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Introduction
Ongoing global warming and alterations in land use are expected 
to induce major ecological shifts, involving severe consequences 
for biodiversity and the composition of plant communities (New-
bold et al., 2020; Scheffers et al., 2016). Mediterranean vegeta-
tion has been influenced by climate change and humans since 
prehistoric times (e.g. Carroll et  al., 2012; Glais et  al., 2017; 
Lowe et al., 1996; Revelles et al., 2015; Sadori et al., 2004; Tinner 
et al., 2009). However, because of the long timescales underlying 
successional patterns after natural and/or anthropogenic distur-
bances, understanding the current composition of vegetation and 
predicting future dynamics can be challenging when relying only 
on short-term observations (Willis and Birks, 2006). An alterna-
tive approach is given by palaeoecological investigations of past 
relationships between vegetation, fire, climate, and land use, 
which may reveal unique long-term patterns of resilience, vulner-
ability, and adjustment capacity of plant communities and species 
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diversity. Hence, palaeoecological insights are relevant for biodi-
versity conservation, ecosystem restoration, and forest manage-
ment (Gillson et al., 2022; Nieto-Lugilde et al., 2021; Valsecchi 
et al., 2010; Whitlock et al., 2018).

Late Pleistocene and Holocene environmental, vegetation and 
fire histories have been extensively studied on lake sediments of 
Lago di Mezzano in central Italy (Brandt et  al., 1999; Giraudi, 
2004; Ramrath et al., 1999a, 1999b, 2000; Sadori, 2018; Sadori 
et al., 2004; Wilkes et al., 1999). These studies revealed the gen-
eral course of vegetation history, showing that both, climate and 
human impact determined important changes in vegetation com-
position and structure over millennia (Sadori, 2018). Particular 
emphasis has been devoted to the Bronze Age (2550−950 cal. BC; 
Sadori et  al., 2004) after the finding of a submerged settlement 
(Franco, 1982), but uninterrupted palynological time series, suited 
to address short-lived disturbance impacts on vegetation (Lang 
et al., 2023), are still missing at the site. The lake has also attracted 
scientific interest because of the long duration of sediment accu-
mulation (c. 34,000 years) and because some sediment sections are 
annually laminated (Ramrath et al., 1999a, 1999b, 2000), which 
improved the chronological basis of the available studies (Brandt 
et al., 1999; Sadori, 2018; Sadori et al., 2004; Wilkes et al., 1999).

It has been hypothesized that climate-human interactions 
generated synchronous land use phases, which altered vegeta-
tion structure and composition in Southern and Central Europe 
since the Neolithic (Rey et al., 2019a). Unfortunately, continu-
ously sampled, high-resolution and precisely dated studies to 
address this hypothesis are generally rare in the Mediterranean 
realm and elsewhere in Europe. Nevertheless, some of them 
(Bisculm et  al., 2012; Colombaroli et  al., 2008; Lotter, 1999; 
Pedrotta et al., 2021; Rey et al., 2019a; Rösch et al., 2014; Tin-
ner et al., 1999) could show the long-term effect of land use and 
fire disturbances on Neolithic vegetation successional patterns, 
while the existence, extent, and cause of synchronous land use 
phases remain understudied.

Our study has four main goals. The first goal is to establish a 
chronology as precise as possible for the study period of interest 
(c. 5100–3100 cal. BC). The second is to obtain the first uninter-
rupted palynological time series at Lago di Mezzano to recon-
struct decadal-scale vegetation, diversity, and fire-history 
dynamics spanning from the Neolithic to the Copper Age at a 
Mediterranean site. The third is to investigate the long-term effect 
of land use and fire disturbances on Mediterranean plant commu-
nities’ composition, structure, and biodiversity. The fourth goal is 
to match available temperate and submediterranean continuous 
palynological records c. 5100–3100 cal. BC to test whether the 
temporal patterns in land use phases and forest recovery are com-
parable across a wider latitudinal gradient in Southern and Cen-
tral Europe.

Material and methods
Study site
Lago di Mezzano (42°36′42″N, 11°46′12″E, 452 m a.s.l.) is a 
mesotrophic to oligotrophic (Ramrath et  al., 2000) maar lake 
located in central Italy, in the northern part of Latium about 30 km 
from the Tyrrhenian Sea (Figure 1). The volcanic lake formed 
about 100,000 years ago (Metzeltin and Vezzoli, 1983) and is 
located in the Caldera of Latera, which is part of the Vulsini Volca-
nic Complex. The lake’s surface area is 0.5 km2, the maximal 
water depth reaches 31 m, and the catchment area comprises about 
1 km2. A few small inlets, together with rainfall and groundwater, 
feed the lake. An artificial outlet located on the flat area on the 
northeastern side, the Fosso delle Volpi, flows into the Olpeta 
River, which then continues into the Fiora River. Nowadays, this 
artificial outlet limits seasonal lake level fluctuations to c. 0.5 m. 
Prior to the land reclamation works of the last century, the long-
term evolution of the lake level was characterized by periods when 
the water level was ±10 m compared to today (Giraudi, 2004). 

Figure 1.  (a) Photograph of Lago di Mezzano (view from the north-east shore, photo Kathrin Ganz), (b) satellite photo of Lago di Mezzano 
with coring sites (in pink; for this study only 2019 cores are used) and bathymetric map (Ramrath et al., 1999b), and (c) topographic map 
showing the location of Lago di Mezzano, Lago di Origlio (Tinner et al., 1999), Moossee (Rey et al., 2019a), and other discussed study sites.
Source: Maps were created using ArcMap v. 10.8.1 (ESRI Inc.).
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Over the past millennia, indeed, the lake has changed from 
endorheic to exorheic several times, also altering its shape and size 
(Giraudi, 2004; Sadori et al., 2004). A temperate climate with rela-
tively cold winters and warm summers characterizes the region 
around Lago di Mezzano. At the nearby weather station of Valen-
tano (530 m a.s.l.; c. 7 km from the lake), the mean annual tem-
perature is 13.9°C, with mean winter temperatures (December, 
January, February) of 6.5°C and mean summer temperatures (June, 
July, August) of 22.3°C. Annual precipitation is c. 1000 mm, with 
maxima during autumn and winter.

A hilly landscape in the volcanic crater surrounds Lago di 
Mezzano with open lands for cereal cultivation, pastures, and 
woodlands. On the steep west-southwest slopes in the caldera, 
mixed deciduous oak forests are dominated by Quercus cerris. 
Other tree species such as Ostrya carpinifolia, Quercus pubes-
cens, Carpinus betulus, Castanea sativa, Fraxinus ornus, Acer 
opalus, and Prunus avium, together with shrubs such as Cornus 
mas, Corylus avellana, Ruscus aculeatus, Acer campestre, Rosa 
canina, Prunus spinosa, and Ligustrum vulgare, as well as the 
evergreen liana Hedera helix are also present. Single trees of 
Fagus sylvatica can be found on the north-facing slopes near the 
lake, which is significantly below the elevation range of the 
Apennine beech forests (1000–2000 m a.s.l.; Buonincontri et al., 
2023; Pignatti et al., 2017), whereas single specimens of Quercus 
ilex are present on the south-facing slopes. Riparian vegetation 
(i.e. Alnus glutinosa, Populus alba, and Salix sp.) populates the 
lake shores.

Coring and chronology
In May 2019, four parallel sediment cores (MZZ A-D) were 
retrieved from the deepest part of the lake (31 m water depth, 
42°36′47.0″N, 11°46′10.0″; Figure 1b) using an UWITEC piston 
corer with a diameter of 6 and 9 cm. Four additional cores (MZZ 
E-H) were collected in September 2020 from the center of the lake 
(30 m water depth, 42°36′42.8″N 11°46′12.0″E). We first visually 
correlated the cores based on lithological features. We then refined 
the correlation using X-ray fluorescence (XRF) and Hyperspectral 
imaging (HSI) data obtaining a composite length of 1191 cm. In 
this study, we focus on the section between 687 and 599 cm from 
the cores MZZ B and MZZ C, which covers part of the Neolithic 
(i.e. c. 5100–3100 cal. BC) and is composed of laminated sedi-
ments (gyttja, carbonaceous silts). In this section, 27 Accelerator 
Mass Spectrometry (AMS) radiocarbon ages were obtained on ter-
restrial plant macrofossils (Supplemental Table 1) in the Labora-
tory for the Analysis of Radiocarbon with AMS (LARA) at the 
University of Bern. The age-depth model (Figure 2) was calcu-
lated using OxCal 4.4 P-Sequence (parameter k = 1; Bronk Ramsey, 
1994, 1995, 2001; Bronk Ramsey et al., 2001) and the IntCal 20 
calibration curve (Reimer et al., 2020) to allow for Bayesian radio-
carbon wiggle-matching and thus very high chronological preci-
sion (Rey et al., 2019b, 2023).

Pollen, spores and microscopic charcoal analyses
A total of 177 samples of 0.5 cm3 were collected continuously 
between 687 and 599 cm for pollen, spores, algae, and micro-
scopic charcoal analyses. This strategy results in a resolution of c. 
11 years/sample ±2.7 years (mean ± standard deviation) over 
2000 years. Pollen samples were prepared following standard pro-
cedure for glycerin (Moore et  al., 1991), with HCl, HF, KOH, 
acetolysis, sieving (0.5 mm mesh size), and decanting. We added 
Lycopodium tablets to the fresh samples for pollen concentrations 
(grains cm−3) and influx values (grains cm−2 yr−1) estimation 
(Stockmarr, 1971). Pollen and spores were identified and counted 
using a light microscope at a magnification of 400× or 1000× 
using pollen keys and atlases (e.g. Beug, 2004; Moore et  al., 
1991; Punt, 1976; Reille, 1992), and the reference collection of 

the Institute of Plant Sciences of the University of Bern. On aver-
age, the pollen sum of each analyzed sample is 687 ± 77 pollen 
grains, excluding spores and pollen of aquatic plants. Microscopic 
charcoal particles (>10 µm) were analyzed on pollen slides fol-
lowing Tinner and Hu (2003) and Finsinger and Tinner (2005). 
Microscopic charcoal concentrations (particles cm−3) and influx 
values (particles cm−2 yr−1) were calculated with respect to the 
added Lycopodium spores and/or the depositional time, respec-
tively. The pollen diagram (Figure 3) was divided into local pol-
len assemblage zones (LPAZ) using optimal partitioning with 
minimum sum-of-squares (Birks and Gordon, 1985). We assessed 
the number of statistically significant zones according to the bro-
ken-stick method (Bennett, 1996).

Biogeochemical analyses
The analysis of geochemical elements was conducted at the Insti-
tute of Geological Sciences, University of Bern, using a Cr-tube 
equipped ITRAX XRF core scanner (Cox Ltd., Sweden). For the 
laminated sequence considered in this study, measurements were 
made at a resolution of 200 µm and integration time of 30 s at 
30 kV and 50 mA, and are reported as element counts. Particularly 
interesting are titanium (Ti) as an indicator of terrigenous detrital 
sediment delivery from the watershed (Haug et al., 2001; Peter-
son et al., 2000), the ratio silicon–titanium (Si/Ti) as an indicator 
of biogenic silica (Melles et al., 2012), phosphorus (P) as an indi-
cator of nutrient enrichment (Corella et al., 2012), and iron (Fe) as 
an indicator of erosion or oxic conditions (Makri et al., 2021).

Hyperspectral imaging (HSI) scans were conducted at the 
Institute of Geography, University of Bern, using a Specim Ltd. 
Single Core Scanner equipped with a PFD-CL-65V10E line-scan 
camera (Butz et al., 2015; spectral resolution of 2.8 nm, ranging 
from 400 to 1000 nm). Measurements were performed with a spa-
tial resolution of 83 μm and an exposure time of 160 ms (Aper-
ture: 1.9, Spectral bin: 2, FOV: 109.33 mm, speed 0.5, fr: 6 Hz). 
Data were then post-processed following Butz et al. (2015, 2016, 
2017) and Zander et al. (2021): calculation of relative absorption 
band depths RABD655–685max and RABD845 as proxies for sedi-
mentary green pigments (chlorophyll a and b and diagenetic prod-
ucts, TChl) and pigments of anoxygenic phototrophic bacteria 
(bacteriopheophytin a and b), respectively. The RABD655–685max 
index (TChl) represents algae bearing green pigments such as dia-
toms, cyanobacteria, green algae, and golden algae and is used as 
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Figure 2.  Age-depth model of Lago di Mezzano. Black points 
represent the calibrated ages of 14C dated terrestrial plant 
macrofossils with 95% (2σ) error bars (IntCal20; Reimer et al., 
2020). The black line is the P-sequence modeled chronology 
(OxCal; Bronk Ramsey, 1994, 1995, 2001; Bronk Ramsey et al., 
2001). Gray lines show the 95% (2σ) confidence interval of the 
model. The red point represents an age that was treated as an 
outlier. Ages numbering is following Supplemental Table 1.
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an indicator of primary productivity in the lake (Leavitt and 
Hodgson, 2002). The RABD845 index (Bphe) represents photo-
trophic purple sulfur bacteria (PSBs) that live at the chemocline in 
stratified lakes (Butz et al., 2016; Yurkov and Beatty, 1998) and is 
used as an indicator of hypolimnetic anoxia reaching the photic 
zone. We performed the calibration of the RABD indices to pig-
ment concentrations (μg/gdry sediment) on 38 sediment samples with 
a minimum dry weight of 1 g. First, we conducted pigment extrac-
tions using 100% acetone following a modified version of the 
method in Sanchini and Grosjean (2020). Then, we measured the 
pigment concentrations of the extracts with a spectrophotometer 
(Shimadzu UV1800) and calculated concentrations using the 
molar extinction coefficient for bacteriopheophytin a from Fiedor 
et al. (2002) and the molar extinction coefficient for total chlo-
ropigments a from Jeffrey and Humphrey (1975). A linear regres-
sion model between the spectrophotometer measurements and the 
average RABD index values of the sample locations was used for 
calibration (Bphe = 508.94 * RABD845–503.62, R2 = 0.69; p < 0.01; 
RMSEP = 3.38 μg/gdry sediment; TChl = 1527.7 * RABD655-685max–1625.7, 
R2 = 0.79, p < 0.01, RMSEP = 47.3 μg/gdry sediment). Moreover, we 
used the R850/R900 spectral ratio as a proxy for volcanic litho-
genic influx (Saunders et al., 2018). For the profile representation 
(Figure 4), we averaged elements counts, ratios and concentra-
tions over a 5 mm wide subset.

Corchia Cave CC27
The stalagmite CC27 from Corchia Cave, located in the Apuan 
Alps in Tuscany, central Italy, at about 200 km from Lago di Mez-
zano, was analyzed for stable isotopes (δ13C and δ18O) and trace 
elements (Mg, U, P, Y). A composite mean anomaly index was 
produced as a precipitation indicator by combining the different 
individual trace element records (Isola et  al., 2019; Regattieri 
et al., 2014). Full methodological descriptions of the geological 
analyses are provided in Isola et al. (2019), in which the mean 
anomaly index is presented from 4050 cal. BC (6000 cal. BP) to 
the present. Here we extend the Corchia cave precipitation proxy 
to the period 4050–5100 cal. BC to match the other time series.

Numerical analyses

Biodiversity estimations.  To investigate biodiversity dynamics 
around Lago di Mezzano, we calculated the palynological richness 
(PRI) corresponding to Hill number N0, the probability of inter-
specific encounter (PIE), and the diversity Hill number N2 (Hill, 
1973). PRI is a proxy for species richness (Birks and Line, 1992), 
whereas PIE (Hurlbert, 1971) is used as a measure of evenness 
(e.g. Tolmos et al., 2022). The Hill number N2 is an estimate of the 
taxa abundance distributions and thus it is related to evenness as 
well (Felde et al., 2016; van Vugt et al., 2022). Evenness-detrended 
palynological richness (DE-PRI; Colombaroli and Tinner, 2013) 
accounts for the possible influence of palynological evenness 
(PIE) on palynological richness (PRI). For the comparison among 
sites, we re-calculated PRI for Lago di Origlio (submediterranean 
site; Tinner et al., 1999) and Moossee (temperate site; Rey et al., 
2019a) for minimum pollen sums of 500. Rarefaction analyses 
according to Birks and Line (1992) were performed using vegan 
(Version 2.6-4; Oksanen et al., 2022), a community ecology pack-
age developed to be used with the software R (R Core Team, 
2022). PIE was estimated for the first time at Lago di Origlio (this 
work), while it had been already calculated at Moossee (Rey et al., 
2019a).

Land use probability index (LUP) and fire number (FN) esti-
mates.  Several plants producing pollen of cultural indicators 
such as Olea, Castanea, Cerealia t. (including Triticum t. and 
Hordeum t.; t. = type), and Plantago lanceolata t. are native to 
Mediterranean regions, and their presence in the pollen diagram is 

therefore difficult to interpret (Deza-Araujo et al., 2020; Mercuri 
et al., 2013; Sadori, 2018). To overcome this difficulty and to esti-
mate the intensity of human impact, we used the novel land use 
probability index LUP (Deza-Araujo et al., 2022). The LUP index 
summarizes the ecological knowledge on the indicator values of 
taxa in a probabilistic way for different biomes of Europe, by pro-
viding locally suited weights (anthropogenic indicator values, 
AIV) to pollen of crops, adventives and apophytes. It has been 
tested with independent palynological evidence spanning from 
coldest arctic-alpine to warmest thermomediterranean environ-
ments as well as with local archaeological evidence (Deza-Araujo 
et  al., 2022). The training and validation sets comprise sites in 
northern, central and southern Italy. Recently it has been success-
fully applied to European regions outside the validation range 
(e.g. Brechbühl et al., 2023). For Lago di Mezzano, we used the 
AIV for the mesomediterranean vegetation.

To be able to compare fire activity among study sites avoiding 
bias due to analytical and site-specific morphological differences, 
we calculated the fire number (FN = # of fires 1000 km−2 year−1) 
for Lago di Mezzano, Lago di Origlio, and Moossee. FN is calcu-
lated by using a charcoal influx-based transfer function, devel-
oped by Adolf et al. (2018), which is derived from a continental 
calibration effort for microscopic and macroscopic charcoal 
influx (as estimated from annually collected surface sediments) 
with satellite images of burning. FN is reconstructed within a 
40-km radius of the deepest point of the lakes considered in the 
study (Adolf et al., 2018) and adjusted for an area of 1000 km2.

Time series analysis (cross-correlations).  We calculated cross-cor-
relations to estimate effects of fire (microscopic charcoal influx), 
pastoral (Sporormiella dung spore influx), and human activities 
(land use probability index LUP; Deza-Araujo et  al., 2022) on 
vegetation (pollen percentages) and diversity (PRI, PIE). Such 
multivariate, parametric time-series analyses are well-established 
in palaeoecology (Clark et al., 1989; Dodson, 1990; Green, 1981; 
Lang et al., 2023; Tinner et al., 1999) and used to calculate lag or 
lead effects for one variable (response or dependent variable) in 
response to another variable (driving or independent variable). 
Cross-correlation analyses compare the values of the driving and 
response variables by moving the two sequences of values against 
each other for a given number of time lags. At each time lag, the 
correlation coefficient between the values of the two variables is 
calculated (Bahrenberg et  al., 2008). Data were linearly de-
trended to remove major trends from the time series, and only 
variables with different units have been cross-correlated (e.g. 
influx versus percentages) to avoid artificial correlations due to 
sedimentation rates or dependence among variables within per-
centages. In addition to the sequence of Lago di Mezzano (this 
study), we also re-estimated the cross-correlations at Lago di Ori-
glio (Tinner et al., 1999) and Moossee (Rey et al., 2019a) for the 
common period 5100–3100 cal. BC. The three analyzed series 
include 177 lags (1 lag = 11.5 ± 2.7 years) for Lago di Mezzano, 
173 lags (1 lag = 11.7 ± 1.4 years) for Lago di Origlio, and 189 
lags (1 lag = 10.8 ± 3.3 years) for Moossee. Cross-correlation 
coefficients were calculated at ±30 lags, corresponding to c. 
±340 cal. years, that is, less than one-fourth of the sample number 
N (Bahrenberg et  al., 2008). We tested the significance of the 
cross-correlation coefficients by calculating ±2 SE (standard 
errors) of the correlation coefficients, which corresponds to a 
two-sided significance level (α) of 5% (Bahrenberg et al., 2008; 
Tinner et al., 1999).

Results and interpretation
Chronology and lithology
The sediments of Lago di Mezzano corresponding to the period 
5100−3100 cal. BC are carbonaceous (mainly composed of silty 



Beffa et al.	 5

gyttja). The P-sequence age-depth model, which relies on Bayes-
ian statistics (Figure 2), has a mean modeled uncertainty of 
±52 cal. years (2σ), while the minimum uncertainty is ±28 cal. 
years (2σ) around 3100 cal. BC (Supplemental Table 1). The 
model suggests an approximately constant depositional time of c. 
23 years cm−1, with a maximum of 37 years cm−1 at c. 4400 cal. 
BC and minimum of 9 years cm−1 at c. 3200 cal. BC. One radio-
carbon date (sample 23: BE-13286.1.1; Supplemental Table 1, 
Figure 2) was treated as an outlier since it did not fit with the 
model in the Bayesian analysis.

Pollen, charcoal, and biogeochemical analyses 
inferred vegetation, land use, and fire dynamics
Throughout our 2000-year-long record (5100−3100 cal. BC), nine 
statistically significant local pollen assemblage zones (LPAZ) 
have been identified, suggesting several important vegetation 
changes (Figure 3a and b). In general, pollen percentages, con-
centration, and influx values show similar trends for most trees, 
shrubs, and herbs (Supplemental Figure 1). Nevertheless, low 

concentration and influx values for specific taxa such as Quercus 
robur t., Quercus ilex t. and Carpinus betulus are not mirrored in 
their percentage values during, for example, LPAZ MZZ-4. This 
might point to distortion effects such as a percental overrepresen-
tation of these tree taxa during some forest opening phases or 
alternatively, problems related to pollen deposition affecting both, 
concentrations and influx.

Tree pollen percentages show high values (>80% of the pol-
len sum) along most of the sequence, indicating the presence of 
rather closed forests around Lago di Mezzano during the Neo-
lithic from 5100 to 3100 cal. BC. Among the most important taxa 
are Q. robur t. (>20% of the pollen sum), Fagus (10−20%), Q. 
ilex t. (c. 15%), Carpinus betulus (5−10%), Corylus (5−10%), 
Quercus cerris t. (3−10%), and Alnus glutinosa t. (up to 40%). 
The unexpected existence of Fagus forests near the lake in a 
mesomediterranean vegetation context is supported by frequent 
findings of plant macrofossils such as bud scales (Figure 3a). 
Similarly, Alnus glutinosa macrofossils testify to the presence of 
the tree species, likely close to the shores (Figure 3a). Other arbo-
real taxa with lower values but regular occurrences over the entire 
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Figure 3.  (a) Arboreal pollen (AP) percentages of selected taxa and microscopic charcoal influx (particles cm−2 year−1) diagram as well as 
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pollen record are: Erica t., Ilex aquifolium, Hedera helix, Acer, 
Ulmus, Tilia, Fraxinus excelsior t., Fraxinus ornus, Ostrya t., 
Castanea sativa, Pistacia, Phillyrea, Sambucus nigra t., Prunus, 
Rubus, Frangula alnus, Viburnum, and Salix. The co-occurrence 
of these taxa belonging to different plant communities and vege-
tation zones (temperate to Mediterranean) suggests that the veg-
etation around Lago di Mezzano was highly varied, probably 
depending on different altitudes (relevant for e.g. moisture along 
the shores or cold air inversions), soil types, and slope aspect.

Percentages of the shore tree A. glutinosa t. pollen show high 
and constant values (c. 30%) for most of the record. Exceptions 
are the zones MZZ-1 to MZZ-4 (Figure 3a), with a collapse 
between 4850 and 4600 cal. BC (<5%) in MZZ-2, followed by a 
constant recovery toward values of >30% in MZZ-3 and MZZ-4. 
During the pollen- and macrofossil-inferred collapse of alder 
stands, mesophilous Fagus also declined and wetland plants such 
as Salix, Cyperaceae, Sparganium t., and Pediastrum expanded 
(MZZ-2), likely pointing to lake level oscillations. Lake eutrophi-
cation seems less likely because for instance high Pediastrum 
values are usually associated to low in lake productivity (as 
derived from TChl, Figures 3 and 4).

In the following, we summarize zones with similar vegetation 
history patterns: LPAZ MZZ-2, MZZ-4, MZZ-7, and MZZ-9, 
which correspond to the time 4850−4600, 4450−4300, 
3750−3350, and from 3200 cal. BC onwards. In these zones lower 
tree pollen percentages (<80%) suggest forest opening phases 
characterized by marked decreases in Fagus pollen percentages 
as well as increases of herbaceous taxa, including primary anthro-
pogenic indicators such as Triticum t. and Hordeum t., and sec-
ondary indicators such as Plantago lanceolata t., Rumex 
acetosella t., Urtica, Sporormiella dung spores, and Pteridium 
aquilinum. In agreement, increased LUP values (Figure 3b; Deza-
Araujo et  al., 2022) and higher percentages of the light-loving 
shrub Corylus avellana, suggest increasing pastoral and agricul-
tural activities during these opening phases. Microscopic charcoal 
influx values, as a proxy for fire activity, are higher during MZZ-
2, MZZ-7, and MZZ-9 (peaks around 15,000, 16,000, and 80,000 
particles cm−2 year−1, respectively) compared to the rest of the 
sequence. Using continental transfer functions for microscopic 
charcoal (Adolf et al., 2018) this translates to FN of c. 2.3, 2.4, 

and 7.3 fires 1000 km−2 year−1, respectively. Percentages of 
Pediastrum also increase during these phases, possibly reflecting 
changes in lake water properties (Jankovská & Komárek, 2000; 
Masi et al., 2018; Sadori et al., 2015). Simultaneous high values 
of Ti and R850/R900 (Figure 4) may point toward increasing ero-
sional input. Slash-and-burn and agricultural activities may there-
fore have been the main cause of the repeated forest openings and 
the associated erosion (see also results on cross-correlation, chap-
ter “Time-series analyses”, showing strong reductions of trees and 
increases of cereal cultivation in response to fires).

The first three land use phases of our record (LPAZ MZZ-2, 
MZZ-4, and MZZ-7) show common successional patterns. Ini-
tially, the opening phase is characterized by declines in tree per-
centages, mainly represented by Fagus (from 14% to 5%) and an 
increase in herbaceous and anthropogenic taxa. Subsequently, 
after c. 10 years, pollen from light-loving and disturbance-adapted 
Corylus shrubs increases as well (from 4% to 10%), followed by 
Carpinus betulus (from 4% to 10%) about 90 years later. Finally, 
after c. 170 years from the beginning of the forest opening phase, 
Fagus reaches high values again (c. 14−15%; Figures 3a and 5), 
likely revealing repeated successional recovery cycles after forest 
burning for land use. Q. robur t. and Q. ilex t. remain far more 
stable than Fagus in percentages, concentrations, and influx val-
ues (Figure 3 and Supplemental Figure 1). During the youngest 
reconstructed land use phase (MZZ-9), Fagus pollen remains 
constant, while evergreen Q. ilex t. and deciduous Q. robur t. 
decline markedly (in percentages, concentration, and influx), 
together with a sharp increase in microscopic charcoal values 
(reaching 80,703 particles cm−2 year−1 at c. 3190 cal. BC), corre-
sponding to a FN of c. 7.3 fires 1000 km−2 year−1. Such a diver-
gent pattern might indicate different land and forest use practices 
during this time compared to previous land use phases.

The LPAZ MZZ-1, MZZ-3, MZZ-5, MZZ-6, and MZZ-8 
show an opposite trend with phases of forest closure (tree pollen 
>80%), dominated by Fagus, Q. robur t., and Q. ilex t. Addition-
ally, we observe low microscopic charcoal values (c. 3900−6900 
particles cm−2 year−1) in these zones, with few exceptions in 
MZZ-1 (peaks reaching c. 20,000 particles cm−2 year−1). High 
values of TChl, Si/Ti, and Bphe were also recorded (Figure 4), 
pointing toward anoxic conditions and increased primary 
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production (Boehrer et  al., 2017; Boehrer and Schultze, 2008) 
under rather closed forest conditions. Under anoxic conditions, P 
is often recycled from the sediments back into the water column 
leading to generally low sedimentary P concentrations during 
anoxic phases (e.g. Makri et al., 2020; Zander et al., 2021). How-
ever, in our record, sedimentary P appears to be controlled by 
another process as it follows the same trend as indicators for detri-
tal input such as Ti, suggesting P is retained more effectively in 
the sediment during phases of high detrital input despite water 
column anoxia as suggested by the presence of Bphe throughout 
the record. High detrital input may indicate increased soil erosion 
which would also deliver iron oxyhydroxide to the lake which in 
turn would scavenge P from the water column and contribute to 
retaining P in the sediment (Tu et  al., 2021). Among the men-
tioned LPAZ, MZZ-6 (4200−3750 cal. BC) shows some particular 
characteristics. On one hand, high percentages of tree pollen 
(>80%) reflect stable forest cover with deciduous forests domi-
nated by beech (Fagus) and oak (Q. robur t.) and evergreen for-
ests with Q. ilex. This is supported by lowest microscopic charcoal 
influx values in the diagram (average 4280 particles cm−2 year−1) 
suggesting low forest fire activity in the region. On the other 
hand, during LPAZ MZZ-6, anthropogenic indicators such as 
Cerealia t., Triticum t., Hordeum t., P. lanceolata t., Urtica, 
Pteridium aquilinum and Sporormiella, as well as increased LUP 
values point to farming activities including forest grazing close to 
the lake when NAP are slightly higher (i.e. 4150−3900 cal. BC).

Biodiversity reconstruction
Palynological richness (PRI or Hill number N0) shows only slight 
variations over the whole sequence. However, higher values of PRI 
generally occur when percentages of tree pollen are low (Figure 3b). 

This suggests that, although the forests around Lago di Mezzano 
were very diverse, their opening for cultivation purposes (see 
increasing of anthropogenic taxa; Figure 3b) created new habitats 
for species characteristic of open lands. PIE (as a proxy for even-
ness) and Hill number N2 show opposite dynamics to those of PRI 
during some periods (e.g. 4700−4500, 4300−4100, 3900−3700 cal. 
BC; Figure 3b and Supplemental Figure 2), while during other peri-
ods they co-fluctuate with PRI (e.g. 4500−4300), suggesting that 
richness and evenness changes were not linearly linked. Indeed, 
since PRI and DE-PRI generally show comparable trends, we 
assume that PIE has no major effects on PRI (Colombaroli and Tin-
ner, 2013). An exception occurs at around 4450 cal BC when PIE-
inferred evenness and PRI decrease together, likely resulting from a 
PRI-distortion related to the dominance of Alnus glutinosa t. during 
this period (Figure 3b). DE-PRI corrects this palynological bias by 
producing values higher than PRI, as also documented in calibration 
studies comparing surface pollen and vegetation (Senn et al., 2022). 
PRI, PIE, and N2 are generally positively correlated with micro-
scopic charcoal, suggesting a beneficial influence of fires on species 
diversity and evenness (Figures 3b and Supplemental Figure 2).

Time-series analyses
Cross-correlation analysis of microscopic charcoal influx ver-
sus pollen percentages of selected plant taxa shows the relation-
ship between fires and vegetation, disclosing leads and lags. At 
Lago di Mezzano, microscopic charcoal influx is negatively 
correlated with all Quercus types found in the pollen sequence 
(Figure 5). Quercus ilex t. and Quercus cerris t. show a maxi-
mum negative correlation at lag +5 (c. 55 years after fire), 
while Quercus robur t. suffers longer, reaching its fire-induced 
minimum at lag +10. On the other hand, shrub taxa such as 
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Corylus and Juniperus t. show a maximum positive correlation 
with microscopic charcoal influx at lag +5, suggesting that fire 
favored the spread of these pioneer and light-loving shrubs 
which peaked c. 55 years later.

Sporormiella and Cerealia t. (including Triticum t. and Hor-
deum t.), as proxies for pastoral and agricultural activities, respec-
tively, show a maximum positive correlation with microscopic 
charcoal influx at lag +2 and +4, pointing out that land use was 
supported by fires. Both proxies are also significantly positively 
correlated with microscopic charcoal influx values at lag −5 and lag 
−3, suggesting that first human activities began before the forest 
opening was maximized with fire to expand the area for land use 
(Tinner et  al., 1999). Moreover, the land use probability index 
(LUP) shows a maximum negative correlation with trees and a 
maximum positive correlation with shrubs and herbs at lag 0. 
Together, these findings show that the forest was opened for agri-
cultural and pastoral activities. Cross-correlations between Spo-
rormiella influx values and percentages of plant taxa (e.g. trees, 
shrubs, herbs, Quercus, Corylus, PRI) show similar patterns as the 
cross-correlations between microscopic charcoal influx and the 
same response variables, suggesting a close link between pastoral 
activities and fire. Hence, increasing pastoralism, as indicated by 
Sporormiella influx, affected trees negatively and shrubs and herbs 
positively with a delay between c. 60 and 80 years (Figure 5). Inter-
estingly, Fagus shows a maximum negative correlation with LUP 

at lag 0 and no correlation with microscopic charcoal influx. This 
may suggest that the beech forest was not primarily opened with 
fire to create space for cultivation but also through logging activi-
ties. Sporormiella influx impacts PRI with a maximum positive 
correlation at lag +7, indicating a positive effect of pastoral activi-
ties on vegetation diversity. Moreover, LUP is strongly and signifi-
cantly correlated at lag 0 with PRI, suggesting that Neolithic human 
activities had a positive impact on vegetation diversity around Lago 
di Mezzano.

Recalculations of cross-correlations for Lago di Origlio 
(submediterranean site; Tinner et al., 1999) and Moossee (tem-
perate site; Rey et al., 2019a) confirm earlier results and reveal 
common patterns with Lago di Mezzano in vegetation-fire-
interactions. Microscopic charcoal influx is negatively corre-
lated with percentages of tree pollen at all three sites, although 
at Lago di Mezzano the maximum negative correlation is 
delayed by c. 55 years. Shrubs and herbs are also positively cor-
related with microscopic charcoal influx at all three sites. 
Among the shrubs, Corylus was particularly fostered by fires at 
all three sites. Fraxinus excelsior t. and Quercus robur t. are 
negatively impacted by fire at all three sites. Specifically, the 
overall pattern of the Quercus robur t. cross-correlation with 
charcoal is almost identical at Lago di Mezzano and Lago di 
Origlio, and still similar at Moossee (Figure 6). The short 
response time of F. excelsior t. to microscopic charcoal influx 
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highlights the high sensitivity of this taxon to fire in all three 
vegetation types. At Lago di Origlio and Moossee, Fagus is 
negatively correlated with microscopic charcoal influx values, 
whereas at Lago di Mezzano it shows no correlation, suggesting 
other causes of disturbance besides fires. Abies is negatively 
correlated with a short response time at Lago di Mezzano and 
Lago di Origlio, whereas at Moossee it responds first positively 
and later negatively to fire. This might be explained by different 
fire severities and the sensitivity of this species under submedi-
terranean to mesomediterranean climates and fire regimes. 
Interestingly, PRI is positively correlated with microscopic 
charcoal influx at Lago di Mezzano and Moossee and negatively 
correlated at Lago di Origlio. This finding is likely related to 
significantly higher fire disturbance (e.g. frequency, intensity) 
at Lago di Origlio, if compared to the two other sites (Figures 7 
and Supplemental Figure 3).

Discussion
The conversion of natural vegetation for land use in 
the Lago di Mezzano area
During the Neolithic, the co-dominance of evergreen broadleaved 
Quercus ilex together with temperate deciduous trees such as 
Quercus pubescens and/or Quercus petraea (within Quercus 
robur t.), Quercus cerris, and Fagus sylvatica suggests a highly 
diverse vegetation composition in the Lago di Mezzano area. The 
diversity of habitats in and around the Caldera of Latera, charac-
terized by different soil types, altitudes, and slope aspects, allowed 
the formation of a vegetational composition spanning from oro-
mediterranean moisture-loving beech forests, to intermediate sub-
mediterranean deciduous oak forests with, for example, Q. cerris 
and Q. pubescens, to mesomediterranean warm-loving evergreen 
holm-oak forests. Moreover, our pollen data suggest that second-
ary trees and shrubs in the Mezzano area comprised, among oth-
ers, Corylus, Ulmus, Tilia, Acer, Vitis, Fraxinus excelsior (and/or 
F. angustifolia), F. ornus, Ostrya carpinifolia, Abies alba, Hedera 
helix, Juniperus, Taxus, Ilex, Phillyrea, Pistacia, and probably 
also Olea europaea and Castanea sativa. Indeed, stretching from 

the Tyrrhenian Sea to the Apennines, Latium has a large diversity 
of species (Blasi, 1994) that were well represented in the Caldera 
of Latera during the Neolithic (Sadori, 2018).

Our results suggest that the rather dense mesomediterranean to 
oromediterranean oak-beech forests around Lago di Mezzano 
were opened repeatedly by fire, cutting, browsing, and grazing 
during the Neolithic periods 4950−4600, 4450−4300, 3750−3350, 
and 3200−3100 cal. BC. Disentangling climatic and human influ-
ence on fire and vegetation dynamics is one of the major chal-
lenges when aiming to understand past interactions between 
vegetation, climate, fire, and land use. At Lago di Mezzano, all 
forest opening phases occurred in conjunction with increasing 
anthropogenic indicators (Figure 3a and b). Our cross-correlation 
analysis underlines the role of fire and grazing during land use 
phases (Figure 5) and point to the practice of slash-and-burn 
activities. This technique has been employed by human popula-
tions to create open land for pasture and agriculture since the 
Neolithic (Clark et  al., 1989; Colombaroli et  al., 2008; Dietre 
et al., 2017; Doyen et al., 2016) and does not imply shifting culti-
vation (Baum et al., 2020). Intriguingly, Mesolithic foraging cul-
tures may already have used fire to open forests to improve the 
subsistence basis (Heidgen et  al., 2022). During the Neolithic, 
forest opening, in addition to providing space for agriculture and 
pasture (e.g. crops such as Triticum and Hordeum or adventives 
and apophytes such as Plantago lanceolata, Poaceae, and Rumex 
acetosella), created new habitats that could be colonized by many 
herbaceous plants including Caryophyllaceae, Ranunculaceae, 
and Asteraceae (Figure 3b).

Our cross-correlations results using LUP as the independent 
variable (Figure 5) strongly suggest anthropogenic activities as 
the main drivers of vegetation dynamics during the Neolithic for-
est opening phases (5100–3100 cal. BC). The Neolithic in Italy 
started around 8000 years ago (e.g. Bagolini, 1987; Malone, 2003; 
Palmisano et  al., 2017; Persiani, 2009; Petitti and Rossi, 2012; 
Robb, 2007). For instance, la Marmotta, a Neolithic lake-shore 
community that was technologically advanced in navigation, con-
struction of houses, agriculture, hunting, and crafts, existed 
between 5700 and 5300 cal. BC at Anguillara Sabazia on Lago di 
Bracciano, c. 80 km south-east of Lago di Mezzano (Fermé et al., 
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2021; Fugazzola Delpino et al., 1993), indicating that local human 
impacts on vegetation around lakes may have already started as 
early as 6000–5000 cal. BC.

During land use phases, herbaceous biodiversity increased in 
the grasslands and other open spaces in response to anthropogenic 
activities (Figure 3b). In agreement, studies covering different 
biomes including meso- and submediterrenean vegetation have 
shown that open lands provide ideal habitats for a wide variety of 
herbaceous plants (Colombaroli and Tinner, 2013; Giesecke et al., 
2014). Tree diversity, by contrast, remained relatively constant 
throughout the entire period 5100–3100 cal. BC (Supplemental 
Figure 4). This finding suggests a certain degree of forest resil-
ience at local to extralocal scales (i.e. within the pollen-catchment 
of the site). Light-loving shrubs or small trees such as Corylus 
avellana and Juniperus t. expanded about a decade after land use 
peaked. Such pioneer species usually colonize free habitats after 
disturbance events such as fire, erosion, logging, grazing, and 
agriculture and represent one of the early stages of the ecological 
succession toward the forest climax (Pignatti et  al., 2017). The 
expansion of Carpinus betulus followed that of C. avellana. This 
heliophilous and short-lived tree species rarely forms pure forests, 
and in the Italian lowlands it is often found with Q. robur or Cas-
tanea sativa, F. sylvatica, and C. avellana (Pignatti et al., 2017). 
At Lago di Mezzano, Carpinus betulus stands probably consti-
tuted a middle successional stage toward late successional beech-
oak forest. Interestingly, the species is rather indifferent to 
changes in moisture availability, if compared to, for example, 
Fagus sylvatica and Quercus cerris (Pignatti et al., 2017).

At Lago di Mezzano, increasing in-lake productivity (TChl, Si/
Ti) and hypolimnetic anoxia (high Bphe) during periods of forest 
closure was opposed to higher clastic input (Ti, R850/R900), oxic 
conditions (low Bphe), and decreasing productivity (TChl, Si/Ti) 
during forest opening phases (Figure 4). This finding likely reflects 
a rather strong link between in-lake and local upland environmen-
tal dynamics. Specifically, high forest cover likely increased wind 
shielding and soil stability, influencing lake biogeochemistry and 
mixing regime (Gassner et  al., 2020; Lotter, 2001; Makri et  al., 
2020; Zander et al., 2021). However, the clear anti-correlation of 
in-lake productivity indicators with indicators of detrital input 
could also be the consequence of a dilution effect due to increased 
catchment erosion during forest opening phases. Our palaeoeco-
logical results, including the repeated findings of F. sylvatica mac-
rofossils, suggest that oromediterranean beech forests grew near 
the lake. Indeed, HSI and the XRF data show a close connection 
with beech forest changes. For instance, high in-lake productivity 
(TChl; Figure 4) and low erosion (Ti and R850/R900; Figure 4) 
prevailed during periods of high beech forest cover (Figure 3a). 
On the other hand, mesomediterranean communities of Q. ilex, 
Pistacia, and Olea do not show such linkages. Therefore, on the 
basis of our multiproxy evidence, we hypothesize that F. sylvatica 
and other mesophilous temperate deciduous trees were growing on 
north-facing slopes and toward the bottom of the caldera (but out-
side the wetlands), where moisture and frost were likely more 
abundant and microclimatic conditions generally cooler. Oromedi-
terranean and submediterranean species are more resistant to win-
ter frost compared to Q. ilex and other evergreen broadleaved 
species, which probably grew on the warmer and drier south-fac-
ing slopes in and outside the Caldera of Latera.

Land use factors other than fire, grazing and browsing may 
have co-determined vegetation dynamics (Figures 5 and 6). For 
example, Fagus shows no correlation with microscopic charcoal 
from 5100 to 3100 cal. BC and a maximum negative correlation at 
lag 0 with LUP. This may reflect the use of its wood for construc-
tion purposes besides burning. F. sylvatica wood is valued for its 
hardness, resistance, and good workability, hence in Europe this 
tree species is today one of the most widely used in many fabrica-
tions such as furniture and cooking utensils, and for fire 

(San-Miguel-Ayanz et al., 2016). Indeed, in the Neolithic village 
La Marmotta on Lago di Bracciano beech wood was used for con-
struction and navigation, although deciduous Quercus and Laurus 
nobilis wood was much more utilized (Beccaccioli et  al., 2023; 
Fermé et al. 2021; Fugazzola Delpino and Tinazzi, 2010). Later 
on, during the Bronze Age at Lago di Mezzano, F. sylvatica was 
used along with other arboreal species for various lake-shore con-
structions as well (Sadori et al., 2004).

Effect of land use on forest vegetation in the wider 
regions of central and southern Italy
During the early and mid-Holocene, before the advent of agricul-
ture, evergreen Quercus and Fagus sylvatica, together with sev-
eral deciduous oak species, were predominant around Lago di 
Mezzano and other volcanic lakes in central Italy such as Lagac-
cione (Magri, 1999), Lago di Vico (Magri and Sadori, 1999), and 
Valle di Castiglione (Di Rita et  al., 2013). The forests in the 
regions outside volcanic calderas were co-dominated by Abies 
alba instead of F. sylvatica (Colombaroli et al., 2007; Drescher-
Schneider et al., 2007; Tinner et al., 2013). This difference in pri-
meval central Italian lowland forests was likely caused by the 
higher heat and drought sensitivity of F. sylvatica (e.g. Ellenberg, 
2009; Leuschner and Ellenberg, 2017), which allowed the species 
to thrive only in the rather cool and moist caldera environments.

Arable and pastoral farming spread in central Italy since the 
beginning of the Neolithic at about 6000 years BC (Malone, 
2003). In the lowlands, lake shore villages established during the 
Neolithic (Mazzucco et al. 2022) and became widespread during 
the Bronze Age (e.g. Angelini et  al., 2014; Angle et  al., 2011; 
Sadori et al., 2004). Lake shore settlements influenced the local 
vegetation cover around the lakes, the water quality, as well as, 
for example, the erosional imprint in the lake sediments. In the 
uplands outside the calderas, human impact also increased (e.g. 
Colombaroli et al., 2008; Drescher-Schneider et al., 2007), ulti-
mately leading to strong reductions in both mesophilous species 
A. alba and F. sylvatica all over central Italy. The strong negative 
human impact on lowland beech forests was also highlighted in a 
recent study by Buonincontri et al. (2023). However, in contrast 
to A. alba, which became rare also at higher altitudes in response 
to millennial-long human impact, F. sylvatica spread massively at 
higher altitudes in the Apennines (e.g. Allen et al., 2002; Branch, 
2013; Cruise, 1990; Guido et  al., 2013; Lowe, 1992; Morales-
Molino et al., 2021; Vescovi et al., 2010; Watson, 1996). This dif-
ference is explained by the lower disturbance sensitivity of F. 
sylvatica if compared to A. alba. Although F. sylvatica also suf-
fers from fires, its very high recruitment capacity allows it to 
recover and form increasingly pure beech stands (Ascoli et  al., 
2013, 2015; Maringer et al., 2016, 2020; Morales-Molino et al., 
2021). Indeed, our high-resolution results show that beech forests 
always recovered, at least partially, after each land use phase (Fig-
ure 3a). F. sylvatica was common in southern Italy as well. Above 
the thermomediterranean, mesomediterranean and supramediter-
ranean vegetation belts (Calò et al., 2012; Bisculm et al., 2012; 
Sadori and Narcisi, 2001; Tinner et  al., 2009), F. sylvatica was 
dominant in the oromediterranean belt above c. 1200 m a.s.l., 
forming dense forests during the mid and late Holocene as south 
as Sicily (Tinner et  al., 2016). At Lago Trifoglietti in southern 
Italy, F. sylvatica was co-dominant at high elevations (Joannin 
et al., 2012) during the entire Holocene. Very comparable to Lago 
di Mezzano, F. sylvatica also occurred in the caldera of Lago 
Grande di Monticchio (Allen et al., 2002). Still today the species 
co-dominates at low and intermediate altitudes in the caldera of 
Monte Vulture surrounding the Laghi di Monticchio (Spicciarelli 
et al., 2011), while it is absent in the submediterranean vegetation 
outside the caldera. To better understand the role of climate, land 
use and disturbance in the vegetation dynamics at the southern 
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Italian locations, novel precisely dated, continuous, high-resolu-
tion multiproxy records are needed.

The role of climate
Palaeoecological, archaeological and modeling evidence suggests 
that in the past, human activities, vegetation dynamics and cli-
matic conditions may have been closely linked to each other (e.g. 
Baum et al., 2020; Hafner and Schwörer, 2018; Lang et al., 2023; 
Maise, 1998; Rey et al., 2019a; Rösch and Lechterbeck, 2016; Tin-
ner et al., 2003; Wirtz and Lemmen, 2003). At our site climate may 
have impacted the local wetland vegetation. During the human 
induced forest opening phase from 4950 to 4600 cal. BC, Alnus 
glutinosa, markedly decreased, whereas during the following land 
use phases it remained stable. Climate reconstructions inferred 
from tree rings, stalagmites, and ice core records suggest moder-
ately drier and warmer conditions during the period 4950−4600 
cal. BC (Figure 8; Bircher, 1982, 1986; Isola et al., 2019; Renner, 
1982; Vinther et al., 2006), when A. glutinosa collapsed and other 
wetland plants such as Salix, Cyperaceae, Sparganium, and 
Pediastrum expanded (see Figures 3 and 8; Giraudi, 2004; Isola 
et al., 2019; Ramrath et al., 2000; Vinther et al., 2006). This find-
ing suggests that the collapse of A. glutinosa may have been 
related to lake level changes (Sadori et al., 2004; Sadori, 2018). 
However, during other periods such as 4400−4200 cal. BC, when 
climate was even drier according to the Corchia cave mean anom-
aly index (Figure 8e; Isola et  al., 2019), no such dependency 
between the Lago di Mezzano shore vegetation and climate 
existed, suggesting that climate may at most have exacerbated 
human impact on wetland vegetation. Alternatively, lake level 
decreases may have attracted people to settle on the open shores, 
promoting the mass disruption of alder carrs. Indeed, low Bphe 
values suggest oxic conditions and thus low lake level at Lago di 
Mezzano during this time (4950−4600 cal. BC, Figure 4).

The question to which extent climate may have triggered 
(contemporaneous) land use phases has been in the focus of 
archaeological (Gross-Klee and Maise, 1997) and palaeoecologi-
cal (Tinner et  al., 2003) studies for decades (e.g. Dark, 2006; 
Gajewski et al., 2006; Munoz et al., 2010; Tallavaara and Seppä, 
2012; van Geel and Mauquoy, 2010; Woodbridge et al., 2014). 
Recently, a study based on the comparison of few continuously 
sampled, high-resolution, and chronologically precise records 
available from Southern and Central Europe demonstrated con-
temporaneous Neolithic land use phases south and north of the 
Alps (Rey et  al., 2019a). The high temporal resolution 
(11.5 ± 2.7 years per sample) and the underlying chronological 
precision of our new record allow us to compare the dynamics 
observed at Lago di Mezzano with those observed at other sites 
with comparable resolution to verify if analogous land use phases 
extended to central Italy. Our comparison shows a certain anal-
ogy in the timing of land use phases (e.g. abundance of crops and 
weeds) and the structure of the vegetation successions (e.g. from 
pioneer to late successional species) between the regions of 
Latium and Ticino (Figure 7), which also extends north of the 
Alps. Such common phases may be explained by climate impacts 
on agricultural yields, promoting or reducing the carrying capac-
ity. Thus, periods with favorable climatic conditions for crop 
production may have led to increased deforestations and burning 
because human population densities increased, while during 
periods with adverse climate, human population densities may 
have declined, leading to repeated afforestation pulses (Maise, 
1998; Rey et al., 2019a; Tinner et al., 2005; Wirtz and Lemmen, 
2003). Testing such hypotheses would require highly resolved 
local and regional pollen-independent palaeoclimatic evidence. 
In the absence of such records, continental-scale evidence might 
be used. Tree ring records from the Alps show a good agreement 
with NGRIP oxygen isotope records (Figure 8, Rey et al., 2019a), 
although the available mid-Holocene tree ring series are still 
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fragmentary. The forest opening periods at Lago di Mezzano at 
4950−4600, 4450−4300, 3750−3350, and 3200–3100 cal. BC 
seem to fall in rather warm periods (Figure 8), but some warm 
periods such as around 3900 cal. BC have no equivalent opening 
phases, neither at Lago di Mezzano, nor at Lago di Origlio. On 
the other hand, our data suggest that during the cold period from 
4150 to 3900 cal. BC, although the forest remained closed, farm-
ing activities including forest grazing persisted in the Lago di 
Mezzano area. The Corchia cave record from within the region 
(Figure 8e; Isola et al., 2019) suggests that the opening phases at 
4950−4600 and 4450−4300 cal. BC occurred under slightly drier 
climates, while the opening phases at 3750−3350 and 3200–
3100 cal. BC occurred during slightly moister climates. Because 
the Corchia record mostly reflects moisture during the autumn 
and winter seasons but vegetation mostly responds to moisture 
changes during the growing season (spring to autumn) the com-
parison is only tentative. Taken together, the available palaeocli-
matic evidence is elusive and insufficient to address the 
hypothesis of climate-driven land use phases in more detail. New 
pollen-independent and highly resolved palaeoclimatic records 
are thus needed to assess this issue more carefully.

Comparable land use phases occurred at Lago di Mezzano, 
Lago di Origlio, and Moossee (Figure 7). Independently from 
their exact timing, the forest vegetation responses to fire distur-
bance at the three study sites were similar, as trees declined 
sharply, thereby providing new habitats for shrubs and grasses 
(Figure 6). Trees and shrubs that were well represented in all 
three vegetation types such as Quercus sp., Fraxinus excelsior, 
and Corylus avellana had common successional patterns in 
response to fire disturbance at the three sites. This result is rather 
surprising as the three regions exhibit important vegetational and 
climatic differences. At all contiguously sampled sites used for 
comparison in this study, mixed oak and beech or silver fir for-
ests dominated the original Neolithic vegetation, however, while 
mesomediterranean Quercus ilex was important in the Lago di 
Mezzano area, it was rare at Lago di Origlio (<1.5%) in Ticino, 
and absent at Moossee on the Swiss Plateau. Q. ilex is fire-
adapted (Pignatti et al., 2017), as frequent fires are characteristic 
of the Mediterranean region, especially during hot and dry sum-
mers. In Ticino, at Lago di Origlio, the submediterranean Insub-
rian region exhibits far higher levels of summer humidity (with 
mean summer precipitation of c. 500 mm in southern Ticino ver-
sus c. 160 mm in Latium). Therefore, Insubrian (Lago di Origlio) 
fires have more biomass available, promoting fire intensity and 
severity (Tinner et al., 1999, 2005). Finally, in the temperate for-
ests of Central Europe, high humidity levels and relatively cool 
temperatures result in lower fire frequencies (Adolf et al., 2018; 
Tinner et al., 2005). It is likely that such gradients were present 
during the entire Holocene and they may thus explain the low fire 
number (FN; Adolf et al., 2018) at Moossee, intermediate values 
at Lago di Mezzano, and highest values at Lago di Origlio (Sup-
plemental Figure 3). Such long-term fire-weather and -fuel dif-
ferences may have affected biodiversity responses to human 
impact, given that diversity increased in response to intermediate 
disturbance intensities at Lago di Mezzano and Moossee, 
whereas it decreased in response to high disturbance intensity at 
Lago di Origlio (Supplemental Figure 3 and Figure 6). Indeed, 
the Insubrian mixed oak-silver fir forests exhibited high diversity 
that was lost due to local extinction of important species in 
response to excessive burning and grazing that at the end extir-
pated these formerly important submediterranean forest commu-
nities (e.g. Henne et  al., 2015; Martinelli et  al., 2017; Tinner 
et al., 1999). Oak and beech forest communities also tended to 
become less diverse after repeated disturbance but to a far lesser 
degree (Morales-Molino et al., 2021; Rey et al., 2019a), while 
more generally, forest openings led to the formation of highly 
diverse open lands (Colombaroli and Tinner, 2013; Giesecke 
et al., 2014; Tinner and Ammann, 2005).

Conclusions
This study provides, for the first time, statistically significant evi-
dence of land use practices, with a prominent use of fire, at Lago di 
Mezzano during the Neolithic. Forest recovery patterns after reduc-
tion of human activities at this site in central Italy were similar to 
those observed at Lago di Origlio, in the warm-temperate submedi-
terranean forests of Southern Europe (Ticino) and to those of 
Moossee, under the rather cool-temperate conditions of Central 
Europe (Swiss Plateau). These similarities in vegetation dynamics 
occurred despite important differences in plant community compo-
sition and climate. Moreover, based on chronologically precise and 
continuous time series, our pioneering Mediterranean study sug-
gests comparable and synchronous land use phases between South-
ern and Central European sites during the Neolithic. Our study 
demonstrates that high-resolution palaeoecological reconstructions 
are essential to better assess vegetation dynamics in response to 
human impact and climate change. To allow for more detailed spa-
tio-temporal comparisons, further high-resolution and high-preci-
sion palaeorecords are needed in the Mediterranean realm.
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