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Optimal discrete-time distributed Kalman filter
with reduced communication

Stefano Battilotti, Senior Member, IEEE, Alessandro Borri, Senior Member, IEEE, Filippo Cacace, Senior
Member, IEEE, and Massimiliano d’Angelo, Member, IEEE

Abstract—This paper proposes and analyzes a dis-
tributed filter where the consensus term is a virtual output
rather than the local state estimate. This feature allows
for reducing the data transmitted among nodes at each
intermediate step, namely instead of exchanging a vector of
the dimension of the state, nodes exchange a vector of the
dimension of the rank of the total output matrix. The main
finding is that the convergence to the performance of the
centralized Kalman filter and mean square boundedness
of the estimation error are not lost despite an increase in
the number of consensus steps. Simulations show that the
total communication overhead is reduced without perfor-
mance degradation with respect to the original distributed
filter, where nodes exchange local state estimates.

Index Terms— Distributed filtering; Network analysis;
Stochastic systems.

. INTRODUCTION

ISTRIBUTED filtering algorithms are an active area of

research and one of the main applications of wireless
sensor networks (WSNs), consisting of numerous nodes dis-
tributed across different geographical locations, each operating
under low power constraints and having limited computational
capabilities [1]. In the context of distributed estimation for
WSNs, each sensor possesses a subset of observations, which
can either be transmitted to a central node (the so called
fusion center) or shared among nodes to cooperatively perform
large-scale sensing tasks that cannot be accomplished by
individual devices [2]. The availability of low-cost sensors
and the diffusion of wireless networks has contributed in
recent years to the development of many applications, such
as environmental monitoring [3], airborne target tracking [4],
space situation awareness [5], spacecraft navigation [6], among
many others. The large majority of these distributed filtering
algorithms trace their origins back to the seminal work [7]
on the consensus-based paradigm, and they can be broadly
classified into three main categories [2]: slate estimate fusion
[8]. [9], measurement vector fusion [10]-[13], and information
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vector fusion [14|-[17]. Together with the main problem,
many research endeavors have tackled the distributed esti-
mation problem under several assumptions and constraints or
exploiting spatial correlation to reduce transmission require-
ments, such as bandwidth and energy constraints [18]-{20],
[20], rate constraints [21], quantization [22], [23], reduced-
order sensor observations [24].

In this paper, we are concerned with stochastic linear time-
invariant discrete-time systems on bi-directional links, and we
use a novel approach that mixes state and measurement vector
fusion. Algorithms in discrete-time can be further categorized
into two classes based on the absence or presence of an inner
time scale between two instants of time. This inner cycle, often
referred to as “consensus step iterations”, is able to recover
some desired performance but at the cost of computational
complexity and communication time [14], [15], [25]. We
investigate the latter case (presence of the inner time scale),
wherein the filter structure at a node consists of a prediction
with a local correction term (derived from the node’s own
sensor measurements) and a subsequent filter equation that
incorporates the consensus step iterations computed using the
(previous) estimates from neighboring nodes. In the recent
work [26], it has been theoretically proved that, with a large
number of consensus step iterations, the local filters at each
node can recover the performance of the centralized optimal
filter, namely the Kalman Filter which ideally collects the
measurements from all the nodes. In the spirit of [27] (which
refers however to complete graphs), an intriguing question
arises: can we achieve optimal performance by exchanging
“less information” among neighboring nodes during each iter-
ation of the consensus step? This paper focuses on determining
whether it is sufficient to exchange a lower-dimensional vector
than the entire system state prediction to attain the optimal
performance of the (ideal) centralized Kalman filter. The paper
answers positively to this question, and addresses the following
three contributions:

« We establish that achieving optimal performance only
necessitates the exchange of a vector with dimension
equal o the rank of the global output matrix (namely the
matrix that collects all the output maps of the sensing
nodes), which is typically less than the dimension of the
cntre state.

o« We present the design of the output map required to
execute the conscnsus step itcra[éons at a node.

« We exhibit u bound on the number ol conscnsus step
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iterations that ensures stability of the estimation error.

The proposed filter not only serves as an alternative to the filter
[26]. which exchanges state estimates among nodes, to reduce
thc communication, but it also stands as the sole algorithm
feasible in scenarios where exchanging the full state estimates
is not possible.

The structure of the paper is outlined as follows. In Section
II, we introduce the problem along wilh some preliminary
concepts and assumptions. Seclion III presents the novel
distibuted filter with reduced communication. Section TV
provides proofs of its capability to attain optimal performance
of the centralized Kalman filter arbitrarily close when the
consensus step iterations are sufficiently large. Section V
presents a:numerical example of the proposed method to
demonstrate its performance with some comparisons. The
concluding remarks are provided in Section VL

Notation and preliminaries. A Gaussian random variable
with mean m and covariance ¥ is indicated as Gauss(rmn, ).
1~ denotes a vector with IV entries 1. Uy = 1 Nl;- is the
square matrix of size N with entries 1. For a square matrix
M, o(Al) denotes the set of its eigenvalues and p(M) its
spectral radius, p(M) = maxy,eq(ar) [As|- When p(M) < 1
we say that M is Schur. My > My (resp. My > M)
denotes that A4y — M» is positive definite (resp. positive semi-
definite). Given any matrix A, then ||Al| denotes the matrix
operator norm, ® is the Kronecker product and Al is the
1-th Kronecker power. The vectorization or stack operation
of an m x n matrix A is the mn column vector st{A) =

T T TNT
(11161, G 1, @12, -, Gmp) - Givenv = (v],...,v))" €
R™, with v; € R*, A = st™'(v) € R™™ is the inverse

operation. Given matrices Ad;,7 = 1,...,n, of suitable size we
define row;(M;) = [M ... M,], col;(M;) = (row,(M)T
Finally, diag;(Af;) denotes block didgonal composition.

[I. PROBLEM STATEMENT AND ASSUMPTIONS

A. Network preliminaries

We consider an undi_rected graph G =
vertices V =
Vx Vs the set of CdUCb of the graph. The presence of an edge
(i, j) in G implies that nodes ¢ and j can exchange information
between them. The graph is undirected, that is, (j,7) € £ =
(i,7) € £ Two nodes i and j, with i 5 j, are neighbors (o each
other if (z J) € €. The sct of neighbors of node i is N; := {j €

: (4. 1) e E}. N, = {i} UN is the sct of neighbors including
i itsclf. A path is a scquence of connected edges in a graph.
A graph is connected if there is a path between every pair of
vertices. The symmetric adjacency matrix .4 € {0, 1}V<N of
G has the (i, j)-th entry 1 if {(i.j) € £ and 0 otherwise. The
degree matrix D of G is a diagonal matrix whose i-th entry
is the number ol edges of the /i-th node. The Laplacian of an
undirected G is the symmetric matrix £ € BY*Y defined by
£ = —4 4+ D. When the graph is connected. 0 = A\ (L) <
(L) < < AN (L) where A (L) € o(L£). An cigenvector
associated to N\ {L£) is 1.

wv. £ ) where the

B. Dynamical system

We consider a system described by the discrete-time linear
time-invariant model

x(k+ 1) =Ax(k) + Fn®(k), (1)

where as usual (k) € R" is the state and n*(k) € R? is the
state noise such that n*(k) ~ Gauss(0, I,,), thus Q@ = FFT >
0 is the covariance matrix of the process noise. The distributed
estimate of (k) is obtained through a network modeled as an
undirected graph G = (V. &) in which the nodes in S € V are
sensors with sensing capabilities modeled by the measurement
equations

yi(k) =Ci(k) + Gimy(k), ieScV @)

where y;(k) € R%, n(k) € R"n, ny(k) ~ Gauss(0,1,, ),
thus R; = G; G’T e R¥4*% R; > 0 is the covariance matrix of
the measurement noise of node 1. As usual, the measurement
noises 7;(k) at each time k& > 0 of the sensing nodes are
mutually independent and independent from n,(k) and z(0).
We denote C' = col;(C;) € RI*", where ¢ = 3, ¢; and r =
rank(C'). The matrix R = diag;(R;) € R7*?, R > 0, is the
overall covariance of the measurement errors across the nodes.
Remark 1: We emphasize that, although C is in R2*"
where ¢ is typically much larger than n, namely ¢ > n, still
the rank of C is commonly less than 7, namely r < n.
When R is non singular, the asymptotic estimation error
covariance I” of the centralized Kalman filter satisties [26]

P=(I, - PS)(APA" + Q) (I, — PS)T + PSP (3)
S| =[O i ) (4)
R = diag,(R;), (5)

with the gain of the centralized Kalman filter given by

=PCTRL. (6)

C. Goal and assumptions

Our aim is to design a distributed algorithm where at each
time unit a node can interact with its neighbors an arbitrary
but bounded number of times such that the estimation error
at each node approximates arbitrarily well the asymptotic
variance of the estimation error of the centralized Kalman
filter that collects all the measurements y; (k) of the network.
In particular, we present a distributed filter that retains the
features of [26] while reducing communication requirements.
We have the following assumptions.

Assumption 1: The graph G = (V. £) is connected.

Assumption 2: (A. Q) is controllable and (A, (') is observ-
able.

Assumption 2 is the standard global observability and control-
lability assumption. and we stress that nothing is required on
(A.C).

Furthermore. we assume that the nodes only know their local
information matrices and no global knowledge is required. In
particular. we have the following assumption.

Assumprion 3: The i-th node knows A, (2. ' and [7;.

Remark 2: We note thal. since § =5, . C, B/ 'C; (and
N is the sum of the terms (7 R7NCY irespectively 1) across
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the graph, S and ¥ can be computed offline at each node by
means of distributed algorithms, see [26], [28], [29].
The final assumption is necessary for determining the choice
of an oulput consensus matrix, which plays the pivotal role in
reducing the communication workload.

Assumption 4: Each node knows the rank r of the global
output matrix C'.
It is clear that the latter hypothesis is weaker than assuming
the knowledge at each node of the entire C' (which is still a
plausible assumption in the context of global information of
the network). Moreover, this assumption is typically applicable
in scenarios where the nature of the measurements is already
known (e.g. in a 2D target tracking problem where only
positions in both dimensions are measured we have r = 2).

lll. DISTRIBUTED KALMAN FILTER WITH REDUCED
COMMUNICATION

In this section, we propose a new filter design aimed at
reducing communication among nodes. We introduce the filter
in Section III-A, and we discuss the design of the critical
output consensus matrices C; in Section III-B. As detailed in
Remark 3, the key distinction from the filter proposed in [26]
lies in the fact that the exchange between neighbors involves
the estimates of some predicted output, which has the same
dimensionality as the output, rather than the estimates of the
state, which has the dimension of the system’s state.

A. Filter
We denote by X;(k) the estimate of z(k) and by X;(k|k—1)
the prediction of x(k) at node ¢ = 1,.... N and time k. The

reduced-order distributed Kalman filter with v € N consensus
steps iterates over time at each node i € V is the following
operations.
1) Local prediction:
Ri(k + 1]k) = Ax;(k) @
2) Local correction:
&k +1,0) = x;(k + 1]k)
+ Ki(yik + 1) — Cixi(k + 1[k))  (8)
K; = NPCR;', ©)

where P solves (3).
3) Conscnsus itcrations. Sct h = 0 and itcrate while b < 7:

3.1 Compute

gilk+ L) = Ci&i(k + L h), (10)

for j € A7 w {i}. where (_'j is o4 matrix of rank
r that we call owtput consensus matrix of node j.
discussed in the next Section ITI-B. and send it Lo
the neighbor j € .V,.

3.2 Receive 7750k + L.h), with j g AL and compute

Slh = Lh+ 1)=&+ 1Lh)

+ ok 2 (yyih + 1.0 = gk + 1.0 ol h
AW

where K; = PSC(C;C)™, and a is a design
parameter.
33 Seth «— h+ 1.

4y Set X;(k+1) =&(k+1.7).
At each node the estimate is initialized as

%(0) = E[2(0)] + K;(y:(0) — GE[z(0)]) (12)

i

where K; is defined in (9).

We note that, in order to implement the filter described
above, Assumption 3 is required, whereas we additionally
assume that Assumption 4 holds if a specific protocol for the
selection of the output consensus matrix is implemented (see
next Subsection [II-B). Also, we remark again that because of
Remark 2, the terms N and S (and thus P) are known locally
at the nodes.

Remark 3: The proposed filter differs from the distributed
Kalman filter of |26] at step 3), eqgs. (10) and (11). In
the distributed Kalman filter of |26], the exchange among
neighbors involves the estimates &;(h) (dimension n), in (10)-
(11) g (k + 1,h) (dimension r). This results in reduced
communication requirements at each consensus iteration with
respect to filters that exchange the whole state estimate like
[26]. The reduced order filter is still able to recover the optimal
performance of the centralized Kalman filter as proved in
Section IV.

We clarify the trade-off between the amount of information
exchanged and estimation accuracy in Proposition 2 of Section
IV-A. The critical choice of C; in (10) and the corresponding
gain K, in (11) is discussed in the next section.

B. Choice of the oulput consensus matrix

In this section we explain how to choose the crucial output
consensus matrix C; of Eq. (10) at the i-th node. We present
two protocols for the selection of C; that yield the same filter.

1) Homogeneous selection: Since C € R7*™ and recalling
that rank(C') = 7, we can represent the matrix C' without loss

of generality as ~
C
¢= [MCC“}

where rank(C)) = r, C' € R"*" and some My e RO,
For each 1 € V, the choice of the output consensus matrix is
é,j f= é, (13)

where €' is obtained through the following algorithm.

Algorithm for homogeneous selection
Each node i € V sets Z;(0) = (' and
. at time ¢ = 0, sends Z;(0) to the neighbors j £ A:
2, attime 0 < < N — L. receives Z,({ — 1) from the
neighbors j = A, and sends Z;(#) = “'t/ET,(Z/’U — 1))
(o the neighbors j € A
3, al time £ = N\ removes redundant rows (rom Z;(f - L}.
sorts the rows and detines €' as the first - independent
rows extracted [rom the resulting matrix.
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With this choice, K; = K = PSCT(CCT)~!. Moreover,
KC =pPScT(ccTy'C = KecT(cc™y~ e

| C AT AATY=LAr g
=K [Mcvé} c(CC Yy "C=KC. (14)
In essence, the protocol involves exchanging Z,(0) throughout
the network to calculate a common C (a form of row-wise or-
dering is necessary). This protocol requires N pre-processing
steps and a computational storage capacity to retain the values
of Z;(iN — 1). This protocol does not need Assumption 4.

2) Heterogeneous selection: For each i € V, the output con-
sensus matrix is C; and it is computed through the algorithm
for heterogeneous selection below.

Algorithm for heterogeneous selection

Each node i € V sets Z;(0) = C; and
1. at time t = 0, sends Z;(0) to the neighbors j € Nj;
2. attime 0 <t < N —1, while rank(Z;(t—1)) < r, sends
Zi(t) = stz (Z;(t — 1)) to the neighbors j € N;;
3. defines C; as the first 7 independent rows extracted from
Ii(t); )
4. sends C; to the neighbors j € Nj.

The protocol involves exchanging the matrices C; through-
out the network until a matrix C; € R™*" of rank r is obtained.
With this protocol, each node has a distinct C;, which is
communicated to the neighbors. This protocol does not rely on
any row-wise ordering and the computational storage to retain
the values of Z;(t — 1) is less than the previous protocol, but
it needs Assumption 4 for the stopping condition.

It is worth emphasizing again that the choice between the
two protocols for selecting the output consensus matrix has a
direct impact on the real-world implementation. This decision
involves a trade-off between computational pre-processing
power and the flexibility of transmissions, as discussed above.
However, from a theoretical standpoint, both protocols yield
the same algorithm as shown in the next proposition.

Proposition 1: The estimate provided by the distributed
Kalman filter with reduced communication of Section III-A is
identical, regardless of whether the output consensus matrix
C; for each node i € V is determined with homogeneous or
heterogeneous selection.

Proof: The difference between the (wo possible sclec-
tions of C'; is in the consensus term of equation (11). namely

A=K Dk + L) =gk +10). (15

j= N,
[t is important to note that. regardless of the chosen protocol.
A is the same. In fact. with homogencous sclection we have

N = K, Dtk + Ly = itk + L)
=\
AN (S b+ 1.0) ~ &b+ 1.0,
‘/_\J‘ J
JEN

(16)

il

where K = PSCT(CCT)~L. With heterogenous selection we
have

Ape = Klél Z (éj(k +1,h)— é,(k +1. h))..

5} EJ\/’;

(17)

where K; = PSC(C;C) . By the same argument as in
Section I1I-B.1, KC = K;C; = KC and thus Ay, = Ap.. H

IV. STABILITY AND OPTIMALITY ANALYSIS

In this section we prove that the distributed Kalman filter
(7)-(12) approximates the centralized Kalman filter when in-
creasing the number v of consensus iterations and we provide
a lower bound on +y for the stability of the estimation error.

Lemma I: Let (k) = coly(x(k) — X;(k)) be the overall
estimation error of (7)-(12). The overall error covariance
matrix (k) = E[(k)c T (k)] evolves with

P (k+1)=©" (diag,.(A,-)p7 (k)diag,(A] ) + m,)(—)”,

(18)

©=In—-alLRKC (19)
A; = (I, - K;C)A (20)
D = diag,(I,, — K;C;) 21
Upr = D(Un ® Q)DT + N2diag,(PS,P) (22)

Proof. With Proposition 1 in mind, by defining ¢;(k) =
x(k) —X;(k) and the intermediate estimation error £;(k, h) =
x(ky — &(k, h), we have

E,j(]i’? + 1,0) = .I‘(k + 1) - fl(k + 1,0) = A€L(k)
+ Fn®(k) — Ki(Ci(z(k + 1) — AR;(k)) + Gini(k))
e (]n . K—ACL)(AE,L(A,) + Fn"(k)) — KiGi'Ilz‘(k + 1), 23)

Jilk+ L h) = Cy(w(k +1) — gk + 1,R)). (24)
By using (24) and letting d; = |M], (11) becomes
CGilk+1L,h+1) = —ad:KC)&(k+1,h)
+ad, KCzx(k+1) —aKC Z gilk +1,h), (25)
JeN,
ik +1.h+1)= (I —ad;KC)ei(k + 1,h)
+aKC Y gk +1.h). (26)

JEN

The overall intermediate estimation error =(k,h) =
col;(gi(k. h)) is transformed at each consensus step as

s(b+1,h+1) =diag, (I, — ad; ACY<(k + 1, h)
+ (AR NCje(h + 1.h)
={I,xv —aDR®KC+a AR K)ok + 1.H)
=0:=z(k+1.h). (27)
From (23) and (27) we obtain
H(h+1l)y =607 (diugi(_klg‘,;‘(/\') —col; (L, ~ N, COVFn*(h)y

- oL, G, 1;)). (28)
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Consequently. P (k) = E[z(k)e"
P,(k + 1) = ©7diag,(A,) P, (k)diag,(A] )07 T
+©7col; (I, — K;C;)Qrow; (I, — K;C))TeT
+ ©7diag, (K;R; K] )0""
— o7 (diagi(A,-,)m(k)diagi(A,T) + wn,)e”.
(29)

We need some preliminary results, proved in Appendix I-A
and Appendix I-B.
Lemma 2: 1f Assumption 2 holds, then

p(I, — PS)=1. (30)

Lemma 3: Let Assumption 1 and 2 hold and A < 1. Let

r be the rank of €' and w;, 'ujT respectively the right and left

eigenvectors of I, — I’S associated to the eigenvalue y, = 1.
Then, the following limit holds

(k)] evolves with

111131c 07 =11y + 11, 3D
Boare
where
1
H)\ = N(UN ®In)
1 . ; - XN
Hu 1= (IN— N[J‘N> @M, M= Z wJ'L’,;r e R™

j=1
We note that ITy and II,, are orthogonal projectors, and in

particular, when the rank of C' is n then M = 0.

A. Optimality result

In this section we establish the fact that the distributed filter
[1I-A recovers the performance of the centralized Kalman fil-
ter, namely the (ideal) filter that aggregates all measurements,
given that the number « of the consensus step iterations is
sufficiently large.

Theorem 1: 1f Assumptlons 1 and 2 hold and the gain « in
(11) is such that ahx < 1 VA, € o(£), then the estimation
error covariance at each node of the filter (7)-(12) tends to
the covariance of the centralized Kalman filter as v — 20:

Proof. Let P (k) be the covariance of the estimation error
for v — =0. Equation (18) becomes

Py (k + 1) = (II, + IL,,) diag, (A;) Pc (k) diag; (A] ) (I +TT,,)"
+Q (32)
= (T +11,,) (DU~ ®Q)DT
+ diag,(N?PS; P)) (I +I1,,) " (33)

The proof develops along the following steps.
Step 1. Based on the properties M/ PS; = 0, and S;1{ = 0,
we show that

Q=Ux®((I, - PS)Q(I, — PS)' + PSP). (34

i.e.. all the blocks ol Q are identical. This is easily proved by
showing that the rows and columns of 1I,, sum up to 0 and
the following properties hold:

L diag,(4;) = [L,{[x & A) (33

I,D =11, (36)

L (LS Q) =0 (37)

11, diag,(N*PS, Pj) =0 (38)

2. Let A = (ITy + II,,)diag,(A;). Eq. (32) is rewritten

va(k + 1) = fiP—L-U{?)/IT + Q

Strep
(39)

The next step is to prove that p(fi) < 1. This guarantees that
limy — o P (k) exists. In fact, with X (k) = st(Px(k)) one
obtains

X(k+1)=APX(k) + st Q. (40)
where p(A2} < 1 whenever p(A) < 1, and the asymptotic
value is

i Po(k —1 AN st 6
lim P (k) = st (I(,T,N)g —AB) stQ). @
In order to prove p(A) < 1 we show that ¢(4) = o(A)
o(M A), where
A=(L,-KC)A=(I,— PS)A =+ ZA (42)

is Schur. Since Uy is symmetric there is an orthonormal basis
{ug} of RN of right eigenvectors of Uy, k = 1,...,N. Let
U] = \/_I—V—]'N Direct computation yields

1 _
u) ®row;(A;) + (IN — NUN) ® (N[A).

Let /_\ (S O'(A), ACJ = j\jCj- Since (IN — %\,U‘M)ul = (L —
= (1 @rowi(4) (11 ©)
\/N 1 7 1 i

TR
1 ® (ﬁ ;1 Azéy)
= w1 ® AG; = (1 ® ().
that proves_ 0(A) c o(A). The remaining (N — 1)n eigen-

values of A are exactly the eigenvalues of AfA, each with
algebraic and geometric muluphclty N — 1. To see this,

(43)

let \; € o(MA), ¢JMA = /\{ Since ufu; = 0 and
u,c(I\,—iUN)—uk,fork ...,N,
(u @& )A =u] ®ETMA=X(uf ®ET).  (44)

Since p(A) < 1 (Lemma 2) we are left to prove p(MA) <
1. This can be proved by a Lyapunov argument with the
functional V(k) = (A)P x(k) on the auxiliary dynamic
system x(k + 1) = (A[ AT x(k). By re-writing the Riccati
equation (3) as

APA —P=—(I,-PS)Q(I, — PS)T — PSP, (45)
and the property A/(1,, — PS) = Al. we oblain
Vik+ 1) = V{k) =2 (k)(MAPA AT — PYa(k)
=0 (=P + MPAMT = MQAM " )ye(k).  (46)

We now prove that the matrix on the right-hand side is negutive
definite. Define
i3
Z=1,-PS=M= Y \uwe,.

J=n—r

(+7)
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Clearly, A/ Z = 0 and since p({, — PS) =1 (Lemma 2) and
the eigenvalue 1 is in M, p(Z) < 1. Recalling that SPM T =
0 we have

ZPM" = P(I, — SP)MT — MPAl"

=PMT —MPMT (48)
Z°PMT = ZPMT — ZMPMT = ZPM 7T (49)
ZPMT - Z?°PMT = (I, — Z)ZPM" = 0. (50)

Since p(Z) < 1, (I,—Z) is non-singular and we conclude that
ZPM" =0 and PMT = MPMT = MP. Consequently, if
AV =V(k+1)-V(k),

P—MPM"=P—MP-PM" + MPM"

= (I, - M)P(I, — M)T (51)
AV = -z (B)(In — M)P(I, — M)T
+ MQM Nz (k). (52)

where it is easy to check that the sum of the two semi-definite
positive matrices on the right-hand side yields a positive
definite matrix. This proves p(MA) < 1 and consequently

p(A) < 1 and the existence of limy .. P (k).

Step 3. The final step is to prove that Uy ® P is the asymptotic
value of (39) and it satisfies (41). This is easily verified, since
A(Un®P)AT +Q = M, diag,(4;)(Un® P)diag, (A] )TI,

+ Mxdiag,(A;) (Un ® P)(In ® ATL
+1I,(In ® A)(Un ® P)diag,(A;)IL,
+1L,(In ® A)(Un @ P)(In @ AN +Q

= Mydiag;(4;)(Un ® P)diag;(A)TL) + Q
N

N
—Ue (Ni 53 AipA;) 4o

i=13j=1

— Un ® ((In — PS)(APAT + Q)(I, — PS)"

+Q+PSP)=Uy®P, (53)
where we have used the property

. (In @A) (Uxn @ P) =T,(Uv ® AP) = 0. (54)

U

Remark 4: Due to Assumption 1, Ay = 0, thus aAp = 0
for all positive c.

B. Bound on the number ~ of consensus steps

We provide a lower bound for ~ that ensures mean square
boundedness of the estimation error.

Theorem 2: If Assumptions 1 and 2 hold and a is such
that aAp < 1 for all Ay € a(L), then the estimation error of
the filter (7)—(12) is asymptotically unbiased in time and mean
square bounded if and only il ~ is such that p(©*diag,(4;)) <
L. where O, 4, are defined in (19)—(20). A sulficient lower
bound is any ~ such that

0 < (L= i)’
L+ NP PESPTE 2 PIAP- )Y

A
(3

with P solution of (3), any s € (0,1) such that APAT < puP,
Aasin (42) and 8 := 1 — 2a(1 — cos(w/N)). Moreover in
these cases, .

kh_lg P,(k)=P =

sy L 5
st™! ((Inz_,\,—z —((—)”'diag,z.(A.i))[z]) ol st(\IlM)> (56)

with U, defined in (22).

The proof of (56) is easily obtained from (18) by using the
same transformation as in (41). The proof of (55) is similar
to the proof of Theorem 5 of [30] (see Section TV-C) by
taking into account also Lemma 2 and it exploits the bound
A2(L) = 2(1 —cos(m/N)) [31] that ensures |¢] < 1 whenever
adp < 1. P, S, N and A are locally known, then (55) can
be computed at each node. We emphasize that the hypothesis
VE : aAp < 1 is crucial for the mean square boundedness
of the estimation error. Finally, the next proposition provides
conditions under which the algorithm proposed in this paper
reduces the communication burden with respect to [26]. The
proof is immediate.

Proposition 2: Let Pﬂﬁ be the covariance of the estimation
error of the filter in [26] with ¢ consensus steps, that can be
obtained from (56) by replacing © with ©; = (Iy—aL)® I,
and v = 7. Let . be the smallest integer such that tr(P°) <
tr(P,'ﬁ' )- If 7 < 7,2 then the filter (7)-(12) has mean
square error not larger than the one in [26] with reduced
communication.

Remark 5: Eq. (56) is also usetul to assess the robustness
of the filter to permanent link failures (changes in the under-
lying graph) that leave the graph connected. In this case the
eigenvalues of £ may change, and in general tr(P;°) increases
when Ao(L) decreases.

V. NUMERICAL EXAMPLE

Consider the petwork of Fig. 1 consisting of a connected
graph with NV = 5 nodes and 5 edges, where nodes 1 and 5
have measurement matrices C; and Cj respectively, while the
remaining nodes have communication capabilities only (g2 =
@3 = g2 = 0). The system in the form of (1)—(2) has

—-1.15 065 —01 -0.75 135
-0.65 085 —0.7 —065 065
A=]-085 015 02 -085 085
145 —-075 —18 —0.15 —025
015 —045 —12 —0.75 0.95
Ci=(1 010 1). C=(0 00 0 1)

Q= Fr’7 =diag(1,0.5.0.7,0.3,0.4)
R = diag(G G| .C5C1 ) = diag(0.32.0.94).

Fig. 1. Network topology of the example.
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Fig. 2. Performance in terms of MSE for the distributed Kalman  Fig. 3. Amount of communication data transmitted by a node at each

filter with reduced communication (DKF-RC) alongside the previous
distributed Kalman filter of [26] (DKF), together with the ideal optimal
performance of the centralized Kalman filter (CKF).

Note that the system is globally observable, that is, the couple
(A,C) with C = col(C;,C5) is observable, but the pairs
(A,C)) and (A,Cs) are not individually observable. We
compute the mean square error (MSE) of (7)—(12) as the norm
of the estimation error averaged over all the nodes and times
(avoiding transient effects), over a time horizon T' = 200
points and for several values of the consensus step iterations
~. We note that in this example the output consensus matrix
(described in Section I11-B) is C' € R?*3, thus the exchanged
information among the nodes 7 is in R? while the information
exchange by the filter in [26] is the estimate %; € R®. Figure 2
shows the results of Theorem 2 highlighting the mean square
boundedness with finite v and comparing the MSE of (7)-
(12) with the filter in [26] when varying . We note that in
this example the necessary and sufficient condition in order
to obtain mean square boundedness of the proposed filter
is v = 3, while for the filter in [26] is v = 2. Also, the
sufficient condition (55) for both filters is v = 310. Itis evident
that, albeit at a slower rate, the distributed filter with reduced
communication recovers the performance of the centralized
optimal filter as gamma incrcases. This is rcasonable since
the distributed filter with reduced communication cxchanges
“less” information at cach instant of the conscnsus step itera-
tions, hence necessitating a higher number «y of consensus step
iterations to attain the desired level of performance. Figure 3
illustrates the results of Proposition 2. In particular, it shows
the amount of data transmitted' by a node at each lime & > 0
necessary Lo achieve a specific percenlage distance [rom the
performance of the centralized Kalman filter (CKF). This
distance is calculated as (MSEpki: — MSEck:)/MSEckr. For
example. when targeting a 5% offset from the performance
of the centralized Kualman filter. the distributed Kalman filter
of [26] transmits 105 data. while the distributed Kalman filter
with reduced communication needs 74 transmitted data.

"the amount of communication data s computed as 5 - card{ ¢). where
cardi ) is the cardinality ol the vector o trausmitted al cach consensus step
=X, inthe case ol [26]. » = ij in the proposed fltery,

time k > 0 necessary to achieve a specific percentage distance from
the performance of the centralized Kalman filter (CKF).

VI. CONCLUSIONS

The results presented in this paper are useful to achieve
mean square stability of the estimation error for a distributed
filter with bandwidth limitations for the nodes. Another inter-
esting application is to cooperative filtering of systems with
infinite-dimensional state, since in that case the estimates of
the state are hard to exchange. It is also of interest to extend
these results to time-varying networks. Another topic that
deserves further investigation is the optimal choice of the
output consensus matrix with respect to the trade-off between
exchanged information and performance of the filter.

APPENDIX |
COMPLEMENTARY PROOFS

A. Proof of Lemma 2

Since Assumption 2 holds, there exists P = PT > 0
that satisfies the Riccati equation (3). From the definition
S =CTR™'C in (4) it is immediate to see that I, — KC =
I, — PS. In order to prove p(f, — PS) = 1 we prove
that z(k + 1) = (I, — PS)z(k) is simply stable. With the
Lyapunov function V (k) = 2T (k)P 1z(k) we obtain V(k +
1) — V(k) = —zT (25 — SPS)P) z(k), hence the second
point of the Lemma is proved by showing that § > SPS.
From the Riccati equation (3) it follows that P — PSP > 0
that implies I, — P2SP% > 0. Let S, = CTR™2,5 = 5,5
Since

o(I, — P2$,STP%) 2 a(I, — ST PSY) (57)

it follows that I, — S PS; = 0. Pre- and post-multiplying by
5y and S, respectively, we obtain S — SPS = (. O

B. Proofof Lemma 3

Let ir; and :7 be the right and left eigenvectors of [, — P&
with corresponding eigenvalue jr; where S is defined in (4).
It is always possible to normalize these cigenvectors so that

fuy b= 1Locywy, = 1and vjw, = 0 when ¢ # . From
Lemma 2 it follows |p, | < I When C is not full rank. ;- < 1.
without loss of generality let us number vy, .. .. t, ., the
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eigenvectors assoctated to ¢ = 1, and similarly for uT Let
Ao b =1....1 .V be the eigenvalues of L. £ is symmetuc
and we denote uk the correspondmo left and right normalized
eigenvectors, with A\ = 1, v, = 1,\ wi, UJT are the right
and left cigenvectors of both 1, — PS and [, — a i PS,

(I — a g PS)w; = (1 + (i — D)oy )wy = pg jwy, (58)

where, again [p ;| < 1 because adyp < 1. When p; = 1,

pe; = 1, that is, p(I, — @Ay PS) = 1. Recalling that KC =
PS we obtain
O(ur ® w;) =(Iny — L ® PS)(ur ® wy)

=up @u; — adpur @ PSw;
=1y ® (I, — aAPS)uy = pge (g ® g 5).

This proves that 0(0) = UI_ o(I, — @\, PS) and p(©) =
1. Since all the remaining eigenvalues of © are inside the
unit circle, lim,_.., ©7 exists and can be represented as the
projection of the subspace associated to the eigenvalue 1.
This subspace is generated by both A = 0 and the unitary
eigenvalues of I,, — aAPS for A\, # 0, that correspond to
f1 = 1. With A; = 0 we obtain that 1 € ¢(0©) with multiplicity
n and the corresponding eigenvectors can be represented as

u1 ® e;, where e; are the versors of the Euclidean basis of

R™. Thus, the projector on the autospace corresponding to
/\1 =0is
Iy =

N®In). (59

1
]V" (
The projector on the autospace of the unitary eigenvalue of ©
associated to p; =1 is

(ur ®In)(u1 ® In )

N n—r
= > 2w ®uw)(uf ®v))
k=2 j=I '
N n—r 1
T ]
= ‘;)uk“k Z w; u = (I_,\r _’NUN) ® M,

(60)

where the last passage follows from I,V_ upu. = In. From
P 1 k=1 k

the property +~Ux = N,Ul% it is easy to verify that these

projeclors are orthogonal. H)\ = II,, H;‘l =11, and IT, [T, =

IIL1II,, = 0, thus limy_,, ©% = I + II,, that is (31). dJ
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