang, N. Liu, and J.
Zhang, ‘‘FuncFooler: A practical black-box attack against learning-based
binary code similarity detection methods,’’ 2022, arXiv:2208.14191.

[35] B. Biggio and F. Roli, ‘‘Wild patterns: Ten years after the rise of adversarial
machine learning,’’ Pattern Recognit., vol. 84, pp. 317–331, Dec. 2018.

[36] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, ‘‘Constantine:
Automatic side-channel resistance using efficient control and data flow
linearization,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2021, pp. 715–733.

[37] S. Heule, E. Schkufza, R. Sharma, and A. Aiken, ‘‘Stratified synthesis:
Automatically learning the x86–64 instruction set,’’ in Proc. 37th
ACM SIGPLAN Conf. Program. Lang. Des. Implement. (PLDI), 2016,
pp. 237–250.

[38] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, ‘‘Neural nets can learn
function type signatures from binaries,’’ in Proc. 26th USENIX Secur.
Symp. (SEC), 2017, pp. 99–116.

[39] H. Dai, B. Dai, and L. Song, ‘‘Discriminative embeddings of latent variable
models for structured data,’’ in Proc. 33rd Int. Conf. Mach. Learn. (ICML),
vol. 48, 2016, pp. 2702–2711.

[40] J. Pennington, R. Socher, and C. Manning, ‘‘GloVe: Global vectors for
word representation,’’ in Proc. 19th Conf. Empirical Methods Natural
Lang. Process. (EMNLP), 2014, pp. 1532–1543.

[41] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word
vectors with subword information,’’ Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2017.

[42] C. Guo, J. R. Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger, ‘‘Sim-
ple black-box adversarial attacks,’’ in Proc. 36th Int. Conf. Mach. Learn.
(ICML), vol. 97, 2019, pp. 2484–2493.

[43] J. Chen, M. I. Jordan, and M. J. Wainwright, ‘‘HopSkipJumpAttack: A
query-efficient decision-based attack,’’ in Proc. 41st IEEE Symp. Secur.
Privacy (SP), 2020, pp. 1277–1294.

[44] W. K. Wong, H. Wang, Z. Li, and S. Wang, ‘‘BinAug: Enhancing binary
similarity analysis with low-cost input repairing,’’ inProc. IEEE/ACM46th
Int. Conf. Softw. Eng., vol. 9, Feb. 2024, pp. 1–13.

[45] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Baldoni,
‘‘Investigating graph embedding neural networks with unsupervised
features extraction for binary analysis,’’ in Proc. Workshop Binary Anal.
Res., 2019, pp. 1–11.

[46] X. He, S. Wang, Y. Xing, P. Feng, H. Wang, Q. Li, S. Chen, and K. Sun,
‘‘BinProv: Binary code provenance identification without disassembly,’’
in Proc. 25th Int. Symp. Res. Attacks, Intrusions Defenses, Oct. 2022,
pp. 350–363.

[47] K. Lucas, S. Pai, W. Lin, L. Bauer, M. K. Reiter, and M. Sharif,
‘‘Adversarial training for raw-binary malware classifiers,’’ in Proc. 32nd
USENIX Secur. Symp., 2023, pp. 1163–1180.

[48] J. Cohen, E. Rosenfeld, and J. Z. Kolter, ‘‘Certified adversarial robustness
via randomized smoothing,’’ in Proc. 36th Int. Conf. Mach. Learn. (ICML),
vol. 97, 2019, pp. 1310–1320.

[49] D. Gibert, G. Zizzo, and Q. Le, ‘‘Towards a practical defense against adver-
sarial attacks on deep learning-based malware detectors via randomized
smoothing,’’ 2023, arXiv:2308.08906.

[50] Z. Huang, N. G. Marchant, K. Lucas, L. Bauer, O. Ohrimenko, and
B. I. P. Rubinstein, ‘‘RS-Del: Edit distance robustness certificates for
sequence classifiers via randomized deletion,’’ in Proc. 36th Annu. Conf.
Neural Inf. Process. Syst. (NeurIPS), 2023, pp. 1–36.

[51] D. Gibert, L. Demetrio, G. Zizzo, Q. Le, J. Planes, and B. Biggio,
‘‘Certified adversarial robustness of machine learning-based malware
detectors via (De)Randomized smoothing,’’ 2024, arXiv:2405.00392.

[52] H.Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu, J. Zhuge, and C. Zhang,
‘‘JTrans: Jump-aware transformer for binary code similarity detection,’’
in Proc. 31st ACM SIGSOFT Int. Symp. Softw. Test. Anal. (ISSTA), 2022,
pp. 1–13.

GIANLUCA CAPOZZI received the master’s
degree in engineering in computer science from
the Sapienza University of Rome, Italy, in 2021,
where he is currently pursuing the Ph.D. degree.
His main research interest includes adversarial
machine learning against neural network models
for binary analysis.

DANIELE CONO D’ELIA received the Ph.D.
degree in engineering in computer science from
the Sapienza University of Rome, in 2016. He is
currently a tenure-track Assistant Professor with
the Sapienza University of Rome. His research
activities span several fields across software and
systems security, with contributions in the analysis
of adversarial code and in the design of program
analyses and transformations to make software
more secure.

GIUSEPPE ANTONIO DI LUNA received the
Ph.D. degree. After the Ph.D. study, he did a post-
doctoral research with the University of Ottawa,
Canada, working on fault tolerant distributed algo-
rithms, distributed robotics, and algorithm design
for programmable particles. In 2018, he started a
postdoctoral research with Aix-Marseille Univer-
sity, France, where he worked on dynamic graphs.
Currently, he is performing research on applying
NLP techniques to the binary analysis domain.

He is an Associate Professor with the Sapienza University of Rome, Italy.

LEONARDO QUERZONI received the Ph.D.
degree with a thesis on efficient data routing algo-
rithms for publish/subscribe middleware systems,
in 2007. He is a Full Professor with the Sapienza
University of Rome, Italy. He has authored
more than 80 papers published in international
scientific journals and conferences. His research
interests range from cyber security to distributed
systems, in particular binary similarity, distributed
stream processing, dependability, and security in

distributed systems. In 2017, he received the Test of Time Award from the
ACM International Conference on Distributed Event-Based Systems for the
paper TERA: Topic-Based Event Routing for Peer-to-Peer Architectures,
published, in 2007.

Open Access funding provided by ‘Università degli Studi di Roma La Sapienza 2’ within the CRUI CARE Agreement

VOLUME 12, 2024 161269

